JP2005262432A - Method of manufacturing large-size substrate - Google Patents

Method of manufacturing large-size substrate Download PDF

Info

Publication number
JP2005262432A
JP2005262432A JP2005035497A JP2005035497A JP2005262432A JP 2005262432 A JP2005262432 A JP 2005262432A JP 2005035497 A JP2005035497 A JP 2005035497A JP 2005035497 A JP2005035497 A JP 2005035497A JP 2005262432 A JP2005262432 A JP 2005262432A
Authority
JP
Japan
Prior art keywords
substrate
flatness
processing
large substrate
processing tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005035497A
Other languages
Japanese (ja)
Inventor
Yukio Shibano
由紀夫 柴野
Daisuke Kusakai
大介 草開
Shuhei Ueda
修平 上田
Atsushi Watabe
厚 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2005035497A priority Critical patent/JP2005262432A/en
Publication of JP2005262432A publication Critical patent/JP2005262432A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a large-size substrate such as a substrate for a large-size photomask of high parallelism and high flatness by an economically advantageous processing method, by securing a stable processing speed, without requiring polishing of a post-process, without causing fragile breaking in partial processing. <P>SOLUTION: This manufacturing method of the large-size substrate enhances the flatness and the parallelism of the large-size substrate, by partially removing a projecting part and a thick part of the substrate by a processing tool on the basis of its data, by measuring the flatness and the parallelism of the large-size substrate having the diagonal length of 500 mm or more in advance by vertically holding the large-size substrate. The manufacturing method of the large-size substrate is characterized in that the processing tool is formed into a structure for jetting slurry on the substrate by simultaneously carrying the slurry of suspending particulates in the water on the compressed air. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、フォトマスク用合成石英ガラス基板、特にTFT液晶パネルに用いられる基板などとして好適な大型基板の製造方法に関する。   The present invention relates to a method for producing a large-sized substrate suitable as a synthetic quartz glass substrate for a photomask, particularly a substrate used in a TFT liquid crystal panel.

一般的にTFT液晶パネルは、TFT素子が組み込まれているアレイ側基板とカラーフィルターを装着した基板の間に液晶を封入し、電圧をTFTでコントロールして液晶の配向を制御するアクティブ方法が採られている。   In general, a TFT liquid crystal panel employs an active method in which liquid crystal is sealed between an array side substrate in which TFT elements are incorporated and a substrate on which a color filter is mounted, and the voltage is controlled by the TFT to control the alignment of the liquid crystal. It has been.

アレイ側基板の製造の際には、大型フォトマスクと呼ばれる回路の描かれた原版を光露光により無アルカリ等のマザーガラスに何層も焼き付けるという方法が採られている。一方、カラーフィルター側基板も同様に染料含浸法と呼ばれるリソグラフィーを用いた方法で製造されている。アレイ側、カラーフィルター側基板のいずれの製造においても大型フォトマスクが必要であり、精度のよい露光を実施するため、これら大型フォトマスクの材料としては線膨張係数の小さい合成石英ガラスが主として使用されている。   At the time of manufacturing the array side substrate, a method is employed in which a master plate on which a circuit called a large photomask is drawn is baked in layers on a non-alkali mother glass by light exposure. On the other hand, the color filter side substrate is also manufactured by a method using lithography called a dye impregnation method. Both the array side and color filter side substrates require large photomasks, and synthetic quartz glass with a small linear expansion coefficient is mainly used as the material for these large photomasks in order to carry out accurate exposure. ing.

これまで液晶パネルはVGAからSVGA,XGA,SXGA,UXGA,QXGAと高精細化が進み、100ppi(pixel per inch)クラスから200ppiクラスの精細度が必要といわれており、これに伴い、TFTアレイ側の露光精度、特に重ね合わせ精度が厳しくなってきている。   Until now, liquid crystal panels have advanced from VGA to SVGA, XGA, SXGA, UXGA, and QXGA, and it is said that the resolution of 100 ppi (pixel per inch) class to 200 ppi class is necessary. The exposure accuracy, especially the overlay accuracy, is becoming stricter.

また、低温ポリシリコンという技術でパネルを製造することも行われているが、この場合、パネルの画素とは別にガラスの外周部にドライバー回路等を焼付けるといった検討がなされており、より高精細の露光が要求されている。   Panels are also manufactured using a technique called low-temperature polysilicon, but in this case, a driver circuit or the like is baked on the outer periphery of the glass separately from the panel pixels. Exposure is required.

一方、大型フォトマスク用基板については、その形状が露光精度に影響を及ぼすことが判っている。例えば図1のように、平坦度の異なる2つの大型フォトマスク用基板を用いて露光を行った場合には、光路の差よりパターンがはずれてしまうこととなる。即ち、図1(A)、(B)において、点線は光が直進した時にマスクが理想平面時の路を示すが、図示した実線のように光がずれてしまうものである。また、焦点を結ぶ光学系を使用する露光機の場合、フォーカス位置が露光面からずれて解像度が悪くなるという現象もある。このため、更なる高精度露光のためには高平坦度大型フォトマスク用基板が望まれている。   On the other hand, it has been found that the shape of a large photomask substrate affects the exposure accuracy. For example, as shown in FIG. 1, when exposure is performed using two large photomask substrates having different flatness, the pattern is deviated due to the difference in optical path. That is, in FIGS. 1A and 1B, the dotted line indicates the path when the mask is in an ideal plane when the light travels straight, but the light is shifted as shown by the solid line in the figure. Further, in the case of an exposure machine that uses an optical system for focusing, there is also a phenomenon that the focus position is shifted from the exposure surface and the resolution is deteriorated. For this reason, a high-flatness photomask substrate is desired for further high-precision exposure.

また、一回の露光で多面取りを行い、パネルの生産性を向上させる目的から、対角長で1500mmといった大サイズフォトマスク基板の要求も出てきており、大サイズ、且つ高平坦度が同時に求められている。   In addition, there is a demand for a large-sized photomask substrate with a diagonal length of 1500 mm for the purpose of improving the productivity of the panel by performing multiple exposures in a single exposure, and large size and high flatness are simultaneously achieved. It has been demanded.

一般的に大型フォトマスク用基板の製造は、板状の合成石英をアルミナ等の遊離砥粒を水に懸濁させたスラリーを用いてラップし、表面の凹凸を除去した後、酸化セリウム等の研磨材を水に懸濁させたスラリーを用いてポリッシュするという方法がとられている。この際使用する加工装置としては、両面加工機や片面加工機等が使用されている。   In general, large-sized photomask substrates are manufactured by wrapping plate-like synthetic quartz with a slurry of free abrasive grains such as alumina suspended in water, removing surface irregularities, and then using cerium oxide or the like. Polishing is performed using a slurry in which an abrasive is suspended in water. As a processing apparatus used at this time, a double-sided processing machine, a single-sided processing machine, or the like is used.

しかしながら、これらの加工方法では、基板自身が加工定盤に押し付けられたときに発生する弾性変形に対する反発力を平坦度修正に利用しているため、基板サイズが大きくなったときは反発力が著しく低下して、基板表面のなだらかな凹凸を除去する能力は低くなるという欠点を有していた。図2(A)は、基板1の垂直保持時の形状、(B)は、加工中の基板1の形状で加工時に定盤に倣っていることを示している。(C)はこのときの基板1の弾性変形に対する反発力を示しており、この力の分(ΔP)だけ他の個所より多く加工されることとなる。   However, in these processing methods, the repulsive force against the elastic deformation that occurs when the substrate itself is pressed against the processing platen is used for correcting the flatness, so that the repulsive force is remarkably increased when the substrate size is increased. As a result, the ability to remove the gentle irregularities on the surface of the substrate is reduced. FIG. 2A shows the shape of the substrate 1 when held vertically, and FIG. 2B shows that the shape of the substrate 1 being processed follows the surface plate during processing. (C) shows the repulsive force against the elastic deformation of the substrate 1 at this time, and the amount (ΔP) of this force is processed more than other portions.

また、平面研削装置を使用して平坦度を向上させるということも一般的に行われている。一般的に平面研削装置は、被加工物設置テーブルと加工ツールとの一定の間隔に被加工物を通過させて加工ツールで被加工物の一定間隔以上の部分を除去するという方法を採っている。この場合、被加工物の裏面の平坦度が出ていないと加工ツールの研削抵抗により被加工物は被加工物設置テーブルに押し付けられるため、結果的に表面の平坦度は裏面の平坦度に倣うこととなり、平坦度改善はできないのが現状である。   It is also common practice to improve flatness using a surface grinding apparatus. Generally, the surface grinding apparatus employs a method in which a workpiece is passed at a fixed interval between the workpiece setting table and the processing tool, and a portion of the workpiece exceeding the fixed interval is removed by the processing tool. . In this case, if the flatness of the back surface of the work piece is not obtained, the work surface is pressed against the work piece setting table by the grinding resistance of the processing tool. As a result, the flatness of the front surface follows the flatness of the back surface. Therefore, the flatness cannot be improved at present.

これら問題点を解決するために、特開2003−292346号公報(特許文献1)には、部分加工ツールにより基板の凸部分及び厚い部分を部分除去する大型フォトマスク用基板の加工方法が提案されている。しかしながら、部分加工ツールとして研削やサンドブラストを使用する方法では、部分加工処理により基板表面で脆性破壊が起こることがあり、基板表面に微小なクラック状欠陥が発生するおそれがあるが、このようなクラック状欠陥を除去するためには、部分加工処理後に両面研磨装置或いは片面研磨装置にて研磨を行う必要があった。また、部分加工後に使用する研磨装置には、研磨により基板平坦度、厚さバラツキ精度を悪化させないため、研磨機械精度の維持管理が必要となっていた。更に、サンドブラスト等の部分加工後の研磨にて基板平坦度又は厚さばらつきが低下して所望の数値からはずれた場合は、再度サンドブラスト等の部分加工を行った後、研磨を行うといったことが必要となることから、脆性破壊を伴わず、後工程の研磨を必要としない精度修正のための加工方法が望まれていた。   In order to solve these problems, Japanese Patent Application Laid-Open No. 2003-292346 (Patent Document 1) proposes a method for processing a substrate for a large photomask in which a convex portion and a thick portion of the substrate are partially removed by a partial processing tool. ing. However, in the method of using grinding or sandblasting as a partial processing tool, brittle fracture may occur on the substrate surface due to partial processing, and there is a possibility that minute crack-like defects may occur on the substrate surface. In order to remove the defects, it was necessary to perform polishing with a double-side polishing apparatus or a single-side polishing apparatus after partial processing. In addition, since the polishing apparatus used after partial processing does not deteriorate the substrate flatness and thickness variation accuracy due to polishing, it is necessary to maintain and manage the polishing machine accuracy. Furthermore, if the substrate flatness or thickness variation decreases due to polishing after partial processing such as sandblasting, and it deviates from the desired numerical value, it is necessary to perform polishing after partial processing such as sandblasting again. Therefore, there has been a demand for a processing method for accuracy correction that does not involve brittle fracture and does not require subsequent polishing.

また、脆性破壊を伴わないように定盤に研磨布を貼り付けた加工ツールも提案されているが、加工に伴う研磨布摩耗により加工速度が徐々に低下していくことから、頻繁に加工ツールを交換する必要があり、人手と時間を必要としていた。このため、部分加工で脆性破壊を伴わず、後工程の研磨を必要とせず、且つ安定した加工速度を確保でき、経済的に有利な加工方法が望まれていた。   In addition, a processing tool with an abrasive cloth affixed to a surface plate so as not to cause brittle fracture has been proposed, but since the processing speed gradually decreases due to abrasive cloth wear accompanying processing, the processing tool is frequently used. Had to be replaced and needed manpower and time. Therefore, there has been a demand for an economically advantageous processing method that does not involve brittle fracture in partial processing, does not require subsequent polishing, and can secure a stable processing speed.

特開2003−292346号公報JP 2003-292346 A

本発明は、上記事情に鑑みなされたもので、部分加工で脆性破壊を伴わず、後工程の研磨を必要とせず、且つ安定した加工速度を確保でき、経済的に有利な加工方法による高平坦度の大型フォトマスク用基板等の大型基板の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, does not involve brittle fracture in partial processing, does not require subsequent polishing, can secure a stable processing speed, and is highly flat by an economically advantageous processing method. An object of the present invention is to provide a method for manufacturing a large-sized substrate such as a large-sized photomask substrate.

本発明者らは、上記目的を達成するため鋭意検討した結果、予め対角長が500mm以上の大型基板の片面又は両面の平坦度、好ましくは両面の平坦度及び平行度を好ましくは大型基板を垂直保持して測定し、そのデータを基に上記大型基板の平坦度測定面における凸部分及び平行度を高める場合には両面の厚い部分を加工ツールにより部分的に除去して、上記大型基板の平坦度及び必要により平行度を高める大型基板の製造方法において、部分加工ツールとして、圧縮したエアーに、好ましくは粒子径3μm以下の酸化セリウム、酸化アルミニウム、酸化ケイ素等の微粒子を水に懸濁させたスラリーを同伴させて基板上に噴出する構造のものを用いることにより、基板表面に脆性破壊を発生させることなく、経済的に高平坦度の大型フォトマスク用基板等の大型基板を得ることができることを知見し、本発明をなすに至ったものである。   As a result of intensive studies to achieve the above object, the present inventors have previously determined the flatness of one or both sides of a large substrate having a diagonal length of 500 mm or more, preferably the flatness and parallelism of both surfaces, preferably a large substrate. When measuring by holding vertically and increasing the convexity and parallelism on the flatness measurement surface of the large substrate based on the data, thick portions on both sides are partially removed with a processing tool, and the large substrate In the manufacturing method of a large substrate that increases the flatness and, if necessary, the parallelism, as a partial processing tool, fine particles such as cerium oxide, aluminum oxide, silicon oxide, etc. with a particle diameter of 3 μm or less are preferably suspended in water in compressed air. Large-scale photo with high flatness economically without causing brittle fracture on the substrate surface. And it found that it is possible to obtain a large substrate such as a substrate for disk, in which the present invention has been accomplished.

従って、本発明は、以下の大型基板の製造方法を提供する。
(I)予め対角長が500mm以上の大型基板の片面又は両面の平坦度を測定し、そのデータを基に上記大型基板の平坦度測定面における凸部分を加工ツールにより部分的に除去して、上記大型基板の平坦度を高める大型基板の製造方法において、該加工ツールが、圧縮したエアーに、水に微粒子を懸濁させたスラリーを同伴させて基板上に噴出する構造のものであることを特徴とする大型基板の製造方法。
(II)上記大型基板の両面の平坦度及び平行度を測定し、そのデータを基に上記大型基板の両面のそれぞれの凸部分及び厚い部分を加工ツールにより除去するようにした(I)記載の大型基板の製造方法。
(III)微粒子が、酸化セリウム、酸化ケイ素又は酸化アルミニウムであることを特徴とする(I)又は(II)記載の大型基板の製造方法。
(IV)微粒子の平均粒子径が、3μm以下であることを特徴とする(I)〜(III)のいずれかに記載の大型基板の製造方法。
(V)圧縮したエアーの圧力が、0.05〜0.5MPaであることを特徴とする(I)〜(IV)のいずれかに記載の大型基板の製造方法。
(VI)大型基板が、合成石英ガラス基板であることを特徴とする(I)〜(V)のいずれかに記載の大型基板の製造方法。
(VII)大型基板が、TFT液晶のアレイ側基板であることを特徴とする(I)〜(VI)のいずれかに記載の大型基板の製造方法。
Therefore, the present invention provides the following large substrate manufacturing method.
(I) The flatness of one or both sides of a large substrate having a diagonal length of 500 mm or more is measured in advance, and the convex portion on the flatness measurement surface of the large substrate is partially removed by a processing tool based on the data. In the manufacturing method of a large substrate for improving the flatness of the large substrate, the processing tool has a structure in which a slurry of fine particles suspended in water is entrained in compressed air and ejected onto the substrate. A method for producing a large-sized substrate.
(II) The flatness and parallelism of both surfaces of the large substrate are measured, and the convex and thick portions on both surfaces of the large substrate are removed by a processing tool based on the data. A manufacturing method for large substrates.
(III) The method for producing a large substrate according to (I) or (II), wherein the fine particles are cerium oxide, silicon oxide or aluminum oxide.
(IV) The method for producing a large substrate according to any one of (I) to (III), wherein the average particle size of the fine particles is 3 μm or less.
(V) The method for producing a large substrate according to any one of (I) to (IV), wherein the compressed air has a pressure of 0.05 to 0.5 MPa.
(VI) The method for producing a large substrate according to any one of (I) to (V), wherein the large substrate is a synthetic quartz glass substrate.
(VII) The method for producing a large substrate according to any one of (I) to (VI), wherein the large substrate is an array side substrate of a TFT liquid crystal.

本発明の大型基板の製造方法によれば、基板表面に脆性破壊が発生しない加工を行うことができるため、後工程の研磨工程での機械精度維持に費やす労力及び時間が不要となり、経済的に高平坦度の大型基板の取得が可能となる。   According to the method for manufacturing a large-sized substrate of the present invention, since it is possible to perform processing without causing brittle fracture on the substrate surface, labor and time spent for maintaining mechanical accuracy in the subsequent polishing step are unnecessary, and economically. A large substrate with high flatness can be obtained.

本発明の大型基板は、ガラス基板、特に合成石英ガラス基板であることが好ましく、これはフォトマスク基板、TFT液晶のアレイ側基板等として用いられるもので、対角長が500mm以上、好ましくは500〜2,000mmの寸法を有するものである。なお、この大型基板の形状は、正方形、長方形、円形等であってよく、円形の場合、対角長とは直径を意味する。また、この大型基板の厚さは特に制限されるものではないが、1〜20mm、特に5〜12mmであることが好ましい。   The large substrate of the present invention is preferably a glass substrate, particularly a synthetic quartz glass substrate, which is used as a photomask substrate, a TFT liquid crystal array side substrate, etc., and has a diagonal length of 500 mm or more, preferably 500. It has a dimension of ˜2,000 mm. The shape of the large substrate may be a square, a rectangle, a circle, or the like. In the case of a circle, the diagonal length means a diameter. The thickness of the large substrate is not particularly limited, but is preferably 1 to 20 mm, particularly 5 to 12 mm.

本発明の製造方法としては、まず大型基板の板材の平坦加工すべき面、即ち片面又は両面(表裏面)の平坦度の測定を行う。また、大型基板の平行度を考慮する場合は、両面の平坦度及び平行度の測定を行う。原料となる板材は、加工時間短縮のために、はじめに両面研磨装置又は片面研磨装置で鏡面加工を行い、できるだけ平坦度及び/又は平行度を整えておくことが好ましい。基板表面がラップ面のように粗い場合でも、本発明は適用できるが、加工時間が長くなるため経済的には不利となる。なお、平坦度及び平行度の測定は、例えば黒田精工社製フラットネステスター(FTT−1500)等を使用して求めることができる。また、平坦度及び平行度の測定は、板材の自重変形を除くため、垂直保持して測定することが推奨される。   In the production method of the present invention, first, the flatness of the surface of a large substrate to be flattened, that is, one or both surfaces (front and back surfaces) is measured. When considering the parallelism of a large substrate, the flatness and parallelism of both surfaces are measured. In order to shorten the processing time, it is preferable that the plate material used as a raw material is first subjected to mirror finishing with a double-side polishing apparatus or a single-side polishing apparatus so that the flatness and / or parallelism is adjusted as much as possible. The present invention can be applied even when the substrate surface is rough like a lapping surface, but it is economically disadvantageous because the processing time becomes long. In addition, the measurement of flatness and parallelism can be calculated | required, for example using Kuroda Seiko Co., Ltd. flatness tester (FTT-1500). In addition, it is recommended that the flatness and parallelism be measured by holding the plate vertically in order to eliminate the deformation of the plate material.

次に、この測定データを基板の平坦度測定面(両面の平坦度を測定した場合であれば表面及び裏面)内の各点での高さデータ及び平行度を測定した場合であれば更に厚さデータとしてコンピューターに記憶させる。このデータに基づいて基板の平坦加工すべき面、つまり平坦度測定面(両面の平坦加工を行う場合であれば表面及び裏面)の平坦度を修正するため、平坦加工すべき面(両面の場合であれば各面)で計算される最小二乗平面を基準面とし、平坦加工すべき面内で最も低い点に高さが合うように加工除去量を計算し、加工ツール滞留時間を計算する。
更に、平行度を高める場合は、前記平坦加工後に得られるはずの基板の平行度を計算し、この平行度を修正するため基板面の厚さが最も薄いと計算される部分に厚さが合うように加工除去量を計算し、加工ツールの滞留時間を計算する。
Next, this measurement data is used to measure the height data and parallelism at each point in the flatness measurement surface of the substrate (front and back surfaces when the flatness of both surfaces is measured). It is stored in the computer as data. Based on this data, the surface of the substrate to be flattened, that is, the surface to be flattened (in the case of both sides) is corrected in order to correct the flatness of the flatness measurement surface (front and back if both sides are flattened). If this is the case, the least square plane calculated for each surface) is used as a reference plane, the machining removal amount is calculated so that the height matches the lowest point in the plane to be flattened, and the machining tool dwell time is calculated.
Further, when increasing the parallelism, the parallelism of the substrate that should be obtained after the flat processing is calculated, and in order to correct this parallelism, the thickness matches the portion where the thickness of the substrate surface is calculated to be the thinnest. Thus, the machining removal amount is calculated, and the residence time of the machining tool is calculated.

この場合、例えば裏面が平面であれば、これを基準面とし、表面が裏面と平行になるように滞留時間を計算し、上記表面を平坦にするための滞留時間結果とから、表面の加工を行う場合の加工ツールの最終滞留時間を求めてもよいが、より好ましくは、基板内に平行にすべき平面を仮定し、これを基準面とし、表面及び裏面それぞれに対し、基板面の最も薄い部分に対応する両面(表面及び裏面)箇所にそれぞれ表面及び裏面の他箇所の厚さが合うように表面及び裏面の滞留時間を計算し、最後に上記表面及び裏面の平坦化のための滞留時間結果と積算し、両面の平坦度及び平行度を修正するための各部位における最終的な加工除去量を計算して加工ツールの滞留時間を求め、両面を加工するに際して上記最終滞留時間に基づき、各面における加工ツールの移動速度を遅くしたり早くしたりして滞留時間をコントロールし、加工を行うことが好ましい。   In this case, for example, if the back surface is flat, this is used as a reference surface, the residence time is calculated so that the surface is parallel to the back surface, and the surface processing is performed from the residence time result for flattening the surface. The final residence time of the processing tool when performing may be obtained, but more preferably, a plane that should be parallel to the substrate is assumed, and this is used as a reference surface, and the substrate surface is the thinnest with respect to each of the front and back surfaces. Calculate the residence time of the front and back sides so that the thicknesses of the other parts of the front and back sides match the both sides (front and back) locations corresponding to the part, and finally the residence time for flattening the front and back sides. Calculate the final processing removal amount in each part to correct the flatness and parallelism of both sides, and calculate the residence time of the processing tool, based on the above final residence time when processing both sides, On each side With or faster or slow down the movement speed of the processing tool to control the residence time, it is preferable to carry out the processing.

なお、以上の方法は、加工ツールの移動速度をコントロールすることにより所用の加工を行うものであるが、後述するように、加工ツールの移動速度をコントロールする代わりに、加工ツールからのエアー吹き付け圧力をコントロールして加工を行ってもよく、加工ツールの移動速度及びエアー吹き付け圧力の両方をコントロールするようにしてもよい。   Note that the above method performs the desired processing by controlling the moving speed of the processing tool, but as described later, instead of controlling the moving speed of the processing tool, the air blowing pressure from the processing tool May be performed while controlling both the moving speed of the processing tool and the air blowing pressure.

ここで、本発明に用いる加工ツールは、水に微粒子を懸濁させたスラリーをエアー圧力を利用して基板上に噴射できる構造のものである。微粒子を水に懸濁させない場合、つまり乾式サンドブラストのような場合は、微粒子の粒径を細かくしていくに従い微粒子同士が集合して大粒子を形成しやすくなり、この大粒子が基板表面に衝突すると脆性破壊を起こしやすくなる。   Here, the processing tool used in the present invention has a structure in which a slurry in which fine particles are suspended in water can be sprayed onto a substrate using air pressure. When fine particles are not suspended in water, that is, when dry sandblasting is used, the fine particles tend to aggregate and form large particles as the particle size of the fine particles is reduced, and these large particles collide with the substrate surface. Then, it becomes easy to raise | generate a brittle fracture.

上記加工ツールにおいて、水に懸濁させる微粒子としては特に制約はないが、酸化セリウム、酸化ケイ素、酸化アルミニウムが好ましい。また、この微粒子の平均粒子径は3μm以下であることが好ましく、より好ましくは0.5〜2μmである。平均粒子径が3μmを超えると、加工により基板表面に微小クラックが発生する場合があり、また0.5μm未満では、除去速度が遅くなることから加工に時間がかかる場合がある。なお、本発明において、平均粒子径は、レーザー光回折式粒度分布測定装置やコールターカウンター等により求めることができる。   In the above processing tool, the fine particles suspended in water are not particularly limited, but cerium oxide, silicon oxide, and aluminum oxide are preferable. Moreover, it is preferable that the average particle diameter of this microparticle is 3 micrometers or less, More preferably, it is 0.5-2 micrometers. If the average particle diameter exceeds 3 μm, micro cracks may be generated on the substrate surface due to processing, and if it is less than 0.5 μm, the removal speed may be slow and processing may take time. In the present invention, the average particle diameter can be determined by a laser light diffraction particle size distribution measuring device, a Coulter counter, or the like.

スラリー中の微粒子量としては、2〜30質量%、特に5〜15質量%とすることが好ましい。微粒子量が少なすぎると加工に時間がかかる場合があり、多すぎると水中での微粒子の分散が不十分となり、凝集粒子となって基板表面に微小クラックを発生しやすくなる場合がある。またこのスラリーは、常法に準じて調製することができる。更に、スラリーには、微粒子の分散剤や乾燥防止、洗浄性向上のため界面活性剤等を添加することも可能である。   The amount of fine particles in the slurry is preferably 2 to 30% by mass, particularly 5 to 15% by mass. If the amount of fine particles is too small, processing may take a long time. If the amount is too large, dispersion of the fine particles in water may be insufficient, and aggregated particles may be easily generated on the substrate surface. Moreover, this slurry can be prepared according to a conventional method. Furthermore, it is also possible to add a surfactant or the like to the slurry to disperse the fine particles, to prevent drying, and to improve cleaning properties.

上記スラリーは、エアーの圧力を利用して基板上に噴射されるものである。エアー圧力は、使用微粒子や加工ツール−基板間の距離と関係しており、一義的に決められず、除去速度と脆性破壊の有無をみて調整することが好ましいが、通常、0.05〜0.5MPa、特に0.05〜0.3MPaとすることができる。エアー圧力が0.05MPa未満では加工に時間がかかる場合があり、また0.5MPaを超えると基板表面に微小クラックが発生する場合がある。   The slurry is jetted onto the substrate using air pressure. The air pressure is related to the fine particles used and the distance between the processing tool and the substrate, and is not uniquely determined, and is preferably adjusted in view of the removal rate and the presence or absence of brittle fracture. 0.5 MPa, particularly 0.05 to 0.3 MPa. If the air pressure is less than 0.05 MPa, processing may take time, and if it exceeds 0.5 MPa, microcracks may be generated on the substrate surface.

また、エアー圧力を利用してスラリーを基板上に噴射する構造は特に限定されるものではなく、例えば二重管とし、中心部よりスラリーを供給し、外周部よりエアーを供給する構造とすることができる。
この場合、スラリー及びエアーの供給量としては、ノズルサイズにより異なるが、スラリー供給量をAml/分、エアー供給量をBNm3/分とした場合に、A/Bが20〜500、特に50〜300であることが好ましい。A/Bが20未満であると加工に時間がかかる場合があり、500を超えると基板表面に微小クラックが発生する場合がある。
In addition, the structure for injecting slurry onto the substrate using air pressure is not particularly limited. For example, a double pipe is used to supply slurry from the center and supply air from the outer periphery. Can do.
In this case, the supply amount of slurry and air varies depending on the nozzle size, but when the slurry supply amount is Aml / min and the air supply amount is BNm 3 / min, A / B is 20 to 500, particularly 50 to 300 is preferable. If A / B is less than 20, processing may take time, and if it exceeds 500, microcracks may be generated on the substrate surface.

平行度修正及び平坦度修正加工方法としては、例えば、図3に示す装置を用いて加工を行うことができる。ここで、図中10は基板保持台、11は加工ツールである。なお、1は基板である。加工ツールは、X,Y方向に任意に移動できる構造であり、移動についてはコンピューターで制御できるものである。また、X−θ機構でも加工は可能である。   As the parallelism correction and flatness correction processing methods, for example, processing can be performed using the apparatus shown in FIG. Here, in the figure, 10 is a substrate holding table, and 11 is a processing tool. Reference numeral 1 denotes a substrate. The processing tool has a structure that can be arbitrarily moved in the X and Y directions, and the movement can be controlled by a computer. Processing can also be performed with an X-θ mechanism.

このような加工ツールを用いて大型基板の所用面(片面又は両面)の平坦度を加工する場合、好ましくは更に平行度をも加工する場合は、上述した測定データに基づいて計算した各部位での加工ツールの滞留時間に従って、上記大型基板の所用面の凸部分や厚い部分を上記加工ツールにより部分的に除去する。   When processing the flatness of a desired surface (one side or both sides) of a large-sized substrate using such a processing tool, preferably when processing parallelism further, each part calculated based on the measurement data described above is used. In accordance with the residence time of the processing tool, the convex portion and the thick portion of the desired surface of the large substrate are partially removed by the processing tool.

ここで、凸部分とは、平坦加工すべき面において、その最小二乗平面を基準面としたときに最も低い部位よりも高い部分をいい、厚い部分とは、平行度加工を行う場合において、厚さが最も薄いと計算される部分よりも厚い部分をいう。   Here, the convex part means a part higher than the lowest part in the surface to be flattened when the least square plane is used as a reference plane, and a thick part means a thickness when parallelism processing is performed. This is the thicker part than the part that is calculated to be the thinnest.

この場合、加工ツールからエアー吹き付け圧力を一定とし、除去量が多いと計算された部位は加工ツールの移動速度を遅くして滞留時間を長くする一方、除去量が少ないと計算された部位は加工ツールの移動速度を速くして滞留時間を短くすることで、滞留時間をコントロールして加工を行うことができる。   In this case, the part where the air blowing pressure from the processing tool is constant and the removal amount is large will slow down the moving speed of the processing tool and lengthen the residence time, while the part where the removal amount is small will be processed By increasing the moving speed of the tool and shortening the residence time, it is possible to perform processing while controlling the residence time.

また、加工ツールの移動速度は一定とし、加工ツールからのエアー吹き付け圧力を除去量が多いと計算された部位で大きくし、除去量が少ないと計算された部位で小さくするといった圧力コントロールでも目的は達成できる。   The purpose of pressure control is to keep the moving speed of the processing tool constant and increase the air blowing pressure from the processing tool at the calculated part when the removal amount is large, and decrease at the calculated part when the removal amount is small. Can be achieved.

本発明においては、懸濁粒子の粒子径、基板材質、エアー圧力、加工ツールと基板面までの距離等により加工除去速度が異なるため、予め使用する加工ツール及び加工条件を用いて加工特性を把握しておき、加工ツールの滞留時間やエアー吹き付け圧力に反映させる必要がある。   In the present invention, the processing removal speed varies depending on the particle size of the suspended particles, the substrate material, the air pressure, the distance between the processing tool and the substrate surface, etc., so the processing characteristics are grasped using the processing tools and processing conditions used in advance. In addition, it is necessary to reflect the residence time of the processing tool and the air blowing pressure.

ここで、加工は表裏面について行い、表裏面の平坦度を高めることが好ましい。また、平行度も高めるように加工することが好ましい。
本発明によれば、上記加工前の表裏面の平坦度が10〜50μm、特に10〜30μmであり、平行度が2〜30μm、特に2〜15μmである大型ガラス基板を、この基板の表裏面を上記のように加工するだけで、表裏面の平坦度を2〜20μm、特に2〜10μm、平行度を1〜20μm、特に1〜10μmにすることができる(加工後の表裏面の平坦度をそれぞれ加工前の表裏面の平坦度の1/2〜1/20、特に1/5〜1/20とすることができ、加工後の平行度を加工前の平行度の1/2〜1/10、特に1/5〜1/10とすることができる)。なお、以上は表面及び裏面の両面を加工する場合であるが、表面のみの平坦度が必要な場合は表面のみを加工すればよい。
また、上記加工後は、後研磨は必ずしも必要とせず、表面研磨は、上記加工による研磨を最終研磨とすることができる。
Here, it is preferable to process the front and back surfaces to increase the flatness of the front and back surfaces. Moreover, it is preferable to process so that parallelism may also be improved.
According to the present invention, a large glass substrate having a flatness of 10 to 50 μm, particularly 10 to 30 μm, and a parallelism of 2 to 30 μm, particularly 2 to 15 μm, before and after the above processing is obtained. Can be made to have a flatness of 2 to 20 μm, particularly 2 to 10 μm, and a parallelism of 1 to 20 μm, particularly 1 to 10 μm (the flatness of the front and back after processing). Can be set to 1/2 to 1/20, particularly 1/5 to 1/20 of the flatness of the front and back surfaces before processing, and the parallelism after processing is 1/2 to 1 of the parallelism before processing. / 10, especially 1/5 to 1/10). In addition, although the above is a case where both the front surface and back surface are processed, when the flatness of only the surface is required, it is sufficient to process only the surface.
Further, after the above processing, post-polishing is not always necessary, and for surface polishing, polishing by the above processing can be used as final polishing.

本発明の製造方法では、上記方法により基板の凸部分及び厚い部分を選択除去する際に脆性破壊を伴わないため、この後に研磨加工を行う必要がないことから、後工程での機械精度管理が省けると共に、短時間で高平坦度基板を取得することができる。   In the manufacturing method of the present invention, since there is no brittle fracture when selectively removing the convex portion and the thick portion of the substrate by the above method, it is not necessary to perform a polishing process after this, so that the mechanical accuracy control in the subsequent process can be performed. In addition to saving, a high flatness substrate can be obtained in a short time.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記例において、平行度及び平坦度の測定は、黒田精工社製フラットネステスター(FTT−1500)を使用した。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. In the following examples, the flatness tester (FTT-1500) manufactured by Kuroda Seiko Co., Ltd. was used for the measurement of parallelism and flatness.

[実施例1]
大きさ520×800mm(対角長:954mm)、厚さ10.5mmの合成石英基板を不二見研磨材(株)製GC#600を用いて、遊星運動を行う両面ラップ装置で加工を行った後、平均粒子径1μmの酸化セリウムを用いて両面研磨を実施し、原料基板を準備した。この原料基板の精度は、表面平坦度20μm、裏面平坦度22μm、平行度4μmであり、中央部分が高い形状となっていた。
[Example 1]
A synthetic quartz substrate having a size of 520 × 800 mm (diagonal length: 954 mm) and a thickness of 10.5 mm was processed with a double-sided lapping machine that performs planetary motion using GC # 600 manufactured by Fujimi Abrasive Co., Ltd. Thereafter, double-side polishing was performed using cerium oxide having an average particle diameter of 1 μm to prepare a raw material substrate. The accuracy of this raw material substrate was such that the surface flatness was 20 μm, the back surface flatness was 22 μm, and the parallelism was 4 μm, and the central portion had a high shape.

次に、この原料基板を図3に示す装置の基板保持台10に装着した。加工ツール11は、X,Y軸方向に基板保持台に対してほぼ平行に移動できる構造となっており、加工ツール11のスラリー吹き出し口と基板1面との間隔は100mmとした。
また、加工ツール11は二重管とし、中心部よりスラリーを外周部よりエアーを供給し、エアーと共にスラリーを基板上に吹き付ける構造のものとした。ここで、スラリーは、平均粒子径1μmの酸化セリウム微粒子を水に懸濁して10質量%のスラリーに調製した。
Next, this raw material substrate was mounted on the substrate holder 10 of the apparatus shown in FIG. The processing tool 11 has a structure that can move substantially parallel to the substrate holding table in the X and Y axis directions, and the distance between the slurry blowing port of the processing tool 11 and the surface of the substrate 1 is set to 100 mm.
Further, the processing tool 11 is a double tube, and has a structure in which slurry is supplied from the center portion and air is supplied from the outer peripheral portion, and the slurry is sprayed onto the substrate together with air. Here, the slurry was prepared to a slurry of 10% by mass by suspending cerium oxide fine particles having an average particle diameter of 1 μm in water.

加工方法は、図4に示すように、X軸に平行に加工ツールを連続的に移動させ、Y軸方向へは10mmピッチで移動させる方法を採った。また、加工時のスラリー供給量は400ml/分とし、エアー圧力は0.3MPa、エアー供給量は2Nm3/分とした。この条件での加工速度は、予め測定した値から1μm/分であり、外周に行くほど小さくなるようにした。加工ツールの移動速度は、計算上最も除去量が少ないと計算された部分で50mm/秒とし、基板各部分での移動速度は加工速度及び加工プロファイルから基板各部分での加工ツールの必要滞留時間を求め、これから移動速度を計算し、加工ツールの移動により加工位置を移動させ、基板両面の処理を行った。
加工後の基板の精度は、表面平坦度3.6μm、裏面平坦度3.7μm、平行度2.1μmであり、脆性破壊はなかった。
As shown in FIG. 4, the machining method was such that the machining tool was continuously moved parallel to the X axis and moved at a pitch of 10 mm in the Y axis direction. The slurry supply rate during processing was 400 ml / min, the air pressure was 0.3 MPa, and the air supply rate was 2 Nm 3 / min. The processing speed under these conditions was 1 μm / min from the value measured in advance, and was made smaller toward the outer periphery. The moving speed of the processing tool is 50 mm / sec at the part where the removal amount is the smallest in the calculation, and the moving speed at each part of the substrate is the required residence time of the processing tool at each part of the substrate from the processing speed and processing profile The moving speed was calculated from this, the processing position was moved by moving the processing tool, and the both surfaces of the substrate were processed.
The precision of the substrate after processing was a surface flatness of 3.6 μm, a back surface flatness of 3.7 μm, and a parallelism of 2.1 μm, and there was no brittle fracture.

[実施例2]
微粒子を平均粒子径3μmの酸化セリウムとした他は、実施例1と同じように行った。
[Example 2]
The same procedure as in Example 1 was performed except that the fine particles were cerium oxide having an average particle diameter of 3 μm.

[実施例3]
微粒子を平均粒子径2μmの酸化アルミニウムとした他は、実施例1と同じように行った。
[Example 3]
The same procedure as in Example 1 was performed except that the fine particles were aluminum oxide having an average particle diameter of 2 μm.

[実施例4]
微粒子を平均粒子径2μmの酸化ケイ素とした他は、実施例1と同じように行った。
[Example 4]
The same procedure as in Example 1 was performed except that the fine particles were silicon oxide having an average particle diameter of 2 μm.

[実施例5]
エアー圧力を0.5MPaとした他は、実施例1と同じように行った。
[Example 5]
The same operation as in Example 1 was performed except that the air pressure was 0.5 MPa.

[実施例6]
原料基板を表面平坦度22μm、裏面平坦度24μm、平行度15μmとした他は、実施例1と同じように行った。
[Example 6]
The same procedure as in Example 1 was performed except that the raw material substrate had a surface flatness of 22 μm, a back surface flatness of 24 μm, and a parallelism of 15 μm.

実施例1〜6の結果を表1に示す。   The results of Examples 1 to 6 are shown in Table 1.

Figure 2005262432
Figure 2005262432

[比較例1]
微粒子を平均粒子径10μmの酸化アルミニウムとし、微粒子を水に懸濁せずに乾式状態で吹き付けた他は、実施例1と同じように行った。
[Comparative Example 1]
The procedure was the same as in Example 1, except that the fine particles were aluminum oxide having an average particle size of 10 μm and the fine particles were sprayed in a dry state without being suspended in water.

[比較例2]
微粒子を平均粒子径1μmの酸化セリウムとし、微粒子を水に懸濁せずに乾式状態で吹き付けた他は、実施例1と同じように行った。
[Comparative Example 2]
The same procedure as in Example 1 was performed except that the fine particles were cerium oxide having an average particle diameter of 1 μm and the fine particles were sprayed in a dry state without being suspended in water.

比較例1,2の結果を表2に示す。   The results of Comparative Examples 1 and 2 are shown in Table 2.

Figure 2005262432
Figure 2005262432

フォトマスク用基板に露光した場合の光路を説明する図で、(A)は上面が凹状、(B)は上面が凸状の基板の光路を示す。It is a figure explaining the optical path at the time of exposing to the board | substrate for photomasks, (A) shows the optical path of a board | substrate with a concave upper surface, (B) shows a convex surface. 基板を加工定盤でポリッシュするときの態様を示し、(A)は基板の垂直保持時の形状を示す正面図、(B)は加工時に定盤に倣っている状態を示す正面図、(C)はそのときの下定盤での反発力を示す説明図である。A mode when polishing a substrate with a processing surface plate is shown, (A) is a front view showing the shape of the substrate when held vertically, (B) is a front view showing a state following the surface plate during processing, (C ) Is an explanatory diagram showing the repulsive force on the lower surface plate at that time. 加工装置の概要を示す斜視図である。It is a perspective view which shows the outline | summary of a processing apparatus. 加工ツールにおける移動態様を示す斜視図である。It is a perspective view which shows the movement aspect in a processing tool.

符号の説明Explanation of symbols

1 基板
10 基板保持台
11 加工ツール
1 Substrate 10 Substrate holder 11 Processing tool

Claims (7)

予め対角長が500mm以上の大型基板の片面又は両面の平坦度を測定し、そのデータを基に上記大型基板の平坦度測定面における凸部分を加工ツールにより部分的に除去して、上記大型基板の平坦度を高める大型基板の製造方法において、該加工ツールが、圧縮したエアーに、水に微粒子を懸濁させたスラリーを同伴させて基板上に噴出する構造のものであることを特徴とする大型基板の製造方法。   The flatness of one or both sides of a large substrate having a diagonal length of 500 mm or more is measured in advance, and the convex portion on the flatness measurement surface of the large substrate is partially removed by a processing tool based on the data, and the large substrate In the manufacturing method of a large substrate for improving the flatness of the substrate, the processing tool has a structure in which compressed air is ejected onto the substrate together with a slurry in which fine particles are suspended in water. A method for manufacturing a large substrate. 上記大型基板の両面の平坦度及び平行度を測定し、そのデータを基に上記大型基板の両面のそれぞれの凸部分及び厚い部分を加工ツールにより除去するようにした請求項1記載の大型基板の製造方法。   2. The large substrate according to claim 1, wherein the flatness and parallelism of both surfaces of the large substrate are measured, and the convex portions and the thick portions on both surfaces of the large substrate are removed by a processing tool based on the data. Production method. 微粒子が、酸化セリウム、酸化ケイ素又は酸化アルミニウムであることを特徴とする請求項1又は2記載の大型基板の製造方法。   3. The method for producing a large substrate according to claim 1, wherein the fine particles are cerium oxide, silicon oxide, or aluminum oxide. 微粒子の平均粒子径が、3μm以下であることを特徴とする請求項1,2又は3記載の大型基板の製造方法。   The method for producing a large substrate according to claim 1, 2 or 3, wherein the average particle diameter of the fine particles is 3 µm or less. 圧縮したエアーの圧力が、0.05〜0.5MPaであることを特徴とする請求項1乃至4のいずれか1項に記載の大型基板の製造方法。   The method for producing a large substrate according to any one of claims 1 to 4, wherein the compressed air has a pressure of 0.05 to 0.5 MPa. 大型基板が、合成石英ガラス基板であることを特徴とする請求項1乃至5のいずれか1項に記載の大型基板の製造方法。   The method for producing a large substrate according to any one of claims 1 to 5, wherein the large substrate is a synthetic quartz glass substrate. 大型基板が、TFT液晶のアレイ側基板であることを特徴とする請求項1乃至6のいずれか1項に記載の大型基板の製造方法。   7. The method for manufacturing a large substrate according to claim 1, wherein the large substrate is a TFT liquid crystal array side substrate.
JP2005035497A 2004-02-18 2005-02-14 Method of manufacturing large-size substrate Pending JP2005262432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005035497A JP2005262432A (en) 2004-02-18 2005-02-14 Method of manufacturing large-size substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004041396 2004-02-18
JP2005035497A JP2005262432A (en) 2004-02-18 2005-02-14 Method of manufacturing large-size substrate

Publications (1)

Publication Number Publication Date
JP2005262432A true JP2005262432A (en) 2005-09-29

Family

ID=35087495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005035497A Pending JP2005262432A (en) 2004-02-18 2005-02-14 Method of manufacturing large-size substrate

Country Status (1)

Country Link
JP (1) JP2005262432A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007168009A (en) * 2005-12-21 2007-07-05 Showa Denko Kk Nozzle for abrasive liquid supply and supply device of abrasive liquid
WO2008139848A1 (en) 2007-05-09 2008-11-20 Nikon Corporation Photomask substrate, photomask substrate forming member, photomask substrate manufacturing method, photomask, and exposure method using photomask
JP2016002639A (en) * 2014-06-19 2016-01-12 東ソー株式会社 Surface processing apparatus, surface processing facility, and surface processing method
JP7403150B2 (en) 2019-11-28 2023-12-22 マコー株式会社 Glass workpiece surface treatment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007168009A (en) * 2005-12-21 2007-07-05 Showa Denko Kk Nozzle for abrasive liquid supply and supply device of abrasive liquid
WO2008139848A1 (en) 2007-05-09 2008-11-20 Nikon Corporation Photomask substrate, photomask substrate forming member, photomask substrate manufacturing method, photomask, and exposure method using photomask
JP2016002639A (en) * 2014-06-19 2016-01-12 東ソー株式会社 Surface processing apparatus, surface processing facility, and surface processing method
JP7403150B2 (en) 2019-11-28 2023-12-22 マコー株式会社 Glass workpiece surface treatment method

Similar Documents

Publication Publication Date Title
JP2009173542A (en) Method for processing synthetic quartz glass substrate
TWI432891B (en) Recycling method of large mask substrate
JP4362732B2 (en) Large glass substrate for photomask and manufacturing method thereof, computer-readable recording medium, and mother glass exposure method
EP2399708B1 (en) Method for manufacturing electronic grade synthetic quartz glass substrate
KR100837041B1 (en) A method for preparing a large-size synthetic quartz glass substrate
US7608542B2 (en) Large-size glass substrate for photomask and making method, computer-readable recording medium, and mother glass exposure method
JP4267333B2 (en) Manufacturing method of large synthetic quartz glass substrate
JP2005262432A (en) Method of manufacturing large-size substrate
US8460061B2 (en) Method for producing large-size synthetic quartz glass substrate
JP2007057638A (en) Chamfered large substrate and method for manufacturing the same
JP4340893B2 (en) Manufacturing method for large substrates
KR100809825B1 (en) Synthetic Quartz Glass Substrate
JP4258620B2 (en) Substrate processing method by sandblasting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070122

A977 Report on retrieval

Effective date: 20090430

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090507

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090916