JP7403150B2 - Glass workpiece surface treatment method - Google Patents

Glass workpiece surface treatment method Download PDF

Info

Publication number
JP7403150B2
JP7403150B2 JP2019215351A JP2019215351A JP7403150B2 JP 7403150 B2 JP7403150 B2 JP 7403150B2 JP 2019215351 A JP2019215351 A JP 2019215351A JP 2019215351 A JP2019215351 A JP 2019215351A JP 7403150 B2 JP7403150 B2 JP 7403150B2
Authority
JP
Japan
Prior art keywords
glass workpiece
slurry
workpiece
glass
abrasive grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019215351A
Other languages
Japanese (ja)
Other versions
JP2021084184A (en
Inventor
雅淑 小方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macoho Co Ltd
Original Assignee
Macoho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macoho Co Ltd filed Critical Macoho Co Ltd
Priority to JP2019215351A priority Critical patent/JP7403150B2/en
Publication of JP2021084184A publication Critical patent/JP2021084184A/en
Application granted granted Critical
Publication of JP7403150B2 publication Critical patent/JP7403150B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ガラス製ワーク表面処理方法に関するものである。 The present invention relates to a method for treating the surface of a glass workpiece.

従来、ワークの表面に形成された薄膜の除去方法としては、薬品を使用して溶解除去する方法が一般的であるが、この薬品を使用しての溶解処理は、薄膜の材質に応じた薬品を使い分けなければならず且つ薬品が高価なため、非常に処理速度が遅くコスト高であり(中には毒性の極めて高い危険な薬品を使用しなければならない場合がある。)、その他にも、使用済みの薬品の処理が厄介であるなどの種々の問題点が生じている。 Conventionally, the common method for removing thin films formed on the surface of a workpiece is to dissolve and remove them using chemicals. The processing speed is very slow and the cost is high because different chemicals have to be used and the chemicals are expensive (sometimes it is necessary to use extremely toxic and dangerous chemicals). Various problems have arisen, such as the difficulty of disposing of used chemicals.

そこで、本出願人は、この薬品を使用しての溶解処理を有する問題点を解消すべく、特開2005-103716号に開示されるウエットブラスト処理装置を利用したワーク表面処理方法(以下、従来法という。)を提案している。 Therefore, in order to solve the problem of dissolution treatment using this chemical, the present applicant has developed a workpiece surface treatment method (hereinafter referred to as conventional ) is proposed.

この従来法は、ワークの表面に液体と水との混合物であるスラリを噴射することによりワークの表面に形成された薄膜を除去する方法であり、この従来法であれば、薬品を使用せずとも薄膜を除去することができ、前述した薬品を使用しての溶解処理に比して有効な処理方法である。 This conventional method removes the thin film formed on the surface of the workpiece by spraying slurry, which is a mixture of liquid and water, onto the surface of the workpiece.This conventional method does not require the use of chemicals. Both methods can remove thin films, and are more effective treatment methods than the aforementioned dissolution treatment using chemicals.

特開2005-103716号公報Japanese Patent Application Publication No. 2005-103716

ところで、表面処理を行うワークがガラス製のワークであった場合、ガラス表面に形成された薄膜は除去し得るものの、ガラス表面も処理されることにより透明度が低下する所謂曇りが生じる場合があることを確認した。 By the way, if the workpiece to be surface treated is a glass workpiece, although the thin film formed on the glass surface can be removed, the glass surface may also be treated, resulting in so-called fogging, which reduces transparency. It was confirmed.

本出願人は、上述した問題点に着目し、種々の実験・研究を重ねた結果、従来にない非常に実用的なガラス製ワーク表面処理方法を開発した。 The present applicant focused on the above-mentioned problems and, as a result of various experiments and research, developed an unprecedented and very practical method for surface treatment of glass workpieces.

添付図面を参照して本発明の要旨を説明する。 The gist of the present invention will be explained with reference to the accompanying drawings.

ガラス製ワーク1の表面に、液体2と平均粒子径が0.3~1.0μmで多角形状の砥粒3との混合物であるスラリ4を0.1~0.2Mpaの圧縮空気により噴射して前記ガラス製ワーク1の表面に対して微小な厚さの表面剥離処理することを特徴とするガラス製ワーク表面処理方法に係るものである。 Slurry 4, which is a mixture of liquid 2 and polygonal abrasive grains 3 with an average particle size of 0.3 to 1.0 μm, is sprayed onto the surface of a glass workpiece 1 using compressed air of 0.1 to 0.2 MPa. The present invention relates to a method for surface treatment of a glass workpiece, characterized in that the surface of the glass workpiece 1 is subjected to surface peeling treatment to a minute thickness.

また、請求項1記載のガラス製ワーク表面処理方法において、前記砥粒3は、アルミナ,炭化ケイ素,シリカ及びダイヤモンドパウダーのいずれか一つ若しくは複数を混合したものであることを特徴とするガラス製ワーク表面処理方法に係るものである。 Further, in the method for surface treatment of a glass workpiece according to claim 1, the abrasive grains 3 are a mixture of one or more of alumina, silicon carbide, silica, and diamond powder. The present invention relates to a workpiece surface treatment method.

また、請求項1,2いずれか1項に記載のガラス製ワーク表面処理方法において、前記スラリ4は、前記ガラス製ワーク1に対設され該ガラス製ワーク1の面方向に該ガラス製ワーク1に対して相対移動するスラリ噴射部10から噴射される構成であり、前記ガラス製ワーク1に対する前記スラリ噴射部10の相対移動速度は50~100mm/sに設定されていることを特徴とするガラス製ワーク表面処理方法に係るものである。 In the method for surface treatment of a glass workpiece according to any one of claims 1 and 2, the slurry 4 is provided opposite to the glass workpiece 1, and the slurry 4 is applied to the glass workpiece 1 in a surface direction of the glass workpiece 1. The slurry is sprayed from a slurry spraying section 10 that moves relative to the glass workpiece 1, and the relative moving speed of the slurry spraying section 10 with respect to the glass workpiece 1 is set to 50 to 100 mm/s. This relates to a method for surface treatment of manufactured workpieces.

また、請求項1~3いずれか1項に記載のガラス製ワーク表面処理方法において、前記液体は水であることを特徴とするガラス製ワーク表面処理方法に係るものである。 Further, in the method for surface treating a glass workpiece according to any one of claims 1 to 3, the liquid is water.

本発明は上述のように構成したから、良好なガラス製ワークの表面処理が行えることになるなど、従来にない非常に実用的なガラス製ワーク表面処理方法となる。 Since the present invention is configured as described above, the surface treatment of glass workpieces can be performed in a good manner, resulting in a very practical method for surface treatment of glass workpieces that has not been seen before.

本実施例に係るワーク表面処理装置の概略説明図である。FIG. 1 is a schematic explanatory diagram of a workpiece surface treatment apparatus according to the present embodiment. 本実施例に係るワーク表面処理装置の概略動作説明図である。FIG. 2 is a schematic explanatory diagram of the operation of the workpiece surface treatment apparatus according to the present embodiment.

好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。 Embodiments of the present invention that are considered suitable will be briefly described by showing the effects of the present invention based on the drawings.

本発明は、ガラス製ワーク1の表面に、液体2と平均粒子径が0.3~1.0μmで多角形状の砥粒3との混合物であるスラリ4を0.1~0.2Mpaの圧縮空気により噴射して当該ガラス製ワーク1の表面を処理する。 In the present invention, a slurry 4, which is a mixture of a liquid 2 and polygonal abrasive grains 3 having an average particle diameter of 0.3 to 1.0 μm, is compressed at a pressure of 0.1 to 0.2 Mpa on the surface of a glass workpiece 1. The surface of the glass workpiece 1 is treated by spraying with air.

また、砥粒3が液体2により運ばれる為、周囲の空気による抵抗を受けにくく(減速しにくく)、平均粒子径が0.3~1.0μmという微粒子であってもガラス製ワーク1の表面に形成された薄膜に勢い良く衝突して十分該薄膜を除去することができ、しかも、ガラス製ワーク1表面の微小な厚さの表面剥離処理をすることができる為、ガラス製ワーク1の表面処理後、透明度が低下する所謂曇りが生じることがない。 In addition, since the abrasive grains 3 are carried by the liquid 2, they are less susceptible to resistance from the surrounding air (harder to decelerate), and even if the particles are fine particles with an average particle diameter of 0.3 to 1.0 μm, the surface of the glass workpiece 1 The thin film formed on the surface of the glass workpiece 1 can be sufficiently removed by colliding with force, and the surface of the glass workpiece 1 can be peeled off to a minute thickness. After the treatment, so-called clouding, which reduces transparency, does not occur.

本発明の具体的な実施例について図面に基づいて説明する。 Specific embodiments of the present invention will be described based on the drawings.

本実施例は、ガラス製ワーク1の表面に、液体2と砥粒3との混合物であるスラリ4を噴射して該ガラス製ワーク1の表面を処理する方法であり、後述するワーク表面処理装置を使用して行われる。尚、液体2は水を採用するが、水以外でも環境問題が生じない液体であれば水でなくても良い。 This embodiment is a method of treating the surface of a glass workpiece 1 by spraying a slurry 4, which is a mixture of a liquid 2 and abrasive grains 3, onto the surface of the glass workpiece 1. is done using. Although water is used as the liquid 2, it does not need to be water as long as it does not cause environmental problems.

具体的には、このワーク表面処理装置は、図1に図示したようにワーク搬送機能を具備した処理本体6の下方位置に配設されるスラリ貯溜部7と、このスラリ貯溜部7からポンプ装置8を介して処理本体6内へスラリ4を搬送するスラリ搬送部9と、処理本体6内に配設され、スラリ搬送部9で搬送されたスラリ4を噴射するスラリ噴射部10とで構成されており、このスラリ噴射部10から噴射されたスラリ4が処理本体6の下方開口部6aからスラリ貯溜部7へ排出されて再利用される構成である。 Specifically, as shown in FIG. 1, this workpiece surface treatment apparatus includes a slurry storage section 7 disposed below a processing main body 6 equipped with a workpiece transfer function, and a pump device from which the slurry storage section 7 is fed. The slurry transport section 9 transports the slurry 4 into the processing main body 6 via the slurry transport section 8, and the slurry injection section 10 is disposed inside the processing main body 6 and injects the slurry 4 transported by the slurry transport section 9. The slurry 4 injected from the slurry injection part 10 is discharged from the lower opening 6a of the processing main body 6 to the slurry storage part 7 and is reused.

スラリ貯溜部7は、所定量のスラリ4を貯溜することができ、この内部に貯留されるスラリ4を常時撹拌するスラリ撹拌機能が設けられている。 The slurry storage section 7 can store a predetermined amount of slurry 4, and is provided with a slurry stirring function that constantly stirs the slurry 4 stored therein.

スラリ噴射部10は、ガラス製ワーク1に対設され該ガラス製ワーク1の面方向に該ガラス製ワーク1に対して相対移動する構成であり、具体的には、図2に図示したようにガラス製ワーク1の進行方向(図2中矢印a方向)に対して直交する方向(図1,2中矢印b方向)に移動自在に設けられるスラリ噴射本体10Aと、このスラリ噴射本体10Aから下方へ向けて突設されるノズル体10Bとで構成されている。 The slurry injection unit 10 is configured to be disposed opposite to the glass workpiece 1 and move relative to the glass workpiece 1 in the surface direction of the glass workpiece 1. Specifically, as shown in FIG. A slurry injection main body 10A is provided movably in a direction (direction of arrow b in Figs. 1 and 2) perpendicular to the traveling direction of the glass workpiece 1 (direction of arrow a in Fig. 2), and a downward direction from this slurry injection main body 10A is provided. The nozzle body 10B is configured to protrude toward the nozzle body 10B.

スラリ噴射本体10Aは、その側面部に前述したスラリ搬送部9が接続されるとともに、上面部に別回路で設けられる圧縮空気搬送部11が接続されており、スラリ搬送部9から供給されるスラリ4を圧縮空気搬送部11から供給される圧縮空気により加速して、ノズル体10Bから噴射させるように構成されている。 The slurry injection main body 10A is connected to the slurry conveying section 9 described above on its side surface, and is connected to the compressed air conveying section 11 provided in a separate circuit on its top surface, so that slurry supplied from the slurry conveying section 9 is connected to the slurry injection main body 10A. 4 is accelerated by compressed air supplied from the compressed air conveyance section 11, and is configured to be jetted from the nozzle body 10B.

本実施例では、ガラス製ワーク1に対するスラリ噴射部10の相対移動速度は50~100mm/sに設定されている。 In this embodiment, the relative movement speed of the slurry injection unit 10 with respect to the glass workpiece 1 is set to 50 to 100 mm/s.

ノズル体10Bは、ノズル開口部が方形状となる巾広ガンタイプに構成されており、このノズル開口部は、ガラス製ワーク1の巾と同一若しくはそれ以上の巾となるように設定されており、よって、スラリ4はガラス製ワーク1の巾と同一若しくはそれ以上の巾でガラス製ワーク1に噴射されることになる。 The nozzle body 10B is configured as a wide gun type with a rectangular nozzle opening, and this nozzle opening is set to have a width equal to or larger than the width of the glass workpiece 1. Therefore, the slurry 4 is sprayed onto the glass workpiece 1 in a width that is the same as or greater than the width of the glass workpiece 1.

また、本実施例で使用するスラリ4は、液体2と微粒子砥粒3との混合物である。 Further, the slurry 4 used in this example is a mixture of the liquid 2 and the fine abrasive grains 3.

具体的には、液体2としては水が採用されており、この液体2には砥粒3の塊化を阻止する適宜な部材を混合すると良い。 Specifically, water is used as the liquid 2, and it is preferable to mix an appropriate member to prevent the abrasive grains 3 from agglomerating.

具体的には、例えば液体2と混合する砥粒3として径の小さな砥粒3を採用した場合(砥粒3が微細になればなる程)、砥粒3同士が付着して塊化することで安定した砥粒3の噴射が達成されないなど不具合が生じる可能性が懸念されるが、この点、塊化を阻止する適宜な部材が混合されていることで砥粒3同士は可及的に塊化しない為、この径の小さな砥粒3を均一に安定して噴射させることができることになり、よって、径の小さな砥粒3を採用し得ることになったことに加え、この径の小さな砥粒3を使用することによるメリットを最大限に発揮させることが可能となり、極めて良好なガラス製ワーク1の表面処理が行われることになる。 Specifically, for example, if abrasive grains 3 with a small diameter are used as the abrasive grains 3 to be mixed with the liquid 2 (the finer the abrasive grains 3 are), the abrasive grains 3 may adhere to each other and become agglomerated. There is a concern that problems may occur, such as not being able to stably jet the abrasive grains 3, but in this regard, by mixing an appropriate member to prevent agglomeration, the abrasive grains 3 can be separated as much as possible. Since it does not agglomerate, it is possible to spray the abrasive grains 3 with this small diameter uniformly and stably. It becomes possible to maximize the benefits of using the abrasive grains 3, and extremely good surface treatment of the glass workpiece 1 is performed.

また、砥粒3としては、平均粒子径が1.0~0.3μmで多角形状のアルミナ,炭化ケイ素,シリカ及びダイヤモンドパウダーのいずれか一つ若しくは複数混合したものが採用される。 Further, as the abrasive grains 3, one or a mixture of polygonal alumina, silicon carbide, silica, and diamond powder with an average particle diameter of 1.0 to 0.3 μm is used.

尚、本明細書で言う砥粒3の平均粒子径は、モード径(分布中最も出現頻度の高い粒子径)で定義され、粒子にレーザー光を照射して計測する計測法を用いてその数値を得ている。 In addition, the average particle diameter of the abrasive grains 3 referred to in this specification is defined by the mode diameter (the particle diameter that appears most frequently in the distribution), and its numerical value is determined using a measurement method in which particles are irradiated with laser light and measured. I am getting .

以上の構成からなるワーク表面処理装置を使用して以下の試験を行った。 The following tests were conducted using the workpiece surface treatment apparatus having the above configuration.

50mm正方形のガラス板の表面に、イオンプレーティング法によりクロムの層(クロム薄膜0.1μm)を形成し、その上に金の層(金薄膜0.1μm)を形成し、金薄膜の上面の2/3の領域にマスキングテープを貼った試験片を用意し、この試験片に対して以下のような砥粒3の大きさが異なる2つの加工条件1,2でウエットブラスト処理を行った。 A chromium layer (chromium thin film 0.1 μm) is formed on the surface of a 50 mm square glass plate by ion plating, and a gold layer (gold thin film 0.1 μm) is formed on top of that. A test piece with masking tape pasted on 2/3 of the area was prepared, and wet blasting was performed on this test piece under the following two processing conditions 1 and 2 in which the size of the abrasive grains 3 was different.

<加工条件1>
砥粒・・・アルミナ♯30000(平均粒子径0.3μm)
ノズル巾・・・90mm
エアー圧力・・・0.2MPa
ノズル移動速度・・・50mm/s
噴射距離・・・100mm
<Processing conditions 1>
Abrasive grains: Alumina #30000 (average particle size 0.3 μm)
Nozzle width...90mm
Air pressure...0.2MPa
Nozzle movement speed...50mm/s
Injection distance...100mm

スラリ4を噴射しながらスラリ噴射部10(ノズル体10B)を試験片の一端部から他端部まで通過させ、これを1回の処理とし、複数回処理を行うと、徐々にマスキングされていない領域P1の金薄膜が除去されてクロム薄膜が露出し、50回程度処理したところで金薄膜が完全に除去された。 The slurry injection part 10 (nozzle body 10B) is passed from one end of the test piece to the other end while injecting the slurry 4, and this is treated as one treatment.If the treatment is performed multiple times, the masking gradually becomes unmasked. The gold thin film in region P1 was removed to expose the chromium thin film, and after about 50 treatments, the gold thin film was completely removed.

次に、マスキングテープの領域を1/3に減らし、同じ条件(加工条件1)で処理を続けると、徐々にこのマスキングテープを減らした領域P2の金薄膜が除去されてクロム薄膜が露出すると共に、徐々に領域P1のクロム薄膜が除去されてガラス表面が露出し、50回程度処理したところで領域P2の金薄膜及び領域P1のクロム薄膜が完全に除去された。 Next, when the masking tape area is reduced to 1/3 and processing is continued under the same conditions (processing conditions 1), the gold thin film in the area P2 where the masking tape was gradually reduced is removed and the chromium thin film is exposed. The chromium thin film in region P1 was gradually removed to expose the glass surface, and after about 50 treatments, the gold thin film in region P2 and the chromium thin film in region P1 were completely removed.

<加工条件2>
砥粒・・・アルミナ♯10000(平均粒子径1.0μm)
ノズル巾・・・90mm
エアー圧力・・・0.2MPa
ノズル移動速度・・・50mm/s
噴射距離・・・100mm
<Processing conditions 2>
Abrasive grains: Alumina #10000 (average particle size 1.0 μm)
Nozzle width...90mm
Air pressure...0.2MPa
Nozzle movement speed...50mm/s
Injection distance...100mm

スラリ4を噴射しながらスラリ噴射部10(ノズル体10B)を試験片の一端部から他端部まで通過させ、これを1回の処理とし、複数回処理を行うと、徐々にマスキングされていない領域P1の金薄膜が除去されてクロム薄膜が露出し、20回程度処理したところで金薄膜が完全に除去された。 The slurry injection part 10 (nozzle body 10B) is passed from one end of the test piece to the other end while injecting the slurry 4, and this is treated as one treatment.If the treatment is performed multiple times, the masking gradually becomes unmasked. The gold thin film in region P1 was removed to expose the chromium thin film, and after about 20 treatments, the gold thin film was completely removed.

次に、マスキングテープの領域を1/3に減らし、同じ条件(加工条件1)で処理を続けると、徐々にこのマスキングテープを減らした領域P2の金薄膜が除去されてクロム薄膜が露出すると共に、徐々に領域P1のクロム薄膜が除去されてガラス表面が露出し、20回程度処理したところで領域P2の金薄膜及び領域P1のクロム薄膜が完全に除去された。 Next, when the masking tape area is reduced to 1/3 and processing is continued under the same conditions (processing conditions 1), the gold thin film in the area P2 where the masking tape was gradually reduced is removed and the chromium thin film is exposed. The chromium thin film in region P1 was gradually removed to expose the glass surface, and after about 20 treatments, the gold thin film in region P2 and the chromium thin film in region P1 were completely removed.

以上の試験における加工条件1及び加工条件2のいずれもガラスの表面は曇りを生じていなかった。 In both processing conditions 1 and 2 in the above test, the glass surface did not become cloudy.

脆性材料であるガラスは、処理時の削り量が小さくなると、ある削り量を境界に脆性破壊ではなく金属のような延性破壊となるが、この延性破壊を生じる削り量はほぼ0.1μm程度と言われ(これを、延性-脆性遷移点(dc値)と言う)、今回試験に用いた砥粒3の最大粒子径を1μmとして、その削り量を粒子径の1/50としても0.02μmとなり、この値(0.1μm)を十分下回っている。 Glass, which is a brittle material, becomes ductile fracture like that of metals rather than brittle fracture after a certain amount of abrasion when the amount of abrasion during processing becomes small, but the amount of abrasion that causes this ductile fracture is approximately 0.1 μm. (This is called the ductile-brittle transition point (dc value)), assuming that the maximum particle diameter of the abrasive grains 3 used in this test is 1 μm, and assuming that the amount of abrasion is 1/50 of the particle diameter, it is 0.02 μm. , which is well below this value (0.1 μm).

つまり、上記の加工条件1.2において0.1μm(100nm)という微小な厚さの表面剥離処理が可能であることが分かった(同様な処理を機械加工で実現するには高剛性・高精度な超精密加工機が必要となる)。 In other words, it was found that surface peeling treatment with a minute thickness of 0.1 μm (100 nm) is possible under the above processing condition 1.2 (high rigidity and high precision are required to achieve similar treatment by machining). (requires an ultra-precision processing machine).

ただし、加工条件2(平均粒子径1.0μmの砥粒3)だと、試験片の裏側から光を当てた場合に、領域P2のクロム薄膜に光が通過している部分が見て取れ、若干の処理ムラが生じていることが分かった。 However, under processing condition 2 (abrasive grain 3 with an average particle diameter of 1.0 μm), when light is applied from the back side of the specimen, a portion where light passes through the chromium thin film in area P2 can be seen, and some It was found that uneven processing occurred.

このことから、砥粒3の大きさは平均粒子径0.3μmが良好な処理が行われるベストな数値と考えられる(砥粒3の大きさが平均粒子径0.3μmよりも小さいと削り量が少なくなり、処理能力を考慮すると現実的でない。)。 From this, it is considered that the best size for the abrasive grains 3 is an average particle diameter of 0.3 μm for good processing (if the size of the abrasive grains 3 is smaller than the average particle diameter of 0.3 μm, the amount (This is not realistic when considering processing capacity.)

また、圧縮空気の噴射圧力0.1~0.2Mpaについては、0.1Mpaよりも弱いと加工回数が多くなってしまい、一方、0.2Mpaよりも強いと削り力が強くなってしまい処理制御が行い難くなる。また、この処理制御については、スラリ噴射部10におけるガラス製ワーク1に対する相対移動速度を50~100mm/sに設定する要因にもなる。 In addition, regarding the compressed air injection pressure of 0.1 to 0.2 Mpa, if it is weaker than 0.1 Mpa, the number of machining operations will increase, while if it is stronger than 0.2 Mpa, the cutting force will become strong and processing control becomes difficult to do. Furthermore, this processing control is also a factor in setting the relative movement speed of the slurry injection section 10 to the glass workpiece 1 at 50 to 100 mm/s.

以上から、ガラス製ワーク1の表面処理において、液体2と平均粒子径が1.0~0.3μmで多角形状の砥粒3との混合物であるスラリ4を噴射圧力0.1~0.2Mpaの圧縮空気により噴射し、このスラリ4を噴射するスラリ噴射部10におけるガラス製ワーク1に対する相対移動速度は50~100mm/sに設定される。 From the above, in the surface treatment of the glass workpiece 1, the slurry 4, which is a mixture of the liquid 2 and the polygonal abrasive grains 3 with an average particle diameter of 1.0 to 0.3 μm, is sprayed at a pressure of 0.1 to 0.2 Mpa. The relative movement speed of the slurry injection unit 10 which injects the slurry 4 with respect to the glass workpiece 1 is set to 50 to 100 mm/s.

本実施例は上述のように構成したから、良好なガラス製ワーク1の表面処理が行えることになる(ガラス製ワーク1表面の微小な厚さの表面剥離処理をすることができる)。 Since this embodiment is configured as described above, it is possible to perform a good surface treatment of the glass workpiece 1 (the surface of the glass workpiece 1 can be subjected to surface peeling treatment with a minute thickness).

また、本実施例では、スラリ4はガラス製ワーク1の巾と同一若しくはそれ以上の巾でガラス製ワーク1に噴射されるから、均一な処理面が得られる。 Further, in this embodiment, since the slurry 4 is sprayed onto the glass workpiece 1 in a width that is the same as or larger than the width of the glass workpiece 1, a uniform treated surface can be obtained.

尚、本発明は、本実施例に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。 Note that the present invention is not limited to this embodiment, and the specific configuration of each component can be designed as appropriate.

1 ガラス製ワーク
2 液体
3 砥粒
4 スラリ
10 スラリ噴射部
1 Glass workpiece 2 Liquid 3 Abrasive grains 4 Slurry
10 Slurry injection part

Claims (4)

ガラス製ワークの表面に、液体と平均粒子径が0.3~1.0μmで多角形状の砥粒との混合物であるスラリを0.1~0.2Mpaの圧縮空気により噴射して前記ガラス製ワークの表面に対して微小な厚さの表面剥離処理することを特徴とするガラス製ワーク表面処理方法。 A slurry, which is a mixture of a liquid and polygonal abrasive grains with an average particle diameter of 0.3 to 1.0 μm, is injected onto the surface of a glass workpiece using compressed air at a pressure of 0.1 to 0.2 MPa. A method for treating the surface of a glass workpiece, which is characterized by subjecting the surface of the workpiece to a surface peeling treatment to a minute thickness. 請求項1記載のガラス製ワーク表面処理方法において、前記砥粒は、アルミナ,炭化ケイ素,シリカ及びダイヤモンドパウダーのいずれか一つ若しくは複数を混合したものであることを特徴とするガラス製ワーク表面処理方法。 2. The glass workpiece surface treatment method according to claim 1, wherein the abrasive grains are a mixture of one or more of alumina, silicon carbide, silica, and diamond powder. Method. 請求項1,2いずれか1項に記載のガラス製ワーク表面処理方法において、前記スラリは、前記ガラス製ワークに対設され該ガラス製ワークの面方向に該ガラス製ワークに対して相対移動するスラリ噴射部から噴射される構成であり、前記ガラス製ワークに対する前記スラリ噴射部の相対移動速度は50~100mm/sに設定されていることを特徴とするガラス製ワーク表面処理方法。 In the method for surface treatment of a glass workpiece according to any one of claims 1 and 2, the slurry is provided opposite to the glass workpiece and moves relative to the glass workpiece in a surface direction of the glass workpiece. A method for surface treating a glass workpiece, characterized in that the slurry is jetted from a slurry jetting section, and a relative movement speed of the slurry jetting section with respect to the glass workpiece is set to 50 to 100 mm/s. 請求項1~3いずれか1項に記載のガラス製ワーク表面処理方法において、前記液体は水であることを特徴とするガラス製ワーク表面処理方法。 The method for surface treating a glass workpiece according to any one of claims 1 to 3, wherein the liquid is water.
JP2019215351A 2019-11-28 2019-11-28 Glass workpiece surface treatment method Active JP7403150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019215351A JP7403150B2 (en) 2019-11-28 2019-11-28 Glass workpiece surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019215351A JP7403150B2 (en) 2019-11-28 2019-11-28 Glass workpiece surface treatment method

Publications (2)

Publication Number Publication Date
JP2021084184A JP2021084184A (en) 2021-06-03
JP7403150B2 true JP7403150B2 (en) 2023-12-22

Family

ID=76088694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019215351A Active JP7403150B2 (en) 2019-11-28 2019-11-28 Glass workpiece surface treatment method

Country Status (1)

Country Link
JP (1) JP7403150B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044920A (en) 2003-07-25 2005-02-17 Asahi Sunac Corp Working method and working device of substrate
JP2005262432A (en) 2004-02-18 2005-09-29 Shin Etsu Chem Co Ltd Method of manufacturing large-size substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044920A (en) 2003-07-25 2005-02-17 Asahi Sunac Corp Working method and working device of substrate
JP2005262432A (en) 2004-02-18 2005-09-29 Shin Etsu Chem Co Ltd Method of manufacturing large-size substrate

Also Published As

Publication number Publication date
JP2021084184A (en) 2021-06-03

Similar Documents

Publication Publication Date Title
KR101940571B1 (en) Polishing method by blasting and nozzle structure for a blasting apparatus for use in the polishing method
JP4998815B2 (en) Glass substrate cleaning apparatus and glass substrate cleaning method
CN111660207B (en) Powder contact member and surface treatment method for powder contact member
JP7403150B2 (en) Glass workpiece surface treatment method
JP2003048160A (en) Minute groove machining method and device therefor
JPS6121982B2 (en)
JP2007007780A (en) Blade part surface treatment method for cutting tool
DE04255372T1 (en) Processing method and device for processing curved surfaces
US20080044563A1 (en) Method of Treating Aluminum-Wheel Surface
JP2006224292A (en) Deburring method and device
JPH05177546A (en) Polish feeding method with abrasive water jet
JP2005022015A (en) Workpiece polishing method, and jet guiding means and jet regulating means used for the method
WO2019087688A1 (en) Oxide scale removal method
DE102018217410A1 (en) Workpiece grinding method
JPH1177540A (en) Metal surface processing method and metal material processed by this method
JP2006341368A (en) Producing method of grinding pad and groove-machining method of grinding pad
JPH032640B2 (en)
JP2703712B2 (en) Abrasive supply method and apparatus for abrasive water jet processing
JP5091522B2 (en) Surface treatment method for fiber reinforced resin molded products
CN110788698A (en) Based on atomized CeO2Grinding method, system, medium and equipment with auxiliary axial feed
JPH06218673A (en) Grinding work and device therefor
JPH11347942A (en) Micro-shape forming method
JP2003136408A (en) Surface treatment method of thermoplastic resin
JP3071069B2 (en) Supply method of abrasive in abrasive water jet processing
JP2004009174A (en) Chamfering working method and abrasive jet working method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230626

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231205

R150 Certificate of patent or registration of utility model

Ref document number: 7403150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150