WO2011006780A1 - Composition a base d'oxyde de cerium et d'oxyde de zirconium de porosite specifique, procede de preparation et utilisation en catalyse - Google Patents

Composition a base d'oxyde de cerium et d'oxyde de zirconium de porosite specifique, procede de preparation et utilisation en catalyse Download PDF

Info

Publication number
WO2011006780A1
WO2011006780A1 PCT/EP2010/059465 EP2010059465W WO2011006780A1 WO 2011006780 A1 WO2011006780 A1 WO 2011006780A1 EP 2010059465 W EP2010059465 W EP 2010059465W WO 2011006780 A1 WO2011006780 A1 WO 2011006780A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
cerium
cerium oxide
composition according
oxide
Prior art date
Application number
PCT/EP2010/059465
Other languages
English (en)
Inventor
Simon Ifrah
Olivier Larcher
Original Assignee
Rhodia Operations
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41796501&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011006780(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Rhodia Operations filed Critical Rhodia Operations
Priority to JP2012519967A priority Critical patent/JP5564109B2/ja
Priority to CN201080032484.8A priority patent/CN102574696B/zh
Priority to KR1020127001151A priority patent/KR101431919B1/ko
Priority to CA2766212A priority patent/CA2766212C/fr
Priority to PL10726996T priority patent/PL2454196T3/pl
Priority to EP10726996.1A priority patent/EP2454196B1/fr
Priority to RU2012105476/05A priority patent/RU2509725C2/ru
Priority to US13/384,593 priority patent/US10384954B2/en
Publication of WO2011006780A1 publication Critical patent/WO2011006780A1/fr
Priority to ZA2012/00352A priority patent/ZA201200352B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/69Pore distribution bimodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/36Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions
    • C01B13/363Mixtures of oxides or hydroxides by precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9205Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • C01P2006/13Surface area thermal stability thereof at high temperatures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a composition based on cerium oxide and zirconium oxide of specific porosity, its method of preparation and its use in catalysis.
  • multifunctional catalysts are used for the treatment of the exhaust gases of internal combustion engines (automotive post-combustion catalysis).
  • Multifunctional means catalysts capable of operating not only the oxidation in particular of carbon monoxide and hydrocarbons present in the exhaust gas but also the reduction in particular nitrogen oxides also present in these gases (catalysts "three ways").
  • Zirconium oxide and ceria appear today as two particularly important and interesting components for this type of catalyst.
  • Products of this type must have a porosity adapted to their use. Thus, they must have pores large enough to allow good diffusion of gases.
  • the object of the invention is to propose a product that achieves this compromise.
  • the composition according to the invention is based on cerium oxide and zirconium oxide in a proportion of cerium oxide of at least 30% by weight, and it is characterized in that it has after calcination at a temperature of 900 ° C.
  • two pore populations whose respective diameters are centered for the first, around a value of between 5 nm and 15 nm for a composition whose cerium oxide content is between 30% and 65% or a value between 10 nm and 20 nm for a composition whose cerium oxide content is greater than 65% and, for the second, around a value between 45 nm and 65 nm for a composition whose cerium oxide content is between 30% and 65% or a value between 60 nm and 100 nm for a composition whose cerium oxide content is greater than 65%.
  • compositions of the invention have a significant population of small pores which contributes to give a high specific surface even at high temperature.
  • compositions of the invention are in the form of particles which can be easily deagglomerated and which can lead to particles of much smaller size, which makes these compositions particularly interesting in catalysis applications.
  • FIG. 1 is a porogram of a composition according to the invention after calcination at 900 0 C;
  • FIG. 2 is a porogram of a composition according to the invention after calcination at 1000 ° C.
  • rare earth is understood to mean the elements of the group consisting of yttrium and the elements of the Periodic Table with an atomic number inclusive of between 57 and 71.
  • specific surface is meant the specific surface B. AND. determined by nitrogen adsorption according to ASTM D 3663-78 established from the BRUNAUER-EMMETT-TELLER method described in the journal "The Journal of the American Chemical Society, 60, 309 (1938)".
  • the calcinations at which the surface values are given are calcinations under air.
  • the contents are given in oxide mass unless otherwise indicated in relation to the total mass of the composition.
  • the cerium oxide is in the form of ceric oxide, the oxides of the other rare earths in the form Ln 2 ⁇ 3, Ln denoting the rare earth, with the exception of praseodymium expressed in the form Pr 6 On.
  • the particle size values are obtained by measurements using the laser diffraction technique and carried out with a Coulter type apparatus.
  • compositions of the invention are in two embodiments which differ in the nature of their constituents.
  • these compositions are based on cerium oxide and zirconium oxide. More specifically, they may be compositions which consist of, or consist essentially of, cerium oxide and zirconium oxide. By this is meant that the composition contains no other oxide of another element which may be a constituent element of this composition and / or a stabilizer of the surface thereof, such as for example a rare earth. On the other hand, the composition may contain the impurities usually present with cerium and zirconium.
  • the compositions are based on cerium oxide, zirconium oxide and at least one oxide of a rare earth other than cerium. It is therefore in this case compositions which contain at least three oxides.
  • the rare earth other than cerium may in particular be chosen from yttrium, lanthanum, neodymium and praseodymium.
  • compositions according to this second embodiment those based on cerium oxide, zirconium oxide, lanthanum oxide and praseodymium oxide, based on cerium oxide, oxide of zirconium, lanthanum oxide and neodymium oxide, based on cerium oxide, zirconium oxide, lanthanum oxide and ytthium oxide.
  • the invention is to be understood as applying to the case where the composition consists of, or consists essentially of, cerium oxide, zirconium oxide and at least one other oxide of another rare earth, the composition then not containing any oxide of an element other than the aforementioned three and which could be a constituent element of this composition and / or a stabilizer of the surface thereof.
  • the composition may contain the impurities usually present with the zirconium and rare earth elements.
  • compositions of the invention do not contain a noble metal or precious metal element as a constituent element.
  • the term "constituent element” means, for this type of metal, that the metal in question could be present in the composition, in the form of an intimate mixture with the other elements cerium, zirconium and where appropriate, rare earth other than cerium, such an intimate mixture being obtained by example when the noble or precious metal is used during the preparation of the composition itself.
  • cerium and zirconium content of the compositions of the invention may vary widely, with the proviso that the cerium oxide content is at least about 30%.
  • this content is such that the Ce / Zr ratio expressed as mass of oxides of these elements is between 3/10 and 9/10, more particularly between 2.5 / 2 and 8/2.
  • the oxide content of the rare earth other than cerium may be more particularly at most 20% by weight. This content may be more particularly at most 15% and even more particularly at most 10%. It is also usually at least
  • the cerium oxide content may be more particularly at least 40%, especially in the case of the compositions according to the second embodiment, and even more particularly at least 50%.
  • the main characteristic of the compositions of the invention is their porosity.
  • compositions of the invention have two distinct pore populations which are centered around the values given above.
  • the term "population of pores centered around a given value” means the presence in the curve (C) of a peak whose maximum is situated at this given value.
  • compositions of the invention are the fact that they retain this double population of pores, and therefore the related advantages, even at high temperature, for example even at a temperature above 900 ° C.
  • the compositions of the invention after calcination at a temperature of 1000 ° C. for 4 hours, always have two populations of pores of small size and larger.
  • the pore diameters are centered around a value of between 8 and 20 nm and, for the second, the diameters are centered around a value of between 30 nm and 70 nm for the compositions whose cerium oxide is between 30% and 50% or between 70 nm and 80 nm for compositions whose cerium oxide content is greater than 50%.
  • the second population of pores is a narrowed or monodisperse population because most of the pores of this population have a size that remains very close to the value around which is centered the corresponding peak.
  • This characteristic can be measured by the ratio of the width I of the peak at its mid-height to the width L of the peak at its baseline.
  • this I / L ratio measured on the porograms after calcination at 900 ° C. or 1000 ° C., is generally at least 30%, more particularly at least 40%.
  • compositions of the invention also have a total pore volume which is high.
  • the compositions after calcination at 900 ° C., 4 hours have a total pore volume of at least 0.6 ml Hg / g.
  • This pore volume may be more particularly at least 0.7 ml Hg / g.
  • a pore volume value of about 0.90 ml Hg / g can be attained.
  • the compositions may have a total pore volume of at least 0.5 ml Hg / g, more preferably at least 0.65 ml Hg / g. At this same temperature, a pore volume value of about 0.70 ml Hg / g can be attained.
  • the total pore volume mentioned here is that resulting from pores whose diameter is between 3 nm and 100 microns.
  • Another interesting feature of the invention is that the small pores, that of the aforementioned first population, contribute to a relatively large proportion of the total pore volume. This proportion depends on the temperature at which the composition was calcined, it is higher for the compositions that have been calcined at lower temperatures and can vary generally between 5 and 20%.
  • this proportion can be between 8 and 12% in the case of calcination at 900 ° C. for 4 hours.
  • compositions of the invention induces a large surface area thereof.
  • compositions of the invention may have, after calcination at 900 ° C., 4 hours, a specific surface area of at least 30 m 2 / g, more particularly at least 45 m 2 / g for the compositions according to the second embodiment. After calcination at this same temperature, surface values up to about 35 m 2 / g and up to about 55 m 2 / g can be obtained for the compositions according to the first and second embodiments respectively.
  • the specific surface area may be at least 15 m 2 / g for the first embodiment and at least 30 m 2 / g for the compositions according to the second embodiment. After calcination at this same temperature of surface values up to about
  • the specific surface of the compositions of the invention may be at least 5 m 2 / g for the first embodiment and at least 15 m 2 / g for the compositions according to the second embodiment after calcination on the same embodiment. duration but at 1100 0 C.
  • compositions of the invention are their ease of being disaggregated.
  • compositions of the invention are in fact generally at the end of their preparation in the form of particles whose average size (d 5 o) is usually between 7 microns and 20 microns.
  • These particles are in fact agglomerates which are easily disaggregated into aggregates of considerably smaller average size, in particular of at most 3 ⁇ m, more particularly at most 2 ⁇ m, which consist of crystallites aggregated with each other.
  • micronization means that we can go from agglomerates to aggregates by a treatment that does not require significant energy, unlike grinding type micronization or wet type, for example.
  • This treatment can be, for example, deagglomeration by ultrasound or by suspension.
  • washcoats intended to be deposited on the monoliths.
  • compositions of the invention have good phasic purity. These compositions can thus be in the form of solid solutions up to high temperatures, that is to say even after calcination at 1100 ° C., in particular for the compositions according to the second embodiment.
  • the phase corresponds to that of a zirconium oxide crystallized in the tetragonal system, whose mesh parameters can also be shifted and similarly reflecting the incorporation of cerium and, optionally, other element in the crystal lattice of zirconium oxide.
  • This process comprises the following steps:
  • a first liquid medium which comprises a zirconium compound, a cerium III compound, sulphate ions, an oxidizing agent and, if appropriate, a rare earth compound other than cerium; the preceding medium is brought into contact with a base, whereby a precipitate is formed;
  • the precipitate resulting from the preceding step is resuspended in water and the medium thus formed is subjected to a heat treatment at a temperature of at least 90 ° C .;
  • the precipitate is separated and calcined.
  • the first step of the process consists in forming a liquid medium which is water, preferably, and in which there are, in the necessary quantities, compounds of the various elements which form part of the composition of the composition which is to be obtained. to prepare. It is therefore zirconium compounds, cerium and, in the case of the preparation of a composition according to the second embodiment, the rare earth or rare earths other than cerium.
  • These compounds will preferably be soluble compounds. It can be in particular salts of these elements.
  • the cerium compound is a compound in which this element is in Form III. More particularly, mention may be made of halides, in particular chloride and nitrate.
  • zirconium it is possible to use zirconyl nitrate or zirconyl chloride, zirconium sulphate, more particularly a zirconium ortho sulphate or else a basic zirconium sulphate.
  • the compounds may be chosen from nitrates, sulphates, acetates and chlorides.
  • the starting liquid medium must also contain an oxidizing agent which may be, for example, hydrogen peroxide.
  • the starting liquid medium should also contain sulfate ions. These sulphate ions must be present in an amount such that the atomic ratio sulphate ions / Zr is at least 0.5, preferably at least 2.
  • sulphate ions may be provided for example by sulfuric acid. They may also be provided at least in part by the zirconium compound when it is a sulfate compound.
  • the second step of the process consists in bringing the liquid medium prepared in the first step into contact with a base.
  • Hydroxide products can be used as a base. Mention may be made of alkali or alkaline earth hydroxides. Secondary and tertiary amines can also be used or quaternary. However, amines and ammonia may be preferred in that they reduce the risk of pollution by alkaline or alkaline earth cations. We can also mention urea.
  • the base can be used more particularly in the form of a solution.
  • the placing in the presence between the first liquid medium and the base can be done by introducing the medium into the base, for example by introducing the medium into a reactor which contains the base at the bottom of the tank .
  • the bringing together or the reaction between the first liquid medium and the base can be carried out at once, gradually or continuously, and it is preferably carried out with stirring. It is preferably conducted at a temperature of at least 45 ° C.
  • reaction with the base leads to the formation of a precipitate.
  • This precipitate is separated from the reaction medium in which it has been obtained by any known means, for example by filtration.
  • the separated precipitate is washed with water in order to remove the sulphates still present in the precipitate.
  • This washing can be done with water at room temperature or with hot water, for example at a temperature of at least 50 ° C.
  • the next step of the process is the step of heat treatment of the precipitate in an aqueous medium.
  • This heat treatment is carried out on a suspension obtained after the washed precipitate is put back into the water.
  • the temperature at which the medium is heated is at least 90 ° C., more particularly at least 100 ° C. and even more particularly at least 150 ° C., and it may be between 150 ° C. and 200 ° C. .
  • the heat treatment operation can be conducted by introducing the liquid medium into a closed chamber (autoclave type closed reactor). Under the conditions of the temperatures given above, and in an aqueous medium, it is thus possible to specify, by way of example, that the pressure in the closed reactor can vary between a value greater than 1 bar (10 5 Pa) and 165 bar. (1, 65. 10 7 Pa), preferably between 5 Bar (5 ⁇ 10 5 Pa) and 165 Bar (1, 65. 10 7 Pa).
  • the heat treatment may be conducted either in air or in an atmosphere of inert gas, preferably nitrogen.
  • the duration of the heat treatment can vary within wide limits, for example between 1 and 48 hours, preferably between 1 and 24 hours.
  • the rise in temperature is carried out at a speed that is not critical, and it is thus possible to reach the reaction temperature set by heating the medium. for example between 30 minutes and 4 hours, these values being given entirely as an indication.
  • the recovered precipitate is separated from the medium in which the heat treatment has taken place by any suitable means, for example by filtration, and is then calcined.
  • This calcination makes it possible to develop the crystallinity of the product formed and it can also be adjusted and / or chosen as a function of the temperature of subsequent use reserved for the composition according to the invention, and this taking into account the fact that the specific surface of the product is even lower than the calcination temperature used is higher.
  • Such calcination is generally carried out under air, but a calcination carried out for example under inert gas or under a controlled atmosphere (oxidizing or reducing) is obviously not excluded.
  • the calcination temperature is generally limited to a range of values of between 500 and 900 ° C., more particularly between 600 ° C. and 800 ° C.
  • the precipitate can be separated by atomization of the liquid medium in which the heat treatment took place.
  • Spray drying is understood to mean spray drying of the mixture in a hot atmosphere (spray-drying).
  • the atomization can be carried out using any sprayer known per se, for example by a spraying nozzle of the watering apple or other type. It is also possible to use so-called turbine atomizers.
  • spraying techniques that can be implemented in the present process, reference may be made in particular to the basic work of MASTERS entitled "SPRAY-DRYING" (second edition, 1976, Editions George Godwin - London).
  • the dried precipitate thus obtained is subjected to calcination under the conditions which have been given previously.
  • compositions of the invention as described above or as obtained by the method described above are in the form of powders but they may optionally be shaped to be in the form of granules, balls, cylinders or nests. bee of variable dimensions.
  • compositions of the invention can be used as catalysts or catalyst supports.
  • the invention also relates to catalytic systems comprising the compositions of the invention.
  • these compositions can thus be applied to any support usually used in the field of catalysis, ie in particular thermally inert supports.
  • This support may be chosen from alumina, titanium oxide, cerium oxide, zirconium oxide, silica, spinels, zeolites, silicates, crystalline silicoaluminium phosphates, phosphates of crystalline aluminum.
  • compositions can also be used in catalytic systems comprising a coating (wash coat) with catalytic properties and based on these compositions, on a substrate of the type for example metallic monolith or ceramic.
  • the coating may also include a support of the type mentioned above. This coating is obtained by mixing the composition with the support so as to form a suspension which can then be deposited on the substrate.
  • catalytic systems and more particularly the compositions of the invention can find very many applications. They are thus particularly well adapted to, and therefore usable in the catalysis of various reactions such as, for example, dehydration, hydrosulfuration, hydrodenitrification, desulphurization, hydrodesulphurization, dehydrohalogenation, reforming, reforming.
  • the catalytic systems and the compositions of the invention may finally be used as NOx traps or to promote the reduction of NOx even in an oxidizing medium or as catalysts in a process for decomposing N 2 O, for example in a production unit of nitric acid or in a static unit.
  • the compositions of the invention are used in combination with precious metals, they thus play the role of support for these metals.
  • the nature of these metals and the techniques for incorporating them into the support compositions are well known to those skilled in the art.
  • the metals may be platinum, rhodium, palladium or iridium, they may in particular be incorporated into the compositions by impregnation.
  • the treatment of the exhaust gases of internal combustion engines (automotive post-combustion catalysis) is a particularly interesting application. Therefore, the invention also relates to a method for treating the exhaust gases of internal combustion engines, which is characterized in that a catalytic system as described above or a composition according to the invention is used as catalyst. invention and as previously described.
  • the porosities are measured by the technique and according to the standard mentioned above and under the following more particular measurement conditions:
  • the samples subjected to the measurement undergo a degassing of 10 hours at 100 ° C. in a ventilated oven at 100 ° C. They have a mass of about 300 mg.
  • a powder penetrometer No. 14 having a cell of 3.28 cm 3 with a capillary of 0.413 cm 3 is used .
  • This example relates to the preparation of a composition based on zirconium oxide and cerium oxide in the respective proportions by weight of oxide of 20% and 80%.
  • the zirconium compound used is zirconium ortho sulphate, in solution, obtained by dissolving zirconium basic sulphate with sulfuric acid at room temperature and whose concentration is 253.5 g / l with a density of 1 , 478, the cerium compound is a cerium nitrate Ce (NO 3) 3, in solution, whose concentration is 496 g / l with a density of 1.716.
  • a mixture of the above compounds is made in the appropriate amounts to obtain a final oxide of the intended composition; 140 ml of 35% H 2 O 2 are then added to this mixture.
  • the solution obtained is diluted to a concentration of 100 g / l and then it is introduced dropwise into a basic stock (consisting of 1500 ml of NH 4 OH 5 mol / l) with continuous stirring. After semi-continuous precipitation by pouring into a second reactor stirred continuously, the precipitate obtained is filtered and washed twice consecutively with repulping.
  • the concentration in the precipitation reactor is 100 g / l throughout the reaction.
  • the precipitate obtained in the overflow reactor is resuspended in water at 100 g / l and then it is introduced into an autoclave for 1 hour at 200 ° C. with stirring. The precipitate is then calcined in air at 850 ° C. for two hours.
  • Second pore population centered at 80 nm at
  • This example relates to the preparation of a composition based on zirconium oxide, cerium oxide, lanthanum oxide and praseodymium oxide in the respective proportions by mass of oxides of 30%, 60%, 3% and 7%.
  • the zirconium and cerium compounds used are the same as in Example 1.
  • the lanthanum compound is a La (NOs) 3, in solution, with a concentration of 454 g / l and a density of 1.687 and the
  • the praseodymium compound is in the form of Pr (NO 3) in solution at 500 g / l with a density of 1.732.
  • a mixture of the above compounds is made in the appropriate amounts to obtain a final oxide of the intended composition, then 107 ml of H 2 O 2 (concentration 11.6 mol / l and density 1.132) are added to this mixture.
  • the solution obtained is diluted to a concentration of 100 g / l and then introduced dropwise into a basic stock (consisting of 1500 ml of NH 4 OH 5 mol / l) with continuous stirring. After precipitation and stirring for 1 hour at 50 0 C the precipitate obtained is filtered and washed twice consecutively with repulpage.
  • the precipitate obtained is resuspended in water at 100 g / l to be introduced into an autoclave for 1 hour at 200 0 C with stirring. The precipitate is then calcined under air at 850 ° C for two hours.
  • Second pore population centered at 45 nm centered at 60 nm at 900 ° C 4 hours 1000 0 C 4 hours
  • the composition After calcination at 1100 ° C. for 4 hours, the composition is in the form of a pure cubic fluorite crystallographic phase.
  • Figure 1 is the porogram of the composition of Example 2 after calcination at 900 ° C., 4 hours. We can see a first peak, starting from the right of the porogram, centered at 10 nm and a second peak centered at 45 nm.
  • Figure 2 is a porogram of the same composition but after calcination at 1000 ° C, 4 hours. We find the same peaks as on the previous porogram but with a shift of these to the left, the first centered at 15 nm and the second at 60 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Nanotechnology (AREA)

Abstract

La composition de l'invention est à base d'oxydes de cérium et de zirconium dans une proportion en oxyde de cérium d'au moins 30% en masse, elle présente après calcination à une température de 900°C pendant 4 heures, deux populations de pores dont les diamètres respectifs sont centrés, pour la première, autour d'une valeur comprise entre 5 nm et 15 nm pour une composition à teneur en oxyde de cérium de 30% à 65% ou comprise entre 10 nm et 20 nm pour une teneur en oxyde de cérium supérieure à 65% et, pour la seconde, autour d'une valeur comprise entre 45 nm et 65 nm pour une teneur en oxyde de cérium comprise entre 30% et 65% ou comprise entre 60 nm et 100 nm pour une composition à teneur en oxyde de cérium supérieure à 65%.

Description

COMPOSITION A BASE D'OXYDE DE CERIUM ET D'OXYDE DE ZIRCONIUM DE POROSITE SPECIFIQUE, PROCEDE DE PREPARATION
ET UTILISATION EN CATALYSE
La présente invention concerne une composition à base d'oxyde de cérium et d'oxyde de zirconium de porosité spécifique, son procédé de préparation et son utilisation en catalyse.
On utilise à l'heure actuelle pour le traitement des gaz d'échappement des moteurs à combustion interne (catalyse postcombustion automobile) des catalyseurs dits multifonctionnels. Par multifonctionnels, on entend les catalyseurs capables d'opérer non seulement l'oxydation en particulier du monoxyde de carbone et des hydrocarbures présents dans les gaz d'échappement mais également la réduction en particulier des oxydes d'azote également présents dans ces gaz (catalyseurs "trois voies"). L'oxyde de zirconium et l'oxyde de cérium apparaissent aujourd'hui comme deux constituants particulièrement importants et intéressants pour ce type de catalyseurs.
Les produits de ce type doivent présenter une porosité adaptée à leur utilisation. Ainsi, ils doivent comporter des pores de taille suffisamment grande pour permettre une bonne diffusion des gaz.
Toutefois, ces mêmes produits doivent aussi présenter des pores de petites tailles car ce sont ces pores qui contribuent à donner aux produits une surface spécifique suffisamment élevée pour que ceux-ci soient utilisables en catalyse.
Il est donc intéressant de trouver un bon compromis entre une surface importante, apportée par les pores de petites tailles et une meilleure diffusion des gaz apportée par les pores de grandes tailles.
L'invention a pour objet de proposer un produit réalisant ce compromis. Dans ce but, la composition selon l'invention est à base d'oxyde de cérium et d'oxyde de zirconium dans une proportion en oxyde de cérium d'au moins 30% en masse, et elle est caractérisée en ce qu'elle présente après calcination à une température de 9000C pendant 4 heures, deux populations de pores dont les diamètres respectifs sont centrés, pour la première, autour d'une valeur comprise entre 5 nm et 15 nm pour une composition dont la teneur en oxyde de cérium est comprise entre 30% et 65% ou d'une valeur comprise entre 10 nm et 20 nm pour une composition dont la teneur en oxyde de cérium est supérieure à 65% et, pour la seconde, autour d'une valeur comprise entre 45 nm et 65 nm pour une composition dont la teneur en oxyde de cérium est comprise entre 30% et 65% ou d'une valeur comprise entre 60 nm et 100 nm pour une composition dont la teneur en oxyde de cérium est supérieure à 65%.
Comme on le verra plus loin, les compositions de l'invention présentent une population significative de pores de petite taille qui contribue à donner une surface spécifique importante même à température élevée.
Par ailleurs, comme autre avantage, les compositions de l'invention se présentent sous forme de particules qui peuvent être facilement désagglomérées et qui peuvent conduire à des particules de taille nettement plus petite, ce qui rend ces compositions particulièrement intéressantes dans les applications en catalyse.
D'autres caractéristiques, détails et avantages de l'invention apparaîtront encore plus complètement à la lecture de la description qui va suivre faite en référence aux dessins annexés dans lesquels :
- la figure 1 est un porogramme d'une composition selon l'invention après calcination à 9000C;
- la figure 2 est un porogramme d'une composition selon l'invention après calcination à 10000C.
On précise aussi pour la suite de la description que, sauf indication contraire, dans toutes les gammes ou limites de valeurs qui sont données, les valeurs aux bornes sont incluses, les gammes ou limites de valeurs ainsi définies couvrant donc toute valeur au moins égale et supérieure à la borne inférieure et/ou au plus égale ou inférieure à la borne supérieure.
Pour la présente description on entend par terre rare les éléments du groupe constitué par l'yttrium et les éléments de la classification périodique de numéro atomique compris inclusivement entre 57 et 71.
On entend par surface spécifique, la surface spécifique B. ET. déterminée par adsorption d'azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER - EMMETT- TELLER décrite dans le périodique "The Journal of the American Chemical Society, 60, 309 (1938)".
En outre, les calcinations à l'issue desquelles sont données les valeurs de surface sont des calcinations sous air.
Les teneurs sont données en masse d'oxyde sauf indication contraire par rapport à la masse totale de la composition. L'oxyde de cérium est sous forme d'oxyde cérique, les oxydes des autres terres rares sous forme Ln2θ3, Ln désignant la terre rare, à l'exception du praséodyme exprimé sous la forme Pr6On. Les valeurs de granulométrie sont obtenues par des mesures utilisant la technique de diffraction laser et réalisées avec un appareil de type Coulter.
Les compositions de l'invention se présentent selon deux modes de réalisation qui diffèrent par la nature de leurs constituants.
Selon le premier mode, ces compositions sont à base d'oxyde de cérium et d'oxyde de zirconium. Plus précisément, il peut s'agir de compositions qui consistent en, ou qui consistent essentiellement en de l'oxyde de cérium et de l'oxyde de zirconium. On entend par là que la composition ne contient pas d'autre oxyde d'un autre élément qui puisse être un élément constitutif de cette composition et/ou un stabilisant de la surface de celle-ci, comme par exemple une terre rare. Par contre la compositon peut contenir les impuretés habituellement présentes avec le cérium et le zirconium.
Dans le cas du second mode de réalisation de l'invention, les compositions sont à base d'oxyde de cérium, d'oxyde de zirconium et d'au moins un oxyde d'une terre rare autre que le cérium. Il s'agit donc dans ce cas de compositions qui contiennent au moins trois oxydes. La terre rare autre que le cérium peut être notamment choisie parmi l'yttrium, le lanthane, le néodyme et le praséodyme. On peut citer ainsi plus particulièrement comme compositions selon ce second mode celles à base d'oxyde de cérium, d'oxyde de zirconium, d'oxyde de lanthane et d'oxyde de praséodyme, à base d'oxyde de cérium, d'oxyde de zirconium, d'oxyde de lanthane et d'oxyde de néodyme, à base d'oxyde de cérium, d'oxyde de zirconium, d'oxyde de lanthane et d'oxyde d'ytthum.
Toujours pour le second mode, l'invention doit être comprise comme s'appliquant au cas où la composition consiste en, ou consiste essentiellement en de l'oxyde de cérium, de l'oxyde de zirconium et en au moins un autre oxyde d'une autre terre rare, la composition ne contenant alors pas d'oxyde d'un élément autre que les trois précités et qui pourrait être un élément constitutif de cette composition et/ou un stabilisant de la surface de celle-ci. Dans ce cas, là encore, la composition peut contenir les impuretés habituellement présentes avec les éléments zirconium et terres rares.
En outre et pour les deux modes de réalisation précités, les compositions de l'invention ne contiennent pas d'élément de type métal noble ou métal précieux en tant qu'élément constitutif. On entend au sens de la présente invention et pour ce type de métal par « élément constitutif » le fait que le métal concerné pourrait être présent au sein de la composition, sous forme d'un mélange intime avec les autres éléments cérium, zirconium et, le cas échéant, terre rare autre que le cérium, un tel mélange intime étant obtenu par exemple lorsque le métal noble ou précieux est mis en œuvre lors de la préparation même de la composition. Les termes « élément constitutif », appliqués audit métal noble ou précieux, ne s'appliquent par contre pas, au sens de la présente invention, au cas qui sera décrit plus loin, dans lequel, pour des utilisations dans le domaine de la catalyse par exemple, le métal noble ou précieux est utilisé en mélange avec une composition de l'invention qui a été préalablement préparée.
La teneur en cérium et en zirconium des compositions de l'invention, quel que soit le mode de réalisation, peut varier dans de larges proportions, étant entendu que la teneur en oxyde de cérium est d'au moins environ 30%.
Généralement, cette teneur est telle que le rapport Ce/Zr exprimé en masse d'oxydes de ces éléments est compris entre 3/10 et 9/10, plus particulièrement entre 2,5/2 et 8/2.
Dans le cas du second mode de réalisation, la teneur en oxyde de la terre rare autre que le cérium peut être plus particulièrement d'au plus 20% en masse. Cette teneur peut être plus particulièrement d'au plus 15% et encore plus particulièrement d'au plus 10%. Elle est aussi habituellement d'au moins
1 % et plus particulièrement d'au moins 5%.
Selon des variantes de l'invention, la teneur en oxyde de cérium peut être plus particulièrement d'au moins 40%, notamment dans le cas des compositions selon le second mode de réalisation, et encore plus particulièrement d'au moins 50%.
Comme on l'a vu plus haut, la caractéristique principale des compositions de l'invention est leur porosité.
Ainsi, après calcination à 9000C pendant quatre heures, les compositions de l'invention présentent deux populations de pores bien distinctes et qui sont centrées autour des valeurs données plus haut.
On indique ici et pour l'ensemble de la description que les porosités indiquées sont mesurées par porosimétrie par intrusion de mercure conformément à la norme ASTM D 4284-83 (Standard method for determining pore volume distribution of catalysts by mercury intrusion porosimetry).
La méthode de mesure de porosité donnée ci-dessus permet d'établir de manière connues des porogrammes donnant le volume poreux en fonction de la taille des pores (V = f(d), V désignant le volume poreux et d désignant le diamètre des pores). A partir de ce porogramme il est possible d'obtenir, toujours de manière connue, une courbe (C) donnant la dérivée de V en fonction de d. Cette courbe peut présenter des pics en fonction du diamètre des pores. Au sens de l'invention on entend par « population de pores centrée autour d'une valeur donnée », la présence dans la courbe (C) d'un pic dont le maximum est situé à cette valeur donnée.
Une caractéristique intéressante des compositions de l'invention est le fait qu'elles conservent cette double population de pores, et donc les avantages qui y sont liés, même à température élevée, par exemple même à une température supérieure à 9000C.
Ainsi, les compositions de l'invention, après calcination à une température de 10000C pendant 4 heures, présentent toujours deux populations de pores de petite taille et de taille plus grande. Pour la première population les diamètres des pores sont centrés autour d'une valeur comprise entre 8 et 20 nm et, pour la seconde, les diamètres sont centrés autour d'une valeur comprise entre 30 nm et 70 nm pour les compositions dont la teneur en oxyde de cérium est comprise entre 30% et 50% ou entre 70 nm et 80 nm pour les compositions dont la teneur en oxyde de cérium est supérieure à 50%.
La seconde population de pores est une population resserrée ou monodisperse car la plus grande partie des pores de cette population présentent une taille qui reste très proche de la valeur autour de laquelle est centré le pic correspondant. Cette caractéristique peut se mesurer par le rapport de la largueur I du pic à sa mi hauteur à la largueur L du pic à sa ligne de base. Ainsi ce rapport I/L, mesuré sur les porogrammes après calcination à 900°C ou 10000C, est généralement d'au moins 30%, plus particulièrement d'au moins 40%.
Les compositions de l'invention présentent en outre un volume poreux total qui est élevé. Ainsi, les compositions après calcination à 900°C, 4 heures, présentent un volume poreux total d'au moins 0,6 ml Hg/g. Ce volume poreux peut être plus particulièrement d'au moins 0,7 ml Hg/g. A cette même température, une valeur de volume poreux d'environ 0,90 ml Hg/g peut être atteinte.
Ce volume poreux total reste encore important à température plus élevée. Par exemple après calcination à une température de 1000°C pendant 4 heures, les compositions peuvent présenter un volume poreux total d'au moins 0,5 ml Hg/g, plus particulièrement d'au moins 0,65 ml Hg/g. A cette même température, une valeur de volume poreux d'environ 0,70 ml Hg/g peut être atteinte.
Le volume poreux total mentionné ici est celui qui résulte des pores dont le diamètre est compris entre 3 nm et 100 μm. Une autre caractéristique intéressante de l'invention est que les pores de petite taille, celle de la première population précitée, contribuent à une proportion assez importante du volume poreux total. Cette proportion dépend de la température à laquelle a été calcinée la composition, elle est plus élevée pour les compositions ayant été calcinées aux températures plus basses et elle peut varier généralement entre 5 et 20%.
Ainsi, cette proportion peut être comprise entre 8 et 12% dans le cas d'une calcination à 9000C 4 heures.
La porosité spécifique des compositions de l'invention induit une surface spécifique importante de celles-ci.
Ainsi, les compositions de l'invention peuvent présenter après calcination à 9000C, 4 heures, une surface spécifique d'au moins 30 m2/g, plus particulièrement d'au moins 45 m2/g pour les compositions selon le second mode de réalisation. Après calcination à cette même température des valeurs de surface jusqu'à environ 35 m2/g et jusqu'à environ 55 m2/g peuvent être obtenues pour les compositions selon le premier et le second mode de réalisation respectivement.
Les valeurs de surface peuvent rester importantes à température encore plus élevées. Après calcination à 1000°C, 4 heures, la surface spécifique peut être d'au moins 15 m2/g pour le premier mode de réalisation et d'au moins 30 m2/g pour les compositions selon le second mode de réalisation. Après calcination à cette même température des valeurs de surface jusqu'à environ
17 m2/g et jusqu'à environ 45 m2/g peuvent être obtenues pour les compositions selon le premier et le second mode de réalisation respectivement.
La surface spécifique des compositions de l'invention peut être d'au moins 5 m2/g pour le premier mode de réalisation et d'au moins 15 m2/g pour les compositions selon le second mode de réalisation après calcination sur la même durée mais à 11000C.
Enfin, après calcination à 1200°C, 10 heures, une surface spécifique d'au moins 5 m2/g peut être obtenue.
Une autre caractéristique particulièrement intéressante des compositions de l'invention est leur facilité à être désagglomérées.
Les compositions de l'invention se présentent en effet généralement à l'issue de leur préparation sous forme de particules dont la taille moyenne (d5o) est habituellement comprise entre 7 μm et 20 μm.
Ces particules sont en fait des agglomérats qui sont facilement désagglomérables en agrégats de taille moyenne nettement plus fine, notamment d'au plus 3 μm, plus particulièrement d'au plus 2 μm, qui sont constitués de cristallites agrégés les uns aux autres.
On entend par « facilement désagglomérables » le fait que l'on peut passer des agglomérats aux agrégats par un traitement qui ne nécessite pas une énergie importante, contrairement à un broyage de type micronisation ou de type humide par exemple. Ce traitement peut être par exemple une désagglomération par ultra-sons ou par mise en suspension.
Le fait d'obtenir facilement les agrégats, c'est-à-dire avec une faible énergie, est une caractéristique intéressante des compositions de l'invention. Ainsi dans les applications en catalyse, il est important de disposer facilement de produits fins pour leur mise en forme par exemple pour les revêtements
(washcoats) destinés à être déposés sur les monolithes.
On peut noter par ailleurs que les compositions de l'invention présentent une bonne pureté phasique. Ces compositions peuvent se présenter ainsi sous forme de solutions solides jusqu'à des températures élevées, c'est-à-dire même après calcination à 11000C en particulier pour les compositions selon le second mode de réalisation.
On entend par solution solide le fait que les diagrammes en diffraction
RX de ces compositions après calcination à une température donnée révèlent l'existence d'une phase unique clairement identifiable. La nature de cette phase unique dépend de la proportion respective des différents éléments de la composition. Pour les compositions plutôt riches en cérium cette phase correspond en fait à une structure cristalline de type fluorine tout comme l'oxyde cérique Ceθ2 cristallisé, et dont les paramètres de mailles sont plus ou moins décalés par rapport à un oxyde cérique pur, traduisant ainsi l'incorporation du zirconium et, le cas échéant, de l'autre terre rare dans le réseau cristallin de l'oxyde de cérium, et donc l'obtention d'une solution solide vraie. Dans le cas des compositions plutôt riches en zirconium, la phase correspond à celle d'un oxyde de zirconium cristallisé dans le système tétragonal, dont les paramètres de mailles peuvent aussi être décalés et traduisant de même l'incorporation du cérium et, éventuellement de l'autre élément dans le réseau cristallin de l'oxyde de zirconium.
Le procédé de préparation des compositions de l'invention va maintenant être décrit.
Ce procédé comprend les étapes suivantes :
- on forme un premier milieu liquide qui comprend un composé du zirconium, un composé de cérium III, des ions sulfates, un agent oxydant et, le cas échéant, un composé de la terre rare autre que le cérium; - on met en contact le milieu précédent avec une base ce par quoi on forme un précipité;
- on sépare le précipité et on le lave;
- on remet en suspension dans l'eau le précipité issu de l'étape précédente et on soumet le milieu ainsi formé à un traitement thermique à une température d'au moins 900C;
- on sépare le précipité et on le calcine.
La première étape du procédé consiste à former un milieu liquide qui est l'eau, de préférence, et dans lequel se trouvent, dans les quantités nécessaires, des composés des différents éléments qui rentrent dans la constitution de la composition que l'on cherche à préparer. Il s'agit donc des composés du zirconium, du cérium et, dans le cas de la préparation d'une composition selon le second mode de réalisation, de la ou des terres rares autres que le cérium.
Ces composés seront de préférence des composés solubles. Ce peut être notamment des sels de ces éléments.
Un certain nombre de conditions doivent être respectées en ce qui concerne ces composés.
Le composé du cérium est un composé dans lequel cet élément est sous forme III. On peut mentionner plus particulièrement les halogénures et notamment le chlorure ainsi que le nitrate.
Pour le zirconium on peut utiliser le nitrate de zirconyle ou le chlorure de zirconyle, le sulfate de zirconium, plus particulièrement un ortho sulfate de zirconium ou encore un sulfate basique de zirconium.
Pour la ou les terres rares autres que le cérium les composés peuvent être choisis parmi les nitrates, les sulfates, les acétates, les chlorures.
Le milieu liquide de départ doit en outre contenir un agent oxydant qui peut être, par exemple, de l'eau oxygénée.
Le milieu liquide de départ doit aussi contenir des ions sulfates. Ces ions sulfates doivent être présents dans une quantité telle que le rapport atomique ions sulfates/Zr soit d'au moins 0,5, de préférence au moins 2.
Ces ions sulfates peuvent être apportés par exemple par de l'acide sulfurique. Ils peuvent aussi être apportés au moins en partie par le composé de zirconium lorsque celui-ci est un composé de type sulfate.
La deuxième étape du procédé consiste à mettre en contact le milieu liquide préparé à la première étape avec une base. On peut utiliser comme base les produits du type hydroxyde. On peut citer les hydroxydes d'alcalins ou d'alcalino-terreux. On peut aussi utiliser les aminés secondaires, tertiaires ou quaternaires. Toutefois, les aminés et l'ammoniaque peuvent être préférés dans la mesure où ils diminuent les risques de pollution par les cations alcalins ou alcalino terreux. On peut aussi mentionner l'urée. La base peut être plus particulièrement utilisée sous forme d'une solution.
Selon un mode de réalisation particulier de l'invention, la mise en présence entre le premier milieu liquide et la base peut se faire en introduisant le milieu dans la base par exemple en introduisant le milieu dans un réacteur qui contient la base en pied de cuve.
La mise en présence ou la réaction entre le premier milieu liquide et la base, peut être effectuée en une seule fois, graduellement ou en continu, et elle est de préférence réalisée sous agitation. Elle est de préférence conduite à une température d'au moins 45°C.
La réaction avec la base conduit à la formation d'un précipité. Ce précipité est séparé du milieu réactionnel dans lequel il a été obtenu par tout moyen connu, par exemple par filtration.
Le précipité séparé est lavé avec de l'eau afin d'éliminer les sulfates encore présents dans le précipité. Ce lavage pouvant se faire avec de l'eau à température ambiante ou encore avec de l'eau chaude, par exemple à une température d'au moins 500C.
L'étape suivante du procédé est l'étape de traitement thermique du précipité en milieu aqueux.
Ce traitement thermique est réalisé sur une suspension obtenue après remise dans l'eau du précipité lavé. La température à laquelle est chauffé le milieu est d'au moins 900C, plus particulièrement d'au moins 100°C et encore plus particulièrement d'au moins 1500C et elle peut être comprise entre 150°C et 200°C. L'opération de traitement thermique peut être conduite en introduisant le milieu liquide dans une enceinte close (réacteur fermé du type autoclave). Dans les conditions de températures données ci-dessus, et en milieu aqueux, on peut ainsi préciser, à titre il lustrât if, que la pression dans le réacteur fermé peut varier entre une valeur supérieure à 1 Bar (105 Pa) et 165 Bar (1 ,65. 107 Pa), de préférence entre 5 Bar (5. 105 Pa) et 165 Bar (1 ,65. 107 Pa). Le traitement thermique peut être conduit soit sous air, soit sous atmosphère de gaz inerte, de préférence l'azote.
La durée du traitement thermique peut varier dans de larges limites, par exemple entre 1 et 48 heures, de préférence entre 1 et 24 heures. De même, la montée en température s'effectue à une vitesse qui n'est pas critique, et on peut ainsi atteindre la température réactionnelle fixée en chauffant le milieu par exemple entre 30 minutes et 4 heures, ces valeurs étant données à titre tout à fait indicatif.
Dans une dernière étape du procédé selon l'invention, le précipité récupéré est séparé du milieu dans lequel a eu lieu le traitement thermique par tout moyen convenable, par exemple par filtration et il est ensuite calciné. Cette calcination permet de développer la cristallinité du produit formé et elle peut être également ajustée et/ou choisie en fonction de la température d'utilisation ultérieure réservée à la composition selon l'invention, et ceci en tenant compte du fait que la surface spécifique du produit est d'autant plus faible que la température de calcination mise en œuvre est plus élevée. Une telle calcination est généralement opérée sous air, mais une calcination menée par exemple sous gaz inerte ou sous atmosphère contrôlée (oxydante ou réductrice) n'est bien évidemment pas exclue.
En pratique, on limite généralement la température de calcination à un intervalle de valeurs comprises entre 500 et 9000C, plus particulièrement entre 6000C et 800°C.
Suivant une variante, le précipité peut être séparé par atomisation du milieu liquide dans lequel a eu lieu le traitement thermique.
On entend par séchage par atomisation un séchage par pulvérisation du mélange dans une atmosphère chaude (spray-drying). L'atomisation peut être réalisée au moyen de tout pulvérisateur connu en soi, par exemple par une buse de pulvérisation du type pomme d'arrosoir ou autre. On peut également utiliser des atomiseurs dits à turbine. Sur les diverses techniques de pulvérisation susceptibles d'être mises en œuvre dans le présent procédé, on pourra se référer notamment à l'ouvrage de base de MASTERS intitulé "SPRAY-DRYING" (deuxième édition, 1976, Editions George Godwin - London).
A l'issue de l'atomisation le précipité séché ainsi obtenue est soumis à la calcination dans les conditions qui ont été données précédemment.
Les compositions de l'invention telles que décrites plus haut ou telles qu'obtenues par le procédé décrit précédemment se présentent sous forme de poudres mais elles peuvent éventuellement être mises en forme pour se présenter sous forme de granulés, billes, cylindres ou nids d'abeille de dimensions variables.
Les compositions de l'invention peuvent être utilisées comme catalyseurs ou supports de catalyseur. Ainsi, l'invention concerne aussi des systèmes catalytiques comprenant les compositions de l'invention. Pour de tels systèmes, ces compositions peuvent ainsi être appliquées sur tout support utilisé habituellement dans le domaine de la catalyse, c'est à dire notamment des supports inertes thermiquement. Ce support peut être choisi parmi l'alumine, l'oxyde de titane, l'oxyde de cérium, l'oxyde de zirconium, la silice, les spinelles, les zéolites, les silicates, les phosphates de silicoaluminium cristallins, les phosphates d'aluminium cristallins.
Les compositions peuvent aussi être utilisées dans des systèmes catalytiques comprenant un revêtement (wash coat) à propriétés catalytiques et à base de ces compositions, sur un substrat du type par exemple monolithe métallique ou en céramique. Le revêtement peut comporter lui aussi un support du type de ceux mentionnés plus haut. Ce revêtement est obtenu par mélange de la composition avec le support de manière à former une suspension qui peut être ensuite déposée sur le substrat.
Ces systèmes catalytiques et plus particulièrement les compositions de l'invention peuvent trouver de très nombreuses applications. Ils sont ainsi particulièrement bien adaptés à, et donc utilisable dans la catalyse de diverses réactions telles que, par exemple, la déshydratation, l'hydrosulfuration, l'hydrodénitrification, la désulfuration, l'hydrodésulfuration, la déshydrohalogénation, le reformage, le reformage à la vapeur, le craquage, l'hydrocraquage, l'hydrogénation, la déshydrogénation, l'isomérisation, la dismutation, l'oxychloration, la déshydrocyclisation d'hydrocarbures ou autres composés organiques, les réactions d'oxydation et/ou de réduction, la réaction de Claus, le traitement des gaz d'échappement des moteurs à combustion interne, la démétallation, la méthanation, la shift conversion, l'oxydation catalytique des suies émises par les moteurs à combustion interne comme les moteurs diesel ou essence fonctionnant en régime pauvre. Les systèmes catalytiques et les compositions de l'invention peuvent enfin être utilisés comme pièges à NOx ou pour favoriser la réduction des NOx même en milieu oxydant ou encore comme catalyseurs dans un procédé de décomposition du N2O par exemple dans une unité de fabrication de l'acide nitrique ou dans une unité statique.
Dans le cas de ces utilisations en catalyse, les compositions de l'invention sont employées en combinaison avec des métaux précieux, elles jouent ainsi le rôle de support pour ces métaux. La nature de ces métaux et les techniques d'incorporation de ceux-ci dans les compositions supports sont bien connues de l'homme du métier. Par exemple, les métaux peuvent être le platine, le rhodium, le palladium ou l'iridium, ils peuvent notamment être incorporés aux compositions par imprégnation. Parmi les utilisations citées, le traitement des gaz d'échappement des moteurs à combustion interne (catalyse post combustion automobile) constitue une application particulièrement intéressante. De ce fait, l'invention concerne aussi un procédé de traitement des gaz d'échappement des moteurs à combustion interne qui est caractérisé en ce qu'on utilise à titre de catalyseur un système catalytique tel que décrit ci-dessus ou une composition selon l'invention et telle que décrite précédemment.
Des exemples vont maintenant être donnés.
Dans ces exemples, les porosités sont mesurées par la technique et selon la norme mentionnées plus haut et dans les conditions de mesure plus particulières suivantes :
- les échantillons soumis à la mesure subissent un dégazage de 10 heures à 1000C dans une étuve ventilée à 1000C. Ils présentent une masse de 300 mg environ.
- on utilise un pénétromètre n° 14 à poudre dont la cellule est de 3,28 cm3 avec un capillaire de 0,413 cm3.
- la mesure est effectuée avec un angle de contact de 130° et une table de pression en intrusion et extrusion. EXEMPLE 1
Cet exemple concerne la préparation d'une composition à base d'oxyde de zirconium et d'oxyde de cérium dans les proportions respectives en masse d'oxyde de 20% et 80%.
Le composé de zirconium utilisé est l'ortho sulfate de zirconium, en solution, obtenu par dissolution de sulfate basique de zirconium par de l'acide sulfurique à température ambiante et dont la concentration est de 253,5 g/l avec une densité de 1 ,478, le composé de cérium est un nitrate de cérium Ce(Nθ3)3, en solution, dont la concentration est de 496 g/l avec une densité de 1 ,716.
Un mélange des composés ci-dessus est réalisé dans les quantités appropriées pour obtenir un oxyde final de composition visée; on ajoute ensuite 140 ml d'H2θ2 à 35% dans ce mélange.
La solution obtenue est diluée jusqu'à une concentration de 100 g/l puis elle est introduite goutte à goutte dans un pied de cuve basique (constitué de 1500 ml de NH4OH à 5mol/l) sous agitation continue. Après précipitation semi- continue par sur verse dans un second réacteur agité de façon continu, le précipité obtenu est filtré puis lavé deux fois consécutivement avec repulpage. La concentration dans le réacteur de précipitation est de 100 g/l durant toute la réaction.
Le précipité obtenu dans le réacteur de sur verse est remis en suspension dans l'eau à 100 g/l puis il est introduit dans un autoclave durant 1 heure à 2000C sous agitation. Le précipité est ensuite calciné sous air à 8500C pendant deux heures.
La composition ainsi obtenue présente les caractéristiques suivantes :
Surface spécifique
900°C 4 heures 30 m2/g
10000C 4 heures 15 m2/g
1100°C 4 heures 7 m2/g
Première population de pores centrée à 15 nm à
900°C 4 heures
Seconde population de pores centrée à 80 nm à
9000C 4 heures
Rapport I/L du pic correspondant à la 45%
seconde population de pores
Porosité totale 0, 63 mlHg/g Après calcination à 1100°C 4 heures, la composition se présente sous la forme d'une phase cristallographique fluorine cubique pure.
EXEMPLE 2
Cet exemple concerne la préparation d'une composition à base d'oxyde de zirconium, d'oxyde de cérium, d'oxyde de lanthane et d'oxyde de praséodyme dans les proportions respectives en masse d'oxydes de 30%, 60%, 3% et 7%.
Les composés de zirconium et de cérium utilisés sont les mêmes que dans l'exemple 1. Le composé de lanthane est un La(NOs)3, en solution, avec une concentration de 454 g/l et une densité de 1 ,687 et le composé de praséodyme est sous forme de Pr(NOs)3, en solution, à 500 g/l avec une densité de 1 ,732.
Un mélange des composés ci-dessus est réalisé dans les quantités appropriées pour obtenir un oxyde final de composition visée, on ajoute ensuite 107 ml d'H2θ2 (concentration 11 ,6 mol/l et densité 1 ,132) dans ce mélange. La solution obtenue est diluée jusqu'à une concentration de 100 g/l puis est introduite goutte à goutte dans un pied de cuve basique (constitué de 1500 ml de NH4OH à 5mol/l) sous agitation continue. Après précipitation et une heure d'agitation à 500C le précipité obtenu est filtré puis lavé deux fois consécutivement avec repulpage.
Le précipité obtenu est remis en suspension dans l'eau à 100 g/l pour être introduit dans un autoclave durant 1 heure à 2000C sous agitation. Le précipité est ensuite calciné sous air à 850°C pendant deux heures.
La composition ainsi obtenue présente les caractéristiques suivantes :
Surface spécifique
9000C 4 heures 54 m2/g
1000°C 4 heures 36 m2/g
1100°C 4 heures 19 m2/g
Première population de pores centrée à 10 nm centrée à 15 nm à à 9000C 4 heures 1000°C 4 heures
Seconde population de pores centrée à 45 nm centrée à 60 nm à à 900°C 4 heures 10000C 4 heures
Rapport I/L du pic correspondant 42% 35%
à la seconde population de pores
Porosité totale 0,85 mlHg/g 0,67 mlHg/g Granulométhe (D50) avant après (900°C 4 heures) désagglomération désagglomération*
11 μm 1 ,6 μm
* Désagglomération par ultra-sons pendant 5 minutes avec une puissance de 120W.
Après calcination à 1100°C 4 heures, la composition se présente sous la forme d'une phase cristallographique fluorine cubique pure.
La figure 1 est le porogramme de la composition de l'exemple 2 après calcination à 9000C, 4 heures. On voit bien un premier pic, en partant de la droite du porogramme, centré vers 10 nm et un second pic centré vers 45 nm. La figure 2 est un porogramme de la même composition mais après calcination à 1000°C, 4 heures. On retrouve les mêmes pics que sur le porogramme précédent mais avec un décalage de ceux-ci vers la gauche, le premier centré à 15 nm et le second à 60 nm.

Claims

REVENDICATIONS
1- Composition à base d'oxyde de cérium et d'oxyde de zirconium, dans une proportion en oxyde de cérium d'au moins 30% en masse, caractérisée en ce qu'elle présente après calcination à une température de 9000C pendant 4 heures, deux populations de pores dont les diamètres respectifs sont centrés, pour la première, autour d'une valeur comprise entre 5 nm et 15 nm pour une composition dont la teneur en oxyde de cérium est comprise entre 30% et 65% ou d'une valeur comprise entre 10 nm et 20 nm pour une composition dont la teneur en oxyde de cérium est supérieure à 65% et, pour la seconde, autour d'une valeur comprise entre 45 nm et 65 nm pour une composition dont la teneur en oxyde de cérium est comprise entre 30% et 65% ou d'une valeur comprise entre 60 nm et 100 nm pour une composition dont la teneur en oxyde de cérium est supérieure à 65%.
2- Composition à base d'oxyde de cérium et d'oxyde de zirconium, dans une proportion en oxyde de cérium d'au moins 30% en masse, caractérisée en ce qu'elle présente après calcination à une température de 10000C pendant 4 heures, deux populations de pores dont les diamètres respectifs sont centrés, pour la première, autour d'une valeur comprise entre 8 nm et 20 nm et, pour la seconde, autour d'une valeur comprise entre 30 nm et 70 nm pour une composition dont la teneur en oxyde de cérium est comprise entre 30% et 50% ou entre 70 nm et 80 nm pour une composition dont la teneur en oxyde de cérium est supérieure à 50%.
3- Composition selon la revendication 1 , caractérisée en ce qu'elle présente un volume poreux total d'au moins 0,6 ml Hg/g. 4- Composition selon la revendication 2, caractérisée en ce qu'elle présente un volume poreux total d'au moins 0,5 ml Hg/g.
5- Composition selon l'une des revendications 1 ou 2, caractérisée en ce que les pores de la première population contribuent à un volume poreux représentant une proportion du volume poreux total comprise entre 8 et 12%.
6- Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle comprend au moins un oxyde d'une terre rare autre que le cérium, qui peut être plus particulièrement choisie parmi l'yttrium, le lanthane, le néodyme et le praséodyme.
7- Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle présente une teneur en cérium et en zirconium telle que le rapport
Ce/Zr exprimé en masse d'oxydes de ces éléments est compris entre 3/10 et 9/10, plus particulièrement entre 2,5/4 et 8/2.
8- Composition selon la revendication 6 ou 7, caractérisée en ce qu'elle présente une teneur en terre rare autre que le cérium, exprimée en masse d'oxyde d'au plus 20%.
9- Composition selon l'une des revendications 1 , 3 ou 5 à 8, caractérisée en ce qu'elle présente après calcination à 9000C, 4 heures une surface spécifique d'au moins 30 m2/g.
10- Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle présente après calcination à 12000C, 10 heures une surface spécifique d'au moins 5 m2/g.
11 - Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle se présente sous forme de particules de taille moyenne comprise entre 7 μm et 20 μm, désagglomérables en particules de taille moyenne d'au plus 3 μm.
12- Procédé de préparation d'une composition selon l'une des revendications précédentes, caractérisé en ce qu'il comprend les étapes suivantes :
- on forme un premier milieu liquide qui comprend un composé du zirconium, un composé de cérium III, des ions sulfates, un agent oxydant et, le cas échéant, un composé de la terre rare autre que le cérium;
- on met en contact le milieu précédent avec une base ce par quoi on forme un précipité;
- on sépare le précipité et on le lave;
- on remet en suspension dans l'eau le précipité issu de l'étape précédente et on soumet le milieu ainsi formé à un traitement thermique à une température d'au moins 90°C;
- on sépare le précipité et on le calcine. 13- Procédé selon la revendication 12, caractérisé en ce qu'on utilise comme composé du zirconium un orthosulfate de zirconium.
14- Procédé selon la revendication 12 ou 13, caractérisé en ce que la mise en contact du premier milieu liquide précité avec la base se fait dans un réacteur contenant ladite base en pied de cuve, par introduction dudit milieu dans le réacteur.
15- Système catalytique, caractérisé en ce qu'il comprend une composition selon l'une des revendications 1 à 11.
16- Procédé de traitement des gaz d'échappement des moteurs à combustion interne, caractérisé en ce qu'on utilise à titre de catalyseur un système catalytique selon la revendication 15 ou une composition selon l'une des revendications 1 à 11.
PCT/EP2010/059465 2009-07-17 2010-07-02 Composition a base d'oxyde de cerium et d'oxyde de zirconium de porosite specifique, procede de preparation et utilisation en catalyse WO2011006780A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2012519967A JP5564109B2 (ja) 2009-07-17 2010-07-02 特有の多孔度を有する酸化セリウムおよび酸化ジルコニウムを含む組成物、この調製方法および触媒作用におけるこの使用
CN201080032484.8A CN102574696B (zh) 2009-07-17 2010-07-02 基于氧化铈和氧化锆具有特定孔隙率的组合物、其制备方法及其在催化中的用途
KR1020127001151A KR101431919B1 (ko) 2009-07-17 2010-07-02 비다공도를 갖는, 산화세륨 및 산화지르코늄을 포함하는 조성물, 그의 제조 방법 및 촉매작용에서의 그의 용도
CA2766212A CA2766212C (fr) 2009-07-17 2010-07-02 Composition a base d'oxyde de cerium et d'oxyde de zirconium de porosite specifique, procede de preparation et utilisation en catalyse
PL10726996T PL2454196T3 (pl) 2009-07-17 2010-07-02 Kompozycja wytwarzana na bazie tlenku ceru i tlenku cyrkonu o specyficznej porowatości, sposób wytwarzania i zastosowanie w katalizie
EP10726996.1A EP2454196B1 (fr) 2009-07-17 2010-07-02 Composition a base d'oxyde de cerium et d'oxyde de zirconium de porosite specifique, procede de preparation et utilisation en catalyse
RU2012105476/05A RU2509725C2 (ru) 2009-07-17 2010-07-02 Композиция на основе оксида церия и оксида циркония с особой пористостью, способ получения и применение в катализе
US13/384,593 US10384954B2 (en) 2009-07-17 2010-07-02 Composition comprising cerium oxide and zirconium oxide having a specific porosity, preparation method thereof and use of same in catalysis
ZA2012/00352A ZA201200352B (en) 2009-07-17 2012-01-17 Composition comprising cerium oxide and zirconium oxide having a specific porosity, preparation method threrof and use of same in catalysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0903506A FR2948116B1 (fr) 2009-07-17 2009-07-17 Composition a base d'oxyde de cerium et d'oxyde de zirconium de porosite specifique, procede de preparation et utilisation en catalyse
FR09/03506 2009-07-17

Publications (1)

Publication Number Publication Date
WO2011006780A1 true WO2011006780A1 (fr) 2011-01-20

Family

ID=41796501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/059465 WO2011006780A1 (fr) 2009-07-17 2010-07-02 Composition a base d'oxyde de cerium et d'oxyde de zirconium de porosite specifique, procede de preparation et utilisation en catalyse

Country Status (11)

Country Link
US (1) US10384954B2 (fr)
EP (1) EP2454196B1 (fr)
JP (1) JP5564109B2 (fr)
KR (1) KR101431919B1 (fr)
CN (1) CN102574696B (fr)
CA (1) CA2766212C (fr)
FR (1) FR2948116B1 (fr)
PL (1) PL2454196T3 (fr)
RU (1) RU2509725C2 (fr)
WO (1) WO2011006780A1 (fr)
ZA (1) ZA201200352B (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8530372B2 (en) 2009-07-22 2013-09-10 Basf Corporation Oxygen storage catalyst with decreased ceria reduction temperature
AU2012244381A1 (en) * 2012-05-29 2013-12-19 Joint Stock Company Scientific Industrial Enterprise Neftehim Method for isomerization of paraffin hydrocarbons c4-c7
WO2017187085A1 (fr) 2016-04-26 2017-11-02 Rhodia Operations Oxyde mixte a base de cérium et de zirconium
EP2454196B1 (fr) 2009-07-17 2018-03-21 Rhodia Opérations Composition a base d'oxyde de cerium et d'oxyde de zirconium de porosite specifique, procede de preparation et utilisation en catalyse
WO2020178185A1 (fr) 2019-03-03 2020-09-10 Rhodia Operations Oxyde mixte présentant un volume poreux élevé

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2959735B1 (fr) * 2010-05-06 2012-06-22 Rhodia Operations Composition a base d'oxydes de zirconium, de cerium d'au moins une autre terre rare, a porosite specifique, procede de preparation et utilisation en catalyse.
MY158376A (en) * 2013-06-04 2016-09-26 Nippon Denko Ceria-zirconia-based composite oxide and method of production of the same
CN103480358A (zh) * 2013-10-11 2014-01-01 神华集团有限责任公司 一种耐高温耐硫甲烷化催化剂及其制备方法
JP5744274B1 (ja) 2014-03-28 2015-07-08 第一稀元素化学工業株式会社 ジルコニア系多孔質体及びその製造方法
CN107073443B (zh) 2014-09-05 2020-12-04 尼奥性能材料(新加坡)有限公司 高孔隙度的含铈和锆的氧化物
MY192732A (en) * 2016-05-18 2022-09-05 Rhodia Operations Cerium oxide particles and method for production thereof
JP2018143955A (ja) * 2017-03-06 2018-09-20 イビデン株式会社 ハニカムフィルタ
JP6781742B2 (ja) * 2018-09-12 2020-11-04 イビデン株式会社 ハニカム構造体
CN110252275B (zh) * 2019-05-21 2021-11-19 山东国瓷功能材料股份有限公司 一种高比表面积的铈锆复合氧化物及其制备方法和应用
KR20240014060A (ko) 2021-05-28 2024-01-31 로디아 오퍼레이션스 특정 다공성 프로파일을 갖는 산화알루미늄과 산화세륨의 조성물
CN118055806A (zh) 2021-07-30 2024-05-17 罗地亚经营管理公司 氧化铝和氧化铈的组合物
WO2024033516A1 (fr) * 2022-08-12 2024-02-15 Rhodia Operations Oxyde mixte à base de cérium et de zirconium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1621251A1 (fr) * 2004-07-26 2006-02-01 Daiichi Kigenso Kagaku Co., Ltd. Corps en zircone poreuse et sa méthode de préparation
EP1920830A1 (fr) * 2006-11-08 2008-05-14 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Catalysateur contenant des metaux du groupe VIII, de l'oxyde de cerium et de l'oxide de zirconium pour le traitement des hydrocarbures par oxydation ou reformage catalytique

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4003939A1 (de) * 1990-02-09 1991-08-14 Degussa Katalysator fuer die reinigung der abgase von brennkraftmaschinen
FR2714370B1 (fr) * 1993-12-24 1996-03-08 Rhone Poulenc Chimie Précurseur d'une composition et composition à base d'un oxyde mixte de cérium et de zirconium, procédé de préparation et utilisation.
FR2736343B1 (fr) 1995-07-03 1997-09-19 Rhone Poulenc Chimie Composition a base d'oxyde de zirconium et d'oxyde de cerium, procede de preparation et utilisation
US5723101A (en) * 1996-10-15 1998-03-03 Rhone-Poulenc Inc. Method for producing cerium and zirconium oxides, mixed oxides and solid solutions having improved thermal stability
US6506705B2 (en) * 1996-12-06 2003-01-14 Rhodia Chimie Composition based on cerium oxide or on cerium and zirconium oxides, in the extruded form, process for the preparation thereof and use thereof as catalyst
US6133194A (en) 1997-04-21 2000-10-17 Rhodia Rare Earths Inc. Cerium oxides, zirconium oxides, Ce/Zr mixed oxides and Ce/Zr solid solutions having improved thermal stability and oxygen storage capacity
JP5168527B2 (ja) * 2001-01-18 2013-03-21 株式会社豊田中央研究所 酸化物粉末とその製造方法
US6528451B2 (en) * 2001-03-13 2003-03-04 W.R. Grace & Co.-Conn. Catalyst support material having high oxygen storage capacity and method of preparation thereof
JP3946982B2 (ja) 2001-11-01 2007-07-18 ニッケイ・メル株式会社 ジルコニア・セリア基複合酸化物の製造方法
US7041622B2 (en) 2002-02-06 2006-05-09 Delphi Technologies, Inc. Catalyst, an exhaust emission control device and a method of using the same
FR2852596B1 (fr) * 2003-03-18 2007-02-23 Rhodia Elect & Catalysis Composition a base d'oxydes de cerium et de zirconium a surface specifique stable entre 900 c et 1000 c, son procede de preparation et son utilisation comme catalyseur
FR2852591B1 (fr) 2003-03-18 2006-06-16 Rhodia Elect & Catalysis Composition a base d'oxyde de zirconium et d'oxyde de cerium a temperature maximale de reductibilite reduite, son procede de preparation et son utilisation comme catalyseur
FR2852592B1 (fr) 2003-03-18 2007-02-23 Rhodia Elect & Catalysis Compositions a base d'un oxyde de cerium, d'un oxyde de zirconium et, eventuellement d'un oxyde d'une autre terre rare, a surface specifique elevee a 1100 c, leur procede de preparation et leur utilisation comme catalyseur
EP1479651B2 (fr) * 2003-05-21 2017-07-19 Toyota Jidosha Kabushiki Kaisha Méthode de production d'un ocide composite poreux
FR2868768B1 (fr) 2004-04-07 2007-07-20 Rhodia Chimie Sa Composition a base d'oxydes de zirconium et d'ytrium, procede de preparation et utilisation dans un systeme catalytique
FR2875149B1 (fr) * 2004-09-15 2006-12-15 Rhodia Chimie Sa Procede de fabrication d'un filtre a particules catalyse et filtre ainsi obtenu
JP4789794B2 (ja) 2005-12-28 2011-10-12 第一稀元素化学工業株式会社 セリウム・ジルコニウム複合酸化物及びその製造方法
US20090305882A1 (en) * 2006-02-03 2009-12-10 Saint-Gobain Ceramics & Plastics, Inc. Articles Comprising Tetragonal Zirconia and Methods of Making the Same
EP1894620B2 (fr) * 2006-08-22 2023-06-07 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Procédé de production d'une poudre de zircone poreuse
JP5063252B2 (ja) * 2006-08-22 2012-10-31 第一稀元素化学工業株式会社 多孔質ジルコニア系粉末及びその製造方法
JP5164665B2 (ja) * 2008-04-09 2013-03-21 第一稀元素化学工業株式会社 セリウム−ジルコニウム系複合酸化物及びその製造方法
FR2948116B1 (fr) 2009-07-17 2012-05-04 Rhodia Operations Composition a base d'oxyde de cerium et d'oxyde de zirconium de porosite specifique, procede de preparation et utilisation en catalyse

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1621251A1 (fr) * 2004-07-26 2006-02-01 Daiichi Kigenso Kagaku Co., Ltd. Corps en zircone poreuse et sa méthode de préparation
EP1920830A1 (fr) * 2006-11-08 2008-05-14 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Catalysateur contenant des metaux du groupe VIII, de l'oxyde de cerium et de l'oxide de zirconium pour le traitement des hydrocarbures par oxydation ou reformage catalytique

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BRUNAUER; EMMETT; TELLER, THE JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 60, 1938, pages 309
DI MONTE R ET AL: "A rationale for the development of thermally stable nanostructured CeO2-ZrO2-containing mixed oxides", JOURNAL OF RARE EARTHS, INTERNATIONAL ACADEMIC PUBLISHERS, BEIJING, CN, vol. 26, no. 2, 1 April 2008 (2008-04-01), pages 136 - 140, XP022934012, ISSN: 1002-0721, [retrieved on 20080401] *
E. ROHART, O. LARCHER, S. DEUTSCH, C. HÉDOUIN, H. AÏMIN, F. FAJARDIE, M. ALLAIN, P. MACAUDIÈRE: "From Zr-Rich to Ce-Rich: Thermal Stability of OSC Materials on the Whole Range of Composition", TOPICS IN CATALYSIS, vol. 30/31, no. 1, July 2004 (2004-07-01), Springer, Netherlands, pages 417 - 423, XP002574364, ISSN: 1022-5528, DOI: 10.1023/B:TOCA.0000029784.75813.81 *
LIN S S Y ET AL: "Co/CeO2-ZrO2 catalysts prepared by impregnation and coprecipitation for ethanol steam reforming", APPLIED CATALYSIS A: GENERAL, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 366, no. 2, 25 September 2009 (2009-09-25), pages 252 - 261, XP026520641, ISSN: 0926-860X, [retrieved on 20090714] *
R. DI MONTE, J. KASPER: "Nanostructured CeO2-ZrO2 mixed oxides", JOURNAL OF MATERIALS CHEMISTRY, vol. 15, no. 6, 1 December 2004 (2004-12-01), The Royal Society of Chemistry, Cambridge, GB, pages 633 - 648, XP002574365, DOI: 10.1039/b414244f *
See also references of EP2454196A1

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2454196B1 (fr) 2009-07-17 2018-03-21 Rhodia Opérations Composition a base d'oxyde de cerium et d'oxyde de zirconium de porosite specifique, procede de preparation et utilisation en catalyse
US8530372B2 (en) 2009-07-22 2013-09-10 Basf Corporation Oxygen storage catalyst with decreased ceria reduction temperature
AU2012244381A1 (en) * 2012-05-29 2013-12-19 Joint Stock Company Scientific Industrial Enterprise Neftehim Method for isomerization of paraffin hydrocarbons c4-c7
WO2017187085A1 (fr) 2016-04-26 2017-11-02 Rhodia Operations Oxyde mixte a base de cérium et de zirconium
WO2020178185A1 (fr) 2019-03-03 2020-09-10 Rhodia Operations Oxyde mixte présentant un volume poreux élevé

Also Published As

Publication number Publication date
CA2766212A1 (fr) 2011-01-20
FR2948116A1 (fr) 2011-01-21
US20120189517A1 (en) 2012-07-26
RU2509725C2 (ru) 2014-03-20
PL2454196T3 (pl) 2018-09-28
CN102574696A (zh) 2012-07-11
EP2454196B1 (fr) 2018-03-21
JP5564109B2 (ja) 2014-07-30
CN102574696B (zh) 2014-07-23
EP2454196A1 (fr) 2012-05-23
ZA201200352B (en) 2012-12-27
KR101431919B1 (ko) 2014-08-19
RU2012105476A (ru) 2013-08-27
CA2766212C (fr) 2018-06-05
KR20120029475A (ko) 2012-03-26
JP2012533499A (ja) 2012-12-27
FR2948116B1 (fr) 2012-05-04
US10384954B2 (en) 2019-08-20

Similar Documents

Publication Publication Date Title
EP2454196B1 (fr) Composition a base d'oxyde de cerium et d'oxyde de zirconium de porosite specifique, procede de preparation et utilisation en catalyse
EP2566617B1 (fr) Composition a base d'oxydes de zirconium, de cerium et d'au moins une autre terre rare, a porosite specifique, procede de preparation et utilisation en catalyse
EP2059339B1 (fr) Composition a réductibilité élevée à base d'un oxyde de cérium nanométrique sur un support, procédé de préparation et utilisation comme catalyseur
EP1991354B1 (fr) Composition a base d'oxydes de zirconium, de cerium, d'yttrium, de lanthane et d'une autre terre rare, procede de preparation et utilisation en catalyse
EP1603657B1 (fr) Compositions à base d'un oxyde de cérium, d'un oxyde de zirconium et, éventuellement d'un oxyde d'une autre terre rare, à surface spécifique élevée à 1100° c, leur procédé de préparation et leur utilisation comme catalyseur
EP1527018B1 (fr) Composition a base d oxyde de zirconium et d oxydes de cerium, de lanthane et d une autre terre rare, son procede d e preparation et son utilisation comme catalyseur
EP2288426B1 (fr) Compositions catalytiques à base d'oxydes de zirconium, de cerium et d'yttrium et leurs utilisations pour les traitement des gaz d'échappement.
EP2720980B1 (fr) Composition à base d'oxydes de cérium, de zirconium et d'une autre terre rare à réductibilité élevée, procédé de préparation et utilisation dans le domaine de la catalyse
EP2646370B1 (fr) Composition a base d'oxyde de zirconium et d'au moins un oxyde d'une terre rare autre que le cerium, a porosite specifique, son procede de preparation et son utilisation en catalyse
EP1660406B1 (fr) Composition a base d 'oxyde de cerium et d 'oxyde de zirconium a conductibilite et surface elevees, procedes de preparation et utilisation comme catalyseur
WO2012004263A1 (fr) Composition a base d'oxydes de cerium, de niobium et, eventuellement, de zirconium et son utilisation en catalyse
EP1924339A1 (fr) Procede de traitement d'un gaz contenant des oxydes d'azote (nox), utilisant comme piege a nox une composition a base d'oxyde de zirconium et d'oxyde de praseodyme
EP1603835A2 (fr) Composition a base d oxydes de cerium et de zirconium a surface specifique stable entre 900°c et 1000°c, son procede de preparation et son utilisation comme catalyseur
EP2694204A1 (fr) Composition a base d'oxydes de zirconium, de cerium, d'au moins une terre rare autre que le cerium et de silicium, procedes de preparation et utilisation en catalyse
EP2244983B1 (fr) Composition a base d'oxyde de zirconium, d'oxyde d'yttrium et d'oxyde de tungstene, procede de preparation et utilisation comme catalyseur ou support de catalyseur

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080032484.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10726996

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2766212

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 458/CHENP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127001151

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012519967

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010726996

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012105476

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13384593

Country of ref document: US