WO2011006428A1 - 实现故障检测的方法、装置及系统 - Google Patents

实现故障检测的方法、装置及系统 Download PDF

Info

Publication number
WO2011006428A1
WO2011006428A1 PCT/CN2010/075080 CN2010075080W WO2011006428A1 WO 2011006428 A1 WO2011006428 A1 WO 2011006428A1 CN 2010075080 W CN2010075080 W CN 2010075080W WO 2011006428 A1 WO2011006428 A1 WO 2011006428A1
Authority
WO
WIPO (PCT)
Prior art keywords
vccv
packet
ping
sink
source
Prior art date
Application number
PCT/CN2010/075080
Other languages
English (en)
French (fr)
Inventor
刘长宝
赵思乐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2011006428A1 publication Critical patent/WO2011006428A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0677Localisation of faults
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0811Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking connectivity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/10Active monitoring, e.g. heartbeat, ping or trace-route
    • H04L43/103Active monitoring, e.g. heartbeat, ping or trace-route with adaptive polling, i.e. dynamically adapting the polling rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/40Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks using virtualisation of network functions or resources, e.g. SDN or NFV entities

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an implementation solution for fault detection.
  • the network technology of the access circuit is required to CE (Customer Edge).
  • CE Customer Edge
  • a network-side fault notification is sent, so that the CEs on both sides of the OAM mapping (OAM) are aware of network-side faults.
  • the AC side network technology that implements the transmission network side failure may be an ATM (Asynchronous Transfer Mode) OAM, an E-LMI (Ethernet-Local Management Interface), or the like.
  • VCCV-BFD Virtual Circuit Connectivity Detection - Bidirectional Forwarding Detection; Virtual Circuit Connectivity Verification, Virtual Circuit Connectivity Detection; Bidirectional Forwarding Detection, Bidirectional Forwarding Detection
  • T-LDP T-Label Distribution Protocol
  • Embodiments of the present invention provide a method, apparatus, and system for implementing fault detection, thereby enabling network-wide fault transmission to be supported by the entire network.
  • a method for implementing fault detection includes:
  • the VCCV-PING packet is parsed according to the status information of the sending end to determine whether the sending end is faulty. When the sending end fails, the fault identifier is set locally.
  • a device for implementing fault detection comprising:
  • a packet receiving module configured to receive a virtual circuit connectivity detection VCCV-PING packet, where the VCCV-PING packet carries the sender state information
  • the status detection module is configured to parse the VCCV-PING message received by the packet receiving module, determine whether the sending end is faulty according to the status information of the sending end, and set the fault identifier locally when the sending end fails.
  • a system for implementing fault detection including a source operator equipment PE and a sink
  • the source PE and the sink PE are connected by a pseudowire PW;
  • the source PE is configured to send a request packet to the sink PE by using the PW, where the request packet carries state information of the source end;
  • the sink PE is configured to receive and parse the request packet, and determine whether the source end is faulty according to the status information of the source end. If the source end fails, the fault identifier is set locally.
  • the extended VCCV-PING packet is used to implement fault detection, which can support network fault detection on the entire network, and reduces system implementation complexity, and Develop maintenance costs.
  • FIG. 1 is a schematic structural diagram of a PWE3 network according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a processing procedure provided by Embodiment 1 of the present application.
  • FIG. 3 is a schematic structural diagram of a device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a system according to an embodiment of the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. example. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • the VCCV-PING packet is the basic operation and maintenance requirement of PWE3 (Pseudo Wire Emulation Edge to Edge).
  • the communication devices in the PWE3 network support VCCV-PING packets.
  • the VCCV-PING packet is extended to implement network-side fault detection, thereby implementing operation and maintenance mapping.
  • the VCCV-PING message carrying the status information of the sender; parsing the VCCV-PING message, determining whether the sender is faulty according to the status information of the sender, and setting the local device when the sender fails. Fault identification.
  • the status information of the sending end specifically refers to the AC network status information on the sending end side.
  • the VCCV-PING packet carries the PW (Pseudo Wire) and AC identification information of the transmitting end, so that the receiving end identifies the transmitting end according to the PW and the AC identification information.
  • setting the fault identifier locally means setting a fault identifier on the local AC to notify the local CE of the network fault. If the network fault occurs on the sending end, canceling the local fault flag specifically means canceling the fault flag set on the local AC to stop the fault from being notified to the local CE.
  • the VCCV-PING message may be manually sent or automatically sent.
  • the sender automatically sends a VCCV-PING packet and sends it periodically, the receiver needs to determine the timeout period for receiving VCCV-PING packets.
  • the implementation manner is that the sending end carries the timeout information in the VCCV-PING packet, and after receiving the VCCV-PING packet, the receiving end determines the VCCV consistent with the sending end according to the timeout information carried in the VCCV-PING packet.
  • -PING packet reception timeout period When the VCCV-PING packet receiving timeout period is determined, the time is received from the receipt of a VCCV-PING packet.
  • the receiving end needs to determine the sending frequency of the VCCV-PING packet, and the VCCV-PING packet further carries the current packet sending frequency information of the sending end, and the parsing the VCCV-PING packet further includes: The current packet transmission frequency information of the terminal determines the transmission frequency of the VCCV-PING packet consistent with the sender.
  • the timeout period information may be the VCCV-PING packet receiving timeout time set by the sending end, for example, 5 ns, the locally determined VCCV-PING packet receiving timeout time is the same as the VCCV-PING packet receiving timeout time set by the sending end. .
  • the timeout time information may also be the sending frequency and time interval information of the sending end (the time interval information refers to a multiple of the sending frequency), and the above-mentioned timeout time is determined according to the VCCV-P ING message receiving timeout time consistent with the sending end.
  • the implementation manner is: comparing the sending frequency of the sending end with the local sending frequency, comparing the time interval information of the sending end with the local time interval information, and selecting according to the rules agreed with the sending end (for example, selecting a larger sending frequency and a smaller one) The time interval information), multiplies the selected transmission frequency by the time interval information, and obtains a VCCV-PING message reception timeout time consistent with the sender.
  • the above operation of determining the VCCV-PING packet receiving timeout period is not repeated.
  • the network fault detection in the PWE3 is implemented by extending the VCCV-PING packet and carrying the status information of the sender in the packet. Because the communication devices in the PWE3 network support VCCV-PING packets, the system implementation complexity and development and maintenance costs are reduced, and fault detection can be supported on the entire network.
  • the VCCV-PING packet may be a request packet sent by the source end, or may be a response packet returned by the sink end, and the communication parties implement fault detection through the extended VCCV-PING packet, and further implement the fault.
  • Operation and maintenance mapping its specific implementation methods include:
  • the source sends a request packet to the sink, and the request packet carries the state information of the source.
  • the sink receives and parses the request packet, and determines whether the source end is faulty according to the status information of the source. If yes, the fault is set locally.
  • the identifier is sent to the source, and the response message is sent to the source.
  • the response packet carries the status information of the sink.
  • the source receives and parses the response packet, and determines the sink based on the status information of the sink. If the fault occurs, if yes, the fault identifier is set locally. Otherwise, the fault identifier set locally is canceled.
  • the request packet and the response packet are VCCV-PING packets.
  • the VCCV-PING packet (including the request packet and the response packet) is periodically sent, the VCCV-PING packet sending frequency and VCCV agreed by the source end and the sink end are also required. -PING packet reception timeout period.
  • the specific implementation manner is as follows: Negotiating the implementation scheme of the VCCV-PING packet sending frequency:
  • the request packet sent by the source carries the packet sending frequency information of the source.
  • Sink resolution request When the packet is received, the frequency of sending VCCV-PING packets matching the source is determined according to the frequency information of the packets sent from the source.
  • the response packet sent by the sink carries the packet transmission frequency information of the sink.
  • the source end parsing response packet further includes: determining, according to the packet sending frequency information of the sink end, the frequency of transmitting the VCCV-PING packet consistent with the sink end.
  • the sink end determines the frequency of sending the VCCV-PI NG packet consistent with the source end according to the packet sending frequency information of the source end, and specifically includes: the sink end compares the current packet sending frequency of the source end with the local current packet sending frequency, and selects The larger (or smaller) message transmission frequency is used as the local VCCV-PING message transmission frequency.
  • the source end determines the sending frequency of the VCCV-PING packet consistent with the sink end according to the packet sending frequency information of the sink end, and specifically includes: the source end compares the current packet sending frequency of the sink end with the local current packet sending frequency, Select the larger (or smaller) message transmission frequency as the local VCC VP ING message transmission frequency.
  • the source sends a request packet according to the agreed VCCV-PING packet sending frequency, and the sink sends a response packet according to the agreed VCCV-PING packet sending frequency. , and the frequency of sending VCCV-PING packets is not repeated.
  • the request packet sent by the source carries the timeout information.
  • the sink resolves the request packet, it determines the timeout period for receiving VCCV-PING packets consistent with the source according to the timeout information.
  • the response packet sent by the sink carries the timeout information.
  • the source end parses the response packet, it determines the timeout period for receiving VCCV-PING packets consistent with the sink according to the timeout information.
  • the VCCV-PING packet is extended, and the extended VC C V-PING packet carries the state information of the local end.
  • the source and sink communicate through extended VCCV-PING packets to implement O&M mapping. Since the VCCV-PING message is a basic requirement of the PWE3 network, the communication devices in the network support the transmission of VCCV-PING messages. Therefore, the embodiment of the present invention can implement operation and maintenance mapping of the entire network, and reduces system implementation complexity. And development and maintenance costs.
  • PE1 Provide Edge, operation
  • the device sends a VCCV-PING packet to the PE2 through the PW1 established by the PE2.
  • the PE2 sends the VCCV-PING packet to the PE1 through the PW2 established by the PE1.
  • the PE1 communicates with the CE1 through the AC.
  • the AC communicates.
  • the VCCV-PING packet is extended, and the Status TLV (Status, Status, TLV Tag Length Value, Label Length Content), Frequency TLV (Frequency TLV), and Interval are added to the VCCV-PING packet.
  • TLV time interval TLV
  • the status TLV carries the AC status information of the VCCV-PING packet sending end; the Frequency TLV carries the VCCV-PING packet sending end packet sending frequency; and the Interval TLV carries the integer of the VCCV-PING packet sending end. Times information. Assume that PE1 and PE2 do not have the negotiation packet sending frequency and the packet receiving timeout time. Then, the extended VCCV-PING packet is periodically sent to implement network fault detection, and the operation and maintenance mapping process is shown in Figure 2. Implementations can include:
  • the PE1 starts the VCCV-PING packet sending timer, and sends a request packet to the PE2 (sink) according to the local sending frequency through the VCCV-PING packet sending timer, and the request packet is the extended VCCV- PING message;
  • the PE2 receives and parses the request packet, and obtains a Status TLV, a Frequency TLV, and an Interval TLV carried in the request packet.
  • the 204 Determine, according to the obtained Status TLV, whether the AC1 on the PE1 side is faulty (for example, the Status TLV carries Boolean function information, or the binary logic information indicates status information on the AC1 side), and if yes, the link on the local AC2 side.
  • the monitoring protocol sets the fault identifier to notify the CE2 of the fault through the fault code carried in the link monitoring protocol. Otherwise, the fault identifier set on the link monitoring protocol on the local AC2 side is cancelled, and the fault code carried by the link monitoring protocol is stopped to CE2. Notifying the fault;
  • the link monitoring protocol on the local AC2 side sets the fault identifier, so that the fault code carried by the link monitoring protocol is sent to the CE2. Notifying the fault;
  • the PE2 sends a response packet to the PE1, where the response packet is a VCCV-PING packet.
  • the PE1 receives and parses the response packet, and obtains a StatusTLV, a Frequency TLV, and an Interval TLV carried in the response packet.
  • the link monitoring protocol on the local AC1 side sets a fault identifier to notify the CE1 of the fault through the fault code carried by the link monitoring protocol. After the packet sending frequency and the packet receiving timeout period are the same, the sending frequency and the packet receiving timeout time are not re-adjusted according to the received VCCV-PING packet.
  • the foregoing program may be stored in a computer readable storage medium, and when executed, the program includes the steps of the foregoing method embodiments;
  • the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • the embodiment of the present invention further provides a device for implementing fault detection, and the device may perform the method of the method embodiment, and the structure thereof is as shown in FIG. 3, and the specific implementation structure includes:
  • the packet receiving module 301 is configured to receive a virtual circuit connectivity detection VCCV-PING packet, where the VCCV-PING packet carries the sender state information.
  • the status detection module 302 is configured to parse the VCCV-PING message received by the message receiving module 301, and determine whether the sending end is faulty according to the status information of the sending end. When the sending end fails, the fault identifier is set locally. In addition, when it is determined that the transmitting end has not failed according to the status information of the transmitting end, the fault flag set locally is canceled.
  • the VCCV-PING packet further carries timeout information
  • the state detection module 302 includes a timeout period determining submodule 3021, a timing submodule 3022, and a processor.
  • the time determining sub-module 3021 determines the VCCV-PING packet receiving timeout period, and starts timing; the processing sub-module 3023 is configured to not receive the timeout period of the timing sub-module 3022 if the timeout period exceeds the VCCV-PING packet receiving timeout period.
  • the fault flag is set locally.
  • the embodiment of the present invention further provides a system for implementing fault detection, and the system can perform the method of the foregoing method embodiment.
  • the structure is as shown in FIG. 4 , and the specific implementation structure includes a source PE 401 and a sink PE 402: The source PE 401 and the sink PE 402 are connected by a virtual circuit PW.
  • the source PE 401 is configured to send a request packet to the sinking end PE 402 through the PW, and the request message carries the status information of the source end.
  • the sinking PE 402 is configured to receive and parse the request packet, and determine whether the source end is faulty according to the status information of the source end. If the source end fails, the fault identifier is set locally. In addition, if the source end does not fail, cancel the local fault. logo.
  • the sink PE 402 is further configured to send a response packet to the source end PE 401 through the PW, and the response message carries the state information of the sink end;
  • the source PE 401 is further configured to receive and parse the response packet, and determine whether the sink is faulty according to the state information of the sink. If yes, set the fault identifier locally; otherwise, cancel the fault identifier set locally; request the packet and the response.
  • the message is a VCC V-PING message.
  • the sink PE and the source PE of the system may be the devices in the device embodiment for implementing fault detection described above.
  • the system provided by the embodiment of the present invention further includes a source user edge device CE403 and a sink end CE403.
  • the source PE 401 and the source CE 403 are connected by the access circuit AC; the sink PE 402 and the sink C E404 are connected by the access circuit AC; the source P E401 or the sink P E402 is configured to locally set the fault identifier.
  • the fault identifier is set on the local AC.
  • the operation of canceling the locally set fault identifier on the source PE 401 or the sink PE E 402 is specifically the fault identifier that is canceled on the local AC.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

实现故障检测的方法、 装置及系统 本申请要求于 2009 年 7 月 13 日提交中国专利局、 申请号为 200910088282.4、 发明名称为 "实现故障检测的方法、 装置及系统" 的中 国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及通信技术领域, 尤其涉及一种故障检测的实现方案。 背景技术 为了提高网络的可运维性, 保证网络的可靠性, 当网络侧发生故障时, 需要通±AC ( Access Circuit, 接入电路)侧的网络技术向 CE ( Customer Edge, 用户边缘设备)发出网络侧故障通告, 使得 OAM Mapping (运维映 射; OAM, Operations and Maintenance运维) 两侧的 CE感知网络侧故 障。
实现传递网络侧故障的 AC侧网络技术可以是 ATM ( Asynchronous Transfer Mode , 异步传输模式 ) OAM , E-LMI ( Ethernet-Local Management Interface , 以太网本地管理接口 ) 等等。 具体可以使用 VCCV-BFD (虚电路连通性检测-双向转发检测; Virtual Circuit Connectivity Verification , 虚电路连通性检测; Bidirectional Forwarding Detection , 双 向转发检测)、 T-LDP ( T-Label Distribution Protocol , 目标-标签分发协议) 等等信令实现网络侧故障传递。
现有技术中至少存在如下问题:
现网中存在不支持 VCCV-BFD或 T-LDP的通信设备, 这些设备无法使 用 VCCV-BFD信令或 T-LDP信令实现网络侧故障的传递。 因此, 现有技术 中还没有一种支持全网实现网络侧故障传递的实现方案。 发明内容
本发明的实施例提供了一种实现故障检测的方法、 装置及系统, 从而 能够支持全网实现网络侧故障传递。
本发明的目的是通过以下技术方案实现的:
一种实现故障检测的方法, 包括:
接收虚电路连通性检测 VCCV-PING报文, 所述 VCCV-PING报文中携 带发送端状态信息;
解析所述 VCCV-PING报文, 根据所述发送端状态信息判断发送端是否 发生故障, 当发送端发生故障时, 在本地设置故障标识。
一种实现故障检测的装置, 包括:
报文接收模块, 用于接收虛电路连通性检测 VCCV-PING报文, 所述 VCCV-PING报文中携带发送端状态信息;
状态检测模块, 用于解析所述报文接收模块接收到的 VCCV-PING报 文, 根据所述发送端状态信息判断发送端是否发生故障, 当发送端发生故 障时, 在本地设置故障标识。
一种实现故障检测的系统, 所述系统包括源端运营商设备 PE和宿端
PE,
所述源端 PE与宿端 PE通过伪线 PW连接;
所述源端 PE用于通过所述 PW向宿端 PE发送请求报文, 所述请求报文 中携带源端的状态信息;
所述宿端 PE用于接收并解析所述请求报文, 根据所述源端的状态信息 判断所述源端是否发生故障, 如果源端发生故障, 在本地设置故障标识。
由上述本发明的实施例提供的技术方案可以看出, 本发明实施例中, 采用扩展的 VCCV-PING报文实现故障检测, 能够支持全网实现网络故障检 测, 降低了系统实现复杂度、 以及开发维护成本。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例描述中所需要使用的附图作一简单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的 PWE3网络结构示意图;
图 2为本发明应用实施例一提供的处理过程示意图;
图 3为本发明实施例提供的装置结构示意图;
图 4为本发明实施例提供的系统结构示意图。 具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有作出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
VCCV-PING报文是 PWE3 ( Pseudo Wire Emulation Edge to Edge, 端到端的伪线仿真) 的基本运维需求, PWE3网络中的通信设备均支持 VCCV-PING报文。 本发明实施例通过对 VCCV-PING报文进行扩展, 实现 网络侧故障检测, 进而实现运维映射。
本发明实施例通过扩展的 VCCV-PING报文实现故障检测的实现方案 具体包括:
接收 VCCV-PING报文, 该 VCCV-PING报文中携带发送端状态信息; 解析该 VCCV-PING报文, 根据发送端状态信息判断发送端是否发生故障, 当发送端发生故障时, 在本地设置故障标识。 其中, 发送端状态信息具体是指发送端侧的 AC网络状态信息。 另外, VCCV-PING报文中还携带有发送端的 PW ( Pseudo Wire, 伪线) 和 AC标 识信息, 以便接收端根据 PW和 AC标识信息识别发送端。
上述本发明实施例提供的故障检测方法中, 当检测到发送端发生网络 故障时, 在本地设置故障标识具体是指在本地的 AC上设置故障标识, 以实 现向本地 CE通告网络故障。 如果没有检测到发送端发生网络故障, 取消在 本地设置的故障标识具体是指, 取消在本地 AC上设置的故障标识, 以便停 止向本地 CE通告故障。
进一步的, 上述本发明实施例提供的故障检测方法中, VCCV-PING报 文可以是手动发送的, 也可以是自动发送的。 当发送端自动发送 VCCV-PING报文, 且周期性发送时, 接收端需要确定 VCCV-PING报文接 收超时时间。 其实现方式是发送端在 VCCV-PING报文中携带超时时间信 息, 接收端在解析该 VCCV-PING报文后, 根据 VCCV-PING报文中携带的 超时时间信息, 确定与发送端一致的 VCCV-PING报文接收超时时间。 当确 定了 VCCV-PING报文接收超时时间, 则从接收到一个 VCCV-PING报文开 始计时, 当计时时间超过上述 VCCV-PI NG报文接收超时时间仍然没有接收 到下一个 VCCV-PING报文, 则在本地设置故障标识。 另外, 接收端还需要 确定 VCCV-PING报文的发送频率, 则上述 VCCV-PING报文还携带发送端 当前的报文发送频率信息, 且上述解析所述 VCCV-PING报文还包括: 根据 发送端当前的报文发送频率信息, 确定与发送端一致的 VCCV-PING报文发 送频率。
其中, 上述超时时间信息可以是发送端设置的 VCCV-PING报文接收超 时时间, 例如 5ns, 则本地确定的 VCCV-PING报文接收超时时间与发送端 设置的 VCCV-PING报文接收超时时间相同。 上述超时时间信息还可以是发 送端的发送频率和时间间隔信息 (时间间隔信息是指发送频率的倍数) , 则上述根据超时时间确定与发送端一致的 VCCV-P I N G报文接收超时时间 的实现方式是, 将发送端的发送频率与本地发送频率比较, 将发送端的时 间间隔信息与本地时间间隔信息比较, 按照与发送端约定的规则进行选择 (例如, 选择较大的发送频率以及较小的时间间隔信息) , 将选择的发送 频率与时间间隔信息相乘, 得到与发送端一致的 VCCV-PING报文接收超时 时间。
当确定了 VCCV-PING报文接收超时时间以后, 不再重复上述确定 VCCV-PING报文接收超时时间的操作。
本发明实施例, 通过扩展 VCCV-PING报文, 在报文中携带发送端的状 态信息实现 PWE3中的网络故障检测。 由于 PWE3网络中的通信设备均支持 VCCV-PING报文, 因此降低了系统实现复杂度、 以及开发维护成本, 能够 支持全网实现故障检测。
本发明实施例中, VCCV-PING报文可以是源端发送的请求报文, 也可 以是宿端返回的响应报文, 通信双方通过扩展的 VCCV-PING报文实现故障 检测, 进而还能够实现运维映射, 其具体实现方式包括:
源端向宿端发送请求报文, 该请求报文中携带源端的状态信息; 宿端接收并解析请求报文, 根据源端的状态信息判断源端是否发生故 障, 如果是, 则在本地设置故障标识, 否则, 取消在本地设置的故障标识; 宿端向源端发送响应报文, 该响应报文中携带宿端的状态信息; 源端接收并解析响应报文, 根据宿端的状态信息判断宿端是否发生故 障, 如果是, 则在本地设置故障标识, 否则, 取消在本地设置的故障标识; 上述请求报文和响应报文是 VCCV-PING报文。
进一步的,上述本发明实施例中,如果周期性发送 VCCV-PING报文(包 括请求报文, 和响应报文) , 还需要源端和宿端协商一致的 VCCV-PING报 文发送频率以及 VCCV-PING报文接收超时时间。 其具体实现方式如下: 协商 VCCV-PING报文发送频率的实现方案:
源端发送的请求报文中携带源端的报文发送频率信息。 宿端解析请求 报文时, 根据源端的报文发送频率信息, 确定与源端一致的 VCCV-PING报 文发送频率。
宿端发送的响应报文中携带宿端的报文发送频率信息。 源端解析响应 报文还包括: 根据宿端的报文发送频率信息, 确定与宿端一致的 VCCV-PING报文发送频率。
其中, 宿端根据源端的报文发送频率信息, 确定与源端一致的 VCCV-PI N G报文发送频率具体包括: 宿端比较源端当前的报文发送频率与 本地当前报文发送频率, 选择其中较大 (或较小) 的报文发送频率作为本 地 VCCV-PING报文发送频率。相应的,源端根据宿端的报文发送频率信息, 确定与宿端一致的 VCCV-PING报文的发送频率具体包括: 源端比较宿端当 前的报文发送频率与本地当前报文发送频率, 选择其中较大 (或较小) 的 报文发送频率作为本地 VCC V-P I N G报文发送频率。
当协商确定了一致的 VCCV-PING报文发送频率后, 源端根据协商一致 的 VCCV-PING报文发送频率发送请求报文, 宿端根据协商一致的 VCCV-PING报文发送频率发送响应报文, 且不再重复协商 VCCV-PING报 文发送频率。
协商 VCCV-PING报文接收超时时间的实现方案:
源端发送的请求报文中携带超时时间信息。 宿端解析请求报文时, 根 据超时时间信息, 确定与源端一致的 VCCV-PING报文接收超时时间。
宿端发送的响应报文中携带超时时间信息。 源端解析响应报文时, 根 据超时时间信息, 确定与宿端一致的 VCCV-PING报文接收超时时间。
上述本发明实施例中, 对 VCCV-PING报文进行扩展, 扩展后的 VC C V- P I N G报文中携带本端的状态信息。 源端和宿端通过扩展的 VCCV-PING报文进行通信, 从而实现运维映射。 由于 VCCV-PING报文是 PWE3网络的基本需求,网络中的通信设备均支持 VCCV-PING报文的传输。 因此本发明实施例能够实现全网的运维映射, 且降低了系统实现复杂度, 以及开发维护成本。
下面将对本发明实施例在实际应用过程中的具体实现方式进行详细的 说明。
下面将以自动发送 VCCV-PING"^文的一具体应用场景为例, 对上述本 发明实施例提供的技术方案进行详细描述。 在如图 1所示的 PWE3网络中, PE1 ( Provider Edge , 运营商设备) 通过与 PE2建立的 PW1向 PE2发送 VCCV-PING报文, PE2通过与 PE1建立的 PW2向 PE1发送 VCCV-PING报 文。 PE1与 CE1之间通过 AC进行通信; PE2与 CE2之间通过 AC进行通信。
在本发明应用实施例中,对 VCCV-PING报文进行扩展,在 VCCV-PING 报文中增加 Status TLV ( Status, 状态; TLV Tag Length Value, 标签 长 度 内容)、 Frequency TLV (频率 TLV ) 和 Interval TLV (时间间隔 TLV )。 其中, Status TLV 携带 VCCV-PING 报文发送端侧的 AC 状态信息; Frequency TLV携带 VCCV-PING 报文发送端的报文发送频率; Interval TLV携带上述 VCCV-PING报文发送端的报文发送频率的整数倍信息。 假 设 PE1和 PE2还没有协商报文发送频率以及报文接收超时时间,则通过周 期性发送扩展的 VCCV-PING 报文, 实现网络故障检测, 以及运维映射的 处理过程如图 2所示, 具体实现方式可以包括:
201、 PE1(源端)启动 VCCV-PING报文发送定时器,通过 VCCV-PING 报文发送定时器控制按照本地发送频率向 PE2 (宿端)发送请求报文, 请 求报文是扩展的 VCCV-PING报文;
202、 PE2接收并解析请求报文,获取该请求报文中携带的 Status TLV, Frequency TLV和 Interval TLV;
203、 比较本地当前的报文发送频率与 PE1 当前的报文发送频率, 取 较大值并将本地报文发送频率(即响应报文的发送频率)调整为该较大值, 如果本地当前的报文发送频率即为较大值, 则不用调整; 比较本地设置的 Interval信息与 PE1 的 Interval信息, 取较小值, 并将调整后的报文发送频 率与较小的 Interval的乘积作为本地 VCCV-PING报文接收超时时间,启动 超时定时器, 根据 VCCV-PING报文接收超时时间计时;
204、根据获取的 Status TLV判断 PE1侧的 AC1是否发生故障(例如, Status TLV 中携带布尔函数信息、 或二值逻辑信息表示 AC1 侧的状态信 息), 如果是, 则在本地 AC2 侧的链路监控协议设置故障标识, 以便通过 链路监控协议携带的故障码向 CE2通报故障; 否则,取消本地 AC2侧的链 路监控协议上设置的故障标识, 停止通过链路监控协议携带的故障码向 CE2通报故障;
205、 可选地, 如果超时定时器计时超时, 仍然未收到 PE1 发送的请 求报文, 则在本地 AC2侧的链路监控协议设置故障标识 , 以便通过链路监 控协议携带的故障码向 CE2通报故障;
206、 PE2向 PE1发送响应报文, 该响应报文是 VCCV-PING报文;
207、 PE1接收并解析响应报文, 获取响应报文中携带的 StatusTLV、 Frequency TLV和 Interval TLV;
208、 比较本地报文发送频率与 PE2 的报文发送频率, 取较大值并将 本地报文发送频率调整为该较大值; 比较本地设置的 Interval信息与 PE2 的 Interval信息, 取较小值, 并将调整后的报文发送频率与较小的 Interval 的乘积作为本地 VCCV-PING 报文接收超时时间, 同时启动超时定时器, 根据 VCCV-PING报文接收超时时间计时;
209、根据获取的 Status TLV判断 PE2侧的 AC2是否发生故障,如果 是, 则在本地 AC1侧的链路监控协议设置故障标识, 以便通过链路监控协 议携带的故障码向 CE1通报故障; 否则,取消本地 AC1侧的链路监控协议 上设置的故障标识,停止通过链路监控协议携带的故障码向 CE1通报故障;
210、 如果超时定时器计时超时, 仍然未收到 PE2发送的请求报文, 则在本地 AC1侧的链路监控协议设置故障标识, 以便通过链路监控协议携 带的故障码向 CE1通报故障。 当 PE1和 PE2协商一致的报文发送频率和报文接收超时时间后,不再 根据接收到的 VCCV-PING报文重新调整发送频率和报文接收超时时间。
实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件 来完成, 前述的程序可以存储于一计算机可读取存储介质中, 该程序在执 行时, 执行包括上述方法实施例的步骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。
本发明实施例还提供了一种实现故障检测的装置, 该装置可以执行上 述的方法实施例的方法, 其结构如图 3所示, 具体实现结构包括:
报文接收模块 301, 用于接收虚电路连通性检测 VCCV-PING报文, VCCV-PING报文中携带发送端状态信息;
状态检测模块 302 , 用于解析报文接收模块 301接收到的 VCCV-PING 报文, 根据发送端状态信息判断发送端是否发生故障, 当发送端发生故障 时, 在本地设置故障标识。 另外, 当根据发送端状态信息判断发送端未发 生故障时, 取消在本地设置的故障标识。
其中,可选地,如果 VCCV-PING报文是周期性发送的, 则 VCCV-PING 报文还携带超时时间信息, 且状态检测模块 302包括超时时间确定子模块 3021、计时子模块 3022和处理子模块 3023: 上述超时时间确定子模块 3021 用于解析 VCCV-PING报文, 根据上述超时时间信息, 确定与发送端一致的 VCCV-PING报文接收超时时间;上述计时子模块 3022用于当上述超时时间 确定子模块 3021确定了 VCCV-PING报文接收超时时间, 则开始计时; 上述 处理子模块 3023用于如果所述计时子模块 3022的计时时间超过 VCCV-PING报文接收超时时间仍然没有接收到 VCCV-PING报文, 则在本 地设置故障标识。
本发明实施例还提供一种实现故障检测的系统, 该系统可以执行上述 的方法实施例的方法, 其结构如图 4所示, 具体实现结构包括源端 PE401和 宿端 PE402: 源端 PE401与宿端 PE402通过虚电路 PW连接;
源端 PE401用于通过 PW向宿端 PE402发送请求报文,请求报文中携带 源端的状态信息;
宿端 PE402用于接收并解析请求报文, 根据源端的状态信息判断源端 是否发生故障, 如果源端发生故障, 在本地设置故障标识; 另外, 如果源 端未发生故障, 取消本地设置的故障标识。
上述本发明实施例提供的系统中, 宿端 PE402还用于通过 PW向源端 PE401发送响应报文, 响应报文中携带宿端的状态信息;
源端 PE401还用于接收并解析响应报文, 根据宿端的状态信息判断宿 端是否发生故障, 如果是, 则在本地设置故障标识, 否则, 取消在本地设 置的故障标识; 请求报文和响应报文是 VCC V- P I N G报文。
该系统的宿端 PE和源端 PE可以是上述实现故障检测的装置实施例中 的装置。
上述本发明实施例提供的系统还包括源端用户边缘设备 CE403和宿端 CE403。 源端 PE401与源端 CE403之间通过接入电路 AC连接; 宿端 PE402 与宿端 C E404之间通过接入电路 AC连接; 源端 P E401或宿端 P E402在本地 设置故障标识的操作具体是在本地 AC上设置故障标识; 源端 PE401或宿端 P E402取消本地设置的故障标识的操作具体是在本地 AC上取消设置的故障 标识。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并 不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本 发明的保护范围应该以权利要求的保护范围为准。

Claims

权利 要求
1、 一种实现故障检测的方法, 其特征在于, 包括:
接收虚电路连通性检测 VCCV-PING报文, 所述 VCCV-PING报文中携 带发送端状态信息;
解析所述 VCCV-PING报文, 根据所述发送端状态信息判断发送端是否 发生故障, 当发送端发生故障时, 在本地设置故障标识。
2、 根据权利要求 1所述的方法, 其特征在于, 如果所述 VCCV-PING报 文是周期性发送的, 则所述 VCCV-PING报文还携带超时时间信息, 且
所述解析所述 VCCV-PING报文之后,还包括:根据所述超时时间信息, 确定与发送端一致的 VCCV-PING报文接收超时时间;
当确定了 VCCV-PING报文接收超时时间 , 则从接收到一个 VCCV-PING报文开始计时, 如果计时时间超过所述 VCCV-PING报文接收 超时时间仍然没有接收到下一个 VCCV-P I N G报文, 则在本地设置故障标 识。
3、 根据权利要求 2所述的方法, 其特征在于, 所述 VCCV-PING报文还 携带发送端当前的 · ^文发送频率信息, 且
所述解析所述 VCCV-PING报文还包括:
根据所述发送端当前的报文发送频率信息, 确定与发送端一致的 VCCV-PING报文发送频率。
4、 根据权利要求 3所述的方法, 其特征在于, 所述根据所述发送端当 前的报文发送频率信息, 确定与发送端一致的 VCCV-PING报文发送频率包 括:
比较发送端当前的报文发送频率与本地当前的报文发送频率, 根据与 发送端预先的约定, 选择与发送端一致的报文发送频率作为本地 VCCV-PING报文发送频率。
5、 根据权利要求 1 ~4任意一项所述的方法, 其特征在于, 所述 VCCV-PING报文包括请求报文或响应报文, 所述接收虚电路连通性检测 VCCV-PING报文包括:
接收源端发来的请求报文;
或者,
接收宿端返回的响应 艮文。
6、 一种实现故障检测的装置, 其特征在于, 包括:
报文接收模块, 用于接收虚电路连通性检测 VCCV-PING报文, 所述 VCCV-PING报文中携带发送端状态信息;
状态检测模块, 用于解析所述报文接收模块接收到的 VCCV-PING报 文, 根据所述发送端状态信息判断发送端是否发生故障, 当发送端发生故 障时, 在本地设置故障标识。
7、 根据权利要求 6所述的装置, 其特征在于, 所述 VCCV-PING报文是 周期性发送的, 则所述 VCCV-PING报文还携带超时时间信息, 且
所述状态检测模块包括超时时间确定子模块、 计时子模块和处理子模 块:
所述超时时间确定子模块用于解析所述 VCCV-PING报文后, 根据所述 超时时间信息, 确定与发送端一致的 VCCV-PING报文接收超时时间; 所述 计时子模块用于当所述超时时间确定子模块确定了 VCCV-PING报文接收 超时时间, 从接收到一个 VCCV-PING报文开始计时; 所述处理子模块用于 如杲所述计时子模块的计时时间超过所述 VCCV-PING报文接收超时时间 仍然没有接收到下一个 VCCV-PING报文, 则在本地设置故障标识。
8、 一种实现故障检测的系统, 其特征在于, 所述系统包括源端运营商 设备 PE和宿端 PE,
所述源端 PE与宿端 PE通过伪线 PW连接;
所述源端 PE用于通过所述 PW向宿端 PE发送情求报文, 所述请求报文 中携带源端的状态信息;
所述宿端 PE用于接收并解析所述请求报文, 根据所述源端的状态信息 判断所述源端是否发生故障, 如果源端发生故障, 在本地设置故障标识。
9、 根据权利要求 8所述的系统, 其特征在于,
所述宿端 PE还用于通过 PW向源端 PE发送响应报文, 所述响应报文中携带 宿端的状态信息;
所述源端 PE还用于接收并解析所述响应报文,根据所述宿端的状态信息判 断所述宿端是否发生故障, 如果是, 则在本地设置故障标识, 否则, 取消 在本地设置的故障标识; 所述请求报文和所述响应报文是 VCCV-PING报 文。
10、 根据权利要求 8或 9所述的系统, 其特征在于, 该系统还包括源端 用户边缘设备 CE和宿端 CE:
所述源端 PE与源端 CE之间通过接入电路 AC连接;
所述宿端 PE与宿端 CE之间通过接入电路 AC连接;
源端 PE或宿端 PE在本地设置故障标识的操作具体是在本地 AC上设置 故障标识;
源端 PE或宿端 PE取消本地设置的故障标识的操作具体是在本地 AC上 取消设置的故障标识。
PCT/CN2010/075080 2009-07-13 2010-07-09 实现故障检测的方法、装置及系统 WO2011006428A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009100882824A CN101610181B (zh) 2009-07-13 2009-07-13 实现故障检测的方法、装置及系统
CN200910088282.4 2009-07-13

Publications (1)

Publication Number Publication Date
WO2011006428A1 true WO2011006428A1 (zh) 2011-01-20

Family

ID=41483779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075080 WO2011006428A1 (zh) 2009-07-13 2010-07-09 实现故障检测的方法、装置及系统

Country Status (2)

Country Link
CN (1) CN101610181B (zh)
WO (1) WO2011006428A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110083503A (zh) * 2019-03-27 2019-08-02 上海德衡数据科技有限公司 基于数据中心运维的知识库信息感知方法
CN114244747A (zh) * 2021-11-12 2022-03-25 潍柴动力股份有限公司 一种报文健康监控方法、装置及ecu

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101610181B (zh) * 2009-07-13 2012-04-18 华为技术有限公司 实现故障检测的方法、装置及系统
CN105591800B (zh) * 2015-07-29 2019-05-24 新华三技术有限公司 流量保护方法及装置
CN106559234B (zh) * 2015-09-28 2021-02-19 中兴通讯股份有限公司 控制消息发送方法及装置
CN106850559B (zh) * 2016-12-26 2021-07-16 中国科学院计算技术研究所 一种可扩展的网络协议解析系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1848775A (zh) * 2005-09-30 2006-10-18 华为技术有限公司 多跳伪线故障检测、上报和维护协商控制方法
CN101047443A (zh) * 2006-06-06 2007-10-03 华为技术有限公司 无源光网络系统故障检测排除方法及通信报文装置
US20080279110A1 (en) * 2007-05-10 2008-11-13 Alcatel Lucent Method and system for verifying connectivity of multi-segment pseudo-wires
CN101610181A (zh) * 2009-07-13 2009-12-23 华为技术有限公司 实现故障检测的方法、装置及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100403689C (zh) * 2005-05-16 2008-07-16 华为技术有限公司 一种检测以太网用户线状态的方法
CN101316225B (zh) * 2007-05-30 2012-12-12 华为技术有限公司 一种故障检测方法、通信系统和标签交换路由器
CN100563180C (zh) * 2007-05-30 2009-11-25 杭州华三通信技术有限公司 链路故障检测方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1848775A (zh) * 2005-09-30 2006-10-18 华为技术有限公司 多跳伪线故障检测、上报和维护协商控制方法
CN101047443A (zh) * 2006-06-06 2007-10-03 华为技术有限公司 无源光网络系统故障检测排除方法及通信报文装置
US20080279110A1 (en) * 2007-05-10 2008-11-13 Alcatel Lucent Method and system for verifying connectivity of multi-segment pseudo-wires
CN101610181A (zh) * 2009-07-13 2009-12-23 华为技术有限公司 实现故障检测的方法、装置及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110083503A (zh) * 2019-03-27 2019-08-02 上海德衡数据科技有限公司 基于数据中心运维的知识库信息感知方法
CN114244747A (zh) * 2021-11-12 2022-03-25 潍柴动力股份有限公司 一种报文健康监控方法、装置及ecu
CN114244747B (zh) * 2021-11-12 2023-11-17 潍柴动力股份有限公司 一种报文健康监控方法、装置及ecu

Also Published As

Publication number Publication date
CN101610181B (zh) 2012-04-18
CN101610181A (zh) 2009-12-23

Similar Documents

Publication Publication Date Title
WO2011006428A1 (zh) 实现故障检测的方法、装置及系统
US7940678B2 (en) Method for triggering failure detection in bidirectional forwarding detection
JP5514213B2 (ja) プロバイダネットワーク内のccメッセージの送信の低減
US20100023632A1 (en) Method and system for negotiating the bidirectional forwarding detection session discriminator of pseudo wire
US20120087232A1 (en) Link state relay for physical layer emulation
CN103580894B (zh) 操作、管理和维护oam配置的方法、设备及系统
WO2006099784A1 (fr) Procédé de détection d’un défaut de liaison entre des noeuds d’une extrémité à l’autre dans un réseau hybride
WO2011100882A1 (zh) 链路检测方法、装置和系统
EP2852098B1 (en) Method, node and system for detecting performance of layer three virtual private network
WO2012028029A1 (zh) 一种切换方法及系统
WO2011029352A1 (zh) 多协议标签交换网络和以太网的互通方法、装置和系统
WO2013020437A1 (zh) 一种双向转发检测会话的验证方法及节点
WO2012024952A1 (zh) 一种基于点到多点业务的路径切换方法及系统
WO2009092257A1 (zh) 运营商骨干网传输网络的故障检测方法和装置
WO2011015068A1 (zh) 一种故障检测的方法和系统
CN102045250B (zh) Vpls中组播报文的转发方法和服务提供商边缘设备
WO2008116399A1 (fr) Procédé et dispositif d'ajustement dynamique d'état de liaison et d'état de liaison groupée
WO2011113395A2 (zh) 一种负载分担方法和装置
WO2008017223A1 (fr) Procédé, appareil et réseau permettant de communiquer réciproquement des résultats de détection de pannes
US8724454B2 (en) System and method for summarizing alarm indications in a network environment
US8804749B2 (en) Mechanism for updating parameters of a session set up through a virtual circuit
CN104468347A (zh) 网络数据自环回的控制方法及装置
WO2012068899A1 (zh) 链路状态的处理方法、装置及系统
WO2012079399A1 (zh) 一种多网元网络及跨网元的复用段保护倒换的方法
WO2010139216A1 (zh) 实现在扩展处理器和交换芯片之间传输报文的方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10799426

Country of ref document: EP

Kind code of ref document: A1