WO2012024952A1 - 一种基于点到多点业务的路径切换方法及系统 - Google Patents

一种基于点到多点业务的路径切换方法及系统 Download PDF

Info

Publication number
WO2012024952A1
WO2012024952A1 PCT/CN2011/074603 CN2011074603W WO2012024952A1 WO 2012024952 A1 WO2012024952 A1 WO 2012024952A1 CN 2011074603 W CN2011074603 W CN 2011074603W WO 2012024952 A1 WO2012024952 A1 WO 2012024952A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
access device
forwarding
server
leaf
Prior art date
Application number
PCT/CN2011/074603
Other languages
English (en)
French (fr)
Inventor
杨学成
张利锋
王春霞
汪正海
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012024952A1 publication Critical patent/WO2012024952A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0659Management of faults, events, alarms or notifications using network fault recovery by isolating or reconfiguring faulty entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0663Performing the actions predefined by failover planning, e.g. switching to standby network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/68Pseudowire emulation, e.g. IETF WG PWE3
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/16Multipoint routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery

Definitions

  • the present invention relates to a fault notification technology for a communication network, and more particularly to a path switching method and system based on point-to-multipoint service. Background technique
  • Layer 2 Virtual Private Network is a technology that relies on Internet service providers and network service providers to establish a dedicated data communication network in a public network. It can be divided into virtual private LAN services (VPLS, Virtual Private LAN). Service) and Virtual Private Wire Service (VPWS), the former is based on Ethernet service forwarding and supports point-to-multipoint network deployment; the latter is virtual private line service, which only supports point-to-point network deployment.
  • VPLS Virtual Private LAN services
  • VPWS Virtual Private Wire Service
  • the PW OAM Message Mapping technology in the IETF standard document "draft-ietf-pwe3-oam-msg-map-12" is a pseudowire fault notification technology that supports access paths (AC) and point-to-point emulation services.
  • Fault map of pseudowire (PW) that is, operation, management & maintenance (OAM) of AC when fault occurs in AC
  • the link is advertised to the remote end by the PWE3 (Pseudo-Wire Emulation Edge to Edge) protocol packet, and the remote end can quickly learn that the service path has failed for subsequent processing.
  • PW redundancy in the IETF standard document "draft-ietf-pwe3-redundancy-01" is a pseudowire redundancy protection technique.
  • network backup should consider implementing a path backup mechanism. When the primary path fails, user traffic is quickly switched to the backup path to minimize traffic loss. Main path, backup The path relationship can be generated through protocol signaling negotiation or by user-specified designation.
  • the PW OAM message mapping technology and the PW redundancy technology are interrelated.
  • the former is mainly responsible for fault notification.
  • the latter is mainly responsible for responding to the fault information that is advertised, determining the current effective path, and guiding traffic forwarding.
  • the two complement each other and jointly complete the fast convergence of the fault. .
  • the PW OAM Message Mapping technology and the PW redundancy technology are mainly for the point-to-point simulation service scenario.
  • FIG. 1 when the path on the access side is faulty, the fault can be transmitted to the remote device, providing a strong Fault detection or fault notification capability; but in point-to-multipoint services, such as point-to-multipoint ETREE services, as shown in Figure 2, this technology cannot be supported.
  • point-to-multipoint services such as point-to-multipoint ETREE services, as shown in Figure 2
  • the root node (root PE) device access side path fails. The fault cannot be transmitted to the leaf node (PE1/PE2/PE3) device to perform traffic switching again, which reduces the fault convergence capability and network stability. Summary of the invention
  • the main object of the present invention is to provide a path switching method and system based on point-to-multipoint service, which improves fault convergence capability in point-to-multipoint service and ensures network stability.
  • a path switching method based on a point-to-multipoint service includes: when a path of an access side between a server and a primary access device fails, the primary access device advertises the path of the access side to the server The fault occurs and all the leaf access devices are notified that the pseudowire connection path is faulty; the server switches the server-to-client traffic to the backup forwarding path for forwarding through the backup access device; the leaf access device or the client reselects the effective forwarding path. , Switch the client-to-server traffic to the backup forwarding path for forwarding.
  • the method further includes: establishing a point-to-multipoint service pseudowire connection between the primary access device and the leaf access device, and the backup access device and the leaf access device respectively; Operation, management & maintenance (OAM) detection deployment of the access side path between the server and the primary access device, and the server and the backup access device; respectively, the primary access device and the leaf access device, and the backup connection
  • OAM Operation, management & maintenance
  • the leaf access device or the client switches the client-to-server traffic to the backup forwarding path for forwarding, including:
  • the leaf access device If the leaf access device is configured with the PW path backup policy, the leaf access device recalculates the effective forwarding path through the pre-configured pseudowire PW path backup policy, and switches the client-to-server traffic to the backup forwarding path for forwarding.
  • the leaf access device If the leaf access device does not have a pseudowire PW path backup policy, but the leaf access device and the client support OAM detection, the leaf access device notifies the client of the pseudowire connection path failure through the OAM packet. Select the backup forwarding path or stop the traffic;
  • the leaf access device does not have a pseudowire PW path backup policy configured, and the first access Ethernet (EFM) or connection fault management (CFM) link detection protocol is not supported between the leaf access device and the client, the leaf access is performed.
  • the device converts the pseudowire connection path fault into a port fault. After the client knows that the port is faulty, it reselects the backup forwarding path or stops the traffic.
  • the method further includes: the primary access device notifying the server of the access side path failure recovery and notifying all the leaf access devices of the pseudowire connection path failure. Recovery; server-to-client traffic through the primary access device Switch back to the primary forwarding path for forwarding; the leaf access device or client reselects the effective forwarding path, and switches the client-to-server traffic back to the primary forwarding path for forwarding.
  • a path switching system based on a point-to-multipoint service comprising: a primary access device, a server, one or more leaf access devices, and a client corresponding to the leaf access device;
  • the primary access device is configured to notify the server that the access side path fails when the access side path between the server and the primary access device fails, and notify all leaf access devices under the point-to-multipoint service The pseudowire connection path has failed;
  • the server is configured to switch the server-to-client traffic to the backup forwarding path for forwarding after the access path fails.
  • the leaf access device or client is used to reselect the effective forwarding path and switch the client-to-server traffic to the backup forwarding path for forwarding.
  • the primary access device includes: an AC side OAM detection module, a service management module, a PW side OAM detection module, and a service forwarding module;
  • the AC side OAM detection module is configured to detect an access side path fault, and implement OAM ⁇ ⁇ text transmission and reception with the server through a protocol;
  • the protocol is an EFM or CFM link detection protocol;
  • a service management module used for a maintenance point Corresponding relationship between the access side path and the pseudowire connection path to the multipoint service;
  • the PW side OAM detection module is configured to detect a fault of a pseudowire connection path, and implement OAM packet transmission and reception between all leaf access devices in a point-to-multipoint service through a protocol; the protocol is a transport multi-protocol label switching (TMPLS) OAM) or bidirectional forwarding detection (BFD) link detection protocol; a service forwarding module, which is used to maintain forwarding path information and provide a forwarding path for traffic forwarding.
  • the service management module further includes: a virtual AC management module and a virtual PW management module; wherein, the virtual AC management module is configured to maintain an access side path state under the point-to-multipoint service; and includes one or more AC management modules.
  • Each of the AC management modules is configured to maintain the path status of each access side; when the virtual AC management module considers that the access side path of the point-to-multipoint service fails, Notify this fault to all PW management modules in the service;
  • the virtual PW management module is configured to maintain a pseudowire connection path state under the point-to-multipoint service; and includes one or more PW management modules, where each PW management module is used to maintain the status of each pseudowire connection path.
  • the leaf access device includes a PW path backup module, configured to configure a pseudowire PW path backup policy, and provide a backup forwarding path for forwarding traffic.
  • the leaf access device or the client switches the client-to-server traffic to the backup forwarding path for forwarding, including:
  • the leaf access device If the leaf access device is configured with the PW path backup policy, the leaf access device recalculates the effective forwarding path through the pre-configured pseudowire PW path backup policy, and switches the client-to-server traffic to the backup forwarding path for forwarding.
  • the leaf access device If the leaf access device does not have a pseudowire PW path backup policy, but the leaf access device and the client support OAM detection, the leaf access device notifies the client of the pseudowire connection path failure through the OAM packet. Select the backup forwarding path or stop the traffic;
  • the leaf access device If the leaf access device does not have a pseudowire PW path backup policy, and the EFM or CFM link detection protocol is not supported between the leaf access device and the client, the leaf access device converts the pseudowire connection path fault into a port fault. After the client knows that the port is faulty, reselect the backup forwarding path or stop the traffic.
  • the primary access device is further configured to notify the server of the access side path failure recovery when the access side path between the server and the primary access device recovers, and to all the leaf connections to the point-to-multipoint service. The device is notified that the pseudowire connection path is faulty.
  • the server is configured to switch the server-to-client traffic back to the primary forwarding path for forwarding after the path fault recovery of the access side is performed;
  • the leaf access device or client is used to reselect the effective forwarding path and switch the client-to-server traffic back to the primary forwarding path for forwarding.
  • the method and system for the path switching based on the point-to-multipoint service provided by the present invention when the access side path between the server and the primary access device fails, the primary access device notifies the server that the access side path occurs. The fault and all the leaf access devices are notified that the pseudowire connection path is faulty; the server switches the server-to-client traffic to the backup forwarding path for forwarding through the backup access device; the leaf access device or the client reselects the effective forwarding path. Switch client-to-server traffic to the backup forwarding path for forwarding.
  • FIG. 1 is a topology diagram of a prior art point-to-point service network structure
  • FIG. 2 is a topology diagram of a prior art point-to-multipoint service network structure
  • FIG. 3 is a topology diagram of a point-to-multipoint service network structure according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a path switching method based on a point-to-multipoint service according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a path switching system based on a point-to-multipoint service according to an embodiment of the present invention.
  • the basic idea of the present invention is: When the access side path between the server and the primary access device fails, the primary access device notifies the server that the access side path fails and notifies all leaf access devices of the pseudowire connection. The path is faulty.
  • the server switches the server-to-client traffic to the backup forwarding path through the backup access device.
  • the leaf access device or client reselects the effective forwarding path and switches the client-to-server traffic to the backup forwarding path. Forward.
  • the point-to-multipoint service is an ETREE (Ethernet Tree) service.
  • the scenario is a typical SC network model.
  • the client establishes communication with the server through the L2VPN network.
  • the root PE device includes the PE and the PE.
  • the PE is the primary access device and the PE is the backup.
  • the device is connected to the device.
  • the leaf PE device includes PE1, PE2, and PE3, and connects to client 1, client 2, and client 3.
  • the present invention firstly performs the deployment of the ETREE service, and specifically includes: establishing a point-to-multipoint service pseudowire connection between the root PE device and the leaf PE device, that is, the PE and PE1, PE2, and PE3 respectively establish points through PW1, PW2, and PW3.
  • Multi-point service pseudowire connection, and PE, and PE1, PE2, and PE3 respectively establish PX1, PW2, and PW3 to establish point-to-multipoint service pseudowire virtual connection; leaf PE devices respectively configure pseudowire PW path backup strategy, PW1, PW2, and PW3 are used as the backup forwarding path of PW1, PW2, and PW3.
  • the relationship between the active and standby forwarding paths between the client and the server is established.
  • the forwarding path is forwarded to ensure the normal communication of the service.
  • the service pseudowire is configured as the local non-interworking mode. That is, the root PE device and the leaf PE device communicate with each other. The leaf PE devices do not communicate with each other. The information between the clients is mutually shielded. At this point, the traffic between the root PE device and the leaf PE device is bidirectional, and the traffic between the leaf PE devices is unreachable, forming an ETREE service model.
  • the OAM detection of the access side path between the server and the root PE device is performed; specifically, the server and the root PE device respectively deploy EFM (Ethernet in the First Mile) or connection fault management ( Link detection protocol such as CFM, Connectivity Fault Management;
  • EFM Error Network in the First Mile
  • connection fault management Link detection protocol such as CFM, Connectivity Fault Management
  • the server and the root PE device respectively enable OAM packet sending and receiving.
  • the server and the root PE device can send and receive OAM packets to each other, detect the path fault on the access side between the server and the root PE device, and support fault notification.
  • the OAM detection is performed on the pseudowire connection path between the root PE device and the leaf PE device.
  • the root PE device and the leaf PE device respectively deploy TMPLS OAM or Bidirectional Forwarding Detection (BFD).
  • the path detection protocol is enabled.
  • the root PE device and the leaf PE device respectively enable OAM packet sending and receiving.
  • the root PE device and the leaf The PEs can send and receive 0 AM packets to each other to detect path faults between the root PEs and the leaf PEs in real time, and support fault notifications.
  • the point-to-multipoint service-based path switching method provided by the present invention includes the following steps:
  • Step 401 When the access side path fails, the primary access device notifies the server that the access side path is faulty, and the server switches the server-to-client traffic to the backup forwarding path for forwarding.
  • the server and the client communicate through the primary forwarding path, as shown by the solid line in FIG. 3; when the access side path (AC) between the server and the primary access device PE occurs
  • the PE sends an OAM packet to the server through the link detection protocol, such as EFM or CFM, to notify the access side that the path is faulty.
  • the server learns that the path on the access side is faulty, the server will be faulty.
  • the traffic to the client is switched to the backup forwarding path for forwarding. That is, the traffic is forwarded through the backup forwarding path AC'.
  • the traffic reaches the PE', it is forwarded to the client 1 through the backup forwarding paths PW1', PW2', and PW3' respectively. End 2, client 3.
  • the traffic from the server to the client is forwarded along the backup forwarding path shown by the dotted line in Figure 3. However, the traffic from the client to the server still occupies the real path and is forwarded. Normally notify the server.
  • the server and the PE are connected by real ports, and use Virtual Local Area Network (VLAN) to differentiate service traffic.
  • VLAN Virtual Local Area Network
  • the point-to-multipoint service is used.
  • the service access side is considered to be faulty.
  • Step 402 The primary access device notifies all leaf access devices under the point-to-multipoint service that the pseudowire connection path fails.
  • the PE deletes the corresponding path forwarding table, and the forwarding path of the deleted path forwarding table is: AC ⁇ PW1/PW2/PW3;
  • the PE sends a CSF (Client Service Fail) message to all leaf PEs in the service, that is, PE1, PE2, and PE3, to advertise the corresponding pseudowire connection path. malfunction.
  • CSF Client Service Fail
  • Step 403 The leaf access device recalculates the effective forwarding path through the pre-configured pseudowire PW path backup policy, and switches the client-to-server traffic to the backup forwarding path for forwarding.
  • the leaf PE device is the PE1.
  • the PE1 learns that the PW1 pseudowire connection path is faulty and enters the signal failure (SF, Signal Fail) state.
  • the pre-configured pseudowire PW is obtained.
  • the path backup policy obtains the backup forwarding path PW1' of PW1, and resets the path forwarding table.
  • the forwarding path of the reset path forwarding table is: PW1' ⁇ AC' 0 to this, the client-to-server traffic is along the dotted line of Figure 3.
  • the backup forwarding path shown is forwarded.
  • the backup and forwarding path processing process of the PE2 and the PE3 is the same as that of the PE1, and is not described here.
  • the PE when the path of the access side between the server and the PE is restored, after the PE detects the fault recovery, the PE may also switch back to the primary forwarding path for forwarding, and finally, the server and the client.
  • the two-way traffic is restored to the primary forwarding path.
  • the specific process includes: The PE advertises the access-side path fault recovery to the server, and the server switches the server-to-client traffic back to the primary forwarding path for forwarding; the PE goes to the point-to-multipoint service.
  • the leaf PE device advertises the pseudowire connection path failure recovery; the leaf device PE recalculates the effective forwarding path through the pre-configured pseudowire PW path backup policy, and switches the client-to-server traffic back to the primary forwarding path for forwarding.
  • the leaf PE device pre-configures the pseudowire PW path backup policy
  • the server-to-client traffic is switched to the backup path through the server, and then the client-to-server traffic is switched to the backup through the leaf PE device.
  • the path is forwarded, the fault convergence speed is accelerated, and the bidirectional traffic is quickly switched to ensure normal communication of the SC model.
  • step 403 if the leaf PE device is not configured with a pseudowire PW path backup policy Slightly, but the leaf PE device and the client support the link detection protocol such as EFM or CFM, the leaf PE device advertises the pseudowire connection path fault to the client through OAM ⁇ , and the client selects the backup forwarding path or stops. Traffic, at this time, the client-to-server traffic forwarding path is determined by the client; if the leaf PE device does not have a pseudowire PW path backup policy, and the leaf PE device and the client do not support link detection protocols such as EFM or CFM Then, the leaf PE device converts the pseudowire connection path fault into a port fault. After the client knows that the port is faulty, the client reselects the backup forwarding path or stops the traffic. At this time, the client-to-server traffic forwarding path is determined by the client.
  • the present invention further provides a path switching system based on point-to-multipoint service.
  • the system includes: a primary access device, a server, one or more leaf access devices, and a leaf The client corresponding to the access device;
  • the primary access device is configured to notify the server that the access side path fails when the access side path between the server and the primary access device fails, and notify all leaf access devices under the point-to-multipoint service The pseudowire connection path has failed;
  • the server is configured to switch the server-to-client traffic to the backup forwarding path for forwarding after the access path fails.
  • the leaf access device or client is used to reselect the effective forwarding path and switch the client-to-server traffic to the backup forwarding path for forwarding.
  • the primary access device includes: an AC side OAM detection module, a service management module, a PW side OAM detection module, and a service forwarding module;
  • the AC-side OAM detection module is configured to detect an access-side path fault, and implement the OAM packet transmission and reception with the server through the protocol;
  • the protocol may be a link detection protocol such as EFM or CFM;
  • a service management module configured to maintain a correspondence between the access side path and the pseudowire connection path in the point-to-multipoint service
  • the PW side OAM detection module is configured to detect a pseudowire connection path fault and implement the protocol.
  • the OAM packet is sent and received between all the leaf access devices in the point-to-multipoint service;
  • the protocol may be a link detection protocol such as TMPLS OAM or BFD;
  • the service forwarding module is configured to maintain the forwarding path information, and forward the traffic according to the path information in the service forwarding table in the service forwarding module.
  • the service management module further includes: a virtual AC management module and a virtual PW management module; wherein, the virtual AC management module is configured to maintain an access side path state under the point-to-multipoint service; and includes one or more AC management modules.
  • Each of the AC management modules is configured to maintain the path status of each access side. For the point-to-multipoint service, multiple access side paths may exist. When all the access side paths of the service fail. The virtual AC management module considers that the access side path of the service is faulty. When the virtual AC management module considers that the access side path of the point-to-multipoint service fails, the fault is notified to all PW management modules of the service.
  • the virtual PW management module is configured to maintain a pseudowire connection path state under the point-to-multipoint service; and includes one or more PW management modules, where each PW management module is used to maintain the status of each pseudowire connection path.
  • the leaf access device includes a PW path backup module, configured to configure a pseudowire PW path backup policy, and provide a backup forwarding path for forwarding traffic.
  • the leaf access device or the client switches the client-to-server traffic to the backup forwarding path for forwarding, including:
  • the leaf access device If the leaf access device is configured with the PW path backup policy, the leaf access device recalculates the effective forwarding path through the pre-configured pseudowire PW path backup policy, and switches the client-to-server traffic to the backup forwarding path for forwarding.
  • the leaf access device If the leaf access device does not have a pseudowire PW path backup policy, but the leaf access device and the client support OAM detection, the leaf access device notifies the client of the pseudowire connection path failure through the OAM packet. Select the backup forwarding path or stop the traffic;
  • the leaf access device If the leaf access device does not have a pseudowire PW path backup policy, and the leaf access device and the client If the link detection protocol such as EFM or CFM is not supported between the two ends, the leaf access device converts the pseudowire connection path fault into a port fault. After the client knows the fault of the port, the client reselects the backup forwarding path or stops the traffic.
  • the link detection protocol such as EFM or CFM
  • the primary access device is further configured to notify the server of the access side path failure recovery when the access side path between the server and the primary access device recovers, and to all the leaf connections to the point-to-multipoint service. The device is notified that the pseudowire connection path is faulty.
  • the server is configured to switch the server-to-client traffic back to the primary forwarding path for forwarding after the path fault recovery of the access side is performed;
  • the leaf access device or client is used to reselect the effective forwarding path and switch the client-to-server traffic back to the primary forwarding path for forwarding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

一种基于点到多点业务的路径切换方法及系统 技术领域
本发明涉及通信网络的故障通告技术, 特别是一种基于点到多点业务 的路径切换方法及系统。 背景技术
为了满足城域网业务转型和三网融合的趋势, 网络运营商倾向于釆用 高效和低成本的分组传送网络来实现多业务承载, 提供灵活的网络服务, 提高网络资源利用率, 降低网络部署复杂度, 增强网络服务灵活性, 为其 带来更多的经济效益。
二层虚拟专用网 (L2VPN, Layer 2 Virtual Private Network )是依靠 Internet服务提供商和网络服务提供商在公共网络中建立专用数据通信网络 的技术, 可分为虚拟专用局域网业务( VPLS, Virtual Private LAN Service ) 和虚拟专线业务(VPWS, Virtual Private Wire Service ) 两种业务模型, 前 者基于以太业务转发, 支持点到多点的网络部署; 后者是虚拟专线业务, 仅支持点到点的网络部署。
由于电信级以太网的高可靠性需求, 运营商对网络出现故障时的业务 收敛速度非常重视, 这就需要在网络部署时更注重故障响应及保护倒换能 力 ,互联网工程任务组( IETF )PWE3工作组提出的伪线故障映射( PW OAM Message Mapping )和伪线冗余 ( PW redundancy )技术正是为 J¾考虑的。
IETF 标准文档 " draft-ietf-pwe3-oam-msg-map-12 " 中的 PW OAM Message Mapping技术是一种伪线故障通告技术, 在点到点仿真业务时, 支 持接入路径(AC )与伪线(PW )的故障映射, 即 AC发生故障时, 实现与 PW的操作、 管理 &维护 (OAM, Operation Administration & Maintenance ) 的联动, 通过边缘到边缘的仿真技术(PWE3 , Pseudo-Wire Emulation Edge to Edge )协议报文将故障通告到远端, 远端能够快速获知此业务路径已出 现故障, 以进行相应的后续处理。
IETF标准文档 "draft-ietf-pwe3-redundancy-01" 中的 PW redundancy是 一种伪线冗余保护技术。 为了适应电信级以太网的高可靠性需求, 网络部 署时需考虑实现路径备份机制, 在主路径发生故障时, 将用户流量快速地 切换到备份路径, 尽可能地减少流量丟失; 主路径、 备份路径关系可以通 过协议信令协商生成, 也可以通过用户强制指定生成。
PW OAM Message Mapping技术与 PW redundancy技术是相互关联的, 前者主要负责故障通告, 后者主要负责响应通告来的故障信息, 决策当前 有效路径, 指导流量转发, 两者相辅相成, 共同完成故障的快速收敛。
现有技术中, PW OAM Message Mapping技术与 PW redundancy技术主 要针对点到点仿真业务场景, 如图 1 所示, 在接入侧路径故障时, 能够将 故障传递到远端设备, 提供较强的故障检测或故障通告能力; 但在点到多 点业务中, 如点到多点 ETREE业务, 如图 2所示, 就无法支持该技术, 根 节点 (根 PE )设备接入侧路径发生故障时, 无法将故障传递到叶节点 ( PE1/PE2/PE3 )设备重新进行流量切换, 降低了故障收敛能力和网络的稳 定性。 发明内容
有鉴于此, 本发明的主要目的在于提供一种基于点到多点业务的路径 切换方法及系统, 在点到多点业务中提高故障收敛能力, 保证网络的稳定 性。
为解决上述技术问题, 本发明的技术方案是这样实现的:
一种基于点到多点业务的路径切换方法, 包括: 当服务器与主接入设 备之间的接入侧路径发生故障时, 主接入设备向服务器通告接入侧路径发 生故障并向所有的叶接入设备通告伪线连接路径发生故障; 服务器通过备 份接入设备将服务器到客户端的流量切换至备份转发路径进行转发; 叶接 入设备或客户端重新选择有效转发路径, 将客户端到服务器的流量切换至 备份转发路径进行转发。
所述接入侧路径发生故障之前, 该方法还包括: 分别在主接入设备与 叶接入设备、 以及备份接入设备与叶接入设备之间建立点到多点业务伪线 连接; 分别对服务器与主接入设备、 以及服务器与备份接入设备之间的接 入侧路径进行操作、 管理 &维护 (OAM )检测的部署; 分别对主接入设备 与叶接入设备、 以及备份接入设备与叶接入设备之间的伪线连接路径进行 0 AM检测的部署。
所述叶接入设备或客户端将客户端到服务器的流量切换至备份转发路 径进行转发, 包括:
若叶接入设备配置伪线 PW路径备份策略, 则叶接入设备通过预先配 置的伪线 PW路径备份策略重新计算有效转发路径, 将客户端到服务器的 流量切换至备份转发路径进行转发;
若叶接入设备没有配置伪线 PW路径备份策略, 但叶接入设备与客户 端之间支持 OAM检测,则叶接入设备通过 OAM报文将伪线连接路径故障 通告给客户端, 由客户端选择备份转发路径或停止流量;
若叶接入设备没有配置伪线 PW路径备份策略, 且叶接入设备与客户 端之间不支持第一英里以太网 (EFM )或连接故障管理(CFM )链路检测 协议, 则叶接入设备将伪线连接路径故障转化为端口故障, 客户端得知此 端口故障后, 重新选择备份转发路径或停止流量。
当服务器与主接入设备之间的接入侧路径故障恢复时, 该方法还包括: 主接入设备向服务器通告接入侧路径故障恢复并向所有的叶接入设备通告 伪线连接路径故障恢复; 服务器通过主接入设备将服务器到客户端的流量 切换回主转发路径进行转发; 叶接入设备或客户端重新选择有效转发路径, 将客户端到服务器的流量切换回主转发路径进行转发。
一种基于点到多点业务的路径切换系统, 包括: 主接入设备、 服务器、 一个以上叶接入设备、 以及与叶接入设备对应的客户端; 其中,
主接入设备, 用于当服务器与主接入设备之间的接入侧路径发生故障 时, 向服务器通告接入侧路径发生故障, 并向点到多点业务下所有的叶接 入设备通告伪线连接路径发生故障;
服务器, 用于得知接入侧路径发生故障后, 将服务器到客户端的流量 切换至备份转发路径进行转发;
叶接入设备或客户端, 用于重新选择有效转发路径, 将客户端到服务 器的流量切换至备份转发路径进行转发。
所述主接入设备中包括: AC侧 OAM检测模块、 业务管理模块、 PW 侧 OAM检测模块、 及业务转发模块; 其中,
AC侧 OAM检测模块, 用于检测接入侧路径故障, 并通过协议实现与 服务器之间的 OAM ^艮文收发; 所述协议为 EFM或 CFM链路检测协议; 业务管理模块, 用于维护点到多点业务下接入侧路径与伪线连接路径 之间的对应关系;
PW侧 OAM检测模块, 用于检测伪线连接路径故障, 并通过协议实现 与点到多点业务下所有叶接入设备之间的 OAM报文收发;所述协议为传送 多协议标签交换(TMPLS OAM )或双向转发检测 (BFD )链路检测协议; 业务转发模块, 用于维护转发路径信息, 为流量的转发提供转发路径。 所述业务管理模块,还包括:虚 AC管理模块、虚 PW管理模块; 其中, 虚 AC管理模块,用于维护点到多点业务下的接入侧路径状态; 包括一 个或一个以上 AC管理模块, 其中,每个 AC管理模块用来维护每条接入侧 路径状态; 当虚 AC管理模块认为点到多点业务的接入侧路径发生故障时, 将此故障通告给该业务下所有的 PW管理模块;
虚 PW管理模块, 用于维护点到多点业务下的伪线连接路径状态; 包 括一个或一个以上 PW管理模块, 其中, 每个 PW管理模块用来维护每条 伪线连接路径状态。
所述叶接入设备包括 PW路径备份模块, 用于配置伪线 PW路径备份 策略, 为流量的转发提供备份转发路径。
所述叶接入设备或客户端将客户端到服务器的流量切换至备份转发路 径进行转发, 包括:
若叶接入设备配置伪线 PW路径备份策略, 则叶接入设备通过预先配 置的伪线 PW路径备份策略重新计算有效转发路径, 将客户端到服务器的 流量切换至备份转发路径进行转发;
若叶接入设备没有配置伪线 PW路径备份策略, 但叶接入设备与客户 端之间支持 OAM检测,则叶接入设备通过 OAM报文将伪线连接路径故障 通告给客户端, 由客户端选择备份转发路径或停止流量;
若叶接入设备没有配置伪线 PW路径备份策略, 且叶接入设备与客户 端之间不支持 EFM或 CFM链路检测协议 , 则叶接入设备将伪线连接路径 故障转化为端口故障, 客户端得知此端口故障后, 重新选择备份转发路径 或停止流量。
所述主接入设备, 还用于当服务器与主接入设备之间的接入侧路径故 障恢复时, 向服务器通告接入侧路径故障恢复, 并向点到多点业务下所有 的叶接入设备通告伪线连接路径故障恢复;
服务器, 用于得知接入侧路径故障恢复后, 将服务器到客户端的流量 切换回主转发路径进行转发;
叶接入设备或客户端, 用于重新选择有效转发路径, 将客户端到服务 器的流量切换回主转发路径进行转发。 本发明所提供的一种基于点到多点业务的路径切换方法及系统, 当服 务器与主接入设备之间的接入侧路径发生故障时, 主接入设备向服务器通 告接入侧路径发生故障并向所有的叶接入设备通告伪线连接路径发生故 障; 服务器通过备份接入设备将服务器到客户端的流量切换至备份转发路 径进行转发; 叶接入设备或客户端重新选择有效转发路径, 将客户端到服 务器的流量切换至备份转发路径进行转发。
釆用本方案, 当点到多点业务接入侧发生故障时, 能够通过 OAM故障 通告机制将故障传递给叶节点设备, 并通过 PW redundancy保护技术迅速 进行流量选择, 实现了双向流量快速切换, 提高了故障收敛能力, 保证了 网络的稳定性。 附图说明
图 1为现有技术点到点业务网络结构拓朴图;
图 2为现有技术点到多点业务网络结构拓朴图;
图 3为本发明实施例中点到多点业务网络结构拓朴图;
图 4为本发明实施例中基于点到多点业务的路径切换方法流程图; 图 5为本发明实施例中基于点到多点业务的路径切换系统示意图。 具体实施方式
本发明的基本思想是: 当服务器与主接入设备之间的接入侧路径发生 故障时, 主接入设备向服务器通告接入侧路径发生故障并向所有的叶接入 设备通告伪线连接路径发生故障; 服务器通过备份接入设备将服务器到客 户端的流量切换至备份转发路径进行转发; 叶接入设备或客户端重新选择 有效转发路径, 将客户端到服务器的流量切换至备份转发路径进行转发。
下面通过具体实施例对本发明所述的方案进行详细描述。
本实施例中, 点到多点业务为以太树型(ETREE, Ethernet Tree )业务。 该场景是一种典型的 S-C网络模型, 如图 3所示, 客户端通过 L2VPN网络 与服务器建立通信, 根 PE设备包括 PE和 PE,, 其中, PE为主接入设备, PE,为备份接入设备;叶 PE设备包括 PE1、 PE2和 PE3 ,分别连接客户端 1、 客户端 2、 客户端 3。
本发明首先进行 ETREE业务的部署, 具体包括: 根 PE设备与叶 PE 设备之间建立点到多点业务伪线连接, 即: PE与 PE1、 PE2、 PE3分别通 过 PW1、 PW2、 PW3建立点到多点业务伪线连接, 以及 PE,与 PE1、 PE2、 PE3 分别通过 PW1,、 PW2,、 PW3,建立点到多点业务伪线虚连接; 叶 PE 设备分别配置伪线 PW路径备份策略, 即将 PW1,、 PW2,、 PW3,分别做为 PW1、 PW2、 PW3的备份转发路径, 至此, 客户端与服务器之间的主备转 发路径关系建立, 当主转发路径出现故障时, 能够将流量切换到备份转发 路径进行转发, 以保证业务的正常通信; 业务伪线配置为本地不互通方式, 即根 PE设备与叶 PE设备之间互通, 叶 PE设备之间不互通, 客户端之间 信息相互屏蔽。 至此, 根 PE设备与叶 PE设备之间流量双向互通, 叶 PE 设备之间的流量不通, 形成 ETREE业务模型。
其次,对服务器与根 PE设备之间的接入侧路径进行 OAM检测的部署; 具体包括:服务器和根 PE设备分别部署第一英里以太网(EFM, Ethernet in the First Mile )或连接故障管理(CFM, Connectivity Fault Management )等 链路检测协议; 服务器和根 PE设备分别开启 OAM报文收发功能。 至此, 服务器与根 PE设备之间能够进行 OAM报文相互收发, 实时检测服务器与 根 PE设备之间的接入侧路径故障, 并相互支持故障通告。
然后 , 对根 PE设备与叶 PE设备之间的伪线连接路径进行 OAM检测 的部署; 具体包括: 根 PE设备和叶 PE设备分别部署 TMPLS OAM或双向 转发检测 (BFD, Bidirectional Forwarding Detection )等链路检测协议; 根 PE设备和叶 PE设备分别开启 OAM报文收发功能。 至此, 根 PE设备与叶 PE设备之间能够进行 0 AM报文相互收发, 实时检测根 PE设备与叶 PE设 备之间的路径故障, 并相互支持故障通告。
依照上述部署, 本发明提供的基于点到多点业务的路径切换方法, 如 图 4所示, 包括以下步骤:
步骤 401 : 当接入侧路径发生故障时, 主接入设备向服务器通告接入侧 路径发生故障, 服务器将服务器到客户端的流量切换至备份转发路径进行 转发;
本步骤中, 正常情况下, 服务器与客户端之间通过主转发路径进行通 信, 如图 3中实线所示路径; 当服务器与主接入设备 PE之间的接入侧路径 ( AC )发生故障时, PE检测到接入侧路径故障后, 通过 EFM或 CFM等 链路检测协议向服务器发送 OAM报文,通告接入侧路径发生故障;服务器 得知接入侧路径发生故障后, 将服务器到客户端的流量切换至备份转发路 径进行转发,即流量通过备份转发路径 AC'进行转发,当流量到达 PE'之后, 分别通过备份转发路径 PW1'、 PW2'、 PW3'转发至客户端 1、 客户端 2、 客 户端 3。 至此,从服务器到客户端的流量沿图 3中虚线所示备份转发路径进 行转发, 但此时客户端到服务器的流量仍占用实线路径进行转发, 由于 AC 发生故障, 流量会终结在 PE, 无法正常通知给服务器。
对于点到多点业务, 可能存在多条 AC, 例如: 服务器和 PE釆用实端 口相连, 并使用虚拟局域网 (VLAN, Virtual Local Area Network ) 来区分 业务流量, 此时, 当点到多点业务下所有 AC发生故障时, 才认为该业务接 入侧发生故障。
步骤 402:主接入设备向点到多点业务下所有叶接入设备通告伪线连接 路径发生故障;
本步骤中, 当服务器与 PE之间的接入侧路径发生故障时, PE删除对 应的路径转发表, 所述删除的路径转发表的转发路径为 : AC→PW1/PW2/PW3; PE通过 TMPLS OAM协议, 向该业务下所有的叶 PE设备即 PE1、 PE2、 PE3发送客户信号失效 ( CSF, Client Service Fail ) 报文, 通告相应的伪线连接路径发生故障。
步骤 403:叶接入设备通过预先配置的伪线 PW路径备份策略重新计算 有效转发路径, 将客户端到服务器的流量切换至备份转发路径进行转发。
本步骤中, 以叶 PE设备为 PE1为例, 当 PE1接收到 CSF报文后, 得 知 PW1伪线连接路径发生故障, 进入信号失效(SF, Signal Fail )状态; 通过预先配置的伪线 PW路径备份策略获取 PW1的备份转发路径 PW1' , 并重新设置路径转发表, 所述重新设置的路径转发表的转发路径为: PW1'→AC' 0 至此, 客户端到服务器的流量沿图 3虚线所示备份转发路径 进行转发。 这里, PE2、 PE3的备份转发路径处理过程同 PE1 , 在此不做赘 述。
本实施例中, 当服务器与 PE之间的接入侧路径故障恢复时, PE检测 到此故障恢复后, 同样可以釆用上述步骤将流量重新切换回主转发路径进 行转发, 最终, 服务器和客户端双向流量均恢复到主转发路径; 具体过程 包括: PE向服务器通告接入侧路径故障恢复, 服务器将服务器到客户端的 流量切换回主转发路径进行转发; PE向点到多点业务下所有的叶 PE设备 通告伪线连接路径故障恢复;叶设备 PE通过预先配置的伪线 PW路径备份 策略重新计算有效转发路径, 将客户端到服务器的流量切换回主转发路径 进行转发。
综上所述, 当叶 PE设备预先配置伪线 PW路径备份策略时, 先通过服 务器将服务器到客户端的流量切换至备份路径进行转发,再通过叶 PE设备 将客户端到服务器的流量切换至备份路径进行转发, 加快了故障收敛速度 , 实现了双向流量快速切换, 保证 S-C模型的正常通信。
本发明中, 在步骤 403中, 若叶 PE设备没有配置伪线 PW路径备份策 略, 但叶 PE设备与客户端之间支持 EFM或 CFM等链路检测协议, 则叶 PE设备通过 OAM ^艮文将伪线连接路径故障通告给客户端, 由客户端选择 备份转发路径或停止流量, 此时, 客户端到服务器的流量转发路径由客户 端决策; 若叶 PE设备没有配置伪线 PW路径备份策略, 且叶 PE设备与客 户端之间不支持 EFM或 CFM等链路检测协议,则叶 PE设备将伪线连接路 径故障转化为端口故障, 客户端得知此端口故障后, 重新选择备份转发路 径或停止流量, 此时, 客户端到服务器的流量转发路径由客户端决策。
为实现上述方法, 本发明还提供了一种基于点到多点业务的路径切换 系统, 如图 5 所示, 该系统包括: 主接入设备、 服务器、 一个以上叶接入 设备、 以及与叶接入设备对应的客户端; 其中,
主接入设备, 用于当服务器与主接入设备之间的接入侧路径发生故障 时, 向服务器通告接入侧路径发生故障, 并向点到多点业务下所有的叶接 入设备通告伪线连接路径发生故障;
服务器, 用于得知接入侧路径发生故障后, 将服务器到客户端的流量 切换至备份转发路径进行转发;
叶接入设备或客户端, 用于重新选择有效转发路径, 将客户端到服务 器的流量切换至备份转发路径进行转发。
所述主接入设备中包括: AC侧 OAM检测模块、 业务管理模块、 PW 侧 OAM检测模块、 及业务转发模块; 其中,
AC侧 OAM检测模块, 用于检测接入侧路径故障, 并通过协议实现与 服务器之间的 OAM报文收发; 所述协议可以为 EFM或 CFM等链路检测 协议;
业务管理模块, 用于维护点到多点业务下接入侧路径与伪线连接路径 之间的对应关系;
PW侧 OAM检测模块, 用于检测伪线连接路径故障, 并通过协议实现 与点到多点业务下所有叶接入设备之间的 OAM报文收发;所述协议可以为 TMPLS OAM或 BFD等链路检测协议;
业务转发模块, 用于维护转发路径信息; 按照业务转发模块中的业务 转发表中的路径信息进行流量的转发。
所述业务管理模块,还包括:虚 AC管理模块、虚 PW管理模块; 其中, 虚 AC管理模块,用于维护点到多点业务下的接入侧路径状态; 包括一 个或一个以上 AC管理模块, 其中,每个 AC管理模块用来维护每条接入侧 路径状态; 对于点到多点业务, 可能存在多条接入侧路径, 当该业务下所 有的接入侧路径都发生故障时,虚 AC管理模块才认为该业务的接入侧路径 发生故障; 当虚 AC管理模块认为点到多点业务的接入侧路径发生故障时, 将此故障通告给该业务下所有的 PW管理模块;
虚 PW管理模块, 用于维护点到多点业务下的伪线连接路径状态; 包 括一个或一个以上 PW管理模块, 其中, 每个 PW管理模块用来维护每条 伪线连接路径状态。
所述叶接入设备包括 PW路径备份模块, 用于配置伪线 PW路径备份 策略, 为流量的转发提供备份转发路径。
所述叶接入设备或客户端将客户端到服务器的流量切换至备份转发路 径进行转发, 包括:
若叶接入设备配置伪线 PW路径备份策略, 则叶接入设备通过预先配 置的伪线 PW路径备份策略重新计算有效转发路径, 将客户端到服务器的 流量切换至备份转发路径进行转发;
若叶接入设备没有配置伪线 PW路径备份策略, 但叶接入设备与客户 端之间支持 OAM检测,则叶接入设备通过 OAM报文将伪线连接路径故障 通告给客户端, 由客户端选择备份转发路径或停止流量;
若叶接入设备没有配置伪线 PW路径备份策略, 且叶接入设备与客户 端之间不支持 EFM或 CFM等链路检测协议, 则叶接入设备将伪线连接路 径故障转化为端口故障, 客户端得知此端口故障后, 重新选择备份转发路 径或停止流量。
所述主接入设备, 还用于当服务器与主接入设备之间的接入侧路径故 障恢复时, 向服务器通告接入侧路径故障恢复, 并向点到多点业务下所有 的叶接入设备通告伪线连接路径故障恢复;
服务器, 用于得知接入侧路径故障恢复后, 将服务器到客户端的流量 切换回主转发路径进行转发;
叶接入设备或客户端, 用于重新选择有效转发路径, 将客户端到服务 器的流量切换回主转发路径进行转发。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进 等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种基于点到多点业务的路径切换方法, 其特征在于, 包括: 当服务器与主接入设备之间的接入侧路径发生故障时, 主接入设备向 服务器通告接入侧路径发生故障并向所有的叶接入设备通告伪线连接路径 发生故障;
服务器通过备份接入设备将服务器到客户端的流量切换至备份转发路 径进行转发;
叶接入设备或客户端重新选择有效转发路径, 将客户端到服务器的流 量切换至备份转发路径进行转发。
2、 根据权利要求 1所述的方法, 其特征在于, 所述接入侧路径发生故 障之前, 该方法还包括:
分别在主接入设备与叶接入设备、 以及备份接入设备与叶接入设备之 间建立点到多点业务伪线连接;
分别对服务器与主接入设备、 以及服务器与备份接入设备之间的接入 侧路径进行操作、 管理 &维护 (OAM )检测的部署;
分别对主接入设备与叶接入设备、 以及备份接入设备与叶接入设备之 间的伪线连接路径进行 OAM检测的部署。
3、 根据权利要求 2所述的方法, 其特征在于, 所述叶接入设备或客户 端将客户端到服务器的流量切换至备份转发路径进行转发, 包括:
若叶接入设备配置伪线 PW路径备份策略, 则叶接入设备通过预先配 置的伪线 PW路径备份策略重新计算有效转发路径, 将客户端到服务器的 流量切换至备份转发路径进行转发;
若叶接入设备没有配置伪线 PW路径备份策略, 但叶接入设备与客户 端之间支持 OAM检测,则叶接入设备通过 OAM报文将伪线连接路径故障 通告给客户端, 由客户端选择备份转发路径或停止流量; 若叶接入设备没有配置伪线 PW路径备份策略, 且叶接入设备与客户 端之间不支持第一英里以太网 (EFM )或连接故障管理(CFM )链路检测 协议, 则叶接入设备将伪线连接路径故障转化为端口故障, 客户端得知此 端口故障后, 重新选择备份转发路径或停止流量。
4、 根据权利要求 1至 3任一项所述的方法, 其特征在于, 当服务器与 主接入设备之间的接入侧路径故障恢复时, 该方法还包括:
主接入设备向服务器通告接入侧路径故障恢复并向所有的叶接入设备 通告伪线连接路径故障恢复;
服务器通过主接入设备将服务器到客户端的流量切换回主转发路径进 行转发;
叶接入设备或客户端重新选择有效转发路径, 将客户端到服务器的流 量切换回主转发路径进行转发。
5、 一种基于点到多点业务的路径切换系统, 其特征在于, 包括: 主接 入设备、 服务器、 一个以上叶接入设备、 以及与叶接入设备对应的客户端; 其中,
主接入设备, 用于当服务器与主接入设备之间的接入侧路径发生故障 时, 向服务器通告接入侧路径发生故障, 并向点到多点业务下所有的叶接 入设备通告伪线连接路径发生故障;
服务器, 用于得知接入侧路径发生故障后, 将服务器到客户端的流量 切换至备份转发路径进行转发;
叶接入设备或客户端, 用于重新选择有效转发路径, 将客户端到服务 器的流量切换至备份转发路径进行转发。
6、根据权利要求 5所述的系统, 其特征在于, 所述主接入设备中包括: AC侧 OAM检测模块、 业务管理模块、 PW侧 OAM检测模块、 及业务转 发模块; 其中, AC侧 OAM检测模块, 用于检测接入侧路径故障, 并通过协议实现与 服务器之间的 ΟΑΜ ^艮文收发; 所述协议为 EFM或 CFM链路检测协议; 业务管理模块, 用于维护点到多点业务下接入侧路径与伪线连接路径 之间的对应关系;
PW侧 ΟΑΜ检测模块, 用于检测伪线连接路径故障, 并通过协议实现 与点到多点业务下所有叶接入设备之间的 ΟΑΜ报文收发;所述协议为传送 多协议标签交换(TMPLS OAM )或双向转发检测 (BFD )链路检测协议; 业务转发模块, 用于维护转发路径信息, 为流量的转发提供转发路径。
7、 根据权利要求 6所述的系统, 其特征在于, 所述业务管理模块, 还 包括: 虚 AC管理模块、 虚 PW管理模块; 其中,
虚 AC管理模块,用于维护点到多点业务下的接入侧路径状态; 包括一 个或一个以上 AC管理模块, 其中,每个 AC管理模块用来维护每条接入侧 路径状态; 当虚 AC管理模块认为点到多点业务的接入侧路径发生故障时, 将此故障通告给该业务下所有的 PW管理模块;
虚 PW管理模块, 用于维护点到多点业务下的伪线连接路径状态; 包 括一个或一个以上 PW管理模块, 其中, 每个 PW管理模块用来维护每条 伪线连接路径状态。
8、根据权利要求 5所述的系统,其特征在于,所述叶接入设备包括 PW 路径备份模块, 用于配置伪线 PW路径备份策略, 为流量的转发提供备份 转发路径。
9、 根据权利要求 7或 8所述的系统, 其特征在于, 所述叶接入设备或 客户端将客户端到服务器的流量切换至备份转发路径进行转发, 包括: 若叶接入设备配置伪线 PW路径备份策略, 则叶接入设备通过预先配 置的伪线 PW路径备份策略重新计算有效转发路径, 将客户端到服务器的 流量切换至备份转发路径进行转发; 若叶接入设备没有配置伪线 PW路径备份策略, 但叶接入设备与客户 端之间支持 OAM检测,则叶接入设备通过 OAM报文将伪线连接路径故障 通告给客户端, 由客户端选择备份转发路径或停止流量;
若叶接入设备没有配置伪线 PW路径备份策略, 且叶接入设备与客户 端之间不支持 EFM或 CFM链路检测协议 , 则叶接入设备将伪线连接路径 故障转化为端口故障, 客户端得知此端口故障后, 重新选择备份转发路径 或停止流量。
10、 根据权利要求 5至 8任一项所述的系统, 其特征在于,
所述主接入设备, 还用于当服务器与主接入设备之间的接入侧路径故 障恢复时, 向服务器通告接入侧路径故障恢复, 并向点到多点业务下所有 的叶接入设备通告伪线连接路径故障恢复;
服务器, 用于得知接入侧路径故障恢复后, 将服务器到客户端的流量 切换回主转发路径进行转发;
叶接入设备或客户端, 用于重新选择有效转发路径, 将客户端到服务 器的流量切换回主转发路径进行转发。
PCT/CN2011/074603 2010-08-23 2011-05-24 一种基于点到多点业务的路径切换方法及系统 WO2012024952A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010262018.0A CN101924654B (zh) 2010-08-23 2010-08-23 一种基于点到多点业务的路径切换方法及系统
CN201010262018.0 2010-08-23

Publications (1)

Publication Number Publication Date
WO2012024952A1 true WO2012024952A1 (zh) 2012-03-01

Family

ID=43339317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074603 WO2012024952A1 (zh) 2010-08-23 2011-05-24 一种基于点到多点业务的路径切换方法及系统

Country Status (2)

Country Link
CN (1) CN101924654B (zh)
WO (1) WO2012024952A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924654B (zh) * 2010-08-23 2015-04-01 中兴通讯股份有限公司 一种基于点到多点业务的路径切换方法及系统
CN102098231B (zh) 2011-03-18 2013-09-11 杭州华三通信技术有限公司 在h-vpls中实现流量快速切换的方法及设备
CN102694718B (zh) 2011-03-25 2016-03-30 华为技术有限公司 一种vpls快速重路由方法和设备
CN102325042A (zh) * 2011-07-19 2012-01-18 中兴通讯股份有限公司 Pe及同源同宿pw的保护方法
CN102833774B (zh) * 2012-08-29 2015-12-09 华为技术有限公司 一种ip无线接入网系统及其主用伪线故障的处理方法
CN104253745B (zh) * 2013-06-29 2018-05-29 华为技术有限公司 一种路由撤销方法和网络设备
CN106330700A (zh) * 2015-06-15 2017-01-11 中兴通讯股份有限公司 数据通讯网络主备接入网元保护的方法及装置
CN107547369B (zh) * 2017-08-14 2019-12-06 新华三技术有限公司 流量切换方法及装置
CN109428865B (zh) * 2017-08-30 2021-12-07 中兴通讯股份有限公司 一种切换标签交换路径更新权限的方法及相关设备
CN113037622B (zh) * 2019-12-24 2024-01-05 华为数字技术(苏州)有限公司 一种防止bfd震荡的系统及方法
CN113891373B (zh) * 2021-10-11 2024-03-12 中盈优创资讯科技有限公司 一种基站质量劣化自愈方法及装置
CN115514695A (zh) * 2022-09-16 2022-12-23 奥特酷智能科技(南京)有限公司 一种车载以太网拥塞自适应数据转发方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080123524A1 (en) * 2006-11-27 2008-05-29 Jean-Philippe Vasseur Failure protection for P2MP tunnel head-end node
CN101335695A (zh) * 2007-06-27 2008-12-31 华为技术有限公司 点到多点标签交换路径的头节点保护方法、装置和设备
CN101453385A (zh) * 2007-11-30 2009-06-10 华为技术有限公司 一种故障通告的方法及设备
CN101924654A (zh) * 2010-08-23 2010-12-22 中兴通讯股份有限公司 一种基于点到多点业务的路径切换方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080123524A1 (en) * 2006-11-27 2008-05-29 Jean-Philippe Vasseur Failure protection for P2MP tunnel head-end node
CN101335695A (zh) * 2007-06-27 2008-12-31 华为技术有限公司 点到多点标签交换路径的头节点保护方法、装置和设备
CN101453385A (zh) * 2007-11-30 2009-06-10 华为技术有限公司 一种故障通告的方法及设备
CN101924654A (zh) * 2010-08-23 2010-12-22 中兴通讯股份有限公司 一种基于点到多点业务的路径切换方法及系统

Also Published As

Publication number Publication date
CN101924654B (zh) 2015-04-01
CN101924654A (zh) 2010-12-22

Similar Documents

Publication Publication Date Title
WO2012024952A1 (zh) 一种基于点到多点业务的路径切换方法及系统
EP3367619B1 (en) Synchronizing multicast state between multi-homed routers in an ethernet virtual private network
JP5484590B2 (ja) 擬似ワイヤに基づいてサービストラヒックを処理するための方法、デバイスおよびシステム
US20130272114A1 (en) Pseudo wire switching method and device
JP4542045B2 (ja) データ通信装置およびその方法
US9059902B2 (en) Procedures, apparatuses, systems, and computer-readable media for operating primary and backup network elements
EP2951959B1 (en) Using ethernet ring protection switching with computer networks
CN101330424B (zh) 一种虚拟专用网服务故障处理的方法、系统及装置
US20100023632A1 (en) Method and system for negotiating the bidirectional forwarding detection session discriminator of pseudo wire
WO2012028029A1 (zh) 一种切换方法及系统
CN102282805B (zh) 一种业务保护方法及接入设备
US8199637B2 (en) VPLS remote failure indication
WO2012075831A1 (zh) 一种实现组播保护的方法及系统
WO2009092241A1 (zh) 基于环路的报文传送方法、网络系统和节点设备
CN109327318B (zh) 一种sdn管理网络架构和建立sdn管理网络的方法
WO2016034127A1 (zh) 一种实现双节点互联伪线的系统及方法
WO2012171378A1 (zh) 解决vpls接入l3故障切换导致断流的方法及路由器
CN101719834B (zh) 一种虚拟专用组播业务保护的实现方法及系统
CN101345686B (zh) 虚拟专用局域网服务环路的处理方法、装置和系统
EP2634978B1 (en) Message forwarding method and network device
WO2012092779A1 (zh) 一种pbbh-vpls网络中的业务保护方法
WO2011113395A2 (zh) 一种负载分担方法和装置
US20120269056A1 (en) Method, device, and system for protecting semi-ring network
WO2011011934A1 (zh) 一种以太网隧道分段保护方法和装置
WO2014044088A1 (zh) L2tp网络的保护方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11819327

Country of ref document: EP

Kind code of ref document: A1