WO2012075831A1 - 一种实现组播保护的方法及系统 - Google Patents

一种实现组播保护的方法及系统 Download PDF

Info

Publication number
WO2012075831A1
WO2012075831A1 PCT/CN2011/078606 CN2011078606W WO2012075831A1 WO 2012075831 A1 WO2012075831 A1 WO 2012075831A1 CN 2011078606 W CN2011078606 W CN 2011078606W WO 2012075831 A1 WO2012075831 A1 WO 2012075831A1
Authority
WO
WIPO (PCT)
Prior art keywords
multicast
downlink
link
mpls
standby
Prior art date
Application number
PCT/CN2011/078606
Other languages
English (en)
French (fr)
Inventor
邓涛鸿
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012075831A1 publication Critical patent/WO2012075831A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0663Performing the actions predefined by failover planning, e.g. switching to standby network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/16Multipoint routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/68Pseudowire emulation, e.g. IETF WG PWE3

Definitions

  • the present invention relates to a T-MPLS (Transmission-Multiprotocol Label Switching) network, and in particular to a method and system for implementing multicast protection.
  • T-MPLS Transmission-Multiprotocol Label Switching
  • T-MPLS is a connection-oriented packet transmission technology based on Multi-Protocol Label Switching (MPLS) defined by the International Telecommunication Union Telecommunication Standardization Sector (ITU-T).
  • MPLS Multi-Protocol Label Switching
  • ITU-T International Telecommunication Union Telecommunication Standardization Sector
  • T-MPLS The data forwarding plane is a subset of MPLS whose data is forwarded based on T-MPLS labels.
  • T-MPLS is the application of MPLS in the transport network. It simplifies some complex functions of the data forwarding plane of MPLS, and adds connection-oriented operation, management, maintenance (OAM) and protection recovery.
  • the multicast technology of the T-MPLS network effectively solves the problem of single-point transmission and multi-point reception, and realizes efficient data transmission in a point-to-multipoint network, which can save a large amount of network bandwidth and reduce network load, thus utilizing the network.
  • the characteristics of multicast technology can easily provide users with some new value-added services.
  • the requirements for multicast technology are getting higher and higher. For example, when the network fails, the reliability protection of multicast services raises higher requirements.
  • the commonly used method for implementing multicast protection in a T-MPLS network is as follows: Normally, only one working link acts as a valid link among multicast users, and is detected by OAM or bidirectional forwarding (BFD, Bidirectional). Detection technology such as Forwarding Detection or Link Fault Management (CFM) detects the working link After the fault occurs, the standby link becomes a valid link, the original working link is deleted from the multicast user, and the new working link is added to the multicast group user.
  • Detection technology such as Forwarding Detection or Link Fault Management (CFM) detects the working link After the fault occurs, the standby link becomes a valid link, the original working link is deleted from the multicast user, and the new working link is added to the multicast group user.
  • CFM Link Fault Management
  • the main object of the present invention is to provide a method and system for implementing multicast protection, which can ensure normal transmission of multicast services when a link in a T-MPLS network fails.
  • the present invention provides a method for implementing multicast protection, including:
  • the downlink PE and the uplink PE respectively establish a transport multi-protocol label switching (T-MPLS) multicast forwarding table; the uplink PE sends the obtained multicast data packet to the downlink PE through the active and standby links simultaneously, and the downlink PE is configured according to the The T-MPLS multicast forwarding table forwards the multicast data packet received from the primary link to the corresponding user edge device (CE), and discards the multicast data packet received from the standby link; When a fault occurs, the active and standby links are switched, and the downlink PE forwards the multicast data packets received from the standby link to the CE.
  • T-MPLS transport multi-protocol label switching
  • the downlink PE and the uplink PE respectively establish a T-MPLS multicast forwarding table as follows:
  • the downlink PE establishes a T-MPLS multicast forwarding table according to an Internet Group Management Protocol (IGMP) multicast join message sent by the CE, and
  • IGMP multicast join message is forwarded to the uplink PE through the active and standby links.
  • the uplink PE establishes a T-MPLS multicast forwarding table according to the IGMP multicast join message forwarded by the downlink PE.
  • IGMP Internet Group Management Protocol
  • the downlink PE establishes a T-MPLS multicast forwarding table according to the IGMP multicast join message sent by the CE:
  • the CE sends an IGMP multicast join message to the downlink PE, and the downlink PE according to the IGMP multicast. Adding a multicast address carried in the text and a T-MPLS instance number corresponding to the PW, and establishing a T-MPLS multicast forwarding table for the IGMP multicast join message;
  • the T-MPLS multicast forwarding table is configured to store a multicast address of a multicast data packet required by the CE, a T-MPLS instance number corresponding to the PW, a port corresponding to the CE, and a corresponding relationship thereof, where the downlink PE is
  • the CE establishes a package entry for storing the CE and the encapsulation mode corresponding to the CE.
  • the uplink PE establishes a T-MPLS multicast forwarding table according to the IGMP multicast join message forwarded by the downlink PE:
  • the uplink PE receives the IGMP multicast join message forwarded by the downlink PE through the two active and standby links, and the multicast address carried in the IGMP multicast join message and the T-MPLS instance number corresponding to the PW are The IGMP multicast joins the text to establish a T-MPLS multicast forwarding table;
  • the T-MPLS multicast forwarding table is configured to store a multicast address of a multicast data packet required by the CE, a T-MPLS instance number corresponding to the PW, a port corresponding to the two active and standby links, and a corresponding relationship thereof.
  • the upstream PEs are used to store the two links of the active and standby links and the encapsulation entries of the corresponding encapsulation modes.
  • the uplink PE sends the obtained multicast data packet to the downlink PE through the active and standby links.
  • the uplink PE obtains the multicast data from the multicast source corresponding to the multicast address in the IGMP multicast join and replicates the packet according to the multicast address and the T-MPLS instance number corresponding to the PW.
  • the MPLS multicast forwarding table finds the corresponding port corresponding to the two active and standby links.
  • the upstream PE root data packet is encapsulated in the Layer 2 label header, and the encapsulated multicast data packet is simultaneously transmitted through the active and standby two links.
  • the road is sent to the downstream PE.
  • the downlink PE forwards the multicast data packet received from the primary link to the corresponding CE according to the T-MPLS multicast forwarding table, and receives the multicast data packet received from the standby link. throw Discarded as:
  • the downlink PE strips the encapsulated multicast data packets received from the active and standby links by the Layer 2 label header.
  • the second-layer label header is encapsulated in the pre-established port state table.
  • the port status corresponding to the encapsulation mode For the main link whose port status is the forwarding state, the downlink PE encapsulates the multicast data packet according to the T-MPLS multicast forwarding table and the encapsulation table, and encapsulates the encapsulated multicast data packet.
  • the corresponding PE is sent to the corresponding CE.
  • the downlink PE discards the multicast data received from the link.
  • the primary and backup links are switched to:
  • the downlink PE does not receive the detection packet from the primary link within the detection time, it determines that the primary link is faulty, and the primary The port status of the link is changed from the forwarding state to the blocking state, and the port state of the standby link is changed from the blocking state to the forwarding state.
  • the method further includes:
  • the downlink PE When the downlink PE receives the detection packet from the primary link within the detection time, it determines that the primary link is restored to normal. The downlink PE changes the port state of the primary link to the forwarding state, and changes the port state of the standby link to the blocked state. .
  • the present invention also provides a system for implementing multicast protection, including: a configuration module, an uplink PE, and a downlink PE;
  • the configuration module is configured to configure a primary link and a backup link for the PW between the uplink PE and the downlink PE.
  • the uplink PE is used to establish a T-MPLS multicast forwarding table, and the obtained multicast data packet is simultaneously passed through the active and standby The link is sent to the downlink PE;
  • the downlink PE is configured to establish a T-MPLS multicast forwarding table, and forward the multicast data packet received from the primary link to the corresponding CE according to the T-MPLS multicast forwarding table, and receive the data from the standby link.
  • the multicast data packet to be discarded is also used.
  • the primary link is faulty, the active and standby links are switched, and the multicast data packet received from the standby link is forwarded to the CE.
  • the downlink PE is further configured to: when receiving the detection packet from the primary link in the detection time, determine that the primary link is normal, change the port state of the primary link to the forwarding state, and set the port state of the standby link. Modified to block state.
  • the method and system for implementing multicast protection configure a primary link and a backup link for the PW between the uplink PE and the downstream PE; respectively, the downlink PE and the uplink PE respectively establish a T-MPLS multicast forwarding table;
  • the multicast data packet is sent to the downlink PE through the active and standby links, and the downlink PE forwards the multicast data packet received from the primary link to the corresponding CE according to the T-MPLS multicast forwarding table.
  • the multicast data packet received from the standby link is discarded.
  • FIG. 1 is a schematic flow chart of a method for implementing multicast protection according to the present invention
  • FIG. 2 is a schematic flow chart of IGMP multicast join messages in the method for implementing multicast protection according to the present invention
  • FIG. 3 is a schematic structural diagram of a system for implementing multicast protection according to the present invention. detailed description
  • the basic idea of the present invention is to: configure a primary link and a backup link for a pseudowire (PW) between an upstream carrier edge device (PE) and a downstream PE; and establish a transport multi-protocol label switching (T- for the downlink PE and the uplink PE, respectively) MPLS) multicast forwarding table; the upstream PE sends the obtained multicast data packet to the downlink PE through the active and standby links, and the downlink PE receives the received data from the primary link according to the T-MPLS multicast forwarding table.
  • the multicast data packet is forwarded to the corresponding user edge device (CE), and the multicast data packet received from the standby link is discarded.
  • CE user edge device
  • the downlink PE forwards the multicast data packet received from the standby link to the CE.
  • FIG. 1 is a schematic flowchart of a method for implementing multicast protection according to the present invention. As shown in FIG. 1, the method includes the following steps:
  • Step 101 Configure a primary link and a backup link for the PW between the uplink PE and the downlink PE.
  • the upstream edge device PE, Provide Edge
  • the PW (Pseudo Wire) information is configured on the PE2 of the 2, respectively, to establish the PW between the upstream PE and the downstream PE.
  • Two links are configured for the PW, that is, the primary link and the standby link; Set the port status of the primary link to the forwarding state and the port status of the standby link to the blocking state.
  • Configure the detection mechanism such as Operation, Administration, and Maintenance, on the active and standby links.
  • BFD Bidirectional Forwarding Detection
  • CFM Connectivity Fault Management
  • Step 102 The downlink PE adds a T-MPLS multicast forwarding table according to the IGMP multicast sent by the CE, and forwards the IGMP multicast to the uplink PE through the active and standby links.
  • the user The user edge device (CE, Customer Edge) on the side of the instance interface (CIP, Customer Instance Port) (such as CE2 or CE3 in Figure 2) sends the Internet Group Management Protocol (IGMP).
  • the IGMP multicast join message carries the multicast address of the multicast data packet required by the CE.
  • the multicast address can be the address of the multicast group or the address of the multicast group to which the multicast data belongs. Plus the address of the multicast source;
  • the downlink PE After receiving the IGMP multicast join message, the downlink PE establishes a T-MPLS multicast forwarding table for the IGMP multicast by adding the multicast address and the T-MPLS instance number corresponding to the PW. Adding the CE to the T-MPLS multicast forwarding table, the T-MPLS multicast forwarding table includes the multicast address of the multicast data packet required by the CE, and the T-MPLS instance number corresponding to the PW.
  • the CE2 and the encapsulation mode corresponding to the CE2, and the CE3 and the encapsulation mode corresponding to the CE3 are saved.
  • the T-MPLS instance number corresponding to the PW is allocated to the PW when the PW is established, and the PW can be obtained on the port of the PW. Corresponding T-MPLS instance number;
  • the IGMP multicast received from the CE is forwarded to the uplink PE through the active and standby links.
  • Step 103 The uplink PE establishes a T-MPLS multicast forwarding table according to the IGMP multicast join message forwarded by the downlink PE.
  • the IGMP multicast querier is configured on the uplink PE in advance, and the uplink PE can receive the IGMP multicast join message forwarded by the downlink PE by using the IGMP multicast querier;
  • the T-MPLS multicast forwarding table is created for the IGMP multicast by adding the multicast address and the T-MPLS instance number corresponding to the PW.
  • the port corresponding to the two links is added to the T-MPLS multicast forwarding table as a multicast user. Therefore, the T-MPLS multicast forwarding table includes the multicast address of the multicast data packet required by the CE and the T corresponding to the PW.
  • the upstream PE establishes the corresponding encapsulation entry for the two links.
  • the encapsulation table is used to save the active and standby entries. The link and the corresponding encapsulation mode.
  • Step 104 The uplink PE acquires the multicast data packet, and sends the multicast data packet to the downlink PE through the active and standby links.
  • the uplink PE obtains the multicast data packet from the multicast source corresponding to the multicast address according to the multicast address in the IGMP multicast join message, and copies the multicast data packet;
  • the multicast address and the T-MPLS instance number corresponding to the PW are found in the T-MPLS multicast forwarding table.
  • the corresponding PEs are the two ports corresponding to the active and standby links.
  • the corresponding two encapsulation modes are used to perform two layers of duplicated multicast data packets.
  • the label header is encapsulated, and the encapsulated multicast data packet is sent to the downlink PE through the active and standby links.
  • the format of the multicast data packet encapsulated on the active and standby links is the same.
  • the inner layer of the multicast data packet is the same.
  • the Layer 2 label header is slightly different because the configuration of the active and standby links is different.
  • Table 1 shows:
  • the DMAC is the destination MAC address, that is, the device MAC address of the next hop device
  • the SMAC is the source MAC address, that is, the device MAC address of the PE
  • 0 8100 is the VLAN type header identifier
  • the data indicating the identifier is the VLAN ID
  • O. x 8847 is a label identifier, indicating that the data after the identifier is a label in the multicast data packet, the tunnel label is a link label, and the PW Label is a pseudo line label, and the multicast data packet carries a multicast address.
  • Step 105 The downlink PE forwards the multicast data packet received from the primary link to the corresponding CE according to the T-MPLS multicast forwarding table, and discards the multicast data packet received from the standby link.
  • the port state table is pre-established on the downlink PE, and is used to save the correspondence between the two links, the encapsulation mode, and the port state of the active and standby ports.
  • the downlink PE receives the encapsulated group from the active and standby two links.
  • the Layer 2 label header is stripped from the multicast data packet.
  • the port state corresponding to the encapsulation mode is found in the port state table.
  • the forwarding state (such as the primary link)
  • the downlink PE finds the port corresponding to the CE corresponding to the multicast address in the T-MPLS multicast forwarding table according to the multicast address carried in the multicast data packet, and then encapsulates the packet.
  • the encapsulation mode corresponding to the CE is found in the entry, and the multicast data packet is encapsulated according to the encapsulation mode, and the encapsulated multicast data packet is sent to the CE through the port corresponding to the found CE; if the port status is blocked Status (such as alternate link), then The PE will discard the multicast data received from the link, ensuring that only one valid multicast data packet can be received on the downlink PE.
  • Step 106 When the primary link fails, the primary and backup links are switched, and the downlink PE forwards the multicast data packet received from the standby link to the CE.
  • the OAM/BFD/CFM detection mechanism is configured on the active and standby links, and the detection packets are sent to the downlink through the active and standby links. If the downlink PE does not receive the detection packet from the primary link within the detection time, it determines that the primary link is faulty. The user can preset the period and detection time according to requirements.
  • the uplink PE sends the same multicast data packet through the active and standby links.
  • the port status of the primary link is directly changed from the forwarding state to the blocking state.
  • the port status of the standby link is changed from the blocked state to the forwarding state, and the primary link is switched to the standby link.
  • the downlink PE cannot be removed from the primary link due to the fault of the primary link.
  • the downlink PE forwards the multicast data packet received from the standby link to the CE, so that the fast switchover between the active and standby links can be implemented by modifying the port state.
  • the actual application can meet 50 ms. The requirements for switching performance.
  • the downlink PE receives multiple detection packets from the primary link within the detection time, it determines that the primary link is restored to normal.
  • the downlink PE changes the port status of the primary link to the forwarding state, and changes the port status of the standby link to The blocking state is implemented by the alternate link back to the primary link.
  • FIG. 3 is a schematic structural diagram of a system for implementing multicast protection according to the present invention. As shown in FIG. 3, the system includes: a configuration module 31, and an uplink PE 32. Downstream PE 33;
  • the configuration module 31 is configured to configure a primary link and a backup link for the PW between the uplink PE32 and the downlink PE33.
  • the uplink PE32 is used to establish a T-MPLS multicast forwarding table, and the obtained multicast data packet is the same.
  • the two links are sent to the downlink PE32 through the active and standby links.
  • the downlink PE33 is configured to establish a T-MPLS multicast forwarding table, and forward the multicast data packet received from the primary link to the corresponding CE according to the T-MPLS multicast forwarding table, and receive the data from the standby link.
  • the multicast data packet to be discarded is also used.
  • the primary link is faulty, the active and standby links are switched, and the multicast data packet received from the standby link is forwarded to the CE.
  • the downlink PE33 is further configured to: when receiving the detection packet from the primary link in the detection time, determine that the primary link is restored to normal, change the port state of the primary link to the forwarding state, and configure the port state of the standby link. Modified to block state.
  • the downlink PE 33 and the uplink PE 32 respectively establish a T-MPLS multicast forwarding table: the downlink PE 33 establishes a T-MPLS multicast forwarding table according to the IGMP multicast join message sent by the CE, and adds the IGMP multicast to the The active and standby links are forwarded to the upstream PE 32.
  • the upstream PE 32 establishes a T-MPLS multicast forwarding table according to the IGMP multicast forwarding message forwarded by the downlink PE 33.
  • the uplink PE 32 sends the obtained multicast data packet to the downlink PE 33 through the active and standby links.
  • the uplink PE 32 obtains the multicast data from the multicast source corresponding to the multicast address in the IGMP multicast join message. And copying, according to the multicast address and the T-MPLS instance number corresponding to the PW, find the corresponding port corresponding to the two active and standby links in the T-MPLS multicast forwarding table; two multicast data packets
  • the Layer 2 label header is encapsulated, and the encapsulated multicast data packets are sent to the downstream PE33 through the active and standby links.
  • the downlink PE 33 forwards the multicast data packet received from the primary link to the corresponding CE according to the T-MPLS multicast forwarding table, and discards the multicast data packet received from the standby link as:
  • the downlink PE33 strips the encapsulated multicast data packets received from the active and standby links by the Layer 2 label header, and finds the pre-established port state table according to the encapsulation mode of the Layer 2 label header.
  • the port status corresponding to the encapsulation mode for the main link whose port status is the forwarding state, the downstream PE33 encapsulates the multicast data packet according to the T-MPLS multicast forwarding table and the encapsulation entry, and encapsulates the multicast data packet.
  • the multicast data packet is sent to the corresponding CE.
  • the downlink PE33 discards the multicast data packet received from the link.
  • the primary and backup links are switched to:
  • the downlink PE 33 determines that the primary link is faulty, and the primary link is The state is changed from the forwarding state to the blocking state, and the port state of the standby link is changed from the blocking state to the forwarding state, so that the primary link is switched to the standby link.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开一种实现组播保护的方法,包括:为上行运营商边缘设备(PE)和下行PE间的伪线(PW)配置主链路和备用链路;下行PE和上行PE分别建立传送多协议标记交换(T-MPLS)组播转发表;上行PE将获取的组播数据报文同时通过主备两条链路发送给下行PE,下行PE根据所述T-MPLS组播转发表将从主链路收到的组播数据报文转发给对应的用户边缘设备(CE),将从备用链路收到的组播数据报文丢弃;当主链路出现故障时,将主备链路进行切换,下行PE将从备用链路收到的组播数据报文转发给所述CE;本发明还提供一种实现组播保护的系统。根据本发明的技术方案,当T-MPLS网络中的链路发生故障时,能够保证组播业务的正常传送。

Description

一种实现组播保护的方法及系统 技术领域
本发明涉及通信领域的传送多协议标记交换 ( T-MPLS , Transmission-Multiprotocol Label Switching ) 网络, 尤其涉及一种实现组播 保护的方法及系统。 背景技术
T-MPLS 是国 际电信联盟远程通信标准化组织(ITU-T , ITU Telecommunication Standardization Sector)定义的一种基于多协议标记交换 ( MPLS, Multiprotocol Label Switching ) 的、 面向连接的分组传送技术, T-MPLS的数据转发面是 MPLS的一个子集,其数据是基于 T-MPLS标签进 行转发的。 T-MPLS是 MPLS在传送网中的应用, 是对 MPLS的数据转发 面的某些复杂功能的简化, 并增加了面向连接的操作、 管理、 维护(OAM, Operation Administration and Maintenance )和保护恢复等功能。
T-MPLS网络的组播技术有效的解决了单点发送多点接收的问题,实现 了网络中点到多点的高效的数据传送, 能够节约大量的网络带宽, 降低网 络负载, 因此利用网络的组播技术的特性可以方便地为用户提供一些新的 增值业务。
随着组播技术在 T-MPLS 网络中应用越来越广泛, 组播技术的要求越 来越高, 例如当网络发生故障时, 组播业务的可靠性保护等方面提出了更 高要求。 现有技术中, 比较常用的在 T-MPLS 网络中实现组播保护的方法 是: 正常情况下只有一条工作链路作为组播用户中的有效链路, 通过 OAM 或双向转发检测 (BFD, Bidirectional Forwarding Detection )或链路故障管 理(CFM, Connectivity Fault Management )等检测技术检测到工作链路出 现故障后, 再将备用链路变成有效链路, 将原来的工作链路从组播用户中 删除, 将新的工作链路加入到组播组用户中。 但是, 这样的保护方法存在 的一个问题是, 主备链路切换的时间加上组播协议交互的过程, 会使得这 种保护方法的性能不能满足日益增长的高性能需求。 发明内容
有鉴于此, 本发明的主要目的在于提供一种实现组播保护的方法及系 统, 当 T-MPLS网络中的链路发生故障时, 能够保证组播业务的正常传送。
为达到上述目的, 本发明的技术方案是这样实现的:
本发明提供一种实现组播保护的方法, 包括:
为上行运营商边缘设备 ( PE )和下行 PE间的伪线 (PW ) 配置主链路 和备用链路;
下行 PE和上行 PE分别建立传送多协议标记交换( T-MPLS )组播转发 表; 上行 PE将获取的组播数据报文同时通过主备两条链路发送给下行 PE, 下行 PE根据所述 T-MPLS组播转发表将从主链路收到的组播数据报文转发 给对应的用户边缘设备( CE ) , 将从备用链路收到的组播数据报文丟弃; 当主链路出现故障时, 将主备链路进行切换, 下行 PE将从备用链路收 到的组播数据报文转发给所述 CE。
上述方法中,所述下行 PE和上行 PE分别建立 T-MPLS组播转发表为: 下行 PE根据 CE发送的因特网组管理协议(IGMP )组播加入报文建 立 T-MPLS组播转发表, 并将 IGMP组播加入报文通过主备两条链路转发 给上行 PE; 上行 PE根据下行 PE转发的 IGMP组播加入报文建立 T-MPLS 组播转发表。
上述方法中, 所述下行 PE根据 CE发送的 IGMP组播加入^艮文建立 T-MPLS组播转发表为:
CE发送 IGMP组播加入艮文给下行 PE, 下行 PE根据所述 IGMP组播 加入 文其中携带的组播地址和与 PW对应的 T-MPLS 实例号, 为所述 IGMP组播加入报文建立 T-MPLS组播转发表;
所述 T-MPLS组播转发表用于保存 CE需要的组播数据报文的组播地 址、 P W对应的 T-MPLS实例号、 CE对应的端口、 以及它们的——对应关 系, 下行 PE为 CE建立用于保存 CE和与该 CE对应的封装方式的封装表 项。
上述方法中 , 所述上行 PE根据下行 PE转发的 IGMP组播加入报文建 立 T-MPLS组播转发表为:
上行 PE通过主备两条链路接收下行 PE转发的 IGMP组播加入 ^艮文, 并根据所述 IGMP组播加入报文中携带的组播地址和与 PW对应的 T-MPLS 实例号 , 为所述 IGMP组播加入 ^艮文建立 T-MPLS组播转发表;
所述 T-MPLS组播转发表用于保存 CE需要的组播数据报文的组播地 址、 P W对应的 T-MPLS实例号、 主备两条链路对应的端口、 以及它们的对 应关系,上行 PE为主备两条链路建立用于保存主备两条链路和分别对应的 封装方式的封装表项。
上述方法中,所述上行 PE将获取的组播数据报文同时通过主备两条链 路发送给下行 PE为:
上行 PE从与 IGMP组播加入 ^艮文中的组播地址对应的组播源获取组播 数据 4艮文, 并进行复制, 根据该组播地址和 PW对应的 T-MPLS实例号, 在 T-MPLS组播转发表中找到对应的主备两条链路对应的端口; 上行 PE根 数据报文分别进行二层标签头封装, 并将封装后的组播数据报文同时通过 主备两条链路发送给下行 PE。
上述方法中,所述下行 PE根据所述 T-MPLS组播转发表将从主链路收 到的组播数据报文转发给对应的 CE , 将从备用链路收到的组播数据报文丟 弃为:
下行 PE 分别对从主备两条链路收到的封装后的组播数据报文进行二 层标签头的剥离, 根据二层标签头的封装方式, 在预先建立的端口状态表 中找到与该封装方式对应的端口状态; 对于端口状态是转发状态的主链路, 下行 PE根据 T-MPLS组播转发表和封装表项对组播数据报文进行封装,将 封装后的组播数据报文发送给对应的 CE; 对于端口状态是阻塞状态的备用 链路, 下行 PE将从该链路收到的组播数据报文丟弃。
上述方法中, 所述当主链路出现故障时, 将主备链路进行切换为: 当下行 PE在检测时间内没有从主链路收到检测报文时,确定主链路出 现故障, 将主链路的端口状态由转发状态修改为阻塞状态, 将备用链路的 端口状态由阻塞状态修改为转发状态。
上述方法中, 该方法还包括:
当下行 PE在检测时间内从主链路收到检测报文时 ,确定主链路恢复正 常, 下行 PE将主链路的端口状态修改为转发状态, 将备用链路的端口状态 修改为阻塞状态。
本发明还提供一种实现组播保护的系统, 包括: 配置模块、 上行 PE、 下行 PE; 其中,
配置模块,用于为上行 PE和下行 PE间的 PW配置主链路和备用链路; 上行 PE, 用于建立 T-MPLS组播转发表, 将获取的组播数据报文同时 通过主备两条链路发送给下行 PE;
下行 PE, 用于建立 T-MPLS组播转发表, 并根据所述 T-MPLS组播转 发表将从主链路收到的组播数据报文转发给对应的 CE , 将从备用链路收到 的组播数据报文丟弃; 还用于, 当主链路出现故障时, 将主备链路进行切 换, 将从备用链路收到的组播数据报文转发给所述 CE。
上述系统中, 所述下行 PE还用于 , 当在检测时间内从主链路收到检测报文时, 确定 主链路恢复正常, 将主链路的端口状态修改为转发状态, 将备用链路的端 口状态修改为阻塞状态。
本发明提供的实现组播保护的方法及系统, 为上行 PE和下行 PE间的 PW配置主链路和备用链路; 下行 PE和上行 PE分别建立 T-MPLS组播转 发表; 上行 PE将获取的组播数据报文同时通过主备两条链路发送给下行 PE,下行 PE根据所述 T-MPLS组播转发表将从主链路收到的组播数据报文 转发给对应的 CE, 将从备用链路收到的组播数据报文丟弃; 当主链路出现 故障时, 将主备链路进行切换, 下行 PE将从备用链路收到的组播数据报文 转发给所述 CE, 因此, 当 T-MPLS网络中的链路发生故障时, 能够实现主 备链路的快速切换, 保证组播业务的正常传送, 满足 T-MPLS 网络中高效 的保护切换需求, 具有节省带宽、 网络安全性高的特点。 附图说明
图 1是本发明实现组播保护的方法的流程示意图;
图 2是本发明实现组播保护的方法的 IGMP组播加入报文的流向示意 图;
图 3是本发明实现组播保护的系统的结构示意图。 具体实施方式
本发明的基本思想是: 为上行运营商边缘设备 ( PE )和下行 PE间的伪 线( PW )配置主链路和备用链路; 下行 PE和上行 PE分别建立传送多协议 标记交换(T-MPLS )组播转发表; 上行 PE将获取的组播数据报文同时通 过主备两条链路发送给下行 PE, 下行 PE根据所述 T-MPLS组播转发表将 从主链路收到的组播数据报文转发给对应的用户边缘设备( CE ),将从备用 链路收到的组播数据报文丟弃; 当主链路出现故障时, 将主备链路进行切 换, 下行 PE将从备用链路收到的组播数据报文转发给所述 CE。 下面通过附图及具体实施例对本发明再做进一步的详细说明。
本发明提供一种实现组播保护的方法, 图 1 是本发明实现组播保护的 方法的流程示意图, 如图 1所示, 该方法包括以下步骤:
步骤 101 , 为上行 PE和下行 PE间的 PW配置主链路和备用链路; 具体的,在上行运营商边缘设备( PE, Provide Edge ) (如图 2中的 PE1 ) 和下行 PE (如图 2中的 PE2 )上分别配置伪线(PW, Pseudo Wire )信息, 从而建立起上行 PE和下行 PE之间的 PW; 为该 PW配置两条链路, 即主 链路和备用链路; 这里, 将主链路的端口状态设置为转发状态, 将备用链 路的端口状态设置为阻塞状态; 同时在主备链路上分别配置检测机制, 例 如操作、 管理和维护 ( OAM, Operation Administration and Maintenance )机 制、 双向转发检测 (BFD , Bidirectional Forwarding Detection )机制或连接 性故障管理(CFM, Connectivity Fault Management )机制等。
步骤 102 , 下行 PE根据 CE发送的 IGMP组播加入 4艮文建立 T-MPLS 组播转发表, 并将 IGMP组播加入^艮文通过主备两条链路转发给上行 PE; 具体的, 用户实例接口 (CIP, Customer Instance Port )侧的用户边缘 设备 ( CE, Customer Edge ) (如图 2中的 CE2或 CE3 )发送因特网组管理 协议( IGMP, Internet Group Management Protocol )组播力口入才艮文给下行 PE, 该 IGMP组播加入报文中携带 CE需要的组播数据报文的组播地址,该组播 地址可以是组播数据 文所属的组播组的地址或组播组的地址加上组播源 的地址;
下行 PE收到 IGMP组播加入^艮文后, 根据其中携带的组播地址和与 PW对应的 T-MPLS实例号,为该 IGMP组播加入 4艮文建立 T-MPLS组播转 发表, 并将 CE添加到该 T-MPLS组播转发表中, 因此该 T-MPLS组播转发 表包括 CE需要的组播数据报文的组播地址、 PW对应的 T-MPLS实例号、 CE对应的端口、 以及它们的——对应关系; 同时, 下行 PE为 CE建立对 应封装表项, 该封装表项用于保存 CE和与该 CE对应的封装方式, 如图 2 所示 , 下行 PE可以保存 CE2和与 CE2对应的封装方式, 以及 CE3和与该 CE3对应的封装方式; 其中, PW对应的 T-MPLS实例号是在建立 PW时为 PW分配的, 可以在 PW的端口获取该 PW对应的 T-MPLS实例号;
在下行 PE完成 T-MPLS组播转发表的建立后, 将从 CE收到的 IGMP 组播加入 4艮文同时通过主备两条链路转发给上行 PE。
步骤 103 ,上行 PE根据下行 PE转发的 IGMP组播加入报文建立 T-MPLS 组播转发表;
具体的, 预先在上行 PE上配置 IGMP组播查询器, 利用该 IGMP组播 查询器, 上行 PE可以通过主备两条链路都能接收到下行 PE转发的 IGMP 组播加入报文; 上行 PE收到 IGMP组播加入报文后, 根据其中携带的组播 地址和与 PW对应的 T-MPLS实例号,为该 IGMP组播加入 4艮文建立 T-MPLS 组播转发表,并将主备两条链路对应的端口作为组播用户添加到该 T-MPLS 组播转发表中,因此该 T-MPLS组播转发表包括 CE需要的组播数据报文的 组播地址、 PW对应的 T-MPLS实例号、 主备两条链路对应的端口、 以及它 们的对应关系; 同时, 上行 PE为主备两条链路建立对应的封装表项, 该封 装表项用于保存主备两条链路和分别对应的封装方式。
步骤 104, 上行 PE获取组播数据报文, 并同时通过主备两条链路发送 给下行 PE;
具体的, 上行 PE根据 IGMP组播加入报文中的组播地址, 从与该组播 地址对应的组播源获取组播数据报文, 并对组播数据报文进行复制; 上行 PE根据该组播地址和 PW对应的 T-MPLS实例号, 在 T-MPLS组播转发表 中找到对应的主备两条链路对应的端口,上行 PE根据封装表项中保存的主 备两条链路对应的封装方式, 将复制后的两个组播数据报文分别进行二层 标签头封装, 并将封装后的组播数据报文同时通过主备两条链路发送给下 行 PE; 这里, 主备两条链路上的对组播数据报文封装后的格式是一样的, 内层的组播数据报文也是一样的, 只是由于主备链路的配置不同, 使得二 层标签头稍有不同; 例如, 进行二层标签头封装后的组播数据报文的格式 ^口表 1所示:
Figure imgf000010_0001
表 1
其中, DMAC是目的 MAC地址, 即下一跳设备的设备 MAC , SMAC 是源 MAC地址, 即所述 PE的设备 MAC, 0 8100是 VLAN类型头标识, 表示该标识后的数据是 VLAN ID, O x 8847是标签标识, 表示该标识后的 数据是组播数据报文中的标签, Tunnel Label是链路标签, PW Label是伪线 标签, 组播数据报文中携带组播地址。
步骤 105 , 下行 PE根据 T-MPLS组播转发表将从主链路收到的组播数 据报文转发给对应的 CE , 将从备用链路收到的组播数据报文丟弃;
具体的, 在下行 PE上预先建立端口状态表, 用于保存主备两条链路、 封装方式及端口状态的——对应关系; 当下行 PE从主备两条链路收到封装 后的组播数据报文后, 分别对该组播数据报文进行二层标签头的剥离, 根 据二层标签头的封装方式, 在端口状态表中找到与该封装方式对应的端口 状态; 如果端口状态是转发状态 (如主链路), 则下行 PE根据组播数据报 文中携带的组播地址, 在 T-MPLS组播转发表中找到与该组播地址对应的 CE对应的端口, 然后在封装表项中找到与该 CE对应的封装方式, 根据该 封装方式对组播数据报文进行封装, 将封装后的组播数据报文通过找到的 CE对应的端口发送给 CE; 如果端口状态是阻塞状态(如备用链路), 则下 行 PE将从该链路收到的组播数据报文丟弃, 从而确保在下行 PE上只能收 到一份有效的组播数据报文。
步骤 106, 当主链路出现故障时, 将主备链路进行切换, 下行 PE将从 备用链路收到的组播数据报文转发给 CE;
具体的, 由于在主备链路上分别配置了 OAM/BFD/CFM等检测机制, 基于该检测机制上行 PE会周期的通过主备两条链路发送 OAM/BFD/CFM 等检测报文给下行 PE, 如果下行 PE在检测时间内没有从主链路收到检测 报文, 则确定主链路出现故障; 其中, 用户可以根据需求预先设置周期和 检测时间;
由于上行 PE是同时分别通过主备两条链路发送同样的组播数据报文, 因此当下行 PE确定主链路出现故障时,直接将主链路的端口状态由转发状 态修改为阻塞状态, 同时将备用链路的端口状态由阻塞状态修改为转发状 态, 实现将主链路切换到备用链路; 将主备链路进行切换后, 由于主链路 存在故障, 下行 PE无法从主链路收到组播数据报文, 因此下行 PE将从备 用链路收到的组播数据报文转发给 CE, 从而实现通过修改端口状态能够实 现主备链路的快速切换, 实际应用中能够满足 50ms的切换性能的要求。
如果下行 PE在检测时间内从主链路收到多个检测报文 ,则确定主链路 恢复正常, 下行 PE将主链路的端口状态修改为转发状态, 将备用链路的端 口状态修改为阻塞状态, 实现由备用链路回切到主链路。
为实现上述方法, 本发明还提供一种实现组播保护的系统, 图 3是本 发明实现组播保护的系统的结构示意图, 如图 3 所示, 该系统包括: 配置 模块 31、 上行 PE 32、 下行 PE 33; 其中,
配置模块 31 , 用于为上行 PE32和下行 PE33间的 PW配置主链路和备 用链路;
上行 PE32, 用于建立 T-MPLS组播转发表, 将获取的组播数据报文同 时通过主备两条链路发送给下行 PE32;
下行 PE33 , 用于建立 T-MPLS组播转发表, 并根据所述 T-MPLS组播 转发表将从主链路收到的组播数据报文转发给对应的 CE , 将从备用链路收 到的组播数据报文丟弃; 还用于, 当主链路出现故障时, 将主备链路进行 切换, 将从备用链路收到的组播数据报文转发给所述 CE。
所述下行 PE33还用于, 当在检测时间内从主链路收到检测报文时, 确 定主链路恢复正常, 将主链路的端口状态修改为转发状态, 将备用链路的 端口状态修改为阻塞状态。
所述下行 PE33和上行 PE32分别建立 T-MPLS组播转发表为:下行 PE33 根据 CE发送的 IGMP组播加入 ^艮文建立 T-MPLS组播转发表, 并将 IGMP 组播加入^艮文通过主备两条链路转发给上行 PE32; 上行 PE32 根据下行 PE33转发的 IGMP组播加入 ^艮文建立 T-MPLS组播转发表。
所述上行 PE32 将获取的组播数据报文同时通过主备两条链路发送给 下行 PE33为: 上行 PE32从与 IGMP组播加入报文中的组播地址对应的组 播源获取组播数据 文,并进行复制,根据该组播地址和 PW对应的 T-MPLS 实例号, 在 T-MPLS组播转发表中找到对应的主备两条链路对应的端口; 两个组播数据报文分别进行二层标签头封装, 并将封装后的组播数据报文 同时通过主备两条链路发送给下行 PE33。
所述下行 PE33根据所述 T-MPLS组播转发表将从主链路收到的组播数 据报文转发给对应的 CE, 将从备用链路收到的组播数据报文丟弃为: 下行 PE33分别对从主备两条链路收到的封装后的组播数据报文进行二层标签头 的剥离, 根据二层标签头的封装方式, 在预先建立的端口状态表中找到与 该封装方式对应的端口状态;对于端口状态是转发状态的主链路,下行 PE33 根据 T-MPLS组播转发表和封装表项对组播数据报文进行封装, 将封装后 的组播数据报文发送给对应的 CE; 对于端口状态是阻塞状态的备用链路, 下行 PE33将从该链路收到的组播数据报文丟弃。
所述当主链路出现故障时, 将主备链路进行切换为: 当下行 PE33在检 测时间内没有从主链路收到检测报文时, 确定主链路出现故障, 将主链路 的端口状态由转发状态修改为阻塞状态, 将备用链路的端口状态由阻塞状 态修改为转发状态, 实现将主链路切换到备用链路。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进 等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种实现组播保护的方法, 其特征在于, 该方法包括:
为上行运营商边缘设备 ( PE )和下行 PE间的伪线 (PW ) 配置主链路 和备用链路;
下行 PE和上行 PE分别建立传送多协议标记交换( T-MPLS )组播转发 表; 上行 PE将获取的组播数据报文同时通过主备两条链路发送给下行 PE, 下行 PE根据所述 T-MPLS组播转发表将从主链路收到的组播数据报文转发 给对应的用户边缘设备( CE ) , 将从备用链路收到的组播数据报文丟弃; 当主链路出现故障时, 将主备链路进行切换, 下行 PE将从备用链路收 到的组播数据报文转发给所述 CE。
2、 根据权利要求 1所述的方法, 其特征在于, 所述下行 PE和上行 PE 分别建立 T-MPLS组播转发表为:
下行 PE根据 CE发送的因特网组管理协议(IGMP )组播加入报文建 立 T-MPLS组播转发表, 并将 IGMP组播加入报文通过主备两条链路转发 给上行 PE; 上行 PE根据下行 PE转发的 IGMP组播加入报文建立 T-MPLS 组播转发表。
3、 根据权利要求 2所述的方法, 其特征在于, 所述下行 PE根据 CE 发送的 IGMP组播加入^艮文建立 T-MPLS组播转发表为:
CE发送 IGMP组播加入艮文给下行 PE, 下行 PE根据所述 IGMP组播 加入 文其中携带的组播地址和与 PW对应的 T-MPLS 实例号, 为所述 IGMP组播加入报文建立 T-MPLS组播转发表;
所述 T-MPLS组播转发表用于保存 CE需要的组播数据报文的组播地 址、 P W对应的 T-MPLS实例号、 CE对应的端口、 以及它们的——对应关 系, 下行 PE为 CE建立用于保存 CE和与该 CE对应的封装方式的封装表 项。
4、 根据权利要求 2所述的方法, 其特征在于, 所述上行 PE根据下行 PE转发的 IGMP组播加入才艮文建立 T-MPLS组播转发表为:
上行 PE通过主备两条链路接收下行 PE转发的 IGMP组播加入 ^艮文, 并根据所述 IGMP组播加入报文中携带的组播地址和与 PW对应的 T-MPLS 实例号 , 为所述 IGMP组播加入 ^艮文建立 T-MPLS组播转发表;
所述 T-MPLS组播转发表用于保存 CE需要的组播数据报文的组播地 址、 PW对应的 T-MPLS实例号、 主备两条链路对应的端口、 以及它们的对 应关系,上行 PE为主备两条链路建立用于保存主备两条链路和分别对应的 封装方式的封装表项。
5、 根据权利要求 1所述的方法, 其特征在于, 所述上行 PE将获取的 上行 PE从与 IGMP组播加入 ^艮文中的组播地址对应的组播源获取组播 数据 4艮文, 并进行复制, 根据该组播地址和 PW对应的 T-MPLS实例号, 在 T-MPLS组播转发表中找到对应的主备两条链路对应的端口;上行 PE根 数据报文分别进行二层标签头封装, 并将封装后的组播数据报文同时通过 主备两条链路发送给下行 PE。
6、 根据权利要求 1所述的方法, 其特征在于, 所述下行 PE根据所述 T-MPLS组播转发表将从主链路收到的组播数据报文转发给对应的 CE, 将 从备用链路收到的组播数据报文丟弃为:
下行 PE 分别对从主备两条链路收到的封装后的组播数据报文进行二 层标签头的剥离, 根据二层标签头的封装方式, 在预先建立的端口状态表 中找到与该封装方式对应的端口状态; 对于端口状态是转发状态的主链路, 下行 PE根据 T-MPLS组播转发表和封装表项对组播数据报文进行封装,将 封装后的组播数据报文发送给对应的 CE; 对于端口状态是阻塞状态的备用 链路, 下行 PE将从该链路收到的组播数据报文丟弃。
7、 根据权利要求 1所述的方法, 其特征在于, 所述当主链路出现故障 时, 将主备链路进行切换为:
当下行 PE在检测时间内没有从主链路收到检测报文时,确定主链路出 现故障, 将主链路的端口状态由转发状态修改为阻塞状态, 将备用链路的 端口状态由阻塞状态修改为转发状态。
8、 根据权利要求 1至 7中任一所述的方法, 其特征在于, 该方法还包 括:
当下行 PE在检测时间内从主链路收到检测报文时 ,确定主链路恢复正 常, 下行 PE将主链路的端口状态修改为转发状态, 将备用链路的端口状态 修改为阻塞状态。
9、 一种实现组播保护的系统, 其特征在于, 该系统包括: 配置模块、 上行 PE、 下行 PE; 其中,
配置模块,用于为上行 PE和下行 PE间的 PW配置主链路和备用链路; 上行 PE, 用于建立 T-MPLS组播转发表, 将获取的组播数据报文同时 通过主备两条链路发送给下行 PE;
下行 PE, 用于建立 T-MPLS组播转发表, 并根据所述 T-MPLS组播转 发表将从主链路收到的组播数据报文转发给对应的 CE , 将从备用链路收到 的组播数据报文丟弃; 还用于, 当主链路出现故障时, 将主备链路进行切 换, 将从备用链路收到的组播数据报文转发给所述 CE。
10、 根据权利要求 9所述的系统, 其特征在于,
所述下行 PE还用于, 当在检测时间内从主链路收到检测报文时, 确定 主链路恢复正常, 将主链路的端口状态修改为转发状态, 将备用链路的端 口状态修改为阻塞状态。
PCT/CN2011/078606 2010-12-08 2011-08-18 一种实现组播保护的方法及系统 WO2012075831A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010578434.1 2010-12-08
CN201010578434.1A CN102025541B (zh) 2010-12-08 2010-12-08 一种实现组播保护的方法及系统

Publications (1)

Publication Number Publication Date
WO2012075831A1 true WO2012075831A1 (zh) 2012-06-14

Family

ID=43866433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078606 WO2012075831A1 (zh) 2010-12-08 2011-08-18 一种实现组播保护的方法及系统

Country Status (2)

Country Link
CN (1) CN102025541B (zh)
WO (1) WO2012075831A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107547399A (zh) * 2017-05-31 2018-01-05 新华三技术有限公司 一种组播转发表项的处理方法和pe设备
CN112671630A (zh) * 2020-12-11 2021-04-16 北京东土军悦科技有限公司 一种组播方法、装置、网络设备及存储介质
CN112822097A (zh) * 2019-11-15 2021-05-18 华为技术有限公司 报文转发的方法、第一网络设备以及第一设备组

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102025541B (zh) * 2010-12-08 2014-12-10 中兴通讯股份有限公司 一种实现组播保护的方法及系统
CN102208995A (zh) * 2011-05-04 2011-10-05 中兴通讯股份有限公司 一种实现组播保护的方法和装置
CN102201936A (zh) * 2011-05-30 2011-09-28 中兴通讯股份有限公司 网络设备入口报文的控制方法、系统及网络设备
CN102201999B (zh) * 2011-06-13 2017-09-22 中兴通讯股份有限公司 一种实现组播业务负荷分担的方法和系统
CN102223660B (zh) * 2011-08-02 2013-10-09 华为技术有限公司 一种控制主备伪线切换的方法和装置
CN102255759B (zh) * 2011-08-16 2015-05-20 杭州华三通信技术有限公司 一种基于pw冗余备份的数据报文传输方法和设备
CN102299845B (zh) * 2011-09-20 2015-09-09 神州数码网络(北京)有限公司 多链路透明互联多播帧传输方法和系统
CN102970231B (zh) * 2012-11-20 2018-05-01 中兴通讯股份有限公司 组播流转发实现方法和路由网桥(rb)
CN104348719A (zh) 2013-07-29 2015-02-11 中兴通讯股份有限公司 数据转发处理的方法及设备
CN106330699B (zh) * 2015-07-10 2020-06-02 中兴通讯股份有限公司 一种组播链路的切换方法、装置及路由设备
CN106375215A (zh) * 2015-07-23 2017-02-01 中兴通讯股份有限公司 一种防止回切丢包的方法及装置
CN108206759B (zh) * 2016-12-20 2021-02-09 华为技术有限公司 一种转发报文的方法、设备及系统
CN108512758B (zh) * 2018-03-07 2021-09-14 华为技术有限公司 报文处理方法、控制器以及转发设备
CN109743250B (zh) * 2018-12-07 2020-09-04 华为技术有限公司 组播报文的传输方法、第一网络设备和第二网络设备
CN111669280B (zh) * 2019-03-06 2023-05-16 中兴通讯股份有限公司 一种报文传输方法、装置及存储介质
CN110601882B (zh) * 2019-09-04 2022-08-16 厦门网宿有限公司 一种二层专线网络系统及配置方法
CN111372144B (zh) * 2020-03-23 2021-09-28 北京小鸟科技股份有限公司 组播视频码流的链路备份系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1946040A (zh) * 2006-10-13 2007-04-11 华为技术有限公司 一种组播业务的保护方法和装置
CN101340351A (zh) * 2008-08-19 2009-01-07 华为技术有限公司 一种vpls网络中的数据传输方法、装置和系统
CN101374075A (zh) * 2008-06-30 2009-02-25 华为技术有限公司 保护组播源的方法、装置和系统
CN102025541A (zh) * 2010-12-08 2011-04-20 中兴通讯股份有限公司 一种实现组播保护的方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1232081C (zh) * 2002-08-06 2005-12-14 华为技术有限公司 网络通信中组播报文的转发方法
US20060182113A1 (en) * 2005-02-17 2006-08-17 Lucent Technologies Inc. Automatic discovery of pseudo-wire peer addresses in ethernet-based networks
CN101582834B (zh) * 2008-05-16 2013-10-09 华为技术有限公司 以太网业务传送中转发表的更新方法和系统
CN101557313B (zh) * 2009-04-21 2012-09-26 烽火通信科技股份有限公司 一种电信级宽带接入设备上联板卡保护的方法
CN101631129B (zh) * 2009-08-18 2013-06-05 中兴通讯股份有限公司 组播数据转发方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1946040A (zh) * 2006-10-13 2007-04-11 华为技术有限公司 一种组播业务的保护方法和装置
CN101374075A (zh) * 2008-06-30 2009-02-25 华为技术有限公司 保护组播源的方法、装置和系统
CN101340351A (zh) * 2008-08-19 2009-01-07 华为技术有限公司 一种vpls网络中的数据传输方法、装置和系统
CN102025541A (zh) * 2010-12-08 2011-04-20 中兴通讯股份有限公司 一种实现组播保护的方法及系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107547399A (zh) * 2017-05-31 2018-01-05 新华三技术有限公司 一种组播转发表项的处理方法和pe设备
CN107547399B (zh) * 2017-05-31 2020-07-07 新华三技术有限公司 一种组播转发表项的处理方法和pe设备
CN112822097A (zh) * 2019-11-15 2021-05-18 华为技术有限公司 报文转发的方法、第一网络设备以及第一设备组
CN112671630A (zh) * 2020-12-11 2021-04-16 北京东土军悦科技有限公司 一种组播方法、装置、网络设备及存储介质
CN112671630B (zh) * 2020-12-11 2023-01-17 北京东土军悦科技有限公司 一种组播方法、装置、网络设备及存储介质

Also Published As

Publication number Publication date
CN102025541A (zh) 2011-04-20
CN102025541B (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
WO2012075831A1 (zh) 一种实现组播保护的方法及系统
US9781032B1 (en) MPLS label usage in ethernet virtual private networks
US10142239B2 (en) Synchronizing multicast state between multi-homed routers in an Ethernet virtual private network
US9059902B2 (en) Procedures, apparatuses, systems, and computer-readable media for operating primary and backup network elements
US9036466B2 (en) Methods and apparatus for improving network communication using ethernet switching protection
JP5484590B2 (ja) 擬似ワイヤに基づいてサービストラヒックを処理するための方法、デバイスおよびシステム
CN100450086C (zh) 在虚拟专用局域网业务中实现组播数据流转发的方法
JP4899959B2 (ja) Vpn装置
US20130272114A1 (en) Pseudo wire switching method and device
WO2020168854A1 (zh) 一种evpn组播方法、装置及系统
WO2009056053A1 (fr) Procédé, dispositif et système de commutateur de capacité de flux à ingénierie de trafic et commutation multiprotocole par étiquette
WO2007140683A1 (fr) Procédé, système et dispositif de protection de service, basés sur l'absence de connexion
WO2012028029A1 (zh) 一种切换方法及系统
WO2012130034A1 (zh) 一种vpls快速重路由方法和设备
WO2012024952A1 (zh) 一种基于点到多点业务的路径切换方法及系统
CN101719834B (zh) 一种虚拟专用组播业务保护的实现方法及系统
WO2011160498A1 (zh) 运营管理和维护的配置方法和节点
WO2012171378A1 (zh) 解决vpls接入l3故障切换导致断流的方法及路由器
EP2634978B1 (en) Message forwarding method and network device
WO2011144088A2 (zh) 一种业务保护方法及接入设备
WO2021093463A1 (zh) 报文转发的方法、第一网络设备以及第一设备组
WO2012146097A1 (zh) Vpls网络和以太环网的倒换方法及装置
WO2019062268A1 (zh) 传输组播报文的方法、装置和系统
WO2011120360A1 (zh) 集中式网络节点中实现热备份的方法及系统
WO2010006524A1 (zh) 可靠组播的方法、运营商边缘上层设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11847508

Country of ref document: EP

Kind code of ref document: A1