WO2011004518A1 - 液晶表示パネルおよびその製造方法 - Google Patents

液晶表示パネルおよびその製造方法 Download PDF

Info

Publication number
WO2011004518A1
WO2011004518A1 PCT/JP2010/002090 JP2010002090W WO2011004518A1 WO 2011004518 A1 WO2011004518 A1 WO 2011004518A1 JP 2010002090 W JP2010002090 W JP 2010002090W WO 2011004518 A1 WO2011004518 A1 WO 2011004518A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
display panel
crystal display
group
pair
Prior art date
Application number
PCT/JP2010/002090
Other languages
English (en)
French (fr)
Inventor
中井貴子
水崎真伸
仲西洋平
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to EP10796832.3A priority Critical patent/EP2463709A4/en
Priority to US13/382,214 priority patent/US8411238B2/en
Priority to CN201080030209.2A priority patent/CN102472923B/zh
Priority to RU2012102110/04A priority patent/RU2012102110A/ru
Publication of WO2011004518A1 publication Critical patent/WO2011004518A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/20Esters of polyhydric alcohols or polyhydric phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • C08F222/1025Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate of aromatic dialcohols
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • C09K2323/023Organic silicon compound, e.g. organosilicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • C09K2323/025Polyamide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • C09K2323/027Polyimide

Definitions

  • the present invention relates to a liquid crystal display panel and a manufacturing method thereof. More specifically, the present invention relates to a liquid crystal display panel with high contrast and reduced display defects, and a method for manufacturing the same.
  • PSA Polymer Sustained Alignment
  • PSA is a layer made of a polymer obtained by adding a monomer as an alignment film material to a liquid crystal material used for display and polymerizing the monomer as a second alignment layer on the first alignment film [polymer layer (Polymerized film)]. Specifically, a liquid crystal material containing a monomer is injected into a cell formed by bonding a pair of substrates each formed with a first alignment film so that the first alignment films face each other, and an electric field is applied.
  • the monomer is polymerized by, for example, irradiating ultraviolet rays in a state in which liquid crystal molecules are aligned in a predetermined direction by application.
  • a polymer layer that gives tilt to the liquid crystal molecules at the interface is formed on the first alignment film.
  • the liquid crystal molecules in contact with the polymer layer can be fixed with a pretilt angle applied.
  • Patent Document 1 discloses a process in which a liquid crystal composition containing a polymerizable monomer is injected between two substrates and the monomer is polymerized while applying a voltage between opposing transparent electrodes of the substrate.
  • a liquid crystal display device in which the produced and polymerizable monomer has one or more ring structures or condensed ring structures and two functional groups directly bonded to the ring structures or condensed ring structures, thereby reducing burn-in. Has been.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2003-307720 (Publication Date: October 31, 2003)”
  • the present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a liquid crystal display panel with high contrast and reduced display defects, and a method for manufacturing the same.
  • the present inventor manufactures a liquid crystal display panel having a uniform polymer film by combining an alignment film used in PSA and a monomer added to the liquid crystal material. The inventor has found out that it is possible to complete the present invention.
  • a liquid crystal display panel of the present invention includes a pair of substrates facing each other and a liquid crystal material sandwiched between the pair of substrates, and the pair of substrates are opposed to each other.
  • a polymer film obtained from the monomer in the liquid crystal material is formed on the pair of alignment films, and the alignment films have the general formulas (1) to (1)-( 5) a polymer compound having at least one functional group is contained, and the liquid crystal material includes a polymerizable compound represented by at least one of general formulas (6) to (8).
  • the polymer film is obtained from a polymerizable monomer represented by at least one of the general formulas (6) to (8), and the general formulas (1) to (5) Is bonded to at least one of the functional groups It is characterized in.
  • the polymer compound is preferably polyimide, polyamide, polyvinyl, polysiloxane, polymaleimide or a derivative thereof.
  • the substituent on the benzene ring is present at the o-position, m-position or p-position.
  • the substituent on the naphthalene ring are present at the o-position, m-position, p-position, ana-position, ⁇ (epi) -position, kata-position, peri-position, pros-position, amphi-position or 2,7-position.
  • the substituent for the benzene ring is preferably present at the p-position
  • the substituent for the naphthalene ring is preferably present at the amphi-position.
  • the polymerizable monomer represented by at least one of the general formulas (6) to (8) has a double bond between carbon atoms.
  • the polymer film can be formed by causing a dissociation reaction of the double bond with a radical generated from at least one functional group of formulas (1) to (5).
  • the general formula (1) The polymerized film bonded to at least one functional group of (5) is also a uniform film.
  • the reason why the functional group is uniformly dispersed in the alignment film is as follows.
  • the alignment film in a state before forming the polymer film is tilted by light irradiation or the like, and at least one functional group of the above general formulas (1) to (5) is necessary for the expression of the tilt. is there. It has been confirmed that the tilt is uniform in the plane of the alignment film (if the tilt is uneven, the display of the liquid crystal display panel is also uneven, but this is not confirmed). From the above, it can be said that at least one functional group of the general formulas (1) to (5) is uniformly dispersed in the alignment film.
  • the polymerizable monomer represented by at least one of the general formulas (6) to (8) has a benzene ring, it has an alkyl chain instead of the benzene ring.
  • the tilt can be supported more rigidly (the tilt is less likely to change when a voltage is applied for a long time).
  • the liquid crystal display panel of the present invention does not cause Rayleigh scattering because the polymer film is uniformly formed. As a result, the liquid crystal display panel of the present invention can achieve high contrast. Furthermore, in the liquid crystal display panel of the present invention, since the polymer film is uniformly formed, it is possible to prevent the formation of a huge polymer floating in the liquid crystal bulk. As a result, the liquid crystal display panel of the present invention can prevent display defects (such as bright spots and black spots).
  • the liquid crystal display panel of the present invention includes a pair of substrates facing each other and a liquid crystal material sandwiched between the pair of substrates, and the pair of substrates has a pair of facing each other.
  • An alignment film is formed, and a polymer film obtained from the monomer in the liquid crystal material is formed on the pair of alignment films, and the alignment film has the general formulas (1) to (5).
  • a polymer compound having at least one functional group is contained, and the liquid crystal material contains a polymerizable monomer represented by at least one of the general formulas (6) to (8).
  • the polymer film is obtained from a polymerizable monomer represented by at least one of the general formulas (6) to (8), and of the general formulas (1) to (5). It is bonded to at least one functional group.
  • the liquid crystal display panel of the present invention has an effect of providing a liquid crystal display panel with high contrast and reduced display defects.
  • FIG. 2 is a schematic diagram illustrating a schematic configuration of a liquid crystal display panel, where (a) illustrates a schematic configuration of a liquid crystal display panel according to Examples 1 to 3 of the present invention, and (b) illustrates a schematic configuration of a conventional liquid crystal display panel.
  • Show. 2A and 2B are views showing a TEM appearance of a liquid crystal display panel, in which FIG. 1A shows the TEM appearance of a liquid crystal display panel in Examples 1 to 3 of the present invention, and FIG. 2B shows a TEM appearance of a conventional liquid crystal display panel; ing.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a liquid crystal display panel 10 according to the present embodiment.
  • the liquid crystal display panel 10 mainly includes a pair of substrates 1 and 2 facing each other and a liquid crystal layer (liquid crystal material) 3 sandwiched between the pair of substrates 1 and 2.
  • the liquid crystal layer 3 has a configuration sealed with a sealing agent (not shown).
  • a pair of alignment films 4 and 5 are formed on the pair of substrates 1 and 2 so as to face each other.
  • liquid crystal molecules 8 are present in the liquid crystal layer 3.
  • polymer films 6 and 7 are formed on the alignment films 4 and 5, polymer films 6 and 7 are formed.
  • the alignment films 4 and 5 contain a polymer compound having at least one functional group of the general formulas (1) to (5).
  • the polymer compound is preferably polyimide, polyamide, polyvinyl, polysiloxane, polymaleimide or a derivative thereof.
  • the liquid crystal layer 3 contains a polymerizable monomer represented by at least one of the above general formulas (6) to (8).
  • the polymer films 6 and 7 are obtained from a polymerizable monomer represented by at least one of the general formulas (6) to (8), and are selected from the general formulas (1) to (5). It is bonded to at least one functional group.
  • the pair of substrates 1 and 2 facing each other is a first substrate 1 and a second substrate 2 (an array substrate and a counter substrate).
  • the array substrate examples include an active matrix substrate such as a TFT substrate provided with a plurality of active elements such as TFT (Thin Film Transistor).
  • the counter substrate examples include a CF (color filter) substrate.
  • the active matrix substrate for example, a pixel electrode made of ITO (Indium Tin Oxide) and an active element such as a TFT (Thin Film Transistor) are provided for each pixel on a glass substrate.
  • a pixel electrode made of ITO (Indium Tin Oxide) and an active element such as a TFT (Thin Film Transistor) are provided for each pixel on a glass substrate.
  • Examples include a configuration in which a vertical alignment film (alignment film) and a polymer layer (polymerization film) are formed in this order from the glass substrate side so as to cover the pixel electrodes and the active elements.
  • a color filter layer provided with R, G, B color filters corresponding to each pixel is formed on a glass substrate, and BM ( A black matrix is formed, and a common electrode made of ITO (Indium Tin Oxide), a vertical alignment film (alignment film), and a polymer layer (polymerization film) are formed from the glass substrate side so as to cover these color filters and BM.
  • ITO Indium Tin Oxide
  • vertical alignment film alignment film
  • polymerization film polymerization film
  • a polarizing plate may be provided on the surface of the substrates 1 and 2 opposite to the surface on which the alignment films 4 and 5 are formed.
  • the liquid crystal layer 3 contains a polymerizable monomer represented by at least one of the general formulas (6) to (8).
  • the liquid crystal layer 3 is not particularly limited as long as it contains a polymerizable monomer represented by at least one of the above general formulas (6) to (8). Various conventionally known liquid crystal materials Can be used. The liquid crystal layer 3 may be the same as or different from the liquid crystal material used for display.
  • the concentration of the monomer when used as a monomer composition by dissolving or dispersing the monomer in a liquid depends on the type of the monomer and liquid, the method of supplying the monomer composition onto the substrate, and the like. What is necessary is just to set suitably, although it does not specifically limit, Since a tact can be shortened so that the density
  • the monomer concentration in the monomer composition is preferably 0.1 wt% or more for reasons of shortening the tact, and preferably 10 wt% or less for reasons of compatibility.
  • the method for supplying the monomer or monomer composition onto the alignment films 4 and 5 is not particularly limited.
  • a method of applying the monomer or monomer composition onto the alignment films 4 and 5 may be used. Can be mentioned.
  • the supply amount (coating amount) of the monomer onto the alignment films 4 and 5 may be appropriately set according to the thickness of the polymer films 6 and 7 obtained by polymerizing the monomer, and is not particularly limited. It is not something.
  • the alignment films 4 and 5 contain a polymer compound containing a photocrosslinkable group represented by the structural formula (A) as a side chain.
  • spacer 1 is — (CH 2 ) r-1 —, —O— (CH 2 ) r —, —CO—O— (CH 2 ) r —, —O—CO— (CH 2 ) r -, - NR1-CO- (CH 2) r -, - CO-NR1- (CH 2) r -, - NR1- (CH 2) r -, - (CH 2) r -O- (CH 2) s —, — (CH 2 ) r —CO—O— (CH 2 ) s —, — (CH 2 ) r —O—CO— (CH 2 ) s —, — (CH 2 ) r —NR 1 —CO— ( CH 2) s -, - ( CH 2) r -NR1-CO-O- (CH 2) s -, - O- (CH 2) r -O- (CH 2) s -, - O
  • Spacer 2 consists of S1 closer to the reactive group and S2 closer to the end group; S1 is —O—, —CO—O—, —O—CO—, —NR 1 —, —NR 1 —CO—, —CO—NR 1 —, —NR 1 —CO—O—, —O—CO—NR 1 —.
  • S2 represents an aromatic or alicyclic group (which may be unsubstituted or fluorine, chlorine, cyano or a cyclic, linear or branched alkyl residue (which may be unsubstituted, cyano or halogen Or one or more CH 2 groups having 1 to 18 carbon atoms and not adjacent to each other may be independently replaced by the group Q).
  • Is substituted) Q is —O—, —CO—, —CO—O—, —O—CO—, —Si (CH 3 ) 2 —O—Si (CH 3 ) 2 —, —NR 1 —, —NR 1 —CO—.
  • R1 represents a hydrogen atom or lower alkyl
  • a terminal group is a linear or branched alkyl residue having 3 to 18 carbon atoms, which is unsubstituted, monosubstituted by cyano or halogen, or polysubstituted by halogen (wherein One or more non-adjacent CH 2 groups may be independently replaced by a group Q).
  • the liquid crystal display panel 10 is obtained from a polymerizable monomer represented by at least one of the general formulas (6) to (8) on the alignment films 4 and 5, and the general formulas (1) to ( The polymer films 6 and 7 bonded to at least one functional group of 5) are formed.
  • the formation mechanism of the polymer films 6 and 7 will be described in detail in the following examples.
  • the polymer films 6 and 7 are obtained from a polymerizable monomer represented by at least one of the general formulas (6) to (8), and at least one of the general formulas (1) to (5). Other substances may be included as long as they are bonded to one functional group.
  • the liquid crystal display panel 10 is manufactured by irradiating the alignment films 4 and 5 and the liquid crystal layer 3 with light or heat.
  • the illuminance of the irradiated light is not particularly limited as long as it is within the range of illuminance used in a general PSA. However, for reasons such as shortening tact, reducing device cost, reliability, etc. 10,000 J / cm 2 is desirable.
  • the temperature of the irradiated heat is not particularly limited as long as it is within the temperature range used in general PSA, but it is desirable that the temperature range is 0 to 80 ° C. (per liquid crystal phase transition temperature).
  • the liquid crystal display panel 10 it is preferable to irradiate the alignment films 4, 5 and the liquid crystal layer 3 with light or heat after performing a pretreatment for irradiating the alignment films 4, 5 with light or heat. .
  • the liquid crystal display panel 10 may be manufactured by irradiating the alignment films 4 and 5 and the liquid crystal layer 3 with light or heat while applying a voltage between the electrodes fixed to the substrates 1 and 2. Good.
  • the illuminance of the irradiated light and the temperature of the irradiated heat are the same as described above.
  • the applied voltage is not particularly limited as long as it is a range used in a general PSA, but it is 5 to 90 V because of the threshold voltage at which the liquid crystal starts to move (tilts) and the withstand voltage of the liquid crystal. It is desirable.
  • the polymerizable monomer may be used alone, or may be used by being dissolved or dispersed in a liquid.
  • the monomer By dissolving or dispersing the monomer in a liquid, particularly a liquid having a lower viscosity and higher fluidity than the monomer, the monomer is easily polymerized in the alignment direction of the alignment films 4 and 5, and the alignment control is easily performed. be able to.
  • a polymerization initiator for rapidly polymerizing the polymerizable monomer and the alignment films 4 and 5, for example, methyl ethyl ketone peroxide, benzoyl ether compound or the like is added. May be.
  • polymerization conditions such as polymerization time may be set as appropriate so as to obtain polymer films 6 and 7 having a desired thickness and shape, and are not particularly limited.
  • the polymer compound is preferably a compound further having a side chain containing a fluorine atom.
  • the fluorine atom since the fluorine atom has high electron withdrawing property, it attracts the aryl group (phenyl group or naphthyl group) in the monomer represented by at least one of the general formulas (6) to (8).
  • the double bond dissociation reaction can be promoted.
  • the polymerizable monomer is preferably a compound represented by the general formula (9) or the general formula (10).
  • the substituent on the benzene ring is present at the o-position, m-position or p-position.
  • the substituent on the benzene ring is preferably present at the p-position.
  • liquid crystal display panel of the present invention when general acrylate or methacrylate is used as a monomer, there is a problem in reliability (such as burn-in), but the monomer is bifunctional or rigid (such as benzene) between them. If inserted, reliability can be improved.
  • the method for producing a liquid crystal display panel according to the present invention is a method for producing the liquid crystal display panel, wherein the alignment film and the liquid crystal material are irradiated with light or heat.
  • the polymer compound having at least one functional group among the general formulas (1) to (5) contained in the alignment film, and the general formula (6) contained in the liquid crystal material By irradiating the polymerizable monomer represented by at least one of (8) with light or heat, the polymerizable monomer is obtained from the polymerizable monomer on the alignment film, and the functional group A bonded polymer film can be formed.
  • the alignment film and the liquid crystal material are irradiated with light or heat after pre-treatment of irradiating the alignment film with light or heat.
  • the liquid crystal display panel manufacturing method of the present invention can effectively orient the polymer film obtained from the polymerizable monomer.
  • the method for producing a liquid crystal display panel of the present invention is a method for producing the liquid crystal display panel, wherein a voltage is applied between the electrodes fixed to the pair of substrates while the alignment film and the liquid crystal material are applied. It is characterized by irradiating light or heat.
  • At least one functional group of the general formulas (1) to (5) contained in the alignment film is applied while applying a voltage between the electrodes fixed to the pair of substrates.
  • the alignment is performed.
  • a polymer film obtained from the polymerizable monomer and bonded to the functional group can be formed on the film in a more oriented state.
  • the polymerizable monomer dissolved in the liquid crystal material it is preferable to use the polymerizable monomer dissolved in the liquid crystal material.
  • the monomer is easily polymerized in the alignment direction of the alignment film, and alignment control can be easily performed.
  • liquid crystal display panel and the manufacturing method thereof according to the present embodiment will be described more specifically using examples.
  • the liquid crystal display panel and the manufacturing method thereof according to the present embodiment will be described in the following examples. It is not limited to only.
  • Example 1 An alignment film containing a polyamic acid (reagent) having a photoreactive cinnamate group in the side chain or a polyimide (reagent) having a photoreactive cinnamate group having an imidization ratio in the range of 0 to 100% is formed. Then, pre-baking was performed at 80 ° C. for 5 minutes, and then post-baking was performed at 200 ° C. for 60 minutes. Next, an alignment treatment was performed by irradiating polarized UV light from a direction at an angle of 45 ° to the substrate on which the alignment film was formed.
  • a seal was applied to one side substrate and beads were dispersed on the opposite substrate, and then both substrates were bonded together, and liquid crystal exhibiting negative dielectric anisotropy was injected.
  • a bifunctional monomer represented by the general formula (9) was introduced into the liquid crystal.
  • heating and quenching were performed at 130 ° C.
  • polymerization was performed by UV irradiation.
  • FIG. 2C a polymerized film was formed to assist the alignment.
  • reaction (mechanism) for forming the above polymerized film will be specifically described as follows.
  • the ⁇ bond in the cinnamate group of the alignment film having the functional group represented by the general formula (1) is broken to generate radicals.
  • the radical acts as an initiator, promotes the dissociation reaction of the double bond in the monomer represented by the general formula (9), and generates a compound represented by the general formula (11).
  • the vinyl group in the compound represented by the general formula (11) dissociates into a radical by dissociating the double bond by UV irradiation, and the vinyl group in the monomer represented by the general formula (9) or the general formula (11) Reacts with the vinyl group in the represented compound to form a polymerized film. Since the functional group represented by the general formula (1) exists uniformly, a polymerized film formed thereafter is also a uniform film.
  • Example 2 An alignment film containing a polyamic acid having a photoreactive cinnamate group in the side chain or a polyimide having a photoreactive cinnamate group having an imidization ratio in the range of 0 to 100% was formed, and the alignment film was formed at 80 ° C. Pre-baking was performed for minutes, and then post-baking was performed at 200 ° C. for 60 minutes. Subsequently, a seal was applied to one side substrate and beads were dispersed on the opposite substrate, and then both substrates were bonded together, and liquid crystal exhibiting negative dielectric anisotropy was injected. As shown in FIG. 3A, a bifunctional monomer represented by the general formula (10) was introduced into the liquid crystal. After liquid crystal injection, heating and quenching were performed at 130 ° C. Next, UV irradiation was performed in a state where a voltage of 5 V or higher was applied, thereby forming a polymer film as shown in FIG. This assisted alignment.
  • the ⁇ bond in the cinnamate group of the alignment film having the functional group represented by the general formula (1) is broken to generate radicals.
  • the radical acts as an initiator, promotes the dissociation reaction of the double bond in the monomer represented by the general formula (10), and generates a compound represented by the general formula (12).
  • the vinyl group in the compound represented by the general formula (12) dissociates into a radical by dissociating the double bond by UV irradiation, and the vinyl group in the monomer represented by the general formula (10) or the general formula (12) Reacts with the vinyl group in the represented compound to form a polymerized film. Since the functional group represented by the general formula (1) exists uniformly, a polymerized film formed thereafter is also a uniform film.
  • Example 3 An alignment film containing a polyamic acid having a photoreactive cinnamate group and fluorine in the side chain or a polyimide having a photoreactive cinnamate group and fluorine having an imidization ratio within a range of 0 to 100% is formed. , Pre-baking was performed at 80 ° C. for 5 minutes, and then post-baking was performed at 200 ° C. for 60 minutes. Next, an alignment treatment was performed by irradiating polarized UV light from a direction at an angle of 45 ° to the substrate on which the alignment film was formed.
  • a seal was applied to one side substrate and beads were dispersed on the opposite substrate, and then both substrates were bonded together, and liquid crystal exhibiting negative dielectric anisotropy was injected.
  • a bifunctional monomer represented by the general formula (9) was introduced into the liquid crystal. After liquid crystal injection, heating and quenching were performed at 130 ° C.
  • polymerization was performed by UV irradiation. Thereby, as shown in FIG. 4C, a polymerized film was formed to assist the alignment.
  • the CF 3 group in the general formula (13) has a high electron-withdrawing property and attracts biphenyl in the general formula (9).
  • UV is irradiated there, the ⁇ bond in the cinnamate group of the alignment film having the functional group represented by the general formula (13) is broken to generate radicals.
  • the radical acts as an initiator, promotes the dissociation reaction of the double bond in the monomer represented by the general formula (9), and generates a compound represented by the general formula (14).
  • the vinyl group in the compound represented by the general formula (14) dissociates into a radical by dissociating the double bond by UV irradiation, and the vinyl group in the monomer represented by the general formula (9) or the general formula (14) Reacts with the vinyl group in the represented compound to form a polymerized film. Since the functional group represented by the general formula (13) is present uniformly, a polymer film formed thereafter is also a uniform film.
  • FIG. 5 shows an alignment film of the present invention in Examples 1 to 3 and a vertical alignment film used in ASV (Advanced Super View) liquid crystal [VA (Vertical Alignment) type liquid crystal] (manufactured by JSR Corporation, product)
  • VA Advanced Super View liquid crystal
  • the graph of the said monomer reduction rate (residual monomer rate) with respect to UV irradiation time at the time of using a name: "AL60101" is shown. According to this, it can be said that the longer the UV irradiation time, the fewer the long residual monomers, and the generation of the polymerized film proceeds.
  • the radical serves as an initiator and the monomer causes a polymerization reaction. Therefore, when an alignment film such as AL60101 is used, the polymerization reaction occurs only with the monomer. This is because the polymerization reaction further proceeds as compared with the above.
  • a polymerized film is uniformly formed due to the bonds between the side chains that are present uniformly and the monomer, and Rayleigh scattering does not occur. Therefore, when the alignment film of the present invention is used, the contrast is 2000, and when AL60101 is used, the contrast is higher than 1500.
  • the liquid crystal display panels of the present invention in Examples 1 to 3 have high contrast without causing Rayleigh scattering and display without generating a huge polymer. Does not cause defects (bright spots, black spots, etc.). Specifically, since the polymer film is uniformly formed by the combination of the cinnamate group uniformly present in the alignment film and the monomer, Rayleigh scattering caused by the polymer mass is eliminated, and the contrast is improved. Achieve black neutralization. Further, since the polymer film is uniformly formed, it is possible to prevent the formation of a giant polymer that floats in the liquid crystal bulk and causes display defects (such as bright spots and black spots).
  • a polymer layer (polymerized film) in a conventional liquid crystal display panel (liquid crystal display device) was observed with a TEM (Transmission Electron Microscope, transmission electron microscope, manufactured by Hitachi, trade name “HF-2100”).
  • TEM Transmission Electron Microscope, transmission electron microscope, manufactured by Hitachi, trade name “HF-2100”.
  • island-like lumps were observed instead of a uniform film.
  • the size of this lump is about 100 nm, and since this lump causes Rayleigh scattering, it causes a decrease in contrast and coloring.
  • the polymerization of the monomer occurs not in the alignment film surface but in the liquid crystal bulk, and the polymer lump floats in the liquid crystal bulk, so that the display performance is remarkably deteriorated. This is because the structure of the alignment film generally used is not suitable for polymerizing (polymerizing) the monomer.
  • a liquid crystal molecule is added to the liquid crystal material by adding a monomer as an alignment film material and applying an electric field.
  • a monomer as an alignment film material
  • an electric field When the monomer is polymerized by, for example, irradiating ultraviolet rays in a state aligned in a predetermined direction, a radical reaction occurs between the cinnamate group, azo group or chalcone group in the side chain of the alignment film and the monomer. The polymerization reaction proceeds promptly.
  • the polymerized film becomes a uniform film.
  • the appearance was as shown in FIG.
  • the liquid crystal display panel of the present invention is suitable for a liquid crystal display device, and can be widely used for various electronic devices such as OA devices such as personal computers, AV devices such as televisions, and information terminals such as mobile phones. .
  • liquid crystal layer liquid crystal material
  • Alignment Film Alignment Film 5
  • Polymerization Film Polymerization Film 8
  • Liquid Crystal Molecule 10 Liquid Crystal Display Panel

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Liquid Crystal (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 高コントラストで、かつ表示不良を低減した液晶表示パネルを提供する。互いに対向する一対の基板(1),(2)と、一対の基板(1),(2)によって挟持される液晶層(3)とを備えており、一対の基板(1),(2)には、互いに対向する一対の配向膜(4),(5)が形成されており、一対の配向膜(4),(5)上には、液晶層(3)中のモノマーから得られる重合膜(6),(7)が形成されており、配向膜(4),(5)には、一般式(1)~(5)のうちの少なくとも1つの官能基を有する高分子化合物が含有されており、液晶層(3)には、一般式(6)~(8)のうちの少なくとも1つで表される、重合可能なモノマーが含有されており、重合膜(6),(7)が、一般式(6)~(8)のうちの少なくとも1つで表される、重合可能なモノマーから得られ、かつ一般式(1)~(5)のうちの少なくとも1つの官能基と結合している。

Description

液晶表示パネルおよびその製造方法
 本発明は、液晶表示パネルおよびその製造方法に関するものである。さらに詳しくは、高コントラストで、かつ表示不良を低減した液晶表示パネルおよびその製造方法に関するものである。
 近年、情報機器の普及に伴い、液晶表示パネルの高性能化および低コスト化に対する要求が高まっている。
 液晶表示パネルの高性能化のための技術として、例えば、PSA(Polymer Sustained Alignment)と称される技術が知られている。
 PSAとは、表示に使用する液晶材料中に配向膜材料としてモノマーを添加し、第1の配向膜上に、第2の配向層として、上記モノマーを重合してなるポリマーからなる層[ポリマー層(重合膜)]を形成する技術である。具体的には、第1の配向膜が各々形成された一対の基板を第1の配向膜同士が対向するように互いに貼り合わせてなるセル内に、モノマーを含む液晶材料を注入し、電界を印加する等して液晶分子を所定の方向に配向させた状態で紫外線を照射する等して上記モノマーを重合させる。これにより、上記第1の配向膜上に、界面の液晶分子にチルトを与えるポリマー層を形成する。その結果、ポリマー層と接触している液晶分子をプレチルト角が付与された状態で固定することができる。
 例えば、特許文献1には、重合可能なモノマーを含有している液晶組成物を2枚の基板間に注入し、基板の相対する透明電極間に電圧を印加しながらモノマーを重合する工程を経て製造され、重合可能なモノマーが1つ以上の環構造あるいは縮環構造と、該環構造あるいは縮環構造と直接結合する2つの官能基とを有することにより、焼き付きを低減した液晶表示装置が開示されている。
日本国公開特許公報「特開2003-307720号公報(公開日:2003年10月31日)」
 しかしながら、上記特許文献1に開示されている液晶表示装置では、液晶材料中でポリマーを重合する際に、巨大なポリマードメインが形成された場合、レイリー散乱を生じることによりコントラストが低下する、巨大ポリマーが生成することにより表示不良(輝点、黒点等)を起こすなどの問題点を有している。
 本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、高コントラストで、かつ表示不良を低減した液晶表示パネルおよびその製造方法を提供することにある。
 本発明者は、上記課題に鑑み鋭意検討した結果、PSAで用いられる配向膜と、液晶材料中に添加されるモノマーとを組み合わせることで、均一な重合膜を備えた液晶表示パネルを製造することができるということを独自に見出し、本発明を完成させるに至った。
 本発明の液晶表示パネルは、上記課題を解決するために、互いに対向する一対の基板と、該一対の基板によって挟持される液晶材料と、を備えており、上記一対の基板には、互いに対向する一対の配向膜が形成されており、上記一対の配向膜上には、上記液晶材料中のモノマーから得られる重合膜が形成されており、上記配向膜には、一般式(1)~(5)のうちの少なくとも1つの官能基を有する高分子化合物が含有されており、上記液晶材料には、一般式(6)~(8)のうちの少なくとも1つで表される、重合可能なモノマーが含有されており、上記重合膜が、一般式(6)~(8)のうちの少なくとも1つで表される、重合可能なモノマーから得られ、かつ一般式(1)~(5)のうちの少なくとも1つの官能基と結合していることを特徴としている。ここで、上記高分子化合物は、ポリイミド、ポリアミド、ポリビニル、ポリシロキサン、ポリマレイミドまたはその誘導体であることが好ましい。また、一般式(1)~(6),(8)において、ベンゼン環への置換基は、o位、m位またはp位に存在し、一般式(7)において、ナフタレン環への置換基は、o位、m位、p位、ana位、ε(エピ)位、kata位、peri位、pros位、amphi位または2,7位に存在する。その中で、ベンゼン環への置換基は、p位に存在することが好ましく、ナフタレン環への置換基は、amphi位に存在することが好ましい。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
(式中、P1,P2はそれぞれ独立して、アクリレート基、メタクリレート基、ビニル基またはビニロキシ基を表す。)
 上記の構成によれば、上記一般式(6)~(8)のうちの少なくとも1つで表される、重合可能なモノマーは、炭素原子間の二重結合を有しているので、上記一般式(1)~(5)のうちの少なくとも1つの官能基から生じるラジカルとの間で、該二重結合の解離反応を生じ、上記重合膜を形成することができる。
 また、上記の構成によれば、上記一般式(1)~(5)のうちの少なくとも1つの官能基は、配向膜中で均一に分散して存在しているので、上記一般式(1)~(5)のうちの少なくとも1つの官能基と結合している重合膜も均一な膜となる。
 ここで、上記官能基が配向膜中で均一に分散する理由は、以下の通りである。上記重合膜を形成する前の状態の配向膜には光照射などでチルトがついており、そのチルトの発現には上記一般式(1)~(5)のうちの少なくとも1つの官能基が必要である。そのチルトは、配向膜の面内において均一であることが確認されている(チルトにムラがあれば、液晶表示パネルの表示にもムラが出るが、それは確認されていない)。以上より、上記一般式(1)~(5)のうちの少なくとも1つの官能基は、配向膜中で均一に分散しているといえる。
 さらに、上記一般式(6)~(8)のうちの少なくとも1つで表される、重合可能なモノマーがベンゼン環を有しているので、該ベンゼン環の代わりにアルキル鎖を有しているモノマーと比べて、チルトを剛直に支えることができる(長時間電圧をかけたときにチルトが変化しにくい)。
 これにより、本発明の液晶表示パネルは、重合膜が均一に生成されているので、レイリー散乱を起こさない。その結果、本発明の液晶表示パネルは、高コントラストを実現することができる。さらに、本発明の液晶表示パネルは、重合膜が均一に生成されるため、液晶バルク中に浮かぶ巨大ポリマーの生成を防止することができる。その結果、本発明の液晶表示パネルは、表示不良(輝点、黒点等)を防止することができる。
 本発明の液晶表示パネルは、以上のように、互いに対向する一対の基板と、該一対の基板によって挟持される液晶材料と、を備えており、上記一対の基板には、互いに対向する一対の配向膜が形成されており、上記一対の配向膜上には、上記液晶材料中のモノマーから得られる重合膜が形成されており、上記配向膜には、一般式(1)~(5)のうちの少なくとも1つの官能基を有する高分子化合物が含有されており、上記液晶材料には、一般式(6)~(8)のうちの少なくとも1つで表される、重合可能なモノマーが含有されており、上記重合膜が、一般式(6)~(8)のうちの少なくとも1つで表される、重合可能なモノマーから得られ、かつ一般式(1)~(5)のうちの少なくとも1つの官能基と結合しているものである。
 それゆえ、本発明の液晶表示パネルは、高コントラストで、かつ表示不良を低減した液晶表示パネルを提供するという効果を奏する。
本発明における液晶表示パネルの実施の一形態を示す断面図である。 本発明の実施例1における液晶表示パネルの製造方法の概略構成を示す模式図である。 本発明の実施例2における液晶表示パネルの製造方法の概略構成を示す模式図である。 本発明の実施例3における液晶表示パネルの製造方法の概略構成を示す模式図である。 本発明の実施例1~3における液晶表示パネルの製造方法でのUV照射時間と残存モノマー率との関係を示すグラフである。 液晶表示パネルの概略構成を示す模式図であり、(a)は、本発明の実施例1~3における液晶表示パネルの概略構成を示し、(b)は、従来の液晶表示パネルの概略構成を示している。 液晶表示パネルのTEM外観を示す図であり、(a)は、本発明の実施例1~3における液晶表示パネルのTEM外観を示し、(b)は、従来の液晶表示パネルのTEM外観を示している。
 本発明の実施の一形態について説明すれば、以下の通りである。なお、本発明はこれに限定されるものではなく、この実施の形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に限定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例に過ぎない。なお、本明細書等において、範囲を示す「A~B」は、「A以上、B以下」であることを示す。
 図1は、本実施の形態にかかる液晶表示パネル10の概略構成を示す断面図である。具体的には、液晶表示パネル10は、主として、互いに対向する一対の基板1,2と、一対の基板1,2によって挟持される液晶層(液晶材料)3とを備えている。なお、液晶層3は、図示しないシール剤によって封入された構成を有している。一対の基板1,2には、互いに対向する一対の配向膜4,5が形成されている。また、液晶層3には、液晶分子8が存在している。また、配向膜4,5上には、重合膜6,7が形成されている。
 配向膜4,5には、上記一般式(1)~(5)のうちの少なくとも1つの官能基を有する高分子化合物が含有されている。また、上記高分子化合物は、ポリイミド、ポリアミド、ポリビニル、ポリシロキサン、ポリマレイミドまたはその誘導体であることが好ましい。
 また、液晶層3には、上記一般式(6)~(8)のうちの少なくとも1つで表される、重合可能なモノマーが含有されている。
 また、重合膜6,7は、一般式(6)~(8)のうちの少なくとも1つで表される、重合可能なモノマーから得られ、かつ一般式(1)~(5)のうちの少なくとも1つの官能基と結合しているものである。
 <基板>
 互いに対向する一対の基板1,2とは、具体的には、第1の基板1および第2の基板2(アレイ基板および対向基板)である。
 上記アレイ基板としては、例えば、TFT(Thin Film Transistor)等のアクティブ素子が複数設けられた、TFT基板等のアクティブマトリクス基板などが挙げられる。また、上記対向基板としては、例えば、CF(カラーフィルタ)基板等が挙げられる。
 上記アクティブマトリクス基板の一例としては、例えば、ガラス基板上に、ITO(Indium Tin Oxide)からなる画素電極と、TFT(Thin Film Transistor)等のアクティブ素子とが画素毎に設けられ、その上に、これら画素電極およびアクティブ素子を覆うように、垂直配向膜(配向膜)とポリマー層(重合膜)とが、ガラス基板側からこの順に形成された構成などが挙げられる。
 一方、上記CF基板の一例としては、例えば、ガラス基板上に、各画素に対応してR,G,Bのカラーフィルタが設けられたカラーフィルタ層を形成するとともに、各カラーフィルタ間にBM(ブラックマトリクス)が形成され、これらカラーフィルタおよびBMを覆うように、ITO(Indium Tin Oxide)からなる共通電極、垂直配向膜(配向膜)、およびポリマー層(重合膜)が、ガラス基板側からこの順に形成された構成などが挙げられる。
 また、基板1,2における配向膜4,5が形成されている面と反対側の面には、偏光板が備えられていてもよい。
 <液晶層(液晶材料)>
 液晶層3には、一般式(6)~(8)のうちの少なくとも1つで表される、重合可能なモノマーが含有されている。
Figure JPOXMLDOC01-appb-C000003
(式中、P1,P2はそれぞれ独立して、アクリレート基、メタクリレート基、ビニル基またはビニロキシ基を表す。)
 液晶層3は、上記一般式(6)~(8)のうちの少なくとも1つで表される、重合可能なモノマーが含有されていれば特に限定されるものではなく、従来公知の各種液晶材料を使用することができる。なお、液晶層3は、表示に使用される液晶材料と同じであってもよく、異なっていても構わない。
 また、上記モノマーを液体に溶解または分散させることによりモノマー組成物として使用する場合における上記モノマーの濃度は、上記モノマーおよび液体の種類並びに上記モノマー組成物を上記基板上に供給する方法等に応じて適宜設定すればよく、特に限定されるものではないが、モノマーの濃度が高いほどタクトを短くすることができることから好ましい。ただし、重合膜化せずモノマーとして残る(残存モノマーになる)場合には、液晶表示パネルに焼き付きが起こるなどの弊害が生じる。また、モノマーの濃度が高すぎると、溶けきらずに析出したりする。よって、上記モノマー組成物中におけるモノマーの濃度としては、1wt%以下であることが特に好ましいと考えられる。
 上記モノマー組成物中におけるモノマーの濃度としては、タクトを短くするという理由から、0.1wt%以上であることが好ましく、相溶性の理由から、10wt%以下であることが好ましい。
 また、配向膜4,5上に上記モノマーあるいはモノマー組成物を供給する方法としては、特に限定されるものではなく、例えば、配向膜4,5上にモノマーあるいはモノマー組成物を塗布する方法等が挙げられる。
 なお、配向膜4,5上への上記モノマーの供給量(塗布量)としては、該モノマーを重合して得られる重合膜6,7の厚み等に応じて適宜設定すればよく、特に限定されるものではない。
 <配向膜>
 配向膜4,5には、構造式(A)で表される光架橋性基を側鎖として含む高分子化合物が含有されている。
Figure JPOXMLDOC01-appb-C000004
[式中、スペーサー1は、-(CHr-1-、-O-(CHr-、-CO-O-(CH2r-、-O-CO-(CH2r-、-NR1-CO-(CH2r-、-CO-NR1-(CH2)r-、-NR1-(CH2r-、-(CH2r-O-(CH2s-、-(CH2r-CO-O-(CH2s-、-(CH2r-O-CO-(CH2s-、-(CH2r-NR1-CO-(CH2s-、-(CH2r-NR1-CO-O-(CH2s-、-O-(CH2r-O-(CH2s-、-O-(CH2r-CO-O-(CH2s-、-O-(CH2r-NR1-CO-(CH2s-、-O-(CH2r-NR1-CO-O-(CH2s-および-CO-O-(CH2r-O-(CH2s-(ここで、R1は、水素原子又は低級アルキルを表し、rおよびsは、それぞれ整数1~20である)からなる群より選択される基を表し;
反応基は、一般式(1)~(5)から選択される基を表し;
Figure JPOXMLDOC01-appb-C000005
スペーサー2は、反応基に近い方のS1と末端基に近い方のS2とからなり;
S1は、-O-、-CO-O-、-O-CO-、-NR1-、-NR1-CO-、-CO-NR1-、-NR1-CO-O-、-O-CO-NR1-、-NR1-CO-NR1-、-CH=CH-、-C≡C-、-O-CO-O-および直鎖状又は分鎖状のアルキレン基(ここで、場合によりアルキレンの隣接しない2個又は3個のCH基は、独立して基Qで置き換えられており、R1が水素原子又は低級アルキルを表す(但し、アルキレン基の鎖炭素原子の合計数が24を超えないことを条件とする))からなる群より選択される基を表し;
S2は、芳香族又は脂環式基(これは、非置換か、あるいはフッ素、塩素、シアノ又は環式、直鎖状もしくは分岐鎖状のアルキル残基(これは、非置換か、シアノもしくはハロゲンで単置換されているか、又はハロゲンで多置換されており、炭素原子1~18個を有し、隣接しない1個以上のCH基は、独立して基Qで置き換えられていてもよい)で置換されている)を表し;
Qは、-O-、-CO-、-CO-O-、-O-CO-、-Si(CH2-O-Si(CH2-、-NR1-、-NR1-CO-、-CO-NR1-、-NR1-CO-O-、-O-CO-NR1-、-NR1-CO-NR1-、-CH=CH-、-C≡C-および-O-CO-O-(ここで、R1は、水素原子又は低級アルキルを表す)から選択される基を表し;
末端基は、非置換か、シアノもしくはハロゲンで単置換されているか、又はハロゲンで多置換されている、炭素原子3~18個を有する直鎖状または分岐鎖状のアルキル残基(ここで、隣接しない1個以上のCH基は、独立して基Qで置き換えられていてもよい)である。]
 <重合膜>
 液晶表示パネル10は、配向膜4,5上に、一般式(6)~(8)のうちの少なくとも1つで表される、重合可能なモノマーから得られ、かつ一般式(1)~(5)のうちの少なくとも1つの官能基と結合している重合膜6,7が形成されているものである。重合膜6,7の形成メカニズムは、以下の実施例の中で詳細に説明する。
 重合膜6,7は、一般式(6)~(8)のうちの少なくとも1つで表される、重合可能なモノマーから得られ、かつ一般式(1)~(5)のうちの少なくとも1つの官能基と結合していれば、他の物質を含んでいてもよい。
 <液晶表示パネルの製造方法>
 液晶表示パネル10は、配向膜4,5および液晶層3に対して光または熱を照射することにより製造される。
 ここで、照射される光の照度は、一般的なPSAで用いられる照度の範囲であれば特に限定されないが、タクトを短くする、装置コストを低減する、信頼性等との理由から、100~10,000J/cmであることが望ましい。
 また、照射される熱の温度は、一般的なPSAで用いられる温度の範囲であれば特に限定されないが、温度範囲0~80℃(液晶の相転移温度あたり)であることが望ましい。
 液晶表示パネル10の製造方法では、配向膜4,5に対して光または熱を照射する前処理をした後に、配向膜4,5および液晶層3に対して光または熱を照射することが好ましい。
 また、液晶表示パネル10は、基板1,2に固定された電極の間に電圧を印加しながら、配向膜4,5および液晶層3に対して光または熱を照射することにより製造されてもよい。ここで、照射される光の照度および照射される熱の温度は、上記と同様である。
 ここで、印加される電圧は、一般的なPSAで用いられる範囲であれば特に限定されないが、液晶が動き始める(傾斜する)閾電圧、液晶の絶縁耐圧との理由から、5~90Vであることが望ましい。
 また、液晶表示パネル10の製造方法では、上記重合可能なモノマーを、単独で使用してもよく、液体に溶解または分散させて使用してもよい。
 上記モノマーを、液体、特に該モノマーよりも粘性が低く、流動性が高い液体に溶解または分散させることで、モノマーが、配向膜4,5の配向方向に重合し易く、配向制御を容易に行うことができる。
 また、液晶表示パネル10の製造方法では、上記重合可能なモノマーと配向膜4,5との重合を迅速に行わせるための重合開始剤、例えばメチルエチルケトンパーオキサイド、ベンゾイルエーテル系化合物等が添加されていてもよい。
 なお、重合時間等のその他の重合条件は、所望の厚みおよび形状の重合膜6,7が得られるように適宜設定すればよく、特に限定されるものではない。
 <本発明の好ましい形態>
 本発明の液晶表示パネルでは、上記高分子化合物は、フッ素原子を含む側鎖をさらに有する化合物であることが好ましい。
 これにより、フッ素原子は電子吸引性が高いので、上記一般式(6)~(8)のうちの少なくとも1つで表されるモノマーにおけるアリール基(フェニル基またはナフチル基)と引き合い、該モノマーにおける二重結合の解離反応を促進させることができる。
 また、本発明の液晶表示パネルでは、上記重合可能なモノマーは、一般式(9)または一般式(10)で表される化合物であることが好ましい。ここで、一般式(9),(10)において、ベンゼン環への置換基は、o位、m位またはp位に存在する。その中で、ベンゼン環への置換基は、p位に存在することが好ましい。
Figure JPOXMLDOC01-appb-C000006
 本発明の液晶表示パネルは、モノマーとして一般的なアクリレートやメタクリレートを用いた場合、信頼性(焼き付きなど)に問題が生じるが、モノマーを二官能にしたり、間に剛直なもの(ベンゼンなど)を入れたりすると、信頼性を向上させることができる。
 本発明の液晶表示パネルの製造方法は、上記液晶表示パネルを製造する方法であって、上記配向膜および上記液晶材料に対して光または熱を照射することを特徴としている。
 上記の構成によれば、上記配向膜に含有される一般式(1)~(5)のうちの少なくとも1つの官能基を有する高分子化合物、および上記液晶材料に含有される一般式(6)~(8)のうちの少なくとも1つで表される重合可能なモノマーに対して光または熱を照射することで、上記配向膜上に、該重合可能なモノマーから得られ、かつ該官能基と結合している重合膜を形成することができる。
 また、本発明の液晶表示パネルの製造方法では、上記配向膜に対して光または熱を照射する前処理をした後に、上記配向膜および上記液晶材料に対して光または熱を照射することが好ましい。
 これにより、本発明の液晶表示パネルの製造方法は、上記重合可能なモノマーから得られる重合膜を、効果的に配向させることができる。
 本発明の液晶表示パネルの製造方法は、上記液晶表示パネルを製造する方法であって、上記一対の基板に固定された電極の間に電圧を印加しながら、上記配向膜および上記液晶材料に対して光または熱を照射することを特徴としている。
 上記の構成によれば、上記一対の基板に固定された電極の間に電圧を印加しながら、上記配向膜に含有される一般式(1)~(5)のうちの少なくとも1つの官能基を有する高分子化合物、および上記液晶材料に含有される一般式(6)~(8)のうちの少なくとも1つで表される重合可能なモノマーに対して光または熱を照射することで、上記配向膜上に、該重合可能なモノマーから得られ、かつ該官能基と結合している重合膜を、より一層配向させた状態で形成することができる。
 また、本発明の液晶表示パネルの製造方法では、上記重合可能なモノマーを、上記液晶材料に溶解させて使用することが好ましい。
 これにより、本発明の液晶表示パネルの製造方法は、上記モノマーが上記配向膜の配向方向に重合しやすく、配向制御を容易に行うことができる。
 なお、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 以下に、本実施の形態にかかる液晶表示パネルおよびその製造方法について、実施例を用いてより具体的に説明するが、本実施の形態にかかる液晶表示パネルおよびその製造方法は、以下の実施例にのみ限定されるものではない。
 〔実施例1〕
 側鎖に光反応性のシンナメート基を有するポリアミック酸(試薬)または0~100%の範囲内のイミド化率である光反応性のシンナメート基を有するポリイミド(試薬)を含有する配向膜を成膜し、80℃で5分間プリベークを行い、その後200℃で60分間ポストベークを行った。次に、配向膜が成膜された基板に対して斜め45°の方向から偏光UV照射を行うことによって配向処理を施した。引き続き、片側基板にシールを塗布し対向基板にビーズを散布した後に両基板を貼り合わせ、負の誘電率異方性を示す液晶を注入した。図2の(a)に示すように、液晶中には一般式(9)で表されるニ官能モノマーを導入した。液晶注入後、130℃で加熱急冷を行った。引き続き、図2の(b)に示すように、UV照射により重合を行った。これにより、図2の(c)に示すように、重合膜が形成され、配向をアシストした。
 上記の重合膜を形成する反応(メカニズム)を具体的に説明すると、以下のようになる。
 UV照射時に、一般式(1)で表される官能基を有する配向膜のシンナメート基におけるπ結合が切れてラジカルが生じる。そのラジカルが開始剤として働き、一般式(9)で表されるモノマーにおける二重結合の解離反応を促進し、一般式(11)で表される化合物を生成する。さらに、一般式(11)で表される化合物におけるビニル基は、UV照射により二重結合が解離してラジカルとなり、一般式(9)で表されるモノマーにおけるビニル基または一般式(11)で表される化合物におけるビニル基と反応し、重合膜を生成する。一般式(1)で表される官能基が均一に存在するため、その後に生成される重合膜も均一な膜となる。
Figure JPOXMLDOC01-appb-C000007
 〔実施例2〕
 側鎖に光反応性のシンナメート基を有するポリアミック酸または0~100%の範囲内のイミド化率である光反応性のシンナメート基を有するポリイミドを含有する配向膜を成膜し、80℃で5分間プリベークを行い、その後200℃で60分間ポストベークを行った。引き続き、片側基板にシールを塗布し対向基板にビーズを散布した後に両基板を貼り合わせ、負の誘電率異方性を示す液晶を注入した。図3の(a)に示すように、液晶中には一般式(10)で表されるニ官能モノマーを導入した。液晶注入後、130℃で加熱急冷を行った。次に、5V以上の電圧を印加した状態で、UV照射を行うことによって、図3の(b)に示すように、重合膜が形成され、配向処理を施した。これにより、配向をアシストした。
 上記の重合膜を形成する反応を具体的に説明すると、以下のようになる。
 UV照射時に、一般式(1)で表される官能基を有する配向膜のシンナメート基におけるπ結合が切れてラジカルが生じる。そのラジカルが開始剤として働き、一般式(10)で表されるモノマーにおける二重結合の解離反応を促進し、一般式(12)で表される化合物を生成する。さらに、一般式(12)で表される化合物におけるビニル基は、UV照射により二重結合が解離してラジカルとなり、一般式(10)で表されるモノマーにおけるビニル基または一般式(12)で表される化合物におけるビニル基と反応し、重合膜を生成する。一般式(1)で表される官能基が均一に存在するため、その後に生成される重合膜も均一な膜となる。
Figure JPOXMLDOC01-appb-C000008
 〔実施例3〕
 側鎖に光反応性のシンナメート基およびフッ素を有するポリアミック酸、または0~100%の範囲内のイミド化率である光反応性のシンナメート基およびフッ素を有するポリイミドを含有する配向膜を成膜し、80℃で5分間プリベークを行い、その後200℃で60分間ポストベークを行った。次に、配向膜が成膜された基板に対して斜め45°の方向から偏光UV照射を行うことによって配向処理を施した。引き続き、片側基板にシールを塗布し対向基板にビーズを散布した後に両基板を貼り合わせ、負の誘電率異方性を示す液晶を注入した。図4の(a)に示すように、液晶中には一般式(9)で表されるニ官能モノマーを導入した。液晶注入後、130℃で加熱急冷を行った。引き続き、図4の(b)に示すように、UV照射により重合を行った。これにより、図4の(c)に示すように、重合膜が形成され、配向をアシストした。
 上記の重合膜を形成する反応を具体的に説明すると、以下のようになる。
 一般式(13)におけるCF基は電子吸引性が高く、一般式(9)におけるビフェニルと引き合う。そこにUVを照射すると、一般式(13)で表される官能基を有する配向膜のシンナメート基におけるπ結合が切れてラジカルが生じる。そのラジカルが開始剤として働き、一般式(9)で表されるモノマーにおける二重結合の解離反応を促進し、一般式(14)で表される化合物を生成する。さらに、一般式(14)で表される化合物におけるビニル基は、UV照射により二重結合が解離してラジカルとなり、一般式(9)で表されるモノマーにおけるビニル基または一般式(14)で表される化合物におけるビニル基と反応し、重合膜を生成する。一般式(13)で表される官能基が均一に存在するため、その後に生成される重合膜も均一な膜となる。
Figure JPOXMLDOC01-appb-C000009
 〔実施例まとめ〕
 図5には、実施例1~3における本発明の配向膜と、ASV(Advanced Super View)液晶[VA(Vertical Alignment)方式の液晶]で使用している垂直配向膜(JSR株式会社製、商品名:「AL60101」)とを用いた場合の、UV照射時間に対する上記モノマー減少率(残存モノマー率)のグラフを示す。これによれば、UV照射時間が長いほど、長残存モノマーが少なく、重合膜の生成が進行していると言える。
 図5に示すように、本発明の配向膜を用いた場合には、AL60101を用いた場合よりも重合膜の生成がより一層進行することが明らかである。
 なぜなら、本発明の配向膜の側鎖がラジカル化した場合には、そのラジカルが開始剤となりモノマーが重合反応を起こすため、AL60101のような配向膜を用いた場合にモノマーのみで重合反応を起こすのに比べて、重合反応がより一層進行するからである。
 さらに、本発明の配向膜では、均一に存在する側鎖と上記モノマーとの結合により、重合膜が均一に生成しており、レイリー散乱を起こさない。そのため、本発明の配向膜を用いた場合には、コントラストが2000となり、AL60101を用いた場合にコントラストが1500となるのに比べて高くなる。
 また、図6の(b)に示すように、従来の液晶表示パネルでは、液晶バルク(液晶材料)中で重合膜を生成する際に、レイリー散乱を生じることによりコントラストが低下し、かつ巨大ポリマーが生成することにより表示不良(輝点、黒点等)を起こす。
 これに対して、図6の(a)に示すように、実施例1~3における本発明の液晶表示パネルでは、レイリー散乱を生じることなく高コントラストであり、かつ巨大ポリマーが生成することなく表示不良(輝点、黒点等)を起こさない。具体的には、配向膜中で均一に存在するシンナメート基と上記モノマーとの結合により、重合膜が均一に生成されるため、重合物の塊が原因で生じるレイリー散乱がなくなり、コントラストの向上および黒のニュートラル化を達成する。さらに、重合膜が均一に生成されるため、液晶バルク中に浮かび表示不良(輝点、黒点等)を起こす巨大ポリマーの生成が防止される。
 ここで、従来の液晶表示パネル(液晶表示装置)におけるポリマー層(重合膜)をTEM(Transmission Electron Microscope、透過型電子顕微鏡、Hitachi社製、商品名「HF-2100」)で観察したところ、図7の(b)に示すように、均一な膜ではなく、アイランド状の塊が見られた。この塊の大きさは約100nmであり、この塊が原因でレイリー散乱を起こすため、コントラストの低下および色付きを引き起こす。また、重合条件などによっては、モノマーの重合が配向膜表面ではなく液晶バルク中で起こり、液晶バルク中をポリマーの塊が浮遊するため、表示性能を著しく低下させる。それは、一般的に使用される配向膜の構造が、上記モノマーをポリマー化(重合)させるのに適合していないためである。
 そこで、本発明の液晶表示パネルでは、シンナメート基、アゾ基またはカルコン基を有する配向膜を用いることで、液晶材料中に配向膜材料としてモノマーを添加し、電界を印加する等して液晶分子を所定の方向に配向させた状態で紫外線を照射する等して上記モノマーを重合させる際に、配向膜の側鎖におけるシンナメート基、アゾ基またはカルコン基と、上記モノマーとの間に、ラジカル反応が生じて重合反応が速やかに進行する。また、配向膜の側鎖におけるシンナメート基、アゾ基またはカルコン基が均一に分散しているため、重合した膜は均一な膜となる。本発明の液晶表示パネルにおけるポリマー層(重合膜)をTEMで観察したところ、図7の(a)に示すような外観になった。
 すなわち、上述した具体的な実施形態および実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内において、いろいろと変更して実施することができるものである。
 本発明の液晶表示パネルは、液晶表示装置用として好適であり、例えば、パーソナルコンピュータ等のOA機器、テレビ等のAV機器、携帯電話等の情報端末などの各種電子機器に広く利用することができる。
 1  基板
 2  基板
 3  液晶層(液晶材料)
 4  配向膜
 5  配向膜
 6  重合膜
 7  重合膜
 8  液晶分子
 10 液晶表示パネル

Claims (8)

  1.  互いに対向する一対の基板と、該一対の基板によって挟持される液晶材料と、を備えており、
     上記一対の基板には、互いに対向する一対の配向膜が形成されており、
     上記一対の配向膜上には、上記液晶材料中のモノマーから得られる重合膜が形成されており、
     上記配向膜には、一般式(1)~(5)のうちの少なくとも1つの官能基を有する高分子化合物が含有されており、
     上記液晶材料には、一般式(6)~(8)のうちの少なくとも1つで表される、重合可能なモノマーが含有されており、
     上記重合膜が、一般式(6)~(8)のうちの少なくとも1つで表される、重合可能なモノマーから得られ、かつ一般式(1)~(5)のうちの少なくとも1つの官能基と結合しているものであることを特徴とする液晶表示パネル。
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    式中、P1,P2はそれぞれ独立して、アクリレート基、メタクリレート基、ビニル基またはビニロキシ基を表す。
  2.  上記高分子化合物は、ポリイミド、ポリアミド、ポリビニル、ポリシロキサン、ポリマレイミドまたはその誘導体であることを特徴とする請求項1に記載の液晶表示パネル。
  3.  上記高分子化合物は、フッ素原子を含む側鎖をさらに有する化合物であることを特徴とする請求項1または2に記載の液晶表示パネル。
  4.  上記重合可能なモノマーは、一般式(9)または一般式(10)で表される化合物であることを特徴とする請求項1~3のいずれか1項に記載の液晶表示パネル。
    Figure JPOXMLDOC01-appb-C000012
  5.  請求項1~4のいずれか1項に記載の液晶表示パネルを製造する方法であって、
     上記配向膜および上記液晶材料に対して光または熱を照射することを特徴とする液晶表示パネルの製造方法。
  6.  上記配向膜に対して光または熱を照射する前処理をした後に、
     上記配向膜および上記液晶材料に対して光または熱を照射することを特徴とする請求項5に記載の液晶表示パネルの製造方法。
  7.  請求項1~4のいずれか1項に記載の液晶表示パネルを製造する方法であって、
     上記一対の基板に固定された電極の間に電圧を印加しながら、上記配向膜および上記液晶材料に対して光または熱を照射することを特徴とする液晶表示パネルの製造方法。
  8.  上記重合可能なモノマーを、上記液晶材料に溶解させて使用することを特徴とする請求項5~7のいずれか1項に記載の液晶表示パネルの製造方法。
PCT/JP2010/002090 2009-07-08 2010-03-24 液晶表示パネルおよびその製造方法 WO2011004518A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10796832.3A EP2463709A4 (en) 2009-07-08 2010-03-24 Liquid crystal display panel and method of production thereof
US13/382,214 US8411238B2 (en) 2009-07-08 2010-03-24 Liquid crystal display panel and process for production thereof
CN201080030209.2A CN102472923B (zh) 2009-07-08 2010-03-24 液晶显示面板及其制造方法
RU2012102110/04A RU2012102110A (ru) 2009-07-08 2010-03-24 Жидкокристаллическая дисплейная панель и способ ее изготовления

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009162120 2009-07-08
JP2009-162120 2009-07-08

Publications (1)

Publication Number Publication Date
WO2011004518A1 true WO2011004518A1 (ja) 2011-01-13

Family

ID=43428952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002090 WO2011004518A1 (ja) 2009-07-08 2010-03-24 液晶表示パネルおよびその製造方法

Country Status (6)

Country Link
US (1) US8411238B2 (ja)
EP (1) EP2463709A4 (ja)
KR (1) KR20120021328A (ja)
CN (1) CN102472923B (ja)
RU (1) RU2012102110A (ja)
WO (1) WO2011004518A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8411238B2 (en) 2009-07-08 2013-04-02 Sharp Kabushiki Kaisha Liquid crystal display panel and process for production thereof
US8455062B2 (en) 2009-07-08 2013-06-04 Sharp Kabushiki Kaisha Liquid crystal display panel and process for production thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046608A1 (ja) * 2010-10-07 2012-04-12 シャープ株式会社 液晶表示装置
WO2014070792A1 (en) 2012-10-29 2014-05-08 Ariste Medical, Inc. Polymer coating compositions and coated products
CN106471074A (zh) 2014-04-22 2017-03-01 阿里斯特医疗公司 用于施加药物递送聚合物涂料的方法和工艺
WO2016093103A1 (ja) * 2014-12-08 2016-06-16 シャープ株式会社 液晶表示装置
KR101732531B1 (ko) 2016-12-29 2017-05-08 주식회사 삼도환경 공진형 전력구동기를 이용한 농축산용 플라즈마 발생장치
CN113419381B (zh) * 2021-06-07 2022-09-27 Tcl华星光电技术有限公司 液晶显示面板和移动终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09197407A (ja) * 1996-01-12 1997-07-31 Nec Corp 液晶表示装置およびその製造方法
JPH11508064A (ja) * 1996-04-09 1999-07-13 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 光学素子の製造方法
JP2003307720A (ja) 2002-04-16 2003-10-31 Fujitsu Ltd 液晶表示装置
JP2005509187A (ja) * 2001-09-24 2005-04-07 シュティヒティング ダッチ ポリマー インスティテュート 第1および第2のサブ層を含む配向層
JP2006343719A (ja) * 2005-06-08 2006-12-21 Au Optronics Corp 液晶ディスプレイパネルの製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100236256B1 (ko) 1995-04-24 1999-12-15 가네꼬 히사시 액정 표시 장치, 그 제조 방법 및 그 구동 방법
DE19521771A1 (de) 1995-06-20 1997-01-02 Jan Michael Mrosik FMCW-Abstandsmeßverfahren
TW515926B (en) * 1996-07-10 2003-01-01 Matsushita Electric Ind Co Ltd Liquid crystal alignment film and method for producing the same, and liquid crystal display apparatus using the same and method for producing the same
EP1754768B1 (en) 2004-05-31 2011-03-30 DIC Corporation Polymerizable liquid crystal composition and optically anisotropic body
EP1799791B1 (en) * 2004-10-13 2016-01-13 Rolic AG Photocrosslinkable materials
JP4713946B2 (ja) * 2005-05-30 2011-06-29 シャープ株式会社 液晶表示装置
JP4879987B2 (ja) * 2006-08-10 2012-02-22 シャープ株式会社 液晶表示装置
JP2009086296A (ja) 2007-09-28 2009-04-23 Sharp Corp 液晶表示パネルの製造方法
US7643124B2 (en) * 2007-09-28 2010-01-05 Au Optronics Corp. Liquid crystal, and liquid crystal material combination and liquid crystal display each containing the same
TWI368645B (en) * 2007-10-24 2012-07-21 Au Optronics Corp Liquid crystal medium for psa process and liquid crystal display device
RU2012102110A (ru) 2009-07-08 2013-08-20 Шарп Кабушики Каиша Жидкокристаллическая дисплейная панель и способ ее изготовления
EP2458431A4 (en) 2009-07-08 2013-03-20 Sharp Kk Liquid crystal display panel and method of production thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09197407A (ja) * 1996-01-12 1997-07-31 Nec Corp 液晶表示装置およびその製造方法
JPH11508064A (ja) * 1996-04-09 1999-07-13 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 光学素子の製造方法
JP2005509187A (ja) * 2001-09-24 2005-04-07 シュティヒティング ダッチ ポリマー インスティテュート 第1および第2のサブ層を含む配向層
JP2003307720A (ja) 2002-04-16 2003-10-31 Fujitsu Ltd 液晶表示装置
JP2006343719A (ja) * 2005-06-08 2006-12-21 Au Optronics Corp 液晶ディスプレイパネルの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2463709A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8411238B2 (en) 2009-07-08 2013-04-02 Sharp Kabushiki Kaisha Liquid crystal display panel and process for production thereof
US8455062B2 (en) 2009-07-08 2013-06-04 Sharp Kabushiki Kaisha Liquid crystal display panel and process for production thereof

Also Published As

Publication number Publication date
CN102472923A (zh) 2012-05-23
US20120099064A1 (en) 2012-04-26
EP2463709A1 (en) 2012-06-13
KR20120021328A (ko) 2012-03-08
RU2012102110A (ru) 2013-08-20
CN102472923B (zh) 2014-06-18
EP2463709A4 (en) 2014-01-22
US8411238B2 (en) 2013-04-02

Similar Documents

Publication Publication Date Title
WO2011004519A1 (ja) 液晶表示パネルおよびその製造方法
KR100928758B1 (ko) 액정 표시 장치 및 그 제조 방법
WO2011004518A1 (ja) 液晶表示パネルおよびその製造方法
TWI574994B (zh) Liquid crystal display device
US8691349B2 (en) Liquid crystal display panel and fabricating method thereof
CN103154809B (zh) 液晶显示装置和液晶显示装置的制造方法
KR101824055B1 (ko) 액정 표시 소자 및 액정 표시 소자의 제조 방법
CN103782230A (zh) 液晶显示装置的制造方法
WO2014061755A1 (ja) 液晶表示装置及び液晶表示装置の製造方法
JP5113869B2 (ja) 液晶表示装置及びその製造方法
KR101978796B1 (ko) 액정 표시 소자 및 액정 표시 소자의 제조 방법
JP2006058755A (ja) 液晶表示装置およびその製造方法
WO2014045923A1 (ja) 液晶表示装置及びその製造方法
TWI403808B (zh) 液晶顯示面板的製造方法
JP5158314B2 (ja) 液晶配向剤および液晶表示素子
WO2014034517A1 (ja) 液晶表示装置及びその製造方法
WO2013069487A1 (ja) 液晶表示装置及びその製造方法
JP2019056036A (ja) ネガ型液晶材料、液晶セル及び液晶表示装置
WO2017110704A1 (ja) 液晶表示装置、及び、液晶表示装置の製造方法
TWI498646B (zh) 具有液晶顯示裝置之影像顯示系統及液晶顯示裝置之製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080030209.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10796832

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13382214

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127001196

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 684/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010796832

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012102110

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012000291

Country of ref document: BR