WO2011003323A1 - 获取液压泵的排量控制机构特性参数的方法和检测装置 - Google Patents

获取液压泵的排量控制机构特性参数的方法和检测装置 Download PDF

Info

Publication number
WO2011003323A1
WO2011003323A1 PCT/CN2010/074233 CN2010074233W WO2011003323A1 WO 2011003323 A1 WO2011003323 A1 WO 2011003323A1 CN 2010074233 W CN2010074233 W CN 2010074233W WO 2011003323 A1 WO2011003323 A1 WO 2011003323A1
Authority
WO
WIPO (PCT)
Prior art keywords
control mechanism
pressure
displacement control
hydraulic pump
obtaining
Prior art date
Application number
PCT/CN2010/074233
Other languages
English (en)
French (fr)
Inventor
周翔
曹显利
Original Assignee
湖南三一智能控制设备有限公司
三一重工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南三一智能控制设备有限公司, 三一重工股份有限公司 filed Critical 湖南三一智能控制设备有限公司
Priority to ES10796700T priority Critical patent/ES2403688T3/es
Priority to US13/139,710 priority patent/US8939731B2/en
Priority to EP10796700A priority patent/EP2372169B1/en
Publication of WO2011003323A1 publication Critical patent/WO2011003323A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/002Calibrating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/002Hydraulic systems to change the pump delivery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/08Regulating by delivery pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/04Pressure in the outlet chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/05Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed specially adapted to maintain constant speed, e.g. pressure-compensated, load-responsive
    • F15B11/055Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed specially adapted to maintain constant speed, e.g. pressure-compensated, load-responsive by adjusting the pump output or bypass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • F15B2211/20553Type of pump variable capacity with pilot circuit, e.g. for controlling a swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/25Pressure control functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6316Electronic controllers using input signals representing a pressure the pressure being a pilot pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/632Electronic controllers using input signals representing a flow rate
    • F15B2211/6323Electronic controllers using input signals representing a flow rate the flow rate being a pressure source flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6333Electronic controllers using input signals representing a state of the pressure source, e.g. swash plate angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6652Control of the pressure source, e.g. control of the swash plate angle

Definitions

  • the invention relates to a hydraulic detecting technology, in particular to a method for obtaining a characteristic parameter of a displacement control mechanism of a hydraulic pump, wherein the displacement control mechanism is used for adjusting and controlling the displacement of the hydraulic pump;
  • the detection device of the hydraulic pump displacement control mechanism of the method is used for adjusting and controlling the displacement of the hydraulic pump.
  • Construction machinery generally has the characteristics of large transmission power, low speed, wide speed range, and complex and variable control process. This is the advantage of hydraulic transmission. Therefore, the hydraulic system is generally used as the main transmission mode in the field of construction machinery. Moreover, many hydraulic engineering machines have emerged, such as: full hydraulic excavators, full hydraulic bulldozers, full hydraulic cranes, full hydraulic graders, full hydraulic rollers, full hydraulic pavers, full hydraulic forklifts, etc.
  • Hydraulic systems typically include hydraulic pumps, hydraulic rams, and hydraulic actuators.
  • the hydraulic pump converts the mechanical energy of the prime mover into the hydraulic energy of the hydraulic oil.
  • the hydraulic pressure adjusts the pressure, flow and direction of the hydraulic oil.
  • the hydraulic actuator converts the hydraulic energy of the hydraulic oil into mechanical energy, performs corresponding actions, and completes the predetermined operation. operating.
  • the hydraulic system control functions mainly include three types: speed control function, power control function and energy saving control function.
  • the output flow, the output power of the hydraulic system is also related to the hydraulic system pressure and the output flow of the hydraulic pump. Since the pressure of the hydraulic system is determined by the size of the load, the control of the operating speed of the hydraulic actuator and the control of the output power of the hydraulic system are performed. Actually by controlling the output flow of the hydraulic pump Now.
  • the basic idea of energy-saving control is to balance the flow supply and flow demand, that is, to adjust the output flow of the hydraulic pump to meet the demand for hydraulic oil flow of the hydraulic actuator, to reduce the output of the useless hydraulic energy, and to achieve energy saving of the hydraulic system. Therefore, achieving energy-saving control also requires controlling the output flow of the hydraulic pump. It can be seen that the realization of the control function of the hydraulic system mainly depends on the control of the output flow of the hydraulic pump.
  • the output flow of the hydraulic pump is in turn related to the input speed and displacement.
  • the speed of the hydraulic pump is provided by the prime mover.
  • the engine In the construction machinery industry, the engine is generally used as the power source.
  • the speed of the diesel engine In order to prolong the service life of the engine and save the fuel consumption of the engine, the speed of the diesel engine is generally controlled, that is, by controlling the hydraulic pump.
  • the absorbed power is substantially constant so that the engine speed remains substantially constant to protect the engine from the impact of the hydraulic system load; therefore, in actual operation, the input speed of the hydraulic pump is kept substantially constant, thus controlling the output flow of the hydraulic pump.
  • the upper is the control of its displacement.
  • the displacement control mechanism is generally used to realize the adaptive adjustment of the displacement of the hydraulic pump.
  • the displacement control mechanism adjusts the displacement of the hydraulic pump according to changes in the outlet pressure of the hydraulic pump to meet predetermined requirements.
  • the basic principle of the displacement control mechanism to adjust the displacement of the hydraulic pump is: The displacement control mechanism receives the pressure signal of the outlet of the hydraulic pump, and then drives the variable mechanism of the hydraulic pump according to the outlet pressure of the hydraulic pump to perform a predetermined action to realize the displacement of the hydraulic pump. Adjustment.
  • the basic control principle is the same, except that there is a different transfer function between the variable mechanism of the hydraulic pump and the outlet pressure.
  • the following is an example of the constant power control function of the hydraulic system.
  • the working principle of the quantity control mechanism is explained.
  • the input end of the displacement control mechanism is connected to the hydraulic pump outlet, and the output end is connected to the variable mechanism of the hydraulic pump.
  • the general variable mechanism includes a variable piston.
  • the displacement control mechanism 4 pushes the variable piston of the hydraulic pump through the mechanical structure and the hydraulic oil passage to perform a predetermined action according to the change of the hydraulic pump outlet pressure, so that the variable piston is extended and retracted, thereby causing the swash plate inclination of the hydraulic pump to be generated. Appropriate changes, change the displacement of the hydraulic pump, to achieve the adjustment of the hydraulic pump output flow.
  • the performance of the displacement control mechanism can be evaluated by the relationship between the output of the hydraulic pump and the hydraulic pump pressure. If the output of the hydraulic pump is basically constant as the pressure changes, the performance of the displacement control mechanism is considered to be good, and vice versa.
  • the output power of the hydraulic pump is related to the outlet pressure of the hydraulic pump and the output flow of the hydraulic pump. Therefore, in order to evaluate the performance of the displacement control mechanism of the hydraulic pump, it is necessary to obtain the pressure parameter and the output flow parameter. Similarly, in a hydraulic system with a speed control function and an energy-saving control function, the evaluation of the characteristics of the displacement control mechanism of the hydraulic pump also needs to be based on the pressure parameter and the output flow parameter.
  • the hydraulic pump outlet pressure parameter can be measured by the pressure detecting device.
  • the output flow parameter of the hydraulic pump can be measured by the flow meter, or the hydraulic pump input speed and the inclination angle of the hydraulic pump swash plate can be measured first, and then according to the input speed and the hydraulic pump swash plate. The relationship between the inclination angle and the output flow rate, and the output flow parameter is obtained.
  • the measurement accuracy, measurement real-time, and measurement cost of the pressure detecting device can meet the measurement needs; however, the measurement of the hydraulic pump output flow is unsatisfactory.
  • the flowmeter measures the flow rate in real time, and its response action delay is long.
  • the response time is generally several times of the response time of the pressure detection device, and may even reach several hundred times, which makes the obtained output flow parameters reliable.
  • the performance is low; and the control accuracy of the flow meter is far from satisfying the need for the detection of the displacement control mechanism, and the error is generally a multiple of the error of the pressure detecting device.
  • the measurement of the output flow of the hydraulic pump by the flow meter is far from meeting the need to evaluate the characteristics of the displacement control mechanism; moreover, the cost of the flow meter far exceeds the cost of the pressure detecting device, and the cost of the flow meter is about the pressure sensor. More than ten times. If you choose to obtain the hydraulic pump output flow by measuring the inclination of the hydraulic pump swashplate, the measurement accuracy of the inclination sensor meets the requirements. The cost is also several dozen times that of the pressure detection device.
  • a first object of the present invention is to provide a method for obtaining a characteristic parameter of a displacement control mechanism of a hydraulic pump, which can be obtained at a lower cost. Characteristic parameters of the high-precision and reliable displacement control mechanism.
  • a second object of the present invention is to provide a detecting device for a hydraulic pump displacement control mechanism for implementing the above-described method of acquiring a characteristic parameter of a displacement control mechanism of a hydraulic pump.
  • the present invention provides a method of obtaining a characteristic parameter of a displacement control mechanism of a hydraulic pump, the input end of the displacement control mechanism being in communication with a hydraulic pump outlet, the output end and the hydraulic pressure
  • the variable mechanism of the pump is in communication, and the displacement of the hydraulic pump is controlled according to the hydraulic pump outlet pressure, and the method comprises the following steps:
  • Detecting the pressure and obtaining an intermediate parameter comprising detecting the pressure at the output of the displacement control mechanism; and obtaining the intermediate parameter comprises obtaining a time required for the pressure at the output of the displacement control mechanism to produce a predetermined change;
  • the characteristic parameters of the displacement control mechanism are obtained, and the characteristic parameters of the displacement control mechanism are obtained according to the intermediate parameters.
  • the detecting pressure comprises detecting a hydraulic pump outlet pressure; obtaining an intermediate parameter comprises obtaining a time required for the hydraulic pump outlet pressure to produce a predetermined change.
  • the obtaining the intermediate parameter comprises: acquiring a time T1 required for the pressure of the output of the displacement control mechanism to start to rise, and a time T2 required for the pressure of the output end to stabilize;
  • the obtaining the intermediate parameter includes: acquiring a time T3 required for the hydraulic pump outlet pressure to start to rise;
  • the obtaining the characteristic parameter of the displacement control mechanism further comprises: acquiring the characteristic parameter of the displacement control mechanism according to the pressure acquired by the detection.
  • the obtaining the characteristic parameter of the displacement control mechanism includes acquiring a fluctuation control amplitude Pw of the displacement control mechanism and a fluctuation amplitude ⁇ of the stable control pressure Pw, wherein the stable control pressure Pw is equal to the output pressure of the displacement control mechanism The pressure at the time of stabilization is reached.
  • the present invention provides a detecting device for a hydraulic pump displacement control mechanism for implementing the above method, the device comprising the prime mover, the loading device and the first pressure detecting
  • the prime mover drives the hydraulic pump
  • the loading device is coupled to the hydraulic pump outlet to form a load of the hydraulic pump
  • the first pressure detecting device is coupled to an output of the displacement control mechanism.
  • the apparatus further includes a second pressure detecting device, the second pressure detecting device being coupled to the hydraulic pump outlet.
  • the apparatus further comprises processing means for receiving the pressure signals output by the first pressure detecting means and the second pressure detecting means, and outputting the pressure time domain waveform map according to the pressure signal and the pressure signal varying time.
  • the method for obtaining the characteristic parameter of the displacement control mechanism of the hydraulic pump provided by the present invention can obtain the predetermined intermediate parameter only by detecting the pressure, and then determine the characteristics of the displacement control mechanism according to the intermediate parameter. parameter.
  • the performance of the displacement control mechanism can be evaluated based on the characteristic parameters of the acquired displacement control mechanism. Since the method does not require direct acquisition of the output flow rate of the hydraulic pump, it is possible to avoid the problem of low precision and poor reliability due to the use of the flow meter, or to avoid the problem of excessive cost due to the use of the tilt sensor.
  • the characteristic parameters of the displacement control mechanism of the hydraulic pump are obtained by detecting the pressure, and further benefits are obtained: First, since the pressure detection has the characteristics of good real-time measurement, the characteristic parameters of the acquired displacement control mechanism are obtained. It also has the characteristics of response synchronization, which can increase the reliability of the characteristic parameters of the displacement control mechanism. Second, the pressure detection has higher measurement accuracy. The characteristic parameters of the displacement control mechanism obtained by this method also have high precision. . In this way, the evaluation of the displacement control mechanism based on the characteristic parameters of the acquired displacement control mechanism The accuracy of the results can also be guaranteed; in turn, it can provide a reliable reference for the realization of hydraulic system control functions.
  • the hydraulic pump outlet pressure is also detected to obtain the characteristic parameter of the displacement control mechanism according to the pressure of the hydraulic pump outlet pressure and the output of the displacement control mechanism; the technical solution is to perform pressure on the two positions.
  • the detection can acquire more characteristic parameters of the displacement control mechanism, and further, based on these characteristic parameters, the displacement control mechanism can be more detailed and accurately evaluated.
  • obtaining the delay time parameter of the displacement control mechanism may determine the sensitivity of the displacement control mechanism, and obtaining the action time and the response time of the displacement control mechanism may determine the action speed of the displacement control mechanism, and obtain the displacement.
  • the fluctuation amplitude of the control mechanism's stable control pressure can determine the stability and reliability of the displacement control mechanism.
  • the detecting device of the hydraulic pump displacement control mechanism provided by the present invention also implements the above method for obtaining the characteristic parameter of the displacement control mechanism of the hydraulic pump, and has a corresponding technical effect.
  • FIG. 1 is a schematic view showing the principle of a detecting device of a hydraulic pump displacement control mechanism according to a first embodiment of the present invention
  • FIG. 2 is a flow chart showing the operation of the detecting device of the hydraulic pump displacement control mechanism provided in the first embodiment, and also a flowchart for obtaining a characteristic parameter of the displacement control mechanism of the hydraulic pump;
  • Figure 3 is a pressure time domain waveform diagram drawn based on the relationship between pressure and time detected by the first pressure detecting means and the second pressure detecting means;
  • FIG. 4 is a schematic view showing the principle of a detecting device of a hydraulic pump displacement control mechanism according to a second embodiment of the present invention.
  • Figure 5 is a flow chart showing a method for obtaining the characteristic parameter of the displacement control mechanism of the hydraulic pump by the detecting device of the hydraulic pump displacement control mechanism provided in the second embodiment;
  • FIG. 6 is a schematic diagram showing the principle of a detecting device of a hydraulic pump displacement control mechanism according to a third embodiment of the present invention.
  • Fig. 7 is a pressure time domain waveform diagram of the output end of the displacement control mechanism acquired by the detecting means of the hydraulic pump displacement control mechanism provided in the third embodiment. detailed description
  • FIG. 1 is a schematic diagram showing the principle of a detecting device of a hydraulic pump displacement control mechanism according to Embodiment 1 of the present invention.
  • the detecting device of the hydraulic pump displacement control mechanism provided in the first embodiment includes a prime mover 600, a loading device 400, a first pressure detecting device 200 and a second pressure detecting device 300; the hydraulic pump 100 to be detected is also shown in the figure,
  • the hydraulic pump 100 has a displacement control mechanism 110 and a variable mechanism 120.
  • the input end of the displacement control mechanism 110 communicates with the hydraulic pump outlet, and the output end communicates with the variable mechanism 120.
  • the prime mover 600 is used to drive the hydraulic pump 100 to operate.
  • the loading device 400 is coupled to the hydraulic pump outlet to form a load of the hydraulic pump 100; the first pressure detecting device 200 and the second pressure detecting device 300 are respectively coupled to the output of the displacement control mechanism 110 and the hydraulic pump The outlets are connected to detect the output pressure of the displacement control mechanism 110 and the hydraulic pump outlet pressure.
  • the hydraulic pump 100 is a swash plate type variable hydraulic pump
  • the variable mechanism 120 includes a variable oil cylinder.
  • the variable cylinder is extended or retracted to change the inclination of the swash plate of the hydraulic pump 100, thereby realizing the adjustment of the displacement of the hydraulic pump 100.
  • the prime mover 600 is an electric motor that is driven by the electric motor to drive the hydraulic pump 100.
  • the loading device 400 includes an electrical proportional relief valve 410 and a controller 420.
  • the electrical proportional relief valve 410 changes its relief pressure according to an electrical signal input by the controller 420, thereby changing the load of the hydraulic pump 100 while achieving pressure to the hydraulic pump outlet.
  • the control and regulation of the hydraulic pressure pump 100 can increase the adaptability of the detection device of the hydraulic pump displacement control mechanism to detect the performance of various hydraulic pumps.
  • the relief pressure of the electric proportional relief valve 410 is maintained at a predetermined value during the following operation to form a predetermined load on the hydraulic pump 100.
  • FIG. 2 is a schematic diagram showing the working process of the detecting device of the hydraulic pump displacement control mechanism provided in the first embodiment, and also a method for obtaining the characteristic parameter of the displacement control mechanism of the hydraulic pump.
  • the method for obtaining the characteristic parameter of the displacement control mechanism of the hydraulic pump includes the following steps: SI 00, after constructing the hydraulic system, causes the hydraulic pump 100 to output hydraulic energy under the driving of the prime mover 600.
  • the purpose of constructing the hydraulic system is to simulate the working environment of the hydraulic pump 100, and thereby obtain the characteristic parameters of the displacement control mechanism 110 in the simulated working environment.
  • detecting the pressure comprises: detecting the pressure at the output end of the displacement control mechanism 110 by the first pressure detecting device 200, and detecting the outlet pressure of the hydraulic pump by the second pressure detecting device 300.
  • predetermined intermediate parameters are obtained based on the change in pressure, including obtaining intermediate parameters based on changes in hydraulic pump outlet pressure, and intermediate parameters obtained based on pressure changes at the output of the displacement control mechanism 110.
  • the first pressure detecting device 200 and the second pressure detecting device 300 are pressure gauges.
  • the predetermined intermediate parameters may be determined according to the data and time displayed by the pressure gauge, or may be based on the relationship between pressure and time.
  • the pressure time domain waveform diagram is plotted. Please refer to FIG. 3, which is a pressure time domain waveform diagram drawn based on the relationship between the pressure and time detected by the first pressure detecting device 200 and the second pressure detecting device 300.
  • the horizontal axis represents time T
  • the vertical axis represents pressure P
  • the broken line 310 is a graph in which the second pressure detecting device 300 detects the acquired pressure as a function of time
  • the broken line 320 detects the acquired pressure by the first pressure detecting device 200.
  • a plurality of intermediate parameters can be obtained; for example, the time T1 required for the pressure at the output end of the displacement control mechanism 110 to start to rise and the time T2 required for the pressure to be substantially stable can be obtained; The time T3 required for the hydraulic pump outlet pressure to rise begins.
  • S300 Acquire a characteristic parameter of the displacement control mechanism 110, that is, obtain a characteristic parameter of the displacement control mechanism 100 according to the intermediate parameter.
  • the detecting device of the hydraulic pump displacement control mechanism can also obtain the stable control pressure Pw of the displacement control mechanism 110 according to the first pressure detecting device 200.
  • the stable control pressure Pw and the row are understood.
  • the pressure at the output of the quantity control mechanism 100 is equal to the pressure when it is substantially stable; in addition, those skilled in the art can understand that the stable control pressure Pw is a relatively stable value, and there is also a certain fluctuation in itself, and the amplitude of the fluctuation can also represent the row.
  • the control performance of the quantity control mechanism 110 therefore, the fluctuation amplitude PM of the stable control pressure can also be obtained according to the variation range of the stable control pressure Pw, so that the characteristic parameters of the acquired displacement control mechanism 110 are more abundant, so as to be multi-faceted
  • the performance of the displacement control mechanism 110 is evaluated. It can be understood that according to the pressure time domain waveform diagram shown in FIG. 3, more parameters can also be obtained, for example, the relationship between the steady pressure of the hydraulic pump outlet and the stable control pressure Pw at the output end of the displacement control mechanism 110 can be obtained. Obtaining the relationship between the peak value of the displacement control mechanism 110 and the steady control pressure Pw, etc., these parameters can all evaluate the performance of the displacement control mechanism 110 from more aspects, thereby contributing to the displacement control mechanism 110. A more comprehensive understanding and evaluation of performance.
  • the characteristic parameters of the displacement control mechanism 110 are obtained by the first pressure detecting device 200 and the second pressure detecting device 300, which have more advantages: First, due to the good real-time pressure measurement measurement, the pressure measurement delay It can be reduced to 4ms. Therefore, the characteristic parameters of the acquired displacement control mechanism also have the characteristics of high synchronization and high reliability. Secondly, the pressure detection has high measurement accuracy. Therefore, the displacement control obtained by this method is adopted.
  • the characteristic parameters of the mechanism 110 also have the characteristics of high measurement accuracy; further, the accuracy of the evaluation result of the displacement control mechanism 110 according to the acquired characteristic parameters can also be ensured.
  • the cost of pressure detection is very low, the cost of the detecting device of the hydraulic pump displacement control mechanism and the evaluation cost of the displacement control mechanism 110 can be greatly reduced.
  • the detecting device of the hydraulic pump displacement control mechanism and the method for obtaining the characteristic parameter of the displacement control mechanism of the hydraulic pump can obtain more accurate and reliable characteristic parameters at a lower cost, thereby ensuring the displacement control mechanism 110. The reliability of the evaluation.
  • FIG. 4 is a schematic diagram of the principle of the detecting device of the hydraulic pump displacement control mechanism provided by the second embodiment of the present invention.
  • the detecting device of the hydraulic pump displacement control mechanism provided in the second embodiment includes: a prime mover 600, a loading device 400, a first pressure detecting device 200, and a second pressure detecting device 300; in addition, a recording is added on the basis of the first embodiment.
  • the waver 500 is used as a first pressure detecting device 200 and a second pressure detecting device 300.
  • the recorder 500 is connected to the first pressure detecting device 200 and the second pressure detecting device 300, respectively; the first pressure detecting device 200 and the second pressure detecting device 300 transmit a pressure signal to the recorder 500 while detecting the pressure.
  • the figure is a flow chart of a method for obtaining the characteristic parameters of the displacement control mechanism 110 by the detecting means of the hydraulic pump displacement control mechanism provided in the second embodiment, the method comprising the following steps:
  • the recorder 500 detects the pressure, and the recorder 500 generates a pressure time domain waveform diagram according to the pressure signal.
  • the difference from the first embodiment in this step is that the recorder 500 has a timing function and automatically generates a pressure time domain waveform map based on the time and pressure signals output from the first pressure detecting device 200 and the second pressure detecting device 300.
  • S220 Acquire an intermediate parameter, that is, obtain an intermediate parameter according to the pressure time domain waveform diagram generated by the recorder 500. Since the pressure time domain waveform map generated by the recorder 500 is more accurate, the intermediate parameters are also obtained with higher precision.
  • the specific method of obtaining the intermediate parameters is the same as that of the first embodiment, and will not be described in detail herein. Similarly, more predetermined intermediate parameters can be obtained according to actual needs.
  • S300 Obtain a characteristic parameter of the displacement control mechanism, that is, obtain a characteristic parameter of the displacement control mechanism 110 according to the intermediate parameter. This step can be the same as the first embodiment and will not be described in detail.
  • the use of the oscillograph 500 to output the pressure time domain waveform diagram shown in FIG. 3 according to the pressure signal can not only make the intermediate parameter more intuitive, but also make the characteristic parameter acquisition of the displacement control mechanism 110 more convenient and quick. It can be understood that in order to improve the automation of the detecting device of the hydraulic pump displacement control mechanism and improve the detection efficiency, other processing devices having an automatic processing function may be provided, at which the first pressure detecting device 200 and the second pressure detecting are received. After the pressure signal output by the device 300, The characteristic parameters of the displacement control mechanism 110 are automatically acquired and output based on the received pressure signal and the time required to obtain the predetermined change in the predetermined end pressure to automatically generate the predetermined change.
  • FIG. 6 is a schematic diagram of the detection device of the hydraulic pump displacement control mechanism provided in the third embodiment of the present invention.
  • the detecting device of the hydraulic pump displacement control mechanism provided in the third embodiment includes a prime mover 600, a loading device 400, a magnetic recorder 500, and a first pressure detecting device 200.
  • the detecting device of the hydraulic pump displacement control mechanism Only the first pressure detecting device 200 is included, and other configurations are the same as those of the hydraulic pump displacement control mechanism provided in the second embodiment.
  • the oscilloscope 500 can only generate the pressure time domain waveform diagram of the output end of the displacement control mechanism 110 according to the pressure signal outputted by the first pressure detecting device 200.
  • FIG. 7 which is the hydraulic pump row provided in the third embodiment.
  • the pressure time domain waveform diagram of the output of the displacement control mechanism acquired by the detecting device of the quantity control mechanism.
  • the time T1 required for the pressure at the output end of the displacement control mechanism 110 to start to rise and the time T2 required for the pressure to reach the basic stability can still be obtained, and the displacement control mechanism 110 can be acquired according to T1 and T2.
  • the action time parameter TD; the steady control pressure PW of the displacement control mechanism and the fluctuation amplitude PM of the steady control pressure can also be obtained, and therefore, the performance of the displacement control mechanism 110 can still be evaluated based on these characteristic parameters.
  • the pressure at the output end of the displacement control mechanism 110 can also be detected by a pressure gauge, and the predetermined intermediate parameter can be directly obtained according to the relationship between the pressure change and the time; or the pressure time domain waveform diagram can be drawn according to the relationship between the pressure change and the time, and then Get the intermediate parameters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Description

获取液压泵的排量控制机构特性参数的方法和检测装置 本申请要求于 2009 年 07 月 06 日提交中国专利局、 申请号为 200910158808.1、 发明名称为"获取液压泵的排量控制机构特性参数的方法和 检测装置"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及一种液压检测技术,特别涉及一种获取液压泵的排量控制机构 特性参数的方法, 该排量控制机构用于对液压泵的排量进行调节控制; 还涉及 到一种实施该方法的液压泵排量控制机构的检测装置。 背景技术
工程机械一般具有传动功率大、 动作速度低、 调速范围广、 控制过程复杂 多变的特点, 而这正是液压传动的优点, 因此, 工程机械领域普遍釆用液压系 统作为主要的传动方式。 而且, 相继出现了很多全液压工程机械, 如: 全液压 掘机、 全液压推土机、 全液压起重机、 全液压平地机、 全液压压路机、 全液 压摊铺机、 全液压叉车等。
液压系统一般包括液压泵、液压阃和液压执行元件。 液压泵将原动机的机 械能转化为液压油的液压能, 液压阃对液压油的压力、 流量和方向进行调节, 液压执行元件将液压油的液压能转化为机械能,执行相应的动作, 完成预定的 操作。
随着工作环境和工作要求的多样化,工程机械也对液压系统的功能提出了 不同的要求, 要求液压系统具有预定的控制功能, 如恒功率控制功能、 压力切 断功能、 负载敏感功能、 本泵功率控制功能、 交叉功率控制功能、 负流量控制 功能、 正流量控制功能等。 根据基本控制原理的不同, 液压系统的控制功能主 要包括三类: 速度控制功能、 功率控制功能和节能控制功能。 的输出流量, 液压系统的输出功率也与液压系统压力和液压泵的输出流量有 关, 由于液压系统的压力决定于负载的大小, 所以对液压执行元件执行动作速 度的控制和液压系统输出功率的控制实际上是通过控制液压泵的输出流量实 现的。 节能控制的基本思想是平衡流量供给和流量需求, 即, 通过调节液压泵 的输出流量以恰好满足液压执行元件的对液压油流量需求为目的,减少无用液 压能的输出, 实现液压系统的节能, 因此, 实现节能控制也需要控制液压泵的 输出流量。 可见, 液压系统的控制功能的实现主要取决于对液压泵的输出流量 的控制。
液压泵的输出流量又与输入转速和排量有关。 液压泵的转速由原动机提 供, 在工程机械行业, 普遍釆用发动机作为动力源; 为了延长发动机的使用寿 命、 节省发动机的燃油消耗, 一般会对柴油机进行转速控制, 即, 通过控制液 压泵的吸收功率基本恒定使发动机的转速保持基本恒定 ,以使发动机免受液压 系统负载冲击的影响; 因此,在实际作业中,液压泵的输入转速基本保持恒定, 这样, 对液压泵输出流量的控制实质上是对其排量的控制。
为了实现液压泵排量的自动调节,一般用排量控制机构实现液压泵排量的 自适应调节。排量控制机构根据液压泵出口压力的变化对液压泵的排量进行调 节, 以满足预定的要求。 排量控制机构调节液压泵排量的基本原理是: 排量控 制机构接收液压泵出口的压力信号,再根据液压泵出口压力驱动液压泵的变量 机构进行预定的动作, 实现对液压泵排量的调节。 虽然液压系统的具体的控制 功能存在差别,但其基本控制原理是相同的, 只是液压泵的变量机构与出口压 力之间有不同的传递函数,以下以液压系统的恒功率控制功能为例对排量控制 机构的工作原理进行说明。
具有恒功率控制功能的液压系统中,排量控制机构的输入端与液压泵出口 相连, 输出端与液压泵的变量机构相连, 一般变量机构包括变量活塞。 排量控 制机构 4艮据液压泵出口压力的变 ,通过机械结构和液压油路推动液压泵的变 量活塞进行预定的动作,使变量活塞伸出和缩回, 进而使液压泵的斜盘倾角产 生适当的变化, 改变液压泵的排量, 实现对液压泵输出流量的调节。 当液压泵 出口压力升高时, 减小液压泵排量, 使液压泵输出流量降低; 当液压泵出口压 力降低时, 使液压泵排量增加, 使液压泵输出流量增加, 进而使液压泵输出功 率保持基本恒定,使液压系统以基本恒定的方式输出液压能, 实现液压系统的 恒功率控制。 由此,可以看出,液压系统控制功能的实现主要决定于液压泵的控制性能, 而液压泵控制性能又取决于排量控制机构的性能。 因此, 获取排量控制机构的 特性参数, 以了解排量控制机构的性能, 成为液压系统特定控制功能实现的关 键。
对于具有恒功率控制功能的液压泵来讲,其排量控制机构的性能可以用液 压泵的输出功率与液压泵压力的关系曲线来评价。如果随着压力的变化, 液压 泵的输出功率基本不变,认为该排量控制机构的性能较好,反之认为其性能较 差。
液压泵的输出功率又与液压泵出口压力和液压泵的输出流量有关, 因此, 为了实现对该液压泵的排量控制机构的性能进行评价,需要获取压力参数和输 出流量参数。 同样, 在具有速度控制功能和节能控制功能的液压系统中, 对液 压泵的排量控制机构的特性进行评价也需要以压力参数和输出流量参数为基 础。
液压泵出口压力参数可以通过压力检测装置测量,液压泵的输出流量参数 可以通过流量计测得,也可以先测量液压泵输入转速和液压泵斜盘的倾角,再 根据输入转速和液压泵斜盘的倾角与输出流量的关系, 获取输出流量参数。
当前, 压力检测装置的测量精度、 测量实时性、 测量成本都能够满足测量 需要; 然而, 对液压泵输出流量的测量却是不尽人意。 流量计测量流量的实时 性较差, 其响应动作延时较长, 其响应时间一般为压力检测装置响应时间的几 十倍, 甚至可能达到几百倍, 这就使得获取的输出流量参数的可靠性较低; 而 且流量计的控制精度也远远不能满足对排量控制机构检测的需要,其误差一般 为压力检测装置误差的多倍。 因此, 用流量计对液压泵输出流量的测量远远不 能满足对排量控制机构特性进行评价的需要; 而且, 流量计成本远远超过压力 检测装置的成本, 流量计的成本约为压力传感器的十多倍。如果选择通过测量 液压泵斜盘倾角的方式获取液压泵输出流量,测量精度符合要求的倾角传感器 成本也为压力检测装置的几十倍以上。
因此, 当前还不能以较低的成本获取较高精度和可靠性的输出流量参数, 进而,利用输出流量参数对排量控制机构的性能进行评价也难以在保持成本较 低的情况下保证评价结果的准确性和可靠性。 发明内容
因此, 本发明的基本目的在于提供一种评价排量控制机构性能的方法, 该 方法根据排量控制机构的压力时域特性对排量控制机构的特性进行评价。从而 避免获取液压泵输出流量参数时存在的上述问题。
以实现上述评价排量控制机构的特性的方法为中心,本发明的第一个目的 在于,提供一种获取液压泵的排量控制机构特性参数的方法, 该方法能够以较 低的成本获取较高精度和可靠性的排量控制机构的特性参数。
本发明的第二个目的在于,提供一种液压泵排量控制机构的检测装置, 以 实施上述获取液压泵的排量控制机构特性参数的方法。
为了实现本发明的第一个目的,本发明提供了一种获取液压泵的排量控制 机构特性参数的方法, 所述排量控制机构的输入端与液压泵出口相通, 输出端 与所述液压泵的变量机构相通,并根据所述液压泵出口压力控制所述液压泵的 排量, 该方法包括以下步骤:
构造液压系统, 使所述液压泵在原动机的驱动下输出液压能;
检测压力并获取中间参数,检测压力包括检测所述排量控制机构输出端的 压力;获取中间参数包括获取所述排量控制机构输出端压力产生预定变化所需 要的时间;
获取排量控制机构的特性参数,根据所述中间参数获取排量控制机构的特 性参数。
优选的, 所述检测压力包括检测液压泵出口压力; 获取中间参数包括获取 所述液压泵出口压力产生预定变化所需要的时间。
可选的, 所述获取中间参数包括: 获取排量控制机构输出端的压力开始升 高所需要的时间 T1和输出端的压力达到稳定所需要的时间 T2;
所述获取排量控制机构的特性参数,包括获取排量控制机构的动作时间参 数 TD, TD=T2-T1。
可选的, 所述获取中间参数包括; 获取所述液压泵出口压力开始升高所需 要的时间 T3 ;
所述获取排量控制机构的特性参数包括获取排量控制机构的延迟时间参 数 TY, TY=T1-T3。 可选的,所述获取排量控制机构的特性参数包括获取排量控制机构的响应 时间参数 Tx, TX=TD+TY, 或 TX=T2-T3。
优选的, 所述获取排量控制机构的特性参数还包括: 根据检测获取的压力 获取排量控制机构的特性参数。
可选的, 所述获取排量控制机构的特性参数, 包括获取排量控制机构的稳 定控制压力 Pw和稳定控制压力 Pw的波动幅度 ΡΜ , 所述稳定控制压力 Pw等于 排量控制机构输出端压力达到稳定时的压力。
为了实现本发明的第二个目的,本发明提供了一种液压泵排量控制机构的 检测装置, 该检测装置用于实施上述的方法, 提供的装置包括原动机、 加载装 置和第一压力检测装置; 所述原动机驱动所述液压泵, 所述加载装置与所述液 压泵出口相连形成所述液压泵的负载,所述第一压力检测装置与所述排量控制 机构的输出端相连。
优选的, 该装置还包括第二压力检测装置, 所述第二压力检测装置与所述 液压泵出口相连。
优选的, 该装置还包括处理装置, 所述处理装置接收第一压力检测装置和 第二压力检测装置输出的压力信号,并根据压力信号和压力信号变化时间输出 压力时域波形图。
与现有技术相比,本发明提供的获取液压泵的排量控制机构特性参数的方 法, 仅仅通过对压力的检测, 就可以获取预定的中间参数, 再根据中间参数确 定排量控制机构的特性参数。根据获取的排量控制机构的特性参数就可以对排 量控制机构的性能进行评价。 由于该方法不需要直接获取液压泵的输出流量, 从而能够避免由于使用流量计而产生的精度低和可靠性差的问题,或能够避免 由于使用倾角传感器而产生的成本过高的问题。根据背景技术中描述,通过检 测压力获取液压泵的排量控制机构特性参数,还具有更多益处: 一是由于压力 检测具有测量实时性好的特点, 因此, 获取的排量控制机构的特性参数也具有 响应同步性的特点, 能够增加排量控制机构的特性参数的可靠性; 二是压力检 测具有较高的测量精度,用该方法获取的排量控制机构特性参数也具有精度较 高的特点。 这样,根据获取的排量控制机构的特性参数对排量控制机构的评价 结果的准确性也能够得到保证;进而能够为液压系统控制功能的实现提供可靠 的参考依据。
在进一步的技术方案中,还对液压泵出口压力进行检测, 以根据液压泵出 口压力和排量控制机构输出端的压力获取排量控制机构的特性参数;该技术方 案通过对两个位置的压力进行检测, 能够获取更多的排量控制机构的特性参 数, 进一步地, 以这些特性参数为基础能够对排量控制机构作更详细和准确的 评价。
在进一步的技术方案中,获取排量控制机构的延迟时间参数可以确定排量 控制机构的灵敏性 ,获取排量控制机构的动作时间和响应时间可以确定排量控 制机构的动作速度,获取排量控制机构的稳定控制压力的波动幅度可以确定排 量控制机构的稳定可靠性。
本发明提供的液压泵排量控制机构的检测装置也实施上述获取液压泵的 排量控制机构特性参数的方法, 具有相对应的技术效果。
附图说明
图 1是本发明实施例一提供的液压泵排量控制机构的检测装置的原理示意 图;
图 2是实施例一提供的液压泵排量控制机构的检测装置工作是流程图, 同 时也是获取液压泵的排量控制机构特性参数的方法的流程图;
图 3是根据第一压力检测装置和第二压力检测装置检测到压力与时间的关 系绘制的压力时域波形图;
图 4是本发明实施例二提供的液压泵排量控制机构的检测装置的原理示意 图;
图 5是用实施例二提供的液压泵排量控制机构的检测装置获取液压泵的排 量控制机构特性参数的方法的流程图;
图 6是本发明实施例三提供的液压泵排量控制机构的检测装置的原理示意 图;
图 7是实施例三提供的液压泵排量控制机构的检测装置获取的排量控制机 构输出端的压力时域波形图。 具体实施方式
下面结合附图对本发明进行详细描述, 本部分的描述仅是示范性和解释 性, 不应对本发明的保护范围有任何的限制作用。
为了描述的方便,本部分中在描述液压泵排量控制机构的检测装置的结构 及其工作原理时,对获取液压泵的排量控制机构特性参数的方法一并说明, 不 再单独描述获取液压泵的排量控制机构特性参数的方法。
请参考图 1, 该图是本发明实施例一提供的液压泵排量控制机构的检测装 置的原理示意图。
实施例一提供的液压泵排量控制机构的检测装置包括原动机 600、 加载装 置 400、 第一压力检测装置 200和第二压力检测装置 300; 图中还示出了待检测 的液压泵 100, 所述液压泵 100具有排量控制机构 110和变量机构 120,排量控制 机构 110的输入端与液压泵出口相通, 输出端与变量机构 120相通; 所述原动机 600用于驱动液压泵 100运转; 所述加载装置 400与液压泵出口相连, 以形成液 压泵 100的负载; 第一压力检测装置 200和第二压力检测装置 300分别与所述排 量控制机构 110的输出端和所述液压泵出口相连,以检测所述排量控制机构 110 输出端压力和液压泵出口压力。
本例中, 液压泵 100为斜盘式变量液压泵, 其变量机构 120包括变量油缸, 变量油缸伸出或缩回能够改变液压泵 100斜盘的倾角, 进而实现对液压泵 100 排量的调节; 原动机 600为电动机, 通过电动机驱动液压泵 100运转。 加载装置 400包括电比例溢流阀 410和控制器 420 , 电比例溢流阀 410根据控制器 420输入 的电信号改变其溢流压力, 进而改变液压泵 100的负载, 同时实现对液压泵出 口压力的控制与调节; 釆用电比例溢流阀形成液压泵 100的负载能够增加液压 泵排量控制机构的检测装置的适应性, 以检测多种液压泵的性能。在下述工作 过程中, 将电比例溢流阀 410的溢流压力保持在预定值, 以形成对液压泵 100 预定的负载。
请参考图 2 , 该图是实施例一提供的液压泵排量控制机构的检测装置工作 过程示意图, 同时也是获取液压泵的排量控制机构特性参数的方法的流程图。
获取液压泵的排量控制机构特性参数的方法包括以下步骤: SI 00,在构造液压系统之后,使所述液压泵 100在原动机 600的驱动下输出 液压能。 构造液压系统的目的在于模拟液压泵 100的工作环境, 进而在模拟的 工作环境中获取排量控制机构 110的特性参数。
S200 ,检测压力并获取中间参数,检测压力包括: 利用第一压力检测装置 200检测排量控制机构 110输出端的压力, 用第二压力检测装置 300检测液压泵 出口压力。 同时, 根据压力的变化获取预定的中间参数, 包括根据液压泵出口 压力变化获取中间参数, 和根据排量控制机构 110输出端压力变化获取的中间 参数。
本例中, 第一压力检测装置 200和第二压力检测装置 300为压力表, 在获取 中间参数时, 可以根据压力表显示的数据和时间确定预定的中间参数, 也可以 根据压力与时间的关系绘制压力时域波形图, 请参数图 3 , 该图是根据第一压 力检测装置 200和第二压力检测装置 300检测到压力与时间的关系绘制的压力 时域波形图。 该图中, 横轴代表时间 T, 竖轴代表压力 P, 折线 310为第二压力 检测装置 300检测获取的压力随时间而变化的曲线图,折线 320为第一压力检测 装置 200检测获取的压力随时间变化的曲线图。才艮据图 3中压力变化曲线, 可以 获取多个中间参数; 比如可以获取排量控制机构 110输出端压力开始升高所需 要的时间 T1和其压力基本稳定所需要的时间 T2; 还可以获取所述液压泵出口 压力开始升高所需要的时间 T3。
S300, 获取排量控制机构 110的特性参数, 即根据中间参数获取排量控制 机构 100的特性参数。获取排量控制机构 100的特性参数的方法包括多种具体方 式。根据图 3所示,根据排量控制机构 110输出端压力开始升高所需要的时间 T1 和压力达到基本稳定所需要的时间 T2, 可以获取排量控制机构 110的动作时间 参数 TD , TD=T2-T1 , 以表征排量控制机构 110从开始调节液压泵 100排量到调 节完毕所需要的时间, 对排量控制机构 110的调节速度进行评价。 也可以根据 液压泵出口压力开始升高所需要的时间 Τ3和排量控制机构 110输出端的压力开 始升高所需要的时间 T1获取排量控制机构 110的延迟时间参数 ΤΥ, ΤΥ=Τ1-Τ3 , 以表征排量控制机构 110的灵敏度。 还可以根据延迟时间参数 ΤΥ和动作时间参 数 TD获取排量控制机构 110的响应时间 Tx, TX=TD+TY, 或者根据液压泵出口压 力开始升高所需要的时间 T3和排量控制机构 110输出端压力达到基本稳定所需 要的时间 T2获取响应时间 Τχ , Τχ=Τ2-Τ3 , 以综合表征排量控制机构 110的灵敏 性和排量控制功能。
请参考图 3 , 利用本例提供的液压泵排量控制机构的检测装置, 还可以根 据第一压力检测装置 200获取排量控制机构 110的稳定控制压力 Pw ; 可以理 解, 稳定控制压力 Pw与排量控制机构 100输出端的压力达到基本稳定时的压力 相等; 另外, 本领域技术人员可以理解, 稳定控制压力 Pw为一个相对稳定的 值, 其本身也存在一定的波动, 该波动幅度也能够表征排量控制机构 110的控 制性能, 因此, 还可以根据稳定控制压力 Pw的变化范围获取稳定控制压力的 波动幅度 PM, 以使获取的排量控制机构 110的特性参数更多丰富, 以从多方面 对排量控制机构 110的性能进行评价。 可以理解,根据图 3所示的压力时域波形 图, 还可以获取更多参数, 比如说; 还可以获取液压泵出口的稳定压力与排量 控制机构 110输出端的稳定控制压力 Pw的关系,可以获取排量控制机构 110控制 压力的峰值与稳定控制压力 Pw的关系, 等等, 这些参数都可以从更多方面对 排量控制机构 110的性能进行评价,从而有助于对排量控制机构 110的性能进行 更全面的了解和评价。
可以理解, 由于该方法不需要直接获取液压泵 100的输出流量, 从而能够 避免由于使用流量计或倾角传感器来获取液压泵的输出流量而产生的问题。根 据背景技术中描述,通过第一压力检测装置 200和第二压力检测装置 300获取排 量控制机构 110的特性参数, 具有更多益处: 一是由于压力检测测量实时性较 好, 压力测量延时可以减小至 4ms, 因此, 获取的排量控制机构的特性参数也 具有响应同步性,可靠性高的特点;二是压力检测具有较高的测量精度, 因此, 用该方法获取的排量控制机构 110的特性参数也具有测量精度高的特点; 进一 步地, 根据获取的特性参数对排量控制机构 110的评价结果的准确性也能够得 到保证。 同时, 由于压力检测成本非常低, 可以大幅度降低液压泵排量控制机 构的检测装置的成本和对排量控制机构 110的评价成本。 总之, 上述液压泵排 量控制机构的检测装置和获取液压泵的排量控制机构特性参数的方法能够用 较小的成本获取更精确、更可靠的特性参数,进而能够保证对排量控制机构 110 评价的可靠性。 为更方便地获取中间参数和排量控制机构 110的特性参数, 还可以用合适 的录波器接收压力检测装置输出的压力信号, 并对压力信号进行预定的处理。 请参数图 4 , 该图是本发明实施例二提供的液压泵排量控制机构的检测装置的 原理示意图。
实施例二提供的液压泵排量控制机构的检测装置包括: 原动机 600、 加载 装置 400、 第一压力检测装置 200和第二压力检测装置 300; 另外, 在实施例一 的基础上增加一个录波器 500,并用压力传感器作为第一压力检测装置 200和第 二压力检测装置 300。 录波器 500分别与第一压力检测装置 200和第二压力检测 装置 300相连; 第一压力检测装置 200和第二压力检测装置 300在检测压力的同 时, 向录波器 500传送压力信号。
如图 5所示, 该图是用实施例二提供的液压泵排量控制机构的检测装置获 取排量控制机构 110特性参数的方法的流程图, 该方法包括以下步骤:
S100,在构造液压系统之后,使液压泵 100在原动机 600的驱动下输出液压
•6匕
匕。
S210, 检测压力, 录波器 500根据压力信号生成压力时域波形图。 本步骤 中与实施例一不同之处在于: 录波器 500具有计时功能, 并根据时间和第一压 力检测装置 200和第二压力检测装置 300输出的压力信号自动生成压力时域波 形图。
S220, 获取中间参数, 即根据录波器 500生成的压力时域波形图获取中间 参数。 由于录波器 500生成的压力时域波形图精确度更高, 获取中间参数也具 有较高的精度。获取的中间参数的具体方法与实施例一相同,在此不再详细说 明。 同样, 也可以根据实际需要, 获取更多预定的中间参数。
S300,获取排量控制机构的特性参数, 即根据中间参数获取排量控制机构 110的特性参数。 该步骤可以与实施例一相同, 不再详细说明。
可以理解, 用录波器 500根据压力信号输出如图 3所示的压力时域波形图, 不仅能够使中间参数更加直观, 还能够使排量控制机构 110的特性参数获取更 加方便和快捷。可以理解,为了提高液压泵排量控制机构的检测装置的自动化, 提高检测效率,还可以设其他具有自动处理功能的处理装置,在该处理装置接 收到第一压力检测装置 200和第二压力检测装置 300输出的压力信号后,还可以 根据接收到的压力信号和获取预定端压力产生预定变化所需要的时间自动处 理, 自动获取并输出排量控制机构 110的特性参数。
在特定情形下,也可以仅釆用一个压力检测装置获取预定的中间参数。请 参考图 6 , 该图是本发明实施例三提供的液压泵排量控制机构的检测装置的原 理示意图。
实施例三提供的液压泵排量控制机构的检测装置中, 包括原动机 600、 加 载装置 400、 录波器 500和第一压力检测装置 200 , 本例中, 液压泵排量控制机 构的检测装置仅包括第一压力检测装置 200 , 其他结构相同与实施例二提供的 液压泵排量控制机构的检测装置相同。 这样, 在录波器 500根据第一压力检测 装置 200输出的压力信号仅能够生成排量控制机构 110输出端的压力时域波形 图, 请参考图 7 , 该图是实施例三提供的液压泵排量控制机构的检测装置获取 的排量控制机构输出端的压力时域波形图。根据该压力时域波形图,仍然可以 获取排量控制机构 110输出端的压力开始升高所需要的时间 T1和压力达到基本 稳定所需要的时间 T2 ,根据 T1和 T2可以获取排量控制机构 110的动作时间参数 TD; 还可以获取排量控制机构的稳定控制压力 PW和稳定控制压力的波动幅度 PM, 因此, 仍然能够根据这些特性参数对排量控制机构 110的性能进行评价。 可以理解, 也可以用压力表检测排量控制机构 110输出端的压力, 并根据压力 变化与时间的关系直接获取预定的中间参数;也可以根据压力变化与时间的关 系绘制压力时域波形图, 再获取中间参数。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通 技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求
1、 一种获取液压泵的排量控制机构特性参数的方法, 所述排量控制机构 的输入端与液压泵出口相通,输出端与所述液压泵的变量机构相通, 并根据所 述液压泵出口压力控制所述液压泵的排量,其特征在于,该方法包括以下步骤: 构造液压系统, 使所述液压泵在原动机的驱动下输出液压能;
检测压力并获取中间参数,检测压力包括检测所述排量控制机构输出端的 压力;获取中间参数包括获取所述排量控制机构输出端压力产生预定变化所需 要的时间;
获取排量控制机构的特性参数,根据所述中间参数获取排量控制机构的特 性参数。
2、 根据权利要求 1所述的获取液压泵的排量控制机构特性参数的方法, 其特征在于,
所述检测压力包括检测液压泵出口压力;获取中间参数包括获取所述液压 泵出口压力产生预定变化所需要的时间。
3、 根据权利要求 2所述的获取液压泵的排量控制机构特性参数的方法, 其特征在于,
所述获取中间参数包括:获取排量控制机构输出端的压力开始升高所需要 的时间 T1和输出端的压力达到稳定所需要的时间 T2;
所述获取排量控制机构的特性参数,包括获取排量控制机构的动作时间参 数 TD, TD=T2-T1。
4、 根据权利要求 3所述的获取液压泵的排量控制机构特性参数的方法, 其特征在于,
所述获取中间参数包括;获取所述液压泵出口压力开始升高所需要的时间
T3 ;
所述获取排量控制机构的特性参数包括获取排量控制机构的延迟时间参 数 TY, TY=T1 -T3。
5、 根据权利要求 4所述的获取液压泵的排量控制机构特性参数的方法, 其特征在于,
所述获取排量控制机构的特性参数包括获取排量控制机构的响应时间参 数 Tx, TX=TD+TY, 或 ΤΧ=Τ2-Τ3。
6、 根据权利要求 1 -5任一项所述的获取液压泵的排量控制机构特性参数 的方法, 其特征在于,
所述获取排量控制机构的特性参数还包括:根据检测获取的压力获取排量 控制机构的特性参数。
7、 根据权利要求 6所述的获取液压泵的排量控制机构特性参数的方法, 其特征在于,
所述获取排量控制机构的特性参数,包括获取排量控制机构的稳定控制压 力 Pw和稳定控制压力 Pw的波动幅度 ΡΜ ,所述稳定控制压力 Pw等于排量控 制机构输出端压力达到稳定时的压力。
8、 一种液压泵排量控制机构的检测装置, 该检测装置用于实施权利要求 1 所述的方法, 其特征在于, 该装置包括原动机(600 )、 加载装置 (400 )和 第一压力检测装置 (200 ); 所述原动机(600 )驱动所述液压泵, 所述加载装 置 (400 ) 与所述液压泵出口相连形成所述液压泵的负载, 所述第一压力检测 装置 (200 )与所述排量控制机构 (110 ) 的输出端相连。
9、根据权利要求 8所述的液压泵排量控制机构的检测装置, 其特征在于, 还包括第二压力检测装置 ( 300 ), 所述第二压力检测装置 (300 ) 与所述液压 泵出口相连。
10、根据权利要求 9所述的液压泵排量控制机构的检测装置, 其特征在于, 还包括处理装置, 所述处理装置接收第一压力检测装置 (200 )和第二压力检 测装置 (300 )输出的压力信号, 并根据压力信号和压力信号变化时间输出压 力时域波形图。
PCT/CN2010/074233 2009-07-06 2010-06-22 获取液压泵的排量控制机构特性参数的方法和检测装置 WO2011003323A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES10796700T ES2403688T3 (es) 2009-07-06 2010-06-22 Procedimiento de obtención de los parámetros característicos para un mecanismo de control del desplazamiento de una bomba hidráulica y dispositivos de medición para la realización del procedimiento
US13/139,710 US8939731B2 (en) 2009-07-06 2010-06-22 Character parameters obtaining method for displacement control mechanism of hydraulic pump and detecting device for carrying out the method
EP10796700A EP2372169B1 (en) 2009-07-06 2010-06-22 Characteristic parameters obtaining method for displacement control mechanism of a hydraulic pump and measuring device for carrying out the mothod

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910158808.1 2009-07-06
CN 200910158808 CN101608648B (zh) 2009-07-06 2009-07-06 获取液压泵的排量控制机构特性参数的方法和检测装置

Publications (1)

Publication Number Publication Date
WO2011003323A1 true WO2011003323A1 (zh) 2011-01-13

Family

ID=41482520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/074233 WO2011003323A1 (zh) 2009-07-06 2010-06-22 获取液压泵的排量控制机构特性参数的方法和检测装置

Country Status (5)

Country Link
US (1) US8939731B2 (zh)
EP (1) EP2372169B1 (zh)
CN (1) CN101608648B (zh)
ES (1) ES2403688T3 (zh)
WO (1) WO2011003323A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101608648B (zh) * 2009-07-06 2011-04-06 三一重工股份有限公司 获取液压泵的排量控制机构特性参数的方法和检测装置
JP5345594B2 (ja) * 2010-09-14 2013-11-20 ダイキン工業株式会社 油圧装置
CN102828942B (zh) * 2011-06-16 2015-11-18 中联重科股份有限公司 变量泵的恒功率控制装置、方法以及混凝土泵送装置
WO2012171206A1 (zh) * 2011-06-16 2012-12-20 长沙中联重工科技发展股份有限公司 变量泵的恒功率控制装置、方法以及混凝土泵送装置
CN102954064B (zh) * 2011-08-23 2015-02-18 上海宝钢设备检修有限公司 力马达直动式三通伺服阀的检测方法
DE102012213585A1 (de) * 2012-08-01 2014-02-06 Sauer-Danfoss Gmbh & Co. Ohg Steuervorrichtung für hydrostatische antriebe
CN102966628B (zh) * 2012-11-14 2015-01-21 山河智能装备股份有限公司 一种工程机械负载模拟与测试系统及方法
CN102937083A (zh) * 2012-11-16 2013-02-20 无锡汇虹机械制造有限公司 一种普通型施力系统液压泵设定方法
DE102014000276A1 (de) * 2014-01-09 2015-07-09 Fresenius Medical Care Deutschland Gmbh Monitoringsystem und -verfahren für fluidführendes Produktionssystem
US9879667B2 (en) 2014-03-03 2018-01-30 Danfoss Power Solutions Inc. Variable load sense spring setting for axial piston open circuit pump
US9869311B2 (en) * 2015-05-19 2018-01-16 Caterpillar Inc. System for estimating a displacement of a pump
CN106762986B (zh) * 2017-01-23 2018-05-08 中国第一汽车股份有限公司 一种双离合变速器液压系统过滤器失效的检测方法
CN108397444B (zh) * 2018-04-16 2023-09-26 中国人民解放军陆军工程大学 一种具有压力传感功能的电控液压储能实验台架系统
GB2598352A (en) * 2020-08-27 2022-03-02 Bamford Excavators Ltd A control system
RU2743741C1 (ru) * 2020-10-30 2021-02-25 Акционерное общество "Национальный центр вертолетостроения им. М.Л. Миля и Н.И. Камова" (АО "НЦВ Миль и Камов") Устройство для управления насосной станцией
CN113982554B (zh) * 2021-11-15 2023-11-03 三一石油智能装备有限公司 一种压裂设备运行工况控制方法、装置及压裂设备
CN115217461A (zh) * 2022-07-19 2022-10-21 上海中联重科桩工机械有限公司 旋挖钻机主泵的性能检测方法、装置及计算机存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143803A (en) * 1980-04-10 1981-11-09 Daikin Ind Ltd Fluid controller
JPH02286885A (ja) * 1989-04-28 1990-11-27 Komatsu Ltd 可変容量ポンプの容量制御装置
CN1587644A (zh) * 2004-07-09 2005-03-02 浙江大学 全局功率自适应的盾构刀盘驱动电液控制系统
CN101410632A (zh) * 2006-03-30 2009-04-15 油研工业株式会社 液压供给装置及采用该液压供给装置的液压促动装置的控制方法
CN101608648A (zh) * 2009-07-06 2009-12-23 三一重工股份有限公司 获取液压泵的排量控制机构特性参数的方法和检测装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4930992A (en) * 1987-07-09 1990-06-05 Tokyo Keiki Company Ltd. Control apparatus of variable delivery pump
US4886422A (en) * 1987-07-09 1989-12-12 Tokyo Keiki Company Ltd. Control apparatus of variable delivery pump
US5059097A (en) * 1989-01-26 1991-10-22 Diesel Kiki Co. Ltd. Variable capacity wobble plate compressor
US5758499A (en) 1995-03-03 1998-06-02 Hitachi Construction Machinery Co., Ltd. Hydraulic control system
DE19628221C2 (de) 1996-07-15 2000-05-31 Festo Ag & Co Verfahren und Vorrichtung zur Bestimmung von Betriebspositionen einer Arbeitseinrichtung
US6202411B1 (en) * 1998-07-31 2001-03-20 Kobe Steel, Ltd. Flow rate control device in a hydraulic excavator
US7013223B1 (en) * 2002-09-25 2006-03-14 The Board Of Trustees Of The University Of Illinois Method and apparatus for analyzing performance of a hydraulic pump
KR100518769B1 (ko) 2003-06-19 2005-10-05 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 유압펌프 토출유량 제어회로
JP2008303813A (ja) * 2007-06-08 2008-12-18 Caterpillar Japan Ltd 可変容量型ポンプ制御装置
CN102282376B (zh) * 2009-01-16 2014-12-10 住友重机械工业株式会社 混合式工作机械及其控制方法
DE102012021211B4 (de) * 2012-10-24 2016-04-07 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Verfahren zum Ermitteln eines Einstellparameters in einer hydraulischen Aktuatoranordnung für einen Kraftfahrzeugantriebsstrang und Verfahren zum Betätigen einer Reibkupplung eines Kraftfahrzeugantriebsstranges

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143803A (en) * 1980-04-10 1981-11-09 Daikin Ind Ltd Fluid controller
JPH02286885A (ja) * 1989-04-28 1990-11-27 Komatsu Ltd 可変容量ポンプの容量制御装置
CN1587644A (zh) * 2004-07-09 2005-03-02 浙江大学 全局功率自适应的盾构刀盘驱动电液控制系统
CN101410632A (zh) * 2006-03-30 2009-04-15 油研工业株式会社 液压供给装置及采用该液压供给装置的液压促动装置的控制方法
CN101608648A (zh) * 2009-07-06 2009-12-23 三一重工股份有限公司 获取液压泵的排量控制机构特性参数的方法和检测装置

Also Published As

Publication number Publication date
EP2372169B1 (en) 2013-02-13
US8939731B2 (en) 2015-01-27
US20120134849A1 (en) 2012-05-31
CN101608648A (zh) 2009-12-23
EP2372169A4 (en) 2011-12-07
ES2403688T3 (es) 2013-05-21
CN101608648B (zh) 2011-04-06
EP2372169A1 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
WO2011003323A1 (zh) 获取液压泵的排量控制机构特性参数的方法和检测装置
CN103527563B (zh) 一种液压马达起动性能的测试装置及测试方法
CN101598123B (zh) 控制多变量液压泵的转矩的系统和方法
KR101889779B1 (ko) 건설기계의 전자 유압시스템에서의 액츄에이터 변위 측정시스템
CN1903698B (zh) 多点同步升降装置及其升降方法
CN101526096B (zh) 阀校准方法
CN100590307C (zh) 一种液压动力系统的功率控制装置与方法
KR102181125B1 (ko) 건설기계의 차량 제어 시스템 및 방법
CN101417771B (zh) 一种起重机起吊速度控制装置
CN105351280B (zh) 一种调平用多点独立驱动液压水平控制系统
CN102182724A (zh) 移动作业机械的功率匹配控制方法及系统
CN104727370A (zh) 工程机械的车辆控制系统及方法
CN201307048Y (zh) 用调速电机直接驱动油泵的叠加式力标准机
CN103123042A (zh) 可变气容装置
CN103063418B (zh) 油量计量单元特性测量装置
CN103134697B (zh) 混凝土泵车减振系统的故障诊断方法和系统与混凝土泵车
JP2019020132A (ja) エンジンの耐久試験装置
CN102748340B (zh) 装载机工作装置液压系统能量损失的分析方法
CN102016187A (zh) 控制液压系统的方法
CN203570755U (zh) 一种液压马达起动性能的测试装置
CN103410719A (zh) 一种容积电加载液压泵试验装置
CN107559264B (zh) 蓄能器流量试验装置
CN101476580B (zh) 宽范围高精度无脉动液压加载系统
Tao et al. Load control of electrically controlled hydraulic pump's flow/pressure characteristics testing with direct drive servo-proportional valve
CN204808038U (zh) 用于故障自诊断的料位控制装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10796700

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13139710

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010796700

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE