CN113982554B - 一种压裂设备运行工况控制方法、装置及压裂设备 - Google Patents

一种压裂设备运行工况控制方法、装置及压裂设备 Download PDF

Info

Publication number
CN113982554B
CN113982554B CN202111349293.0A CN202111349293A CN113982554B CN 113982554 B CN113982554 B CN 113982554B CN 202111349293 A CN202111349293 A CN 202111349293A CN 113982554 B CN113982554 B CN 113982554B
Authority
CN
China
Prior art keywords
fracturing
working condition
economic
engine
parameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111349293.0A
Other languages
English (en)
Other versions
CN113982554A (zh
Inventor
谢学志
庄庆福
胡正华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sany Petroleum Intelligent Equipment Co Ltd
Original Assignee
Sany Petroleum Intelligent Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sany Petroleum Intelligent Equipment Co Ltd filed Critical Sany Petroleum Intelligent Equipment Co Ltd
Priority to CN202111349293.0A priority Critical patent/CN113982554B/zh
Publication of CN113982554A publication Critical patent/CN113982554A/zh
Priority to PCT/CN2022/122355 priority patent/WO2023082887A1/zh
Application granted granted Critical
Publication of CN113982554B publication Critical patent/CN113982554B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/2607Surface equipment specially adapted for fracturing operations

Abstract

本发明提供了一种压裂设备运行工况控制方法、装置及压裂设备,所述压裂设备运行工况控制方法包括:获取压裂工况参数,其中,所述压裂工况参数包括压裂泵输出流量和压裂泵输出压力;当所述压裂工况参数满足经济工况自适应模式的运行条件时,根据所述压裂工况参数和预先建立的基于不同发动机负载率、不同发动机和变速箱配比条件下的经济工况数学模型,确定所述压裂工况参数所对应的经济工况运行参数;控制所述压裂设备按照所述经济工况运行参数进行压裂作业。本发明的压裂设备运行工况控制方法使得压裂设备在变量工况下始终以压裂工况参数所对应的经济工况运行参数进行压裂作业,保证压裂设备持续工作在最优油耗工况,从而达到降低油耗的目的。

Description

一种压裂设备运行工况控制方法、装置及压裂设备
技术领域
本发明涉及压裂技术领域,具体而言,涉及一种压裂设备运行工况控制方法、装置及压裂设备。
背景技术
目前,我国深层致密油气以及页岩气已经进入规模开发的阶段,各大油区内的压裂装备的规模也比较可观。这使得在大型压裂施工过程中,燃油消耗巨大,例如,对于机械式压裂车而言,整套机组单井(20段)耗油量通常为200t左右。机械式压裂车的常规操作模式是保持发动机在1900r/min转速下连续工作,通过转换变速箱档位调整压裂泵输入转速,最终满足终端不同的输出流量和压力需求。但这种操作模式导致柴油发动机长期在额定转速区间工作,不仅耗油量高,而且设备使用不合理。
发明内容
本发明解决的问题是:如何降低机械式压裂车进行压裂作业时的油耗。
为解决上述问题,本发明提供一种压裂设备运行工况控制方法,包括:
获取压裂工况参数,其中,所述压裂工况参数包括压裂泵输出排量和压裂泵输出压力;
当所述压裂工况参数满足经济工况自适应模式的运行条件时,根据所述压裂工况参数和预先建立的基于不同发动机负载率、不同发动机和变速箱配比条件下的经济工况数学模型,确定所述压裂工况参数所对应的经济工况运行参数;
控制所述压裂设备按照所述经济工况运行参数进行压裂作业。
可选地,所述经济工况数学模型的建立具体包括:
设定m个不同的排量值,并分别确定m个所述排量值所对应的发动机输出转速和变速箱档位的组合;
根据变速箱速比和所述变速箱档位确定相应组合内所述发动机输出转速所对应的压裂泵最高输出压力值;
在压裂泵最低输出压力值与所述压裂泵最高输出压力值之间设定n个不同的压力值;
分别确定n个所述压力值所对应的压裂泵输出功率、发动机实际输出功率和所述发动机负载率;
根据所述压裂泵输出功率、所述发动机实际输出功率和所述发动机负载率确定不同工况点的发动机油耗值;
从同一所述工况点所对应的不同所述发动机油耗值中选取最小值作为所述工况点的发动机最小油耗值,并根据不同所述工况点的所述发动机最小油耗值所对应的所述发动机负载率、所述发动机输出转速和所述变速箱档位的组合建立所述经济工况数学模型。
可选地,所述运行条件包括:所述压裂泵输出排量与所述经济工况数学模型中的所述排量值相匹配,且所述压裂泵输出压力与所述经济工况数学模型中的所述压力值相匹配。
可选地,所述根据所述压裂工况参数和预先建立的基于不同发动机负载率、不同发动机和变速箱配比条件下的经济工况数学模型,确定所述压裂工况参数所对应的经济工况运行参数包括:
根据预设的经济工况运行学习算法从所述经济工况数学模型中调取与所述压裂工况参数相对应的所述经济工况运行参数。
可选地,所述经济工况运行参数包括发动机经济转速和变速箱经济档位,所述控制所述压裂设备按照所述经济工况运行参数进行压裂作业包括:
控制所述压裂设备的发动机按照所述发动机经济转速运行、控制所述压裂设备的变速箱按照所述变速箱经济档位运行。
可选地,所述压裂设备运行工况控制方法还包括:
获取所述压裂工况参数的信号反馈;
根据所述信号反馈修正所述经济工况运行参数。
可选地,所述压裂设备的运行模式包括传统操作模式和所述经济工况自适应模式,所述压裂设备运行工况控制方法还包括:
当接收到模式切换指令时,控制所述压裂设备在所述经济工况自适应模式与所述传统操作模式之间进行切换。
为解决上述问题,本发明还提供一种压裂设备运行工况控制装置,包括:
获取单元,用于获取压裂工况参数,其中,所述压裂工况参数包括压裂泵输出压力和压裂泵输出排量;
确定单元,用于当所述压裂工况参数满足经济工况自适应模式的运行条件时,根据所述压裂工况参数和预先建立的基于不同发动机负载率、不同发动机和变速箱配比条件下的经济工况数学模型,确定所述压裂工况参数所对应的经济工况运行参数;
控制单元,用于控制所述压裂设备按照所述经济工况运行参数进行压裂作业。
为解决上述问题,本发明还提供一种压裂设备运行工况控制装置,包括存储有计算机程序的计算机可读存储介质和处理器,所述计算机程序被所述处理器读取并运行时,实现如上所述的压裂设备运行工况控制方法。
为解决上述问题,本发明还提供一种压裂设备,包括如上所述的压裂设备运行工况控制装置。
与现有技术相比,通过本发明的压裂设备运行工况控制方法,在进行压裂作业之前,先获取压裂泵输出排量和压裂泵输出压力,当获取的压裂工况参数满足经济工况自适应模式的运行条件时,根据压裂工况参数和经济工况数学模型确定压裂工况参数所对应的经济工况运行参数,然后控制压裂设备按照经济工况运行参数进行压裂作业,使得压裂设备在变量工况下始终以压裂工况参数所对应的经济工况运行参数进行压裂作业,保证压裂设备持续工作在最优油耗工况,从而达到降低油耗的目的。
附图说明
图1为本发明实施例中压裂设备运行工况控制方法的流程图;
图2为本发明实施例中压裂设备运行工况控制装置的结构框图。
附图标记说明:
10、获取单元;20、确定单元;30、控制单元。
具体实施方式
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。
结合图1所示,本发明实施例提供一种压裂设备运行工况控制方法,包括以下步骤:
步骤S100、获取压裂工况参数,其中,压裂工况参数包括压裂泵输出排量和压裂泵输出压力;
步骤S200、当压裂工况参数满足经济工况自适应模式的运行条件时,根据压裂工况参数和预先建立的基于不同发动机负载率、不同发动机和变速箱配比条件下的经济工况数学模型,确定压裂工况参数所对应的经济工况运行参数;
步骤S300、控制压裂设备按照经济工况运行参数进行压裂作业。
具体地,对于例如机械式压裂车的压裂设备而言,通常将压裂泵的输出排量和输出压力作为反应机械式压裂车运行工况的参数,而且,压裂泵输出排量和压裂泵输出压力也是压裂需求排量和压力,对于不同的压裂需求,压裂泵所需要输出的排量和压力也不相同。在实际操作中,压裂需求排量和压力可以从油气井压裂施工工艺文件中获得,也就是说,步骤S100中,在进行压裂作业之前,先从压裂施工工艺文件中获取压裂泵输出排量和压裂泵输出压力。步骤S200中,经济工况数学模型是预先基于不同发动机负载率、不同发动机和变速箱配比条件所建立的数学模型数据,并存储在压裂设备的控制系统中,当获取的压裂工况参数满足经济工况自适应模式的运行条件时,可以根据压裂工况参数和经济工况数学模型确定压裂工况参数所对应的经济工况运行参数,然后控制压裂设备按照经济工况运行参数进行压裂作业。压裂设备按照经济工况运行参数时,压裂泵输出排量和压裂泵输出压力满足压裂需求,且发动机的油耗最小,也就是说,此时的压裂工况参数所对应的运行工况是压裂设备的最优油耗工况。其中,发动机负载率指的是发动机实际输出功率与发动机额定功率的比值,在压裂泵输出排量相同的情况下,发动机输出功率与压裂泵输出压力成正相关,故发动机负载率也可以简化为压裂泵输出压力与压裂泵最高输出压力的比值,由于压裂泵输出压力和压裂泵输出排量是随压裂需求变化而变化的变量工况参数,故压裂泵输出压力也是实时压力,压裂泵输出排量也是实时排量。
这样,在变量工况下,通过步骤S100至步骤S300,使得压裂设备始终以压裂工况参数所对应的经济工况运行参数进行压裂作业,保证压裂设备持续工作在最优油耗工况,从而达到降低油耗的目的。
可选地,经济工况数学模型的建立具体包括以下步骤:
设定m个不同的排量值,并分别确定m个排量值所对应的发动机输出转速和变速箱档位的组合;
根据变速箱速比和变速箱档位确定相应组合内发动机输出转速所对应的压裂泵最高输出压力值;
在压裂泵最低输出压力值与压裂泵最高输出压力值之间设定n个不同的压力值;
分别确定n个压力值所对应的压裂泵输出功率、发动机实际输出功率和发动机负载率;
根据压裂泵输出功率、发动机实际输出功率和发动机负载率确定不同工况点的发动机油耗值;
从同一工况点所对应的不同发动机油耗值中选取最小值作为工况点的发动机最小油耗值,并根据不同工况点的发动机最小油耗值所对应的发动机负载率、发动机输出转速和变速箱档位的组合建立经济工况数学模型。
具体地,在建立经济工况数学模型时,压裂设备的传动系统性能参数、压裂泵输出排量和压裂泵输出压力作为数学模型的已知输入条件,其中,传动系统性能参数包括发动机输出转速、发动机总功率、发动机负载率、发动机效率、变速箱档位、变速箱减速比和变速箱各档位效率。对于同一个压裂泵而言,若泵输入轴的输入转速不变,理论上压裂泵输出排量恒定不变,由于泵输入转速取决于变速箱输出轴转速,而变速箱输出轴转速取决于“发动机输出转速+变速箱档位”的组合方式,即可以通过多种“发动机转速+变速箱档位”的组合方式来获得相同的变速箱输出转速,进而获得相同的压裂泵输出排量,也就是说,一个特定排量值可以由多种“发动机输出转速+变速箱档位”的组合方式来满足。例如,变速箱有六个档位,发动机输出转速在R1-RN之间,对于某个特定的排量值而言,可能满足排量要求的组合方式有“发动机输出转速R1+变速箱二档位”、“发动机输出转速R3+变速箱四档位”、“发动机输出转速RN+变速箱一档位”等。在设定不同排量值时,可以根据设计人员的经验和/或历史施工数据来进行设定,在确定出m个不同排量值所对应的发动机输出转速和变速箱档位的组合后,对于每个排量值而言,由于压裂泵输入轴转速等于发动机输出转速与变速箱速比之积,而压裂泵输入轴转速与变速箱输出转速呈正相关,故根据变速箱速比和变速箱档位(变速箱不同档位所对应的变速箱输出转速不同)可以确定相应组合内发动机输出转速,进而获得相应发动机输出转速条件下的发动机满功率值(即发动机当前转速条件下对应的最大功率,可以通过发动机厂家给的参数表直接获得),从而得出相应的压裂泵最高输出压力值;然后在压裂泵最低输出压力值与压裂泵最高输出压力值之间设定n个不同的压力值,其中,n个不同的压力值包括压裂泵最低输出压力值、压裂泵最高输出压力值以及压裂泵最低输出压力值与压裂泵最高输出压力值之间除去端点后的中间值;每个压力值对应不同的压裂泵输出功率、发动机实际输出功率以及发动机负载率,例如,假定在发动机转速1900rpm条件下,发动机满功率为2000kW,压裂泵能够输出最大压力为60MPa;由于此处的压力值指压裂泵实时输出压力,可以为5MPa、10MPa、20MPa、30MPa、40MPa、…、55MPa、60MPa,对于以上这些压力值,发动机负载率不同,故负载率可简化理解为压裂泵实时输出压力与压裂泵最高输出压力的比值。根据发动机输出转速、发动机负载率,可以计算出发动机比油耗值,结合发动机实际输出功率可得出不同工况点的发动机油耗值,然后从同一工况点所对应的不同发动机油耗值中选取最小值作为工况点的发动机最小油耗值,并根据不同工况点的发动机最小油耗值所对应的发动机负载率、发动机输出转速和变速箱档位的组合建立起基于不同负载率、不同发动机与变速箱配比条件下的发动机油耗分布式矩阵数据模型,通过进一步对矩阵数据模型进行分析整合,得到不同排量和压力条件下的经济工况数学模型。
这样,在特定压力和特定排量条件下,通过调节发动机负载率、发动机转速和变速箱档位这三个变量,可以得到多种满足条件的方案,而不同方案下的发动机油耗各有不同,通过对不同特定排量下,发动机输出转速与变速箱档位的双向调节,以获得发动机整体的燃油油耗的分布形态,建立压裂设备油耗数学模型,进而得到经济工况数学模型,即经济工作区间,通过控制压裂设备按照经济工况运行参数进行压裂作业,使得压裂设备持续在经济工作区间下运行,从而达到降低油耗的目的。
可选地,运行条件包括:压裂泵输出排量与经济工况数学模型中的排量值相匹配,且压裂泵输出压力与经济工况数学模型中的压力值相匹配。
本实施例中,由于经济工况数学模型中的排量值和压力值是根据设计人员的经验和/或历史施工数据进行设定的,通常能够满足一些常用的压裂工况,而对于一些客户指定的特殊工况,经济工况数学模型中可能没有相应的排量值和压力值进行匹配,所以在控制压裂设备进入经济工况自适应模式前,需要先判断获取的压裂泵输出排量和压裂泵输出压力是否分别与经济工况数学模型中的排量值和压力值匹配,若匹配不成功,则控制压裂设备进入传统操作模式(后文介绍),若匹配成功,则可以控制压裂设备进入经济工况自适应模式,以使压裂设备自动找寻最优油耗所对应的经济工况运行参数,并按照经济工况运行参数运行,从而保证控制逻辑的正确运行。
可选地,步骤S200具体包括:根据预设的经济工况运行学习算法从经济工况数学模型中调取与压裂工况参数相对应的经济工况运行参数。
本实施例中,通过预设的经济工况运行学习算法进行匹配运行,从经济工况数学模型中调取出与压裂工况参数相对应的经济工况运行参数,以便于在步骤S300中控制压裂设备按照调取出的经济工况运行参数进行压裂作业,保证压裂设备持续工作在最优油耗工况,从而达到降低油耗的目的。
可选地,经济工况运行参数包括发动机经济转速和变速箱经济档位,步骤S300具体包括:控制压裂设备的发动机按照发动机经济转速运行、控制压裂设备的变速箱按照变速箱经济档位运行。
如此,以使得压裂设备的发动始终以发动机经济转速运行、变速箱始终以变速箱经济档位运行,保证压裂设备持续工作在最优油耗工况,从而达到降低油耗的目的。
可选地,压裂设备运行工况控制方法还包括:获取压裂工况参数的信号反馈;根据信号反馈修正经济工况运行参数。
本实施例中,压裂工况参数的信号反馈包括压裂泵输出排量的信号反馈和压裂泵输出压力的信号反馈,通过在压裂泵的液力端设置压力传感器和流量计,并将压力传感器所采集的压力值和流量计所采集的流量值代入经济工况数学模型中以不断优化和修正经济工况运行参数,使得经济工况数学模型中的经济工况运行参数更加接近实际经济工况运行参数,提高了压裂设备运行工况控制方法的准确度。
可选地,压裂设备的运行模式包括传统操作模式和经济工况自适应模式,压裂设备运行工况控制方法还包括:当接收到模式切换指令时,控制压裂设备在经济工况自适应模式与传统操作模式之间进行切换。
本实施例中,需要切换工作模式的情况有:一种情况是,在压裂设备以经济工况自适应模式进行压裂作业的过程中需要改变压裂需求(即改变压裂泵输出排量和压裂泵输出压力)时,若判断出重新获取的压裂泵输出排量和压裂泵输出压力与经济工况数学模型中的排量值和压力值不匹配时,则需要控制压裂设备由经济工况自适应模式切换至传统操作模式,以方便操作人员采用手动操作的方式来调节发动机负载率、发动机转速和变速箱档位,以满足压裂需求,反之,压裂设备进入传统操作模式后,当判断出重新获取的压裂泵输出排量和压裂泵输出压力与经济工况数学模型中的排量值和压力值匹配时,则需要控制压裂设备由传统操作模式切换至经济工况自适应模式;还一种情况是,不管获取的压裂泵输出排量和压裂泵输出压力是否满足进入条件,操作人员都想自行根据压裂需求手动调节发动机负载率、发动机转速和变速箱档位以来改变压裂泵的运行工况时,此时可通过控制压裂设备由经济工况自适应模式切换至传统操作模式,以方便操作人员手动操作。如此,在保留压裂设备原有传统操作模式的情况下,通过判断是否接收到模式切换指令来改变操作模式,可实现传统操作模式与经济工况自适应模式之间的切换,从而较大程度上满足不同工况的使用需求,提高了压裂设备的适用范围。
结合图2所示,本发明另一实施例提供一种压裂设备运行工况控制装置,包括:
获取单元10,用于获取压裂工况参数,其中,压裂工况参数包括压裂泵输出压力和压裂泵输出排量;
确定单元20,用于当压裂工况参数满足经济工况自适应模式的运行条件时,根据压裂工况参数和预先建立的基于不同发动机负载率、不同发动机和变速箱配比条件下的经济工况数学模型,确定压裂工况参数所对应的经济工况运行参数;
控制单元30,用于控制压裂设备按照经济工况运行参数进行压裂作业。
这样,通过获取单元10获取压裂工况参数,当压裂工况参数满足经济工况自适应模式的运行条件时,确定单元20根据压裂工况参数和预先建立的基于不同发动机负载率、不同发动机和变速箱配比条件下的经济工况数学模型,确定压裂工况参数所对应的经济工况运行参数,然后通过控制单元30控制压裂设备按照经济工况运行参数进行压裂作业,使得压裂设备始终以压裂工况参数所对应的经济工况运行参数进行压裂作业,保证压裂设备持续工作在最优油耗工况,从而达到降低油耗的目的。
本发明又一实施例提供一种压裂设备运行工况控制装置,包括存储有计算机程序的计算机可读存储介质和处理器,计算机程序被处理器读取并运行时,实现如上所述的压裂设备运行工况控制方法。
本发明还一实施例提供一种压裂设备,包括如上所述的压裂设备运行工况控制装置。
本发明所提供的压裂设备运行工况控制装置和压裂设备相对于现有技术的有益效果与上述的压裂设备运行工况控制方法相对于现有技术的有益效果相同,此处不再赘述。
虽然本公开披露如上,但本公开的保护范围并非仅限于此。本领域技术人员在不脱离本公开的精神和范围的前提下,可进行各种变更与修改,这些变更与修改均将落入本发明的保护范围。

Claims (9)

1.一种压裂设备运行工况控制方法,其特征在于,包括:
获取压裂工况参数,其中,所述压裂工况参数包括压裂泵输出排量和压裂泵输出压力;
当所述压裂工况参数满足经济工况自适应模式的运行条件时,根据所述压裂工况参数和预先建立的基于不同发动机负载率、不同发动机和变速箱配比条件下的经济工况数学模型,确定所述压裂工况参数所对应的经济工况运行参数;
控制所述压裂设备按照所述经济工况运行参数进行压裂作业;
所述经济工况数学模型的建立具体包括:
设定m个不同的排量值,并分别确定m个所述排量值所对应的发动机输出转速和变速箱档位的组合;
根据变速箱速比和所述变速箱档位确定相应组合内所述发动机输出转速所对应的压裂泵最高输出压力值;
在压裂泵最低输出压力值与所述压裂泵最高输出压力值之间设定n个不同的压力值;
分别确定n个所述压力值所对应的压裂泵输出功率、发动机实际输出功率和所述发动机负载率;
根据所述压裂泵输出功率、所述发动机实际输出功率和所述发动机负载率确定不同工况点的发动机油耗值;
从同一所述工况点所对应的不同所述发动机油耗值中选取最小值作为所述工况点的发动机最小油耗值,并根据不同所述工况点的所述发动机最小油耗值所对应的所述发动机负载率、所述发动机输出转速和所述变速箱档位的组合建立所述经济工况数学模型。
2.根据权利要求1所述的压裂设备运行工况控制方法,其特征在于,所述运行条件包括:所述压裂泵输出排量与所述经济工况数学模型中的所述排量值相匹配,且所述压裂泵输出压力与所述经济工况数学模型中的所述压力值相匹配。
3.根据权利要求1所述的压裂设备运行工况控制方法,其特征在于,所述根据所述压裂工况参数和预先建立的基于不同发动机负载率、不同发动机和变速箱配比条件下的经济工况数学模型,确定所述压裂工况参数所对应的经济工况运行参数包括:
根据预设的经济工况运行学习算法从所述经济工况数学模型中调取与所述压裂工况参数相对应的所述经济工况运行参数。
4.根据权利要求1所述的压裂设备运行工况控制方法,其特征在于,所述经济工况运行参数包括发动机经济转速和变速箱经济档位,所述控制所述压裂设备按照所述经济工况运行参数进行压裂作业包括:
控制所述压裂设备的发动机按照所述发动机经济转速运行、控制所述压裂设备的变速箱按照所述变速箱经济档位运行。
5.根据权利要求1所述的压裂设备运行工况控制方法,其特征在于,还包括:
获取所述压裂工况参数的信号反馈;
根据所述信号反馈修正所述经济工况运行参数。
6.根据权利要求1所述的压裂设备运行工况控制方法,其特征在于,所述压裂设备的运行模式包括传统操作模式和所述经济工况自适应模式,所述压裂设备运行工况控制方法还包括:
当接收到模式切换指令时,控制所述压裂设备在所述经济工况自适应模式与所述传统操作模式之间进行切换。
7.一种压裂设备运行工况控制装置,其特征在于,包括:
获取单元(10),用于获取压裂工况参数,其中,所述压裂工况参数包括压裂泵输出压力和压裂泵输出排量;
确定单元(20),用于当所述压裂工况参数满足经济工况自适应模式的运行条件时,根据所述压裂工况参数和预先建立的基于不同发动机负载率、不同发动机和变速箱配比条件下的经济工况数学模型,确定所述压裂工况参数所对应的经济工况运行参数;所述经济工况数学模型的建立具体包括:
设定m个不同的排量值,并分别确定m个所述排量值所对应的发动机输出转速和变速箱档位的组合;
根据变速箱速比和所述变速箱档位确定相应组合内所述发动机输出转速所对应的压裂泵最高输出压力值;
在压裂泵最低输出压力值与所述压裂泵最高输出压力值之间设定n个不同的压力值;
分别确定n个所述压力值所对应的压裂泵输出功率、发动机实际输出功率和所述发动机负载率;
根据所述压裂泵输出功率、所述发动机实际输出功率和所述发动机负载率确定不同工况点的发动机油耗值;
从同一所述工况点所对应的不同所述发动机油耗值中选取最小值作为所述工况点的发动机最小油耗值,并根据不同所述工况点的所述发动机最小油耗值所对应的所述发动机负载率、所述发动机输出转速和所述变速箱档位的组合建立所述经济工况数学模型;
控制单元(30),用于控制所述压裂设备按照所述经济工况运行参数进行压裂作业。
8.一种压裂设备运行工况控制装置,其特征在于,包括存储有计算机程序的计算机可读存储介质和处理器,所述计算机程序被所述处理器读取并运行时,实现如权利要求1-6中任意一项所述的压裂设备运行工况控制方法。
9.一种压裂设备,其特征在于,包括如权利要求8中所述的压裂设备运行工况控制装置。
CN202111349293.0A 2021-11-15 2021-11-15 一种压裂设备运行工况控制方法、装置及压裂设备 Active CN113982554B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111349293.0A CN113982554B (zh) 2021-11-15 2021-11-15 一种压裂设备运行工况控制方法、装置及压裂设备
PCT/CN2022/122355 WO2023082887A1 (zh) 2021-11-15 2022-09-29 一种压裂设备运行工况控制方法、装置及压裂设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111349293.0A CN113982554B (zh) 2021-11-15 2021-11-15 一种压裂设备运行工况控制方法、装置及压裂设备

Publications (2)

Publication Number Publication Date
CN113982554A CN113982554A (zh) 2022-01-28
CN113982554B true CN113982554B (zh) 2023-11-03

Family

ID=79748571

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111349293.0A Active CN113982554B (zh) 2021-11-15 2021-11-15 一种压裂设备运行工况控制方法、装置及压裂设备

Country Status (2)

Country Link
CN (1) CN113982554B (zh)
WO (1) WO2023082887A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113982554B (zh) * 2021-11-15 2023-11-03 三一石油智能装备有限公司 一种压裂设备运行工况控制方法、装置及压裂设备
CN114482968B (zh) * 2022-03-07 2023-09-29 烟台杰瑞石油装备技术有限公司 压裂系统及压裂系统的控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107544304A (zh) * 2017-09-01 2018-01-05 三石油智能装备有限公司 压裂车控制方法及装置
CN110715778A (zh) * 2019-10-22 2020-01-21 洛阳雷斯达传动有限公司 一种压裂车变速箱用的自动试压控制方法
CN112412426A (zh) * 2020-11-19 2021-02-26 三一石油智能装备有限公司 压裂车控制方法、装置及压裂车
CN113586414A (zh) * 2021-08-10 2021-11-02 三一石油智能装备有限公司 一种压裂泵排量控制方法、装置和存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101608648B (zh) * 2009-07-06 2011-04-06 三一重工股份有限公司 获取液压泵的排量控制机构特性参数的方法和检测装置
CN103557151B (zh) * 2013-11-15 2015-11-25 中联重科股份有限公司 多联变量泵的排量控制方法、装置和混凝土泵送设备
US10584698B2 (en) * 2016-04-07 2020-03-10 Schlumberger Technology Corporation Pump assembly health assessment
US11143005B2 (en) * 2019-07-29 2021-10-12 Halliburton Energy Services, Inc. Electric pump flow rate modulation for fracture monitoring and control
CN113982554B (zh) * 2021-11-15 2023-11-03 三一石油智能装备有限公司 一种压裂设备运行工况控制方法、装置及压裂设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107544304A (zh) * 2017-09-01 2018-01-05 三石油智能装备有限公司 压裂车控制方法及装置
CN110715778A (zh) * 2019-10-22 2020-01-21 洛阳雷斯达传动有限公司 一种压裂车变速箱用的自动试压控制方法
CN112412426A (zh) * 2020-11-19 2021-02-26 三一石油智能装备有限公司 压裂车控制方法、装置及压裂车
CN113586414A (zh) * 2021-08-10 2021-11-02 三一石油智能装备有限公司 一种压裂泵排量控制方法、装置和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
利用电力开展页岩气压裂规模应用的分析及建议;王庆群;;石油机械(第07期);全文 *

Also Published As

Publication number Publication date
CN113982554A (zh) 2022-01-28
WO2023082887A1 (zh) 2023-05-19

Similar Documents

Publication Publication Date Title
CN113982554B (zh) 一种压裂设备运行工况控制方法、装置及压裂设备
CN100590307C (zh) 一种液压动力系统的功率控制装置与方法
CN100568129C (zh) 一种基于嵌入式平台的数控铣削加工智能优化控制系统
CN103670750B (zh) 极限功率匹配控制系统、方法、装置及工程机械
CN110905674A (zh) 起重机功率匹配控制方法及系统、起重机
US7832208B2 (en) Process for electro-hydraulic circuits and systems involving excavator boom-swing power management
CN102086700B (zh) 混凝土泵车的泵送方法
CN102021925A (zh) 一种挖掘机功率匹配控制系统和方法
CN103711170B (zh) 混合动力挖掘机控制方法
EP3099861A1 (en) Engine and pump control device and working machine
CN112412426A (zh) 压裂车控制方法、装置及压裂车
CN110965607B (zh) 挖掘机发动机控制方法和系统
CN113236431B (zh) 一种工程机械节能控制方法、装置及工程机械
CN202899210U (zh) 挖掘机回转液压系统
CN104895136B (zh) 一种负载自动识别和优化匹配的方法及装置
JP4979014B2 (ja) 油圧ショベルにおける旋回ポンプの制御システム
CN104929787A (zh) 一种泵送控制方法
CN112855115B (zh) 一种钻机的智能控制系统
CN111102071A (zh) 上车作业中动力系统的档位控制方法、设备及起重机械
CN110715778B (zh) 一种压裂车变速箱用的自动试压控制方法
CN108374875A (zh) 一种变频变排量机械液压无级变速传动系统
US20220098829A1 (en) Mobile work machine and method for operating a machine of this type
CN112253323A (zh) 航空高压燃油泵恒油压模糊自适应控制系统及其控制方法
CN112901358A (zh) 一种基于负载识别的发动机预喷油扭矩控制系统及方法
JP2008232137A (ja) エンジンアクセル制御方法およびその装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant