WO2011002076A1 - ラクタム化合物の製造方法およびその製造中間体 - Google Patents

ラクタム化合物の製造方法およびその製造中間体 Download PDF

Info

Publication number
WO2011002076A1
WO2011002076A1 PCT/JP2010/061311 JP2010061311W WO2011002076A1 WO 2011002076 A1 WO2011002076 A1 WO 2011002076A1 JP 2010061311 W JP2010061311 W JP 2010061311W WO 2011002076 A1 WO2011002076 A1 WO 2011002076A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
salt
acid
alkyl group
Prior art date
Application number
PCT/JP2010/061311
Other languages
English (en)
French (fr)
Inventor
明訓 多々良
康太朗 岡戸
渉 宮永
昌嗣 野口
卓也 濱垣
誠司 丹羽
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Publication of WO2011002076A1 publication Critical patent/WO2011002076A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/08Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring

Definitions

  • the present invention relates to a novel method for producing a lactam compound and a production intermediate thereof. More specifically, the present invention can be carried out under mild and safe conditions, and a simple and efficient method for producing a lactam compound as a therapeutic agent for diabetes or a production intermediate thereof, and a production intermediate useful for such a production method. About the body.
  • compound (1) from compound (7), which is a compound in which A represents an indole having a substituent at the 2-position (hereinafter, 2-substituted indole) such as 2-methylindole in formula (4)
  • a condensing agent such as 1- [3- (dimethylamino) propyl] -3-ethylcarbodiimide hydrochloride with methoxyacetic acid represented by formula (6) as shown in the following scheme,
  • a condensing agent such as 1- [3- (dimethylamino) propyl] -3-ethylcarbodiimide hydrochloride with methoxyacetic acid represented by formula (6) as shown in the following scheme.
  • R 1 and R 2 are as defined above.
  • compound (1) can be expected as a useful antidiabetic agent, the conventional production method has poor economic efficiency and productivity, and a new method that can be produced industrially efficiently has been desired.
  • this invention relates to the industrial manufacturing method which manufactures the lactam compound shown below, and the novel intermediate body used for it.
  • the following formula (7) (Wherein ,, R 1 represents a C 1-6 alkyl group.) Or a salt thereof of the following formula (8) (Wherein, R 1 and R 2 are the same or different and represent a C 1-6 alkyl group) Comprising the step of converting to a compound of the formula: (Wherein, R 1 and R 2 are as defined above.) Or a salt thereof.
  • a compound of formula (7) or a salt thereof is represented by formula (12) XCOCH 2 OR 2 (12)
  • the method according to [1] above which comprises a step of reacting with a compound of the formula (wherein X represents a halogen atom and R 2 represents a C 1-6 alkyl group) or a salt thereof.
  • X represents a halogen atom
  • R 2 represents a C 1-6 alkyl group
  • the reaction is carried out in the presence of a base.
  • the method according to [1] to [3] above which comprises a step of treating the compound of formula (8) or a salt thereof with a base.
  • a compound of formula (7) is reacted with methoxyacetyl chloride to obtain a compound of formula (8), which is recovered by filtration separation and then reacted with a metal alkoxide to form a compound of formula (1) or a salt thereof.
  • the method according to [1] above comprising converting.
  • the method according to [20] above which comprises reacting the compound of formula (15) or a salt thereof with di-tert-butyl-dicarbonate in step (i).
  • step (i) a solvent containing cyclopentyl methyl ether is used.
  • the method according to [20] wherein the reaction is performed in the presence of a base in the step (ii).
  • the present invention provides a production method suitable for mass synthesis of lactam derivatives and a novel intermediate.
  • a production method of the present invention a cyclized product that is an intermediate can be obtained in a stereoselective manner, and a lactam derivative that is a target compound is produced in high yield and high purity by way of a diacylated product. be able to.
  • the manufacturing method suitable for mass synthesis of the indole derivative which is a raw material is provided.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom is preferable.
  • the “C 1-6 alkyl group” is a monovalent group derived by removing one arbitrary hydrogen atom from a linear or branched aliphatic hydrocarbon having 1 to 6 carbon atoms.
  • a C 1-3 alkyl group is preferred.
  • the salt used in the present invention includes a salt with a chemically acceptable acid and a salt with a chemically acceptable base.
  • Salts with chemically acceptable acids used in the present invention include inorganic acids (for example, hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, hydrobromic acid, etc.), organic carboxylic acids (for example, carbonic acid, acetic acid, Citric acid, benzoic acid, maleic acid, fumaric acid, tartaric acid, succinic acid, trifluoroacetic acid, tannic acid, butyric acid, decanoic acid, salicylic acid, lactic acid, oxalic acid, mandelic acid, malic acid, etc.), organic sulfonic acid (for example, And salts with methanesulfonic acid, p-toluenesulfonic acid, benzenesulfonic acid, etc.).
  • inorganic acids for example, hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, hydrobromic acid, etc.
  • organic carboxylic acids for example, carbonic acid, acetic
  • Salts with chemically acceptable bases include alkali metal salts (eg, sodium salts, potassium salts, lithium salts), alkaline earth metal salts (eg, calcium salts, magnesium salts), metal salts (eg, aluminum) Salt, etc.).
  • alkali metal salts eg, sodium salts, potassium salts, lithium salts
  • alkaline earth metal salts eg, calcium salts, magnesium salts
  • metal salts eg, aluminum) Salt, etc.
  • the salt of compound (1) is preferably a medically acceptable salt.
  • Medically acceptable salts include acid addition salts such as inorganic acid salts, organic acid salts and sulfonate salts; base addition salts such as alkali metal salts, alkaline earth metal salts, metal salts and ammonium salts.
  • inorganic acid salt include hydrochloride, hydrobromide, sulfate, phosphate, and the like.
  • organic acid salt include carbonate, acetate, benzoate, oxalate, maleate, fumarate, tartrate, citrate and the like.
  • Examples of the sulfonate include methanesulfonate, benzenesulfonate, p-toluenesulfonate, and the like.
  • alkali metal salt include sodium salt, potassium salt, lithium salt and the like.
  • alkaline earth metal salts include calcium salts and magnesium salts.
  • the metal salt include an aluminum salt.
  • the compound of formula (1) or a salt thereof includes hydrates and solvates thereof.
  • the compound of formula (1) is preferably one that does not take the form of a salt.
  • the compounds represented by the formulas (7), (8) and (10) or chemically acceptable salts thereof include hydrates thereof. Also included are solvates.
  • the present invention is a process for producing a compound represented by formula (1) or a pharmaceutically acceptable salt thereof, wherein the following steps (a) and (b) are used. It is the manufacturing method of the lactam compound characterized.
  • Step (a) is a step of converting the compound represented by the formula (7) or a salt thereof into the compound of the formula (8) or a salt thereof.
  • Step (b) is a step of converting the compound represented by the formula (8) or a salt thereof into the compound of the formula (1) or a salt thereof.
  • step (a) is a step of acylating the cyclized product represented by formula (7) to obtain a diacylated product represented by formula (8), and step (b) Then, this diacylated form is deacylated to obtain a lactam compound represented by the formula (1).
  • R 1 and R 2 are as defined above.
  • the compounds (7) and (8) do not take salt forms.
  • a methoxyacetic acid halide represented by the formula (12) (XCOCH 2 OR 2 ; in which X and R 2 are as defined above) is preferably ringed in the presence of a base.
  • the diacylated product represented by the formula (8) can be obtained with good selectivity by acylating the compound (7) with 2 equivalents or more.
  • the compound of formula (8) is easy to handle in terms of physical properties, easy to be isolated and purified, and can be obtained in good yield and quality.
  • the present compound (8) can be isolated and purified by obtaining it as a solid by filtration separation.
  • X in the methoxyacetic acid halide represented by the formula (12) represents a halogen atom, and examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom is preferable.
  • the acid halide is used in an amount of 2 equivalents or more based on the cyclized compound, but is most preferably 3.2 to 3.8 equivalents from the viewpoints of yield, suppression of by-products, and economy.
  • the base triethylamine, pyridine, N-methylmorpholine, N, N-diisopropyl-N-ethylamine and the like are used, and triethylamine is most preferable.
  • the base is preferably used in an amount of 1 equivalent or more based on the acid halide used.
  • the base is most preferably used in an amount of 3.4 to 4.8 equivalents based on the cyclized product.
  • reaction solvent for acylation examples include ethers such as tetrahydrofuran, dioxane, cyclopentylmethyl ether and 1,2-dimethoxyethane, esters such as ethyl acetate and isopropyl acetate, hydrocarbons such as hexane and heptane, toluene, xylene and the like.
  • Aromatic hydrocarbons such as acetone and 2-butanone, halogenated hydrocarbons such as dichloromethane, chloroform and chlorobenzene, nitriles such as acetonitrile and propionitrile, N, N-dimethylformamide, N-methylpyrrolidone and the like Amides and mixtures thereof are used. Of these, nitriles are preferable, and acetonitrile is most preferable.
  • the order in which the raw materials and reagents are charged is not particularly limited, but it is preferable to charge the acid halide of formula (12), the cyclized product of formula (7), and the base in this order from the viewpoint of yield and suppression of side reactions.
  • the reaction temperature is between 0 ° C. and the boiling point of the reaction mixture. 30 ° C. or lower is preferable, and 10 ° C. to 25 ° C. is most preferable.
  • the base dropping time is preferably 2 hours or more and 5 hours or less. The reaction time depends on the type of solvent and the temperature, but is generally 1 to 24 hours.
  • the compound of the formula (8) obtained as described above is novel and useful as an intermediate for producing the final product represented by the formula (1). Accordingly, the present invention provides a compound of formula (8) as a novel intermediate, preferably ((1R, 8R, 10R) -5,9-bis (2-methoxyacetyl) -8- (2-methylindol-7-yl) -2,5,9-triazatricyclo [8.4.0.0 3,7 ] tetradec-3 (7) -en-6-one).
  • step (b) Next, step (b) will be described.
  • the diacylated product (8) obtained in the step (a) is treated with a base, the methoxyacetyl group introduced at the 5-position is removed, and a lactam compound represented by the formula (1) is obtained. That is, compound (1) can be easily produced with good yield and quality by going through (7) to (8).
  • Solvents used in the base treatment include alcohols such as methanol, ethanol and 2-propanol, water, a mixture of alcohols and water, aromatic hydrocarbons such as toluene, hydrocarbons such as hexane and heptane, alcohols and aroma such as toluene. A mixture with a hydrocarbon such as an aromatic hydrocarbon or hexane or heptane is used. Alcohols are particularly preferred.
  • metal alkoxide such as sodium methoxide and sodium ethoxide
  • metal hydroxide such as sodium hydroxide, potassium hydroxide and lithium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, etc.
  • Metal hydroxide is preferable and potassium hydroxide is especially preferable.
  • Metal alkoxide is also preferable, and sodium methoxide is particularly preferable.
  • Sodium methoxide may be used in its methanol solution.
  • the amount of the base is not particularly limited, but when a metal hydroxide is used as the base and a solvent containing alcohols is used as the reaction solvent, 0.1 to 1 equivalent is preferable with respect to the diacylated product (8). The amount of 0.2 to 0.4 equivalent is most preferable from the viewpoint of suppressing the reaction and from the economical viewpoint.
  • the reaction temperature is between 0 ° C. and the boiling point of the reaction mixture. 10 ° C or higher is preferable, and 25 ° C to 35 ° C is most preferable.
  • the reaction time depends on the type and temperature of the solvent, but is generally 0.5 to 5 hours. After completion of the reaction, it is possible to add a poor solvent such as water and then cool to room temperature to 0 ° C., and filter the precipitate to obtain the desired product as a solid.
  • the condensed cyclization reaction is performed using a cyclohexane derivative represented by the formula (2) or a chemically acceptable salt thereof, a compound of the formula (11), an alcohol solvent such as methanol, and the cyclized product is represented by the formula ( 7) as a mixture of the (1R, 8R, 10R) isomer represented by (7) and the (1R, 8S, 10R) isomer represented by formula (10), or selectively in high yield formula (7) It is given as the (1R, 8R, 10R) body represented.
  • the cyclohexane derivative represented by the formula (2) may be a free form or a chemically acceptable salt, but from the viewpoint of ease of handling, a salt with a chemically acceptable acid is preferable. Hydrochloride is particularly preferable.
  • This condensed cyclization reaction is preferably carried out under alkaline conditions when it is carried out using a salt with a chemically acceptable acid.
  • the (1R, 8R, 10R) isomer represented by the formula (7) can be selectively obtained in a high yield (for example, 70% or more).
  • the alkaline condition means a condition in which a slightly excessive amount of a base is added to the reaction mixture when the compound (2) used is a salt with a chemically acceptable acid.
  • a slightly excessive amount of the base is preferably 1.02 to 1.08 equivalent, particularly preferably 1.04 to 1.06 equivalent.
  • the pH value is preferably pH 10.0 to 13.5, particularly preferably pH 12.1 to 12.5.
  • Usable bases include metal alkoxides such as sodium methoxide and sodium ethoxide, metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate, sodium bicarbonate, hydrogen carbonate Although metal carbonates, such as potassium, etc. are mentioned, Metal hydroxide is preferable and especially potassium hydroxide is preferable. Metal alkoxide is also preferable, and sodium methoxide is particularly preferable. Sodium methoxide may be used in its methanol solution. Furthermore, triethylamine, pyridine, N-methylmorpholine, N, N-diisopropyl-N-ethylamine and the like can also be used.
  • Examples of the base to be neutralized when the compound of the formula (2) is a salt with acids include the above-mentioned bases.
  • Metal hydroxide is preferable, and potassium hydroxide is particularly preferable.
  • Metal alkoxide is also preferable, and sodium methoxide is particularly preferable.
  • the ratio of the compound of the formula (2) and the compound of the formula (11) is not particularly limited, but a molar ratio of 1: 0.8 to 1: 1.2 is preferable from an economical viewpoint, and a molar ratio of 1 is more preferable. : 0.95 to 1: 1.05.
  • the reaction temperature is between 0 ° C. and the boiling point of the reaction mixture. The temperature is preferably 40 ° C. or higher, more preferably 55 ° C. to 65 ° C.
  • the reaction time depends on temperature and the like, but is generally 50 to 120 hours.
  • As the alcohol solvent used in the reaction a solvent containing methanol is preferable, and methanol is particularly preferable.
  • a poor solvent such as toluene can be added and then cooled to room temperature to 0 ° C., and then the precipitate can be separated by filtration to selectively obtain the compound of formula (7) as a solid.
  • Step (c) is a step of converting the compound represented by the formula (15) into the compound of the formula (14) or a salt thereof.
  • Step (d) is a step of converting the compound represented by formula (14) into the compound of formula (13) or a salt thereof.
  • Step (e) is a step of converting the compound represented by formula (13) into the compound represented by formula (11).
  • step (c) is a step of converting the indoline represented by formula (15) to Boc to obtain the N-Boc body represented by formula (14).
  • step (d) This is a step of obtaining a formylindoline represented by the formula (13) by formylation of this N-Boc form and subsequent de-Bocation reaction.
  • step (e) is a step of obtaining indole (11) by oxidizing this formylindoline. (Wherein, R1 is as defined above.)
  • R1 is as defined above.
  • N-Boc isomer represented by the formula (14) is obtained by Boc using di-tert-butyl dicarbonate.
  • Di-tert-butyl dicarbonate is used in an amount of 1 equivalent or more based on the compound (15), but 1.0 to 1.2 equivalents are most preferable from the viewpoint of yield and economy.
  • Bocation solvents include tetrahydrofuran, dioxane, cyclopentyl methyl ether, ethers such as 1,2-dimethoxyethane, esters such as ethyl acetate and isopropyl acetate, hydrocarbons such as hexane and heptane, aromatics such as toluene and xylene.
  • Aromatic hydrocarbons such as acetone and 2-butanone, halogenated hydrocarbons such as dichloromethane, chloroform and chlorobenzene, nitriles such as acetonitrile and propionitrile, amides such as N, N-dimethylformamide and N-methylpyrrolidone And mixtures thereof are used.
  • ethers are preferable, and cyclopentyl methyl ether is particularly preferable.
  • the reaction temperature is between 0 ° C. and the boiling point of the reaction mixture. 10 ° C or higher is preferable, and 25 ° C to 35 ° C is most preferable.
  • the reaction time depends on the type of solvent and the temperature, but is generally 1 to 24 hours.
  • a di-tert-butyl dicarbonate decomposing agent such as N, N-dimethylethylenediamine is added to decompose excess di-tert-butyl dicarbonate and washed with water or the like.
  • the organic layer can be concentrated under reduced pressure to obtain compound (14). Only a portion of the organic layer may be concentrated under reduced pressure and used directly in step (d).
  • step (d) Next, step (d) will be described.
  • the formylation proceeds by reacting with a formylating agent to obtain a mixture of the compound (13) and the compound of the formula (13a). By treating this mixture with an acid, de-Boc formation proceeds and formylindoline (13) is obtained.
  • R 1 is as defined above.
  • ethers such as tetrahydrofuran, dioxane, cyclopentylmethyl ether and 1,2-dimethoxyethane, hydrocarbons such as hexane and heptane, aromatic hydrocarbons such as toluene and xylene, and mixtures thereof are used. It is done. Of these, ethers are preferable, and cyclopentyl methyl ether is particularly preferable.
  • the base include alkyl lithium such as normal butyl lithium, sec-butyl lithium and tert-butyl lithium, and sec-butyl lithium is most preferable.
  • N, N, N′-N′-tetramethylethylenediamine or the like is preferably used as an additive.
  • the base is used in an amount of 1 equivalent or more with respect to the N-Boc isomer, and 1.1 equivalent to 1.4 equivalent is most preferable from the viewpoints of yield, suppression of by-products, and economy.
  • the additive is used in an amount of 1 equivalent or more based on the base, but 0.95 to 1.05 equivalent is most preferred from the viewpoint of yield and economy.
  • the treatment temperature with a base is 0 ° C or lower. It is preferably ⁇ 40 ° C. or lower, and most preferably ⁇ 70 ° C. to ⁇ 60 ° C.
  • the reaction time depends on the type and temperature of the solvent, but is generally 1 to 5 hours.
  • the formylating agent examples include N, N-dimethylformamide, N-formylmorpholine, and N-formylpiperidine, and N, N-dimethylformamide is most preferable.
  • the formylating agent is used in an amount of 1 equivalent or more relative to the N-Boc isomer, and is preferably 1.8 equivalents to 2.2 equivalents from the viewpoint of yield, suppression of by-products, and economy.
  • the formylation reaction temperature is 0 ° C. or less. It is preferably ⁇ 40 ° C. or lower, and most preferably ⁇ 60 ° C. to ⁇ 50 ° C.
  • the reaction time depends on the type and temperature of the solvent, but is generally 1 to 5 hours.
  • Solvents for the de-Boc reaction include ethers such as tetrahydrofuran, dioxane, cyclopentylmethyl ether and 1,2-dimethoxyethane, esters such as ethyl acetate and isopropyl acetate, hydrocarbons such as hexane and heptane, toluene, xylene and the like Aromatic hydrocarbons, ketones such as acetone and 2-butanone, halogenated hydrocarbons such as dichloromethane, chloroform and chlorobenzene, nitriles such as acetonitrile and propionitrile, N, N-dimethylformamide, N-methylpyrrolidone and the like Amides, and mixtures thereof. Among these, a mixture of alcohols and ethers is preferable, and a mixture of methanol and cyclopentyl methyl ether is particularly preferable.
  • the acid is preferably a protonic acid
  • the protonic acid used in the present invention means an acid that readily dissociates in water and releases a proton (H +).
  • inorganic acids for example, hydrochloric acid, sulfuric acid, phosphoric acid, etc.
  • organic acids for example, acetic acid, camphorsulfonic acid, p-toluenesulfonic acid, trifluoroacetic acid, formic acid, benzoic acid, pivalic acid, malonic acid Citric acid, oxalic acid, tartaric acid, etc.
  • sulfuric acid, hydrochloric acid and trifluoroacetic acid are preferred, and hydrochloric acid is most preferred.
  • the acid is used in a catalytic amount or more with respect to the N-Boc isomer (13a), and is most preferably 2.0 equivalents to 3.0 equivalents from the viewpoint of yield and reaction time.
  • the de-Boc reaction temperature is between 0 ° C. and the boiling point of the reaction mixture. 10 ° C or higher is preferable, and 25 ° C to 35 ° C is most preferable.
  • the reaction time depends on the type of solvent and the temperature, but is generally 1 to 24 hours. After completion of the reaction, the organic layer is washed with water after neutralization with alkali. The organic layer is concentrated under reduced pressure and then purified by distillation under reduced pressure to obtain the desired product as an oil.
  • alkali used for neutralization examples include metal hydroxides such as sodium hydroxide, potassium hydroxide, and lithium hydroxide, and metal carbonates such as sodium carbonate, potassium carbonate, lithium carbonate, sodium bicarbonate, and potassium bicarbonate.
  • metal hydroxide is preferable, and sodium hydroxide is particularly preferable.
  • step (e) Next, step (e) will be described.
  • Solvents for the oxidation reaction include ethers such as tetrahydrofuran, dioxane, cyclopentyl methyl ether and 1,2-dimethoxyethane, esters such as ethyl acetate and isopropyl acetate, hydrocarbons such as hexane and heptane, and aromatics such as toluene and xylene.
  • Hydrocarbons ketones such as acetone and 2-butanone, halogenated hydrocarbons such as dichloromethane, chloroform and chlorobenzene, nitriles such as acetonitrile and propionitrile, amides such as N, N-dimethylformamide and N-methylpyrrolidone , And mixtures thereof are used. Of these, aromatic hydrocarbons are preferred, and toluene is particularly preferred.
  • quinones such as chloranil and 2,3-dichloro-5,6-dicyanobenzoquinone, isocyanuric acids such as trichloroisocyanuric acid, metal oxides such as manganese dioxide and chromic acid, metal catalysts such as palladium and nickel , Salen complexes / oxygen, hydrogen peroxide, benzoyl peroxide, organic peroxides such as tert-butyl hydroperoxide, etc., but quinones are preferred, and 2,3-dichloro-5,6-dicyanobenzoquinone is preferred. Particularly preferred.
  • the oxidizing agent is used in an amount of 1 equivalent or more with respect to the formylindoline (13), and is preferably 1.0 equivalent to 1.3 equivalents from the viewpoint of yield and economy.
  • the oxidation reaction temperature is between 0 ° C. and the boiling point of the reaction mixture. 10 ° C or higher is preferable, and 25 ° C to 35 ° C is most preferable.
  • the reaction time depends on the type of solvent and the temperature, but is generally 1 to 24 hours.
  • the reaction mixture is washed with an aqueous potassium hydroxide solution and water, and then decolorized using a decolorizing agent.
  • the decolorizing agent include activated carbon, silica gel, hypochlorite, and hydrogen peroxide, and silica gel is most preferable.
  • the decolorization temperature is from 0 ° C. to the boiling point of the reaction mixture. 10 ° C or higher is preferable, and 25 ° C to 35 ° C is most preferable.
  • the reaction time depends on the type of solvent and the temperature, but is generally 1 to 24 hours.
  • the decolorizing agent is separated by filtration, and the solvent is concentrated under reduced pressure to obtain a crude product of indole (11).
  • the crude product obtained here is purified by recrystallization.
  • Good solvents for recrystallization include ethers such as tetrahydrofuran, dioxane, cyclopentylmethyl ether and 1,2-dimethoxyethane, esters such as ethyl acetate and isopropyl acetate, hydrocarbons such as hexane and heptane, and aromatics such as toluene and xylene.
  • Aromatic hydrocarbons such as acetone and 2-butanone, halogenated hydrocarbons such as dichloromethane, chloroform and chlorobenzene, nitriles such as acetonitrile and propionitrile, amides such as N, N-dimethylformamide and N-methylpyrrolidone , Water and mixtures thereof are used. Of these, alcohols are preferable, and 2-propanol is particularly preferable.
  • Indole (11) can be precipitated by adding a poor solvent, such as water, to a solution dissolved in a good solvent, and this can be separated by filtration to obtain the desired crystals.
  • Example 1 Compound (1) ((1R, 8R, 10R) -9- (2-methoxyacetyl) -8- (2-methylindol-7-yl) -2,5,9-triazatricyclo [8.4. 0.0 3,7 ] tetradeca-3 (7) -en-6-one)
  • the reaction solution was transferred to 72.5 kg of a 15% aqueous potassium hydroxide solution and washed with 12.7 kg of toluene. After extracting the aqueous layer, 3.3 kg of radiolite was added to the toluene layer and stirred for 1 hour. The insoluble material was separated by filtration, and 24.7 kg of 15% potassium hydroxide was added to the filtrate for extraction washing. After the toluene layer was washed with 21.7 kg of water, 5.42 kg of silica gel was added to the toluene layer and stirred at 30 ° C. for 1 hour. After separating the silica gel, the solution was concentrated under reduced pressure, and 80 kg of 2-propanol was added to concentrate to about 30 L.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Indole Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

 本発明は、収率、品質よくラクタム化合物を製造する工業的製法を提供する。 上記課題は、式(8)で示される中間体を経由する製造方法によって達成できる。 (式中、RおよびRは同一または異なってC1-6アルキル基を表す。) 

Description

ラクタム化合物の製造方法およびその製造中間体
 本発明は、ラクタム化合物の新規な製造法およびその製造中間体に関する。さらに詳しくは、本発明は、穏和で安全な条件で実施でき、糖尿病治療薬あるいはその製造中間体としてのラクタム化合物の簡便な、効率的な製造法、およびそのような製造法に有用な製造中間体に関する。
 糖尿病は、近年、著しく増加している生活習慣病であり、その治療剤の開発が盛んに行われている。例えば下記式(1)に含まれる化合物は、優れた糖輸送増強作用、血糖降下作用を有することが報告されている(特許文献1)。
Figure JPOXMLDOC01-appb-C000011

(式中、RおよびRは、C1-6アルキル基を表す。)
 ところで式(1)を含む、下記一般式(5)の化合物類の合成法として下記スキームに示す方法が示されている(例えば、特許文献1、および特許文献2参照)。
Figure JPOXMLDOC01-appb-C000012

 
[式中の記号は、前記特許文献1を参照のこと。]
 式(2)で表されるシクロヘキサン誘導体と芳香族アルデヒド(3)を反応させ環化体(4)を得た後アシル化などを行うことにより化合物(5)を得ている。しかしながら、これらは式(1)の化合物の工業的製造方法とするにはいくつかの課題があることが判明した。
 例えば、式(4)においてAが2-メチルインドールなどの2位に置換基を有するインドール(以下、2-置換インドール)を表す化合物である化合物(7)から、化合物(1)を得るには、下記スキームに示すように式(6)で表されるメトキシ酢酸を1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド塩酸塩のような縮合剤を用いて、化合物(7)と縮合する方法がある。
Figure JPOXMLDOC01-appb-C000013

(式中、RおよびRの定義は前記の通りである。) 
 しかし、この縮合反応では縮合剤および(6)を大過剰に使用しないと十分な速度で反応が進行せず、工業的規模で製造するにはより安価で効率的な方法が望まれる。
 一方、上記化合物(7)の製造にも課題があることがわかった。式(1)の化合物を得るための中間体である式(7)で表される(1R,8R,10R)-8-(2-置換インドール-7-イル)-2,5,9-トリアザトリシクロ[8.4.0.03,7]テトラデカ-3(7)-エン-6-オンは、特許文献1に記載の方法に従い合成することができる。しかし、下記式(10)で表される(1R,8S,10R)体との立体選択性は良好ではなく、さらに分解反応が進むことから、必要な立体化学構造を有する(1R,8R,10R)体(7)を収率良く得ることは困難であった。
Figure JPOXMLDOC01-appb-C000014

(式中、Rの定義は前記の通りである。) 
 また、上記化合物(7)の原料となる式(11)の化合物の製造にも課題があることがわかった。式(11)で表される2-置換インドール-7-カルボアルデヒドは、特許文献1に記載の方法に従い合成することができる。しかし、低収率であることに加え、-40℃という低温反応条件、シリカゲルカラム精製など、工業的プロセスとするには相応しくない方法を行う必要があった。
Figure JPOXMLDOC01-appb-C000015

(式中、Rの定義は前記の通りである。) 
 このように化合物(1)は有用な糖尿病治療薬として期待できるものの従来の製造方法では経済性、生産性が悪く、工業的に効率良く製造し得る新しい方法が望まれていた。
国際公開第2006/118341号パンフレット 国際公開第2002/044180号パンフレット
 従来方法よりも収率、品質よく式(1)で表されるラクタム化合物を製造する工業的製法が望まれていた。
 即ち本発明は、以下に示すラクタム化合物を製造する工業的製法、およびそれに用いられる新規な中間体に関する。
[1] 下記式(7)
Figure JPOXMLDOC01-appb-C000016

(式中、、RはC1-6アルキル基を表す。) 
の化合物またはその塩を
下記式(8)
Figure JPOXMLDOC01-appb-C000017

(式中、RおよびRは同一または異なってC1-6アルキル基を表す。) 
の化合物またはその塩に変換する工程を含む、下記式(1)
Figure JPOXMLDOC01-appb-C000018

(式中、RおよびRの定義は前記の通りである。) 
の化合物またはその塩を製造する方法。
[2] 式(7)の化合物またはその塩を式(12)
  XCOCHOR (12)
(式中、Xは、ハロゲン原子、RはC1-6アルキル基を示す。)の化合物またはその塩
と反応させる工程を含む、前記[1]に記載の方法。
[3] 塩基存在下で反応させる前記[2]に記載の方法。
[4] 式(8)の化合物またはその塩を塩基で処理する工程を含む前記[1]~[3]に記載の方法。
[5] 下記式(2)
Figure JPOXMLDOC01-appb-C000019

の化合物またはその塩と下記式(11)
Figure JPOXMLDOC01-appb-C000020

(式中、RはC1-6アルキル基を表す。) 
の化合物またはその塩をアルカリ性条件下で縮合環化させ式(7)の化合物またはその塩を得る工程を含む、前記[1]に記載の方法。
[5-2] 下記式(2)
Figure JPOXMLDOC01-appb-C000021

の化合物またはその塩と下記式(11)
Figure JPOXMLDOC01-appb-C000022

(式中、RはC1-6アルキル基を表す。) 
の化合物またはその塩をアルカリ性条件下で縮合環化させる式(7)
Figure JPOXMLDOC01-appb-C000023

(式中、Rの定義は前記の通りである。) 
の化合物またはその塩の製造方法。
[6] アルコール溶媒中で行う前記[5]または[5-2]に記載の方法。
[7] 式(13)
Figure JPOXMLDOC01-appb-C000024

(式中、RはC1-6アルキル基を表す。) 
の化合物またはその塩を酸化剤で処理することにより、式(11)の化合物またはその塩に変換する工程を含む前記[5]に記載の方法。
[8] 酸化剤がキノン類である前記[7]に記載の方法。
[9] 下記式(14)
Figure JPOXMLDOC01-appb-C000025

 
(式中、RはC1-6アルキル基を表す。) 
の化合物またはその塩を、ホルミル化剤を用いて反応させ、次いで酸で処理することにより式(13)の化合物を得る工程を含む前記[7]に記載の方法。
[10] 下記式(15)
Figure JPOXMLDOC01-appb-C000026

(式中、RはC1-6アルキル基を表す。) 
の化合物またはその塩を、ジ-tert-ブチル-ジカーボネートと反応させ式(14)の化合物を得る工程を含む前記[9]に記載の方法。
[11] 酸がプロトン酸である前記[9]に記載の方法。
[12] カラム精製を要しない前記[1]乃至[11]のいずれかに記載の方法。
[13] 下記式(8)
Figure JPOXMLDOC01-appb-C000027

(式中、RおよびRは同一または異なってC1-6アルキル基を表す。) 
の化合物またはその塩。
[14] 式(13)
Figure JPOXMLDOC01-appb-C000028

(式中、RはC1-6アルキル基を表す。) 
の化合物またはその塩。
[15] アセトニトリルを含む溶媒を用いる、前記[2]に記載の方法。
[16] 式(8)の化合物又はその塩に変換後、該化合物を回収した後次の反応に供する、前記[1]乃至[3]に記載の方法。
[17] 回収が、濾過分離による精製工程を含む、前記[16]に記載の方法。
[18] 式(7)の化合物又はその塩と同時に、式(10)
Figure JPOXMLDOC01-appb-C000029

(式中、RはC1-6アルキル基を表す。) 
の化合物又はその塩を得る前記[5]または[5-2]に記載の方法。
[19] ろ過分離によって、式(7)の化合物又はその塩を回収する方法を含む、前記[5]または[5-2]に記載の方法。
[20] (i)下記式(15)
Figure JPOXMLDOC01-appb-C000030

(式中、RはC1-6アルキル基を表す。) 
の化合物またはその塩を、下記式(14)
Figure JPOXMLDOC01-appb-C000031

(式中、RはC1-6アルキル基を表す。) 
の化合物に変換する工程;及び
(ii)式(14)の化合物を式(13)
Figure JPOXMLDOC01-appb-C000032

(式中、RはC1-6アルキル基を表す。) 
の化合物またはその塩に変換する工程;及び
(iii)式(13)の化合物またはその塩を
式(11)
Figure JPOXMLDOC01-appb-C000033

(式中、RはC1-6アルキル基を表す。) 
の化合物またはその塩変換する工程;
を含む前記[5]に記載の方法。
[21] 式(7)の化合物をメトキシアセチルクロライドと反応させて式(8)の化合物とし、これを濾過分離により回収した後に、金属アルコキシドと反応させて式(1)の化合物またはその塩に変換することを含む、前記[1]記載の方法。
[22]工程(i)において、式(15)の化合物又はその塩と、ジ-tert-ブチル-ジカーボネートを反応させることを含む、前記[20]に記載の方法。
[23] 工程(i)において、シクロペンチルメチルエーテルを含む溶媒を用いる、前記[21]に記載の方法。
[24] 工程(ii)において、塩基存在下に反応を行う、前記[20]に記載の方法。
[25] 塩基がアルキルリチウムとテトラメチルエチレンジアミンの組合わせである、前記[24]に記載の方法。
[26] アルキルリチウムがsec-ブチルリチウムである、前記[25]に記載の方法。
[27] ホルミル化剤がN,N-ジメチルホルムアミドである、前記[9]に記載の方法。
[28] プロトン酸が塩化水素である、前記[11]に記載の方法。
[29] 工程(ii)によって得られる式(13)の化合物又はその塩を回収して、工程(iii)に供する、前記[20]に記載の方法。
[30] 回収が、減圧蒸留による精製工程を含む、前記[29]に記載の方法。
[31] 酸化剤が3,4-ジクロロ-5,6-ジシアノベンゾキノンである、前記[7]に記載の方法。
[32] トルエンを含む溶媒を用いる、前記[7]に記載の方法。
[33] 反応終了後に脱色処理を含む、前記[31]または[32]に記載の方法。
[34] 脱色処理が、水酸化カリウム水溶液による洗浄とシリカゲルによる吸着を含む、前記[33]に記載の方法。
[35] 工程(iii)によって得られる式(11)の化合物を回収する、前記[20]に記載の方法。
[36] 回収が、2-プロパノールを含む溶媒からの再結晶と濾過分離による精製工程を含む、前記[35]に記載の方法。
[37] 式(15)の化合物をジ-tert-ブチル-ジカーボネートと反応させて式(14)の化合物とし、これを塩基とホルミル化剤と反応させた後に酸と反応させて式(13)の化合物とし、これを減圧蒸留によって精製した後に、酸化剤と反応させて式(11)の化合物へと変換して再結晶と濾過分離によって回収することを含む、前記[20]に記載の方法。
 本発明はラクタム誘導体の大量合成に適した製造方法および新規な中間体を提供する。本発明の製造方法を用いることにより、立体選択的に中間体である環化体を得ることができ、ジアシル化体を経由することにより収率よく高純度で目的化合物であるラクタム誘導体を製造することができる。また、原料であるインドール誘導体の大量合成に適した製造方法を提供する。
 上述の[1]~[37]の可能な組み合わせは好ましく、また、本明細書に記載された複数の好ましい実施形態を組み合わせた実施形態は好ましい。
 本発明における「ハロゲン原子」としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子があげられ、塩素原子が好ましい。
 「C1-6アルキル基」とは、炭素数1~6の直鎖状および分枝鎖状の脂肪族炭化水素から任意の水素原子を1個除いて誘導される1価の基である。具体的にはメチル基、エチル基、イソプロピル基、ブチル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、ペンチル基、イソペンチル基、2,3-ジメチルプロピル基、ヘキシル基などが挙げられる。好ましくはC1-3アルキル基である。
 本発明で用いられる塩としては、化学的に許容されうる酸類との塩と化学的に許容されうる塩基類との塩が含まれる。
 本発明に用いられる化学的に許容されうる酸類との塩としては、無機酸(例えば、塩酸、硫酸、リン酸、硝酸、臭化水素酸、等)、有機カルボン酸(例えば、炭酸、酢酸、クエン酸、安息香酸、マレイン酸、フマル酸、酒石酸、コハク酸、トリフルオロ酢酸、タンニン酸、酪酸、デカン酸、サリチル酸、乳酸、シュウ酸、マンデル酸、リンゴ酸等)、有機スルホン酸(例えば、メタンスルホン酸、p-トルエンスルホン酸、ベンゼンスルホン酸等)との塩などが挙げられる。
 化学的に許容されうる塩基類との塩としては、アルカリ金属塩(例えばナトリウム塩、カリウム塩、リチウム塩等)、アルカリ土類金属塩(例えばカルシウム塩、マグネシウム塩等)、金属塩(例えばアルミニウム塩等)などが挙げられる。
 化合物(1)の塩は、医学的に許容される塩が好ましい。
 医学的に許容される塩としては、無機酸塩、有機酸塩、スルホン酸塩などの酸付加塩;アルカリ金属塩、アルカリ土類金属塩、金属塩、アンモニウム塩などの塩基付加塩が挙げられる。無機酸塩としては、例えば、塩酸塩、臭化水素酸塩、硫酸塩、リン酸塩などが挙げられる。有機酸塩としては、例えば、炭酸塩、酢酸塩、安息香酸塩、シュウ酸塩、マレイン酸塩、フマル酸塩、酒石酸塩、クエン酸塩などが挙げられる。スルホン酸塩としては、例えば、メタンスルホン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩などが挙げられる。アルカリ金属塩としては、例えば、ナトリウム塩、カリウム塩、リチウム塩などが挙げられる。アルカリ土類金属塩としては、例えば、カルシウム塩、マグネシウム塩などが挙げられる。金属塩としては、例えば、アルミニウム塩などが挙げられる。
 式(1)の化合物またはその塩(以下、「化合物(1)」と称することもある)には、それらの水和物、溶媒和物も含まれる。
 式(1)の化合物は、塩の形態をとらないものが好ましい。
 式(7)、(8)および(10)で示される化合物またはその化学的に許容されうる塩(以下、それぞれ「化合物(7)」等と称することもある)には、それらの水和物、溶媒和物も含まれる。
1.ラクタム化合物(1)の製造方法
 本発明は式(1)で示される化合物又はその医薬的に許容されうる塩を製造する方法であって、以下の工程(a)および(b)を用いることを特徴とするラクタム化合物の製造方法である。
 工程(a)は式(7)で示される化合物またはその塩を式(8)の化合物またはその塩に変換する工程である。また、工程(b)は、式(8)で示される化合物またはその塩を式(1)の化合物またはその塩に変換する工程である。
 すなわち、次式に示すように、工程(a)は、式(7)で表される環化体をアシル化して式(8)で示されるジアシル化体を得る工程であり、工程(b)ではこのジアシル化体を脱アシル化して式(1)で表されるラクタム化合物を得る工程である。
Figure JPOXMLDOC01-appb-C000034

(式中、RおよびRの定義は前記の通りである。)  
ここで、化合物(7)、(8)はそれぞれ塩の形態をとらないものが好ましい。
 以下、好ましい実施形態について更に詳細に記載する。
(工程(a))
 工程(a)では、好ましくは塩基の存在下で式(12)で表されるメトキシ酢酸ハロゲン化物(XCOCHOR;式中、XおよびRの定義は前記の通りである。)を環化体(7)に対して2当量以上用いてアシル化することにより式(8)で表されるジアシル化体が選択性よく得られる。
 式(8)の化合物は物性的に取り扱い易く単離精製が容易であり良好な収率および品質で得ることができる。例えば、本化合物(8)は濾過分離により固体として取得することにより単離精製することもできる。
 式(12)で表されるメトキシ酢酸ハロゲン化物のXはハロゲン原子を示すが、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子があげられ、塩素原子が好ましい。
 酸ハロゲン化物は環化体に対して2当量以上用いられるが収率、副生物の抑制、経済的な観点から3.2~3.8当量が最も好ましい。
 塩基としてはトリエチルアミン、ピリジン、N-メチルモルホリン、N,N-ジイソプロピル-N-エチルアミン等が用いられるがトリエチルアミンが最も好ましい。
 塩基は、用いられる酸ハロゲン化物に対して1当量以上を用いるのが好ましい。酸ハロゲン化物が環化体に対して、3.2~3.8当量用いられる場合、塩基は環化体に対して3.4当量~4.8当量用いられるのが最も好ましい。
 アシル化の反応溶媒としては、テトラヒドロフラン、ジオキサン、シクロペンチルメチルエーテル、1,2-ジメトキシエタン等のエーテル類、酢酸エチル、酢酸イソプロピル等のエステル類、ヘキサン、ヘプタン等の炭化水素、トルエン、キシレン等の芳香族炭化水素、アセトン、2-ブタノン等のケトン類、ジクロロメタン、クロロホルム、クロロベンゼン等のハロゲン化炭化水素、アセトニトリル、プロピオニトリル等のニトリル類、N,N-ジメチルホルムアミド、N-メチルピロリドン等のアミド類、およびこれらの混合物が用いられる。このうち、ニトリル類が好ましく、アセトニトリルが最も好ましい。
 原料及び試薬の投入順序については特に限定はしないが式(12)の酸ハロゲン化物、式(7)の環化体、塩基の順に投入する方が収率、副反応の抑制の観点から好ましい。
 反応温度は0℃から反応混合物の沸点までの間で行なわれる。30℃以下が好ましく、10℃~25℃が最も好ましい。
 塩基の滴下時間は2時間以上5時間以下が好ましい。反応時間は、溶媒の種類や温度に依存するが、概ね1~24時間である。
 反応終了後は水を加えて過剰の酸塩化物を不活性化させ反応を停止させる。アセトニトリルを溶媒として反応を行った場合は減圧濃縮し、または減圧濃縮せずに貧溶媒、例えば水等を加えた後に析出物を濾過分離して目的物を固体として得ることが可能である。
 なお、上記のようにして得られる式(8)の化合物は新規であり、式(1)で表される最終生成物を製造する中間体として有用である。したがって、本発明は、式(8)の化合物を新規な中間体として提供するものであり、好ましくは、((1R,8R,10R)-5,9-ビス(2-メトキシアセチル)-8-(2-メチルインドール-7-イル)-2,5,9-トリアザトリシクロ[8.4.0.03,7]テトラデカ-3(7)-エン-6-オン)である。
(工程(b))
 つぎに、工程(b)について説明する。
 工程(a)で得られるジアシル化体(8)について塩基で処理を行うと5位に導入されたメトキシアセチル基が除去され、式(1)で表されるラクタム化合物が得られる。すなわち(7)から(8)を経由することにより良好な収率および品質で簡便に化合物(1)を製造することができる。
 塩基処理における溶媒としてはメタノール、エタノール、2-プロパノール等のアルコール類、水、アルコール類と水の混合物、トルエン等の芳香族炭化水素、ヘキサン、ヘプタン等の炭化水素、アルコール類とトルエン等の芳香族炭化水素やヘキサン、ヘプタン等の炭化水素との混合物等が用いられる。アルコール類が特に好ましい。
 塩基として、ナトリウムメトキシド、ナトリウムエトキシド等の金属アルコキシド、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等の金属ヒドロキシド、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム等の金属カルボネート、などが挙げられるが、金属ヒドロキシドが好ましく特に水酸化カリウムが好ましい。また、金属アルコキシドも好ましく特にナトリウムメトキシドが好ましい。ナトリウムメトキシドはそのメタノール溶液を用いてもよい。
 塩基の量は特に限定はないが、塩基として金属ヒドロキシドを用い反応溶媒としてアルコール類を含有する溶媒を用いた場合、ジアシル化体(8)に対して0.1~1当量が好ましく、副反応の抑制の観点及び経済的な観点から0.2~0.4当量が最も好ましい。
 原料及び試薬の投入順序については特に限定はない。
 反応温度は0℃から反応混合物の沸点までの間で行なわれる。10℃以上が好ましく25℃~35℃が最も好ましい。
 反応時間は、溶媒の種類や温度に依存するが、概ね0.5~5時間である。
 反応終了後、貧溶媒、例えば水等を加えた後に室温から0℃に冷却し、析出物を濾過分離して目的物を固体として得ることが可能である。
2.環化体(7)の製造方法
 本発明における式(7)で表される環化体の製造方法について説明する。この製造方法は、次式に示すように、縮合環化反応によって(7)と(10)の異性体混合物を生成し、晶析によって(7)のみを選択的に固体として取得するものである。
Figure JPOXMLDOC01-appb-C000035

(式中、Rの定義は前記の通りである。) 
 以下、好ましい実施形態について更に詳細に記載する。
 縮合環化反応は、式(2)で表されるシクロヘキサン誘導体又はその化学的に許容されうる塩、式(11)の化合物、メタノール等のアルコール溶媒を用いて行われ、環化体を式(7)で表される(1R,8R,10R)体と式(10)で表される(1R,8S,10R)体の混合物として与えるか、または選択的に高収率の式(7)で表される(1R,8R,10R)体として与える。
 式(2)で表されるシクロヘキサン誘導体はフリー体であっても化学的に許容されうる塩であってもよいが、取り扱いやすさからは、化学的に許容されうる酸類との塩が好ましく、特に塩酸塩が好ましい。
 本縮合環化反応は、化学的に許容されうる酸類との塩を用いて行う場合には、アルカリ性条件下で行うのが好ましい。アルカリ性条件下で行うと、式(7)で表される(1R,8R,10R)体を選択的に高収率(例えば、70%以上)で得ることができる。
 ここでアルカリ性条件とは、用いられる化合物(2)が化学的に許容されうる酸類との塩である場合に、該酸類に対してやや過剰量の塩基を反応混合物に加えた条件を意味する。やや過剰量の塩基としては、1.02~1.08当量が好ましく、特に1.04~1.06当量の塩基が好ましい。また、pH値としては、pH10.0~13.5が好ましく、特にpH12.1~12.5が好ましい。使用できる塩基としては、ナトリウムメトキシド、ナトリウムエトキシド等の金属アルコキシド、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等の金属ヒドロキシド、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム等の金属カルボネート、などが挙げられるが、金属ヒドロキシドが好ましく特に水酸化カリウムが好ましい。また、金属アルコキシドも好ましく特にナトリウムメトキシドが好ましい。ナトリウムメトキシドはそのメタノール溶液を用いてもよい。さらに、トリエチルアミン、ピリジン、N-メチルモルホリン、N,N-ジイソプロピル-N-エチルアミンなどを用いることもできる。
 式(2)の化合物が酸類との塩である場合に中和する塩基としては、例えば上述の塩基が挙げられるが、金属ヒドロキシドが好ましく特に水酸化カリウムが好ましい。また、金属アルコキシドも好ましく特にナトリウムメトキシドが好ましい。
 式(2)の化合物と式(11)の化合物の比率には特に限定はないが、経済的観点からはモル比1:0.8~1:1.2が好ましく、さらに好ましくはモル比1:0.95~1:1.05である。
 反応温度は0℃から反応混合物の沸点までの間で行なわれる。好ましくは40℃以上、さらに好ましくは55℃~65℃が用いられる。
 反応時間は温度等に依存するが、概ね50~120時間である。
 反応に用いられるアルコール溶媒としてはメタノールを含有する溶媒が好ましく、特にメタノールが好ましい。
 縮合環化反応後は貧溶媒、例えばトルエン等を加えた後に室温~0℃まで冷却後、析出物を濾過分離して式(7)の化合物を選択的に固体として得ることが可能である。
3.インドール(11)の製造方法
 本発明は式(11)で示される化合物を製造する方法であって、以下の工程(c)、(d)および(e)を用いることを特徴とするインドール誘導体の製造方法である。
 工程(c)は式(15)で示される化合物を式(14)の化合物またはその塩に変換する工程である。工程(d)は、式(14)で示される化合物を式(13)の化合物またはその塩に変換する工程である。工程(e)は、式(13)で示される化合物を式(11)で示される化合物に変換する工程である。
 すなわち、次式に示すように、工程(c)は、式(15)で表されるインドリンをBoc化して式(14)で示されるN-Boc体を得る工程であり、工程(d)ではこのN-Boc体をホルミル化反応と、それに引き続く脱Boc化反応によって式(13)で表されるホルミルインドリン体を得る工程である。工程(e)は、このホルミルインドリン体を酸化してインドール(11)を得る工程である。
Figure JPOXMLDOC01-appb-C000036

(式中、R1の定義は前記の通りである。) 
 以下、好ましい実施形態について更に詳細に記載する。
(工程(c))
 工程(c)では、ジ-tert-ブチルジカーボネートを用いてBoc化することにより式(14)で表されるN-Boc体が得られる。
 ジ-tert-ブチルジカーボネートは化合物(15)に対して1当量以上用いられるが、収率、経済的な観点から、1.0~1.2当量が最も好ましい。
 Boc化の溶媒としては、テトラヒドロフラン、ジオキサン、シクロペンチルメチルエーテル、1,2-ジメトキシエタン等のエーテル類、酢酸エチル、酢酸イソプロピル等のエステル類、ヘキサン、ヘプタン等の炭化水素、トルエン、キシレン等の芳香族炭化水素、アセトン、2-ブタノン等のケトン類、ジクロロメタン、クロロホルム、クロロベンゼン等のハロゲン化炭化水素、アセトニトリル、プロピオニトリル等のニトリル類、N,N-ジメチルホルムアミド、N-メチルピロリドン等のアミド類、およびこれらの混合物が用いられる。このうちエーテル類が好ましく、特にシクロペンチルメチルエーテルが好ましい。
 原料及び試薬の投入順序については特に限定はしない。
 反応温度は0℃から反応混合物の沸点までの間で行なわれる。10℃以上が好ましく、25℃~35℃が最も好ましい。反応時間は、溶媒の種類や温度に依存するが、概ね1~24時間である。
 反応終了後は、ジ-tert-ブチルジカーボネートの分解剤、例えばN,N-ジメチルエチレンジアミンを加えて過剰のジ-tert-ブチルジカーボネートを分解し、水等で洗浄を行う。
 有機層を減圧濃縮して、化合物(14)を得ることができる。有機層は一部だけを減圧濃縮して、そのまま工程(d)に使用してもよい。
(工程(d))
 つぎに、工程(d)について説明する。
 工程(c)で得られるN-Boc体を塩基で処理した後に、ホルミル化剤と反応させることによってホルミル化が進行し、化合物(13)と、式(13a)の化合物の混合物が得られる。この混合物を酸で処理することで脱Boc化が進行し、ホルミルインドリン(13)が得られる。
Figure JPOXMLDOC01-appb-C000037

(式中、Rの定義は前記の通りである。) 
 ホルミル化の溶媒としては、テトラヒドロフラン、ジオキサン、シクロペンチルメチルエーテル、1,2-ジメトキシエタン等のエーテル類、ヘキサン、ヘプタン等の炭化水素、トルエン、キシレン等の芳香族炭化水素、およびこれらの混合物が用いられる。このうちエーテル類が好ましく、特にシクロペンチルメチルエーテルが好ましい。
 塩基としてはノルマルブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム等のアルキルリチウムが挙げられるが、sec-ブチルリチウムが最も好ましい。N,N,N‘-N’-テトラメチルエチレンジアミン等を添加剤として用いるのが好ましい。
 塩基はN-Boc体に対して1当量以上用いられるが、収率、副生成物の抑制、経済的な観点から1.1当量~1.4当量が最も好ましい。添加剤は塩基に対して1当量以上用いられるが、収率、経済的な観点から0.95~1.05当量が最も好ましい。
 塩基での処理温度は0℃以下で行われる。-40℃以下が好ましく、-70℃~-60℃が最も好ましい。反応時間は、溶媒の種類や温度に依存するが、概ね1~5時間である。
 ホルミル化剤としては、N,N-ジメチルホルムアミド、N-ホルミルモルホリン、N-ホルミルピペリジンが挙げられるが、N,N-ジメチルホルムアミドが最も好ましい。
 ホルミル化剤はN-Boc体に対して1当量以上用いられるが、収率、副生成物の抑制、経済的な観点から1.8当量~2.2当量が最も好ましい。
 ホルミル化反応温度は0℃以下で行われる。-40℃以下が好ましく、-60℃~-50℃が最も好ましい。反応時間は、溶媒の種類や温度に依存するが、概ね1~5時間である。
 反応終了後は、メタノールを加えて過剰のアルキルリチウムを不活性化させて反応を停止させる。0℃から室温まで昇温後、反応液を水等で洗浄し、ホルミルインドリン(13)と式(13a)で示される化合物の混合物を溶液として得る。
 この溶液を減圧濃縮し、酸で処理することによって脱Boc化を行い、ホルミルインドリン(13)を得る。減圧濃縮させるのは溶媒の一部だけであってもよい。
 脱Boc化反応の溶媒としては、テトラヒドロフラン、ジオキサン、シクロペンチルメチルエーテル、1,2-ジメトキシエタン等のエーテル類、酢酸エチル、酢酸イソプロピル等のエステル類、ヘキサン、ヘプタン等の炭化水素、トルエン、キシレン等の芳香族炭化水素、アセトン、2-ブタノン等のケトン類、ジクロロメタン、クロロホルム、クロロベンゼン等のハロゲン化炭化水素、アセトニトリル、プロピオニトリル等のニトリル類、N,N-ジメチルホルムアミド、N-メチルピロリドン等のアミド類、およびこれらの混合物が用いられる。このうちアルコール類とエーテル類の混合物が好ましく、特にメタノールとシクロペンチルメチルエーテルの混合物が好ましい。
 酸としてはプロトン酸が好ましく、本発明において用いるプロトン酸とは、水中で容易に解離してプロトン(H+)を放出する酸を意味する。具体的には、無機酸(例えば、塩酸、硫酸、リン酸等)、有機酸(例えば、酢酸、カンファースルホン酸、p-トルエンスルホン酸、トリフルオロ酢酸、ギ酸、安息香酸、ピバリン酸、マロン酸、クエン酸、シュウ酸、酒石酸等)が挙げられるが、硫酸、塩酸、トリフルオロ酢酸が好ましく、塩酸が最も好ましい。
 酸はN-Boc体(13a)に対して触媒量以上用いられるが、収率、反応時間の観点から2.0当量~3.0当量が最も好ましい。
 脱Boc化反応温度は0℃から反応混合物の沸点までの間で行なわれる。10℃以上が好ましく、25℃~35℃が最も好ましい。反応時間は、溶媒の種類や温度に依存するが、概ね1~24時間である。
 反応終了後はアルカリで中和後、水等で有機層を洗浄する。有機層を減圧濃縮後、減圧蒸留で精製し、目的物を油状物として得る。
 中和に用いるアルカリは、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等の金属ヒドロキシド、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム等の金属カルボネート、などが挙げられるが、金属ヒドロキシドが好ましく、特に水酸化ナトリウムが好ましい。
(工程(e))
 つぎに、工程(e)について説明する。
 工程(d)で得られるホルミルインドリン体(13)を酸化剤で処理すると酸化反応が進行し、インドール(11)が得られる。
 酸化反応の溶媒としてはテトラヒドロフラン、ジオキサン、シクロペンチルメチルエーテル、1,2-ジメトキシエタン等のエーテル類、酢酸エチル、酢酸イソプロピル等のエステル類、ヘキサン、ヘプタン等の炭化水素、トルエン、キシレン等の芳香族炭化水素、アセトン、2-ブタノン等のケトン類、ジクロロメタン、クロロホルム、クロロベンゼン等のハロゲン化炭化水素、アセトニトリル、プロピオニトリル等のニトリル類、N,N-ジメチルホルムアミド、N-メチルピロリドン等のアミド類、およびこれらの混合物が用いられる。このうち芳香族炭化水素が好ましく、特にトルエンが好ましい。
 酸化剤としては、クロラニル、2,3-ジクロロ-5,6-ジシアノベンゾキノン等のキノン類、トリクロロイソシアヌル酸等のイソシアヌル酸類、二酸化マンガン、クロム酸等の金属酸化物、パラジウム、ニッケル等の金属触媒、サレン錯体/酸素、過酸化水素、過酸化ベンゾイル、tert-ブチルハイドロパーオキシド等の有機過酸化物などが挙げられるが、キノン類が好ましく、2,3-ジクロロ-5,6-ジシアノベンゾキノンが特に好ましい。
 酸化剤はホルミルインドリン体(13)に対して1当量以上用いられるが、収率および経済的な観点から1.0当量~1.3当量が好ましい。
 酸化反応温度は0℃から反応混合物の沸点までの間で行われる。10℃以上が好ましく、25℃~35℃が最も好ましい。反応時間は、溶媒の種類や温度に依存するが、概ね1~24時間である。
 反応終了後は反応混合液を水酸化カリウム水溶液および水で洗浄した後に、脱色剤を用いて脱色処理を行う。
 脱色剤は活性炭、シリカゲル、次亜塩素酸塩、過酸化水素水などが挙げられるが、シリカゲルが最も好ましい。
 脱色処理温度は0℃から反応混合物の沸点までの間で行われる。10℃以上が好ましく、25℃~35℃が最も好ましい。反応時間は、溶媒の種類や温度に依存するが、概ね1~24時間である。
 脱色処理後は、脱色剤を濾過分離し、溶媒を減圧濃縮してインドール(11)の粗生成物を得る。
 ここで得られた粗生成物を再結晶により精製する。再結晶の良溶媒としてはテトラヒドロフラン、ジオキサン、シクロペンチルメチルエーテル、1,2-ジメトキシエタン等のエーテル類、酢酸エチル、酢酸イソプロピル等のエステル類、ヘキサン、ヘプタン等の炭化水素、トルエン、キシレン等の芳香族炭化水素、アセトン、2-ブタノン等のケトン類、ジクロロメタン、クロロホルム、クロロベンゼン等のハロゲン化炭化水素、アセトニトリル、プロピオニトリル等のニトリル類、N,N-ジメチルホルムアミド、N-メチルピロリドン等のアミド類、水およびこれらの混合物が用いられる。このうちアルコール類が好ましく、特に2-プロパノールが好ましい。
 良溶媒に溶かした溶液に、貧溶媒、例えば水等を加えてインドール(11)を析出させて、これを濾過分離して目的物の結晶を得ることが可能である。
 以下、実施例によって本発明の詳細を述べるが、本発明は以下の実施例に限定されるものではない。
(分析条件)
 以下の実施例における分析は、下記の測定装置を用いて、常法に従って行った。
(1)H-NMRおよび13C-NMR
 装置:ブルカー(BRUKER) AVANCE400
(2)ESI-MS
 装置:サーモクエスト(Thermo Quest)TSQ700、あるいは、日本ウォーターズZQ2000
(3)HPLC
 カラム:資生堂製 CAPCELL PAK C18 MGII 4.6mmID X 150mm、5μm
 カラム温度:40℃
 検出波長:UV254nm
 流量:1.0mL/min
分析条件1
 移動相:A液 10mMリン酸(ナトリウム)水溶液[NaHPO,NaHPO各5mM,pH7]、B液 アセトニトリル
 グラジエント条件:A液/B液 初期75/25、5分後75/25、30分後15/85
分析条件2
 移動相:A液 10mMリン酸(ナトリウム)水溶液[NaHPO,NaHPO各5mM,pH7]/アセトニトリル=75/25(vol.)、B液 10mMリン酸(ナトリウム)水溶液[NaHPO,NaHPO各5mM,pH7]/アセトニトリル=15/85(vol.) グラジエント条件:A液/B液 初期100/0、5分後100/0、30分後0/100
分析条件3
 移動相:A液 10mMリン酸(ナトリウム)水溶液[NaHPO,NaHPO各5mM,pH7]/アセトニトリル=75/25(vol.)、B液 10mMリン酸(ナトリウム)水溶液[NaHPO,NaHPO各5mM,pH7]/アセトニトリル=15/85(vol.) グラジエント条件:A液/B液 初期100/0、5分後100/0、30分後20/80
分析条件4
 移動相:A液 10mMリン酸(ナトリウム)水溶液[NaHPO,NaHPO各5mM,pH7]/アセトニトリル=75/25(vol.)、B液 アセトニトリル グラジエント条件:A液/B液 初期100/0、5分後100/0、30分後20/80
 なお、合成の各工程において、取得した目的物の含量値(%)はHPLCのエリア面積を標品のものと比較することによって得た。
(実施例1)
化合物(1)((1R,8R,10R)-9-(2-メトキシアセチル)-8-(2-メチルインドール-7-イル)-2,5,9-トリアザトリシクロ[8.4.0.03,7]テトラデカ-3(7)-エン-6-オン)の合成
(工程1)
1-tert-ブトキシカルボニル-2-メチルインドリンの合成
Figure JPOXMLDOC01-appb-C000038

シクロペンチルメチルエーテル82kgにジ-tert-ブチルジカーボネート27.4kg(125mol)を投入し、30℃にて2-メチルインドリン16.0kg(119mol)とシクロペンチルメチルエーテル13.7kgの混合溶液を1時間で滴下した。5時間20分撹拌の後、ジメチルエチレンジアミン2.12kg(24mol)を30分かけて滴下した。1時間撹拌の後、10%塩酸16.7kgを1時間13分かけて滴下した。30分撹拌の後、静置分層し、シクロペンチルメチルエーテル層を5%重曹水16.4kg、水15.9kgで順次洗浄した。減圧濃縮して表題化合物のシクロペンチルメチルエーテル溶液46.8kgを得た(表題化合物含量26.8kg、収率96.3%)。
(工程2)
2-メチルインドリン-7-カルボキシアルデヒドの合成
Figure JPOXMLDOC01-appb-C000039

 工程1で得た濃縮液46.8kgにシクロペンチルメチルエーテル132kgとテトラメチルエチレンジアミン17.4kg(150mol)を加え、-60℃以下に冷却した。sec-ブチルリチウム90.1kg(10.6% シクロヘキサン/n-ヘキサン溶液)を2時間30分で滴下し、-60℃以下で1時間撹拌後、-60℃でN,N-ジメチルホルムアミド16.9kg(230mol)を1時間30分で滴下した。-50℃以下で1時間撹拌後、メタノール11.1kgを25分間で滴下した。0℃付近まで昇温後、10%塩化アンモニウム水溶液82.9kgを加え、抽出、分層を行った。有機層を水80.5kgで洗浄し、減圧濃縮で溶媒の一部を留去した。
 メタノール42.4kgとシクロペンチルメチルエーテル58.5kgの混合溶液に塩化水素ガス11.4kgを吹き込んだ。この溶液に上記濃縮液89.5kgを30℃で1時間30分かけて滴下した。30℃で4時間撹拌後、10%水酸化ナトリウム水溶液119kgを1時間10分かけて滴下した。30分撹拌後、静置分層し、有機層を水81kgで2回洗浄した。有機層を濃縮後、減圧蒸留し、表題化合物13.0kgを得た(含量89.7%、収率70.3%)。
1H NMR(400 MHz, CDCl3): δ 1.31(d, 3H), 2.62(dd, 1H), 3.18(dd, 1H), 4.20(m, 1H), 6.59(dd, 1H), 6.76(brs, 1H), 7.14(d, 1H), 7.27(d, 1H), 9.82(s, 1H).
13C NMR(100 MHz, CDCl3): δ23.07, 36.34, 55.72, 116.24, 116.34, 129.69, 130.87, 131.14, 152.98, 192.87.
ESI-MS: m/z 162 (M+H)+.
(工程3)
2-メチルインドール-7-カルボキシアルデヒドの合成
Figure JPOXMLDOC01-appb-C000040

 トルエン56.3kgに3,4-ジクロロ-5,6-ジシアノベンゾキノン16.9kg(73.9mol)を加え、工程2で得た化合物11.98kg(含量10.8kg)のトルエン9.40kg溶液を1時間かけて滴下した。30℃にて4時間40分撹拌し、3,4-ジクロロ-5,6-ジシアノベンゾキノン1.54kgを追加して2時間30分撹拌した。15%水酸化カリウム水溶液72.5kgに反応液を移送し、トルエン12.7kgで洗いこんだ。水層を引き抜いた後にトルエン層にラジオライト3.3kgを加え1時間撹拌した。不溶物をろ過分離後、ろ液に15%水酸化カリウム24.7kgを加えて抽出洗浄を行った。トルエン層を水21.7kgで洗浄後、トルエン層にシリカゲル5.42kgを加えて30℃で1時間撹拌した。シリカゲルを分離後、減圧濃縮し、2-プロパノール80kgを加えて約30Lまで濃縮した。2-プロパノール25kgを加えて追加濃縮後、全体量を38.1Lに濃度調整し、44℃まで昇温して溶解させた後、38℃で種晶を加えた。40℃で1時間30分熟成し、水54.5kgを1時間20分かけて滴下後、20℃まで冷却した。析出した結晶を分離し、50℃で真空乾燥を行って表題化合物8.32kgを取得した(含量100%、収率78.0%)。
(工程4)
(1R,8R,10R)-8-(2-メチルインドール-7-イル)-2,5,9-トリアザトリシクロ[8.4.0.03,7]テトラデカ-3(7)-エン-6-オンの合成
Figure JPOXMLDOC01-appb-C000041

 メタノール232gに水酸化カリウム12.7g(含量96.2%、217mM)を溶解し、4-[(1R、2R)-2-アミノシクロヘキシルアミノ]-3-ピロリン-2-オン塩酸塩55.0g(含量88.8%、211mmol)を加えた。25℃で撹拌、中和の後、析出した塩化カリウムをろ過し、メタノール58gでケークを洗浄した。ろ液に20%水酸化カリウム-メタノール溶液を滴下してpHを12.20に調整した後にメタノール135gと工程3で得られる化合物33.7g(211mmol)を順次加えて99時間還流した。60~65℃に冷却後、トルエン106gを約2時間かけて滴下し、25℃まで7時間かけて冷却した。一晩撹拌の後に遠心分離し、湿結晶を60℃で減圧乾燥して表題化合物58.5gを得た(含量88.3%、収率72.8%)。
(工程5)
(1R,8R,10R)-5,9-ビス(2-メトキシアセチル)-8-(2-メチルインドール-7-イル)-2,5,9-トリアザトリシクロ[8.4.0.03,7]テトラデカ-3(7)-エン-6-オンの合成

 アセトニトリル432gに工程4で得られる化合物56.6g(149mmol)を加え、約14kPaで減圧濃縮した。約8.5L/kg(対表題化合物)まで濃縮した後にアセトニトリルを約2L/kg追加して同様に8.5L/kgまで濃縮した。15℃に冷却後、メトキシアセチルクロリド58.1g(525mmol)を滴下し、引き続きトリエチルアミン51.8g(565mmol)を2時間で滴下した。水150mLを加え、終夜撹拌の後に約14kPaで3L/kgの溶媒を濃縮した。水150mLを追加後、さらに3L/kgの溶媒を濃縮し、40℃に温度調整した。3時間で10℃まで冷却後、熟成した。析出した結晶を遠心分離し、60℃で減圧乾燥後に表題化合物64.2gを取得した(含量92.7%、収率83.3%)。
1H NMR(400 MHz, DMSO-d6): δ 0.45(m, 1H), 0.79(brd, 1H), 0.97(m, 1H), 1.08(m, 1H), 1.37(brd, 1H), 1.45(brd, 1H), 2.01(brd, 1H), 2.32(m, 1H), 2.43(s, 3H), 2.94(m, 1H), 3.34(s, 3H), 3.48(s, 3H), 3.93(d, 1H), 4.13(m, 1H), 4.24(d, 1H), 4.37(d, 1H), 4.41(d, 1H), 4.47(d, 1H), 4.53(d, 1H), 5.96(brs, 1H), 6.19(brs, 1H), 6.79(d, 1H), 6.91(dd, 1H), 7.40(d, 1H), 7.63(s, 1H), 10.16(brs, 1H).
13C NMR(100 MHz, DMSO-d6): δ 13.49, 23.03, 24.79, 27.78, 33.65, 47.36, 54.30, 55.90, 58.07, 58.49, 58.75, 71.74, 73.48, 99.59, 99.90, 118.65, 119.11, 119.38, 119.94, 129.29, 134.03, 135.38, 157.45, 168.33, 168.73, 168.93.
ESI-MS: m/z 479 (M-H)-.
(工程6)
(1R,8R,10R)-9-(2-メトキシアセチル)-8-(2-メチルインドール-7-イル)-2,5,9-トリアザトリシクロ[8.4.0.03,7]テトラデカ-3(7)-エン-6-オンの合成
Figure JPOXMLDOC01-appb-C000043

 メタノール140mLに水酸化カリウム2.0g(35mmol)を溶解し、30℃で工程5で得られる化合物60.7g(117mmol)を加えて2時間撹拌した。メンブランフィルターでろ過し、メタノール28mLで洗浄した。50℃に昇温後、水17mLを加え、接種した。1時間熟成後、水151mLを2時間かけて滴下し、10℃に4時間かけて冷却した。一晩熟成後、遠心分離し、50℃で減圧乾燥して表題化合物47.4gを取得した(含量100%、収率99.1%)。

Claims (14)

  1.  下記式(7)
    Figure JPOXMLDOC01-appb-C000001

    (式中、RはC1-6アルキル基を表す。) 
    の化合物またはその塩を
    下記式(8)
    Figure JPOXMLDOC01-appb-C000002

    (式中RおよびRは同一または異なってC1-6アルキル基を表す。) 
    の化合物またはその塩に変換する工程を含む、下記式(1):
    Figure JPOXMLDOC01-appb-C000003

    (式中、RおよびRの定義は前記の通りである。) 
    の化合物またはその塩を製造する方法。
  2.  式(7)の化合物またはその塩を式(12)
      XCOCHOR (12)
    (式中、Xは、ハロゲン原子、RはC1-6アルキル基を表す。)の化合物またはその塩
    と反応させる工程を含む、請求項1に記載の方法。
  3.  塩基存在下で反応させる請求項2に記載の方法。
  4.  式(8)の化合物またはその塩を塩基で処理する工程を含む請求項1乃至3のいずれかに記載の方法。
  5.  下記式(2)
    Figure JPOXMLDOC01-appb-C000004

    の化合物またはその塩と下記式(11)
    Figure JPOXMLDOC01-appb-C000005

    (式中、RはC1-6アルキル基を表す。) 
    の化合物またはその塩をアルカリ性条件下で縮合環化させ式(7)の化合物またはその塩を得る工程を含む、前記請求項1に記載の方法。
  6.  アルコール溶媒中で行う請求項5に記載の方法。
  7.  式(13)
    Figure JPOXMLDOC01-appb-C000006

    (式中、RはC1-6アルキル基を表す。) 
    の化合物またはその塩を酸化剤で処理することにより、式(11)の化合物またはその塩に変換する工程を含む請求項5に記載の方法。
  8.  酸化剤がキノン類である請求項5に記載の方法。
  9.  下記式(14)
    Figure JPOXMLDOC01-appb-C000007

    (式中、RはC1-6アルキル基を表す。)
    の化合物またはその塩を、ホルミル化剤を用いて反応させ、次いで酸で処理することにより式(13)の化合物を得る工程を含む請求項7に記載の方法。
  10.  下記式(15)
    Figure JPOXMLDOC01-appb-C000008

    (式中、RはC1-6アルキル基を表す。) 
    の化合物またはその塩を、ジ-tert-ブチル-ジカーボネートと反応させ式(14)の化合物を得る工程を含む請求項9に記載の方法。
  11.  酸がプロトン酸である請求項9に記載の方法。
  12.  カラム精製を要しない請求項1乃至11のいずれかに記載の方法。
  13.  下記式(8)
    Figure JPOXMLDOC01-appb-C000009

    (式中、RおよびRは同一または異なってC1-6アルキル基を表す。) 
    の化合物またはその塩。
  14.  式(13)
    Figure JPOXMLDOC01-appb-C000010

    (式中、RはC1-6アルキル基を表す。) 
    の化合物またはその塩。
PCT/JP2010/061311 2009-07-02 2010-07-02 ラクタム化合物の製造方法およびその製造中間体 WO2011002076A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-158272 2009-07-02
JP2009158272A JP2012180283A (ja) 2009-07-02 2009-07-02 ラクタム化合物の製造方法およびその製造中間体

Publications (1)

Publication Number Publication Date
WO2011002076A1 true WO2011002076A1 (ja) 2011-01-06

Family

ID=43411144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061311 WO2011002076A1 (ja) 2009-07-02 2010-07-02 ラクタム化合物の製造方法およびその製造中間体

Country Status (2)

Country Link
JP (1) JP2012180283A (ja)
WO (1) WO2011002076A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002044180A1 (fr) * 2000-12-01 2002-06-06 Ajinomoto Co.,Inc. Composes de lactame et leur utilisation medicale
WO2005042536A1 (ja) * 2003-10-31 2005-05-12 Ajinomoto Co., Inc. 複素環を有する新規縮合多環式化合物及びその医薬用途
WO2005068467A1 (ja) * 2004-01-14 2005-07-28 Ajinomoto Co., Inc. 新規縮環化合物
WO2006118341A1 (ja) * 2005-04-28 2006-11-09 Ajinomoto Co., Inc. 新規ラクタム化合物
WO2008136394A1 (ja) * 2007-04-27 2008-11-13 Ajinomoto Co., Inc. ラクタム化合物の製造方法及びその製造中間体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002044180A1 (fr) * 2000-12-01 2002-06-06 Ajinomoto Co.,Inc. Composes de lactame et leur utilisation medicale
WO2005042536A1 (ja) * 2003-10-31 2005-05-12 Ajinomoto Co., Inc. 複素環を有する新規縮合多環式化合物及びその医薬用途
WO2005068467A1 (ja) * 2004-01-14 2005-07-28 Ajinomoto Co., Inc. 新規縮環化合物
WO2006118341A1 (ja) * 2005-04-28 2006-11-09 Ajinomoto Co., Inc. 新規ラクタム化合物
WO2008136394A1 (ja) * 2007-04-27 2008-11-13 Ajinomoto Co., Inc. ラクタム化合物の製造方法及びその製造中間体

Also Published As

Publication number Publication date
JP2012180283A (ja) 2012-09-20

Similar Documents

Publication Publication Date Title
US8471039B2 (en) Process for the preparation of indoline derivatives and their intermediates thereof
EP2545043B1 (en) Anhydrous lenalidomide form-i
US11332460B2 (en) Process for the preparation of a sulfonamide structured kinase inhibitor
US8378106B2 (en) Method for preparing argatroban monohydrate and a process for its synthesis
JP6985367B2 (ja) 新規化合物および方法
US9828340B2 (en) Asymmetric synthesis of a substituted pyrrolidine-2-carboxamide
KR20210104833A (ko) 치환된 헤테로사이클 융합 감마-카르볼린 합성
WO2009119700A1 (ja) ピペリジン-3-イルカーバメート化合物の製造方法およびその光学分割方法
WO2011002076A1 (ja) ラクタム化合物の製造方法およびその製造中間体
EP1907377B1 (en) A process for the preparation of almotriptan
JP5004067B2 (ja) ベンジルオキシ含窒素環状化合物の製造法
JP2010500351A (ja) ラクタムタキキニン受容体拮抗薬の製造法
AU2003269331A1 (en) Acyl derivatives of 5-(2-(4-(1,2 benzisothiazole-3-yl)-1-piperazinyl)ethyl)-6-chloro-1,3-dihydro-2h-indol-2-one having neuroleptic activity
JP5191385B2 (ja) コハク酸ジエステル誘導体、その製造法および医薬製造における該誘導体の使用
KR101686087B1 (ko) 광학 활성을 갖는 인돌린 유도체 또는 이의 염의 신규 제조 방법
RU2795581C2 (ru) Синтез замещенных конденсированных с гетероциклом гаммакарболинов
WO2011002075A1 (ja) ラクタム化合物の製造方法およびその製造中間体
WO2007035003A1 (ja) 光学活性なピペラジン化合物の製造方法
JP2007284358A (ja) 光学活性なピペラジン化合物の製造方法
KR100566562B1 (ko) 수마트립탄의 제조방법
JP2006022045A (ja) 光学活性1−t−ブトキシカルボニル−3−アミノピロリジン塩の単離精製方法
JP2003171354A (ja) 光学活性アミン化合物又はその塩の製造方法
CA3219030A1 (en) Processes and intermediates for the preparation of 2-(2,6-dichlorophenyl)-1-[(1s,3r)-3-(hydroxymethyl)-5-(3-hydroxy-3-methylbutyl)-1-methyl-3,4-dihydroisoquinolin-2(1h)-yl]ethenone
JP5080050B2 (ja) 光学活性なピペラジン化合物の製造方法
KR100896087B1 (ko) 광학적으로 순수한 2-메틸피롤리딘 및 그 염의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10794244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10794244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP