WO2010151030A2 - 두께변화 측정장치, 이를 이용한 시스템, 이를 이용한 표면 현미경, 두께변화 측정방법 및 이를 이용한 표면 이미지 획득방법 - Google Patents

두께변화 측정장치, 이를 이용한 시스템, 이를 이용한 표면 현미경, 두께변화 측정방법 및 이를 이용한 표면 이미지 획득방법 Download PDF

Info

Publication number
WO2010151030A2
WO2010151030A2 PCT/KR2010/004044 KR2010004044W WO2010151030A2 WO 2010151030 A2 WO2010151030 A2 WO 2010151030A2 KR 2010004044 W KR2010004044 W KR 2010004044W WO 2010151030 A2 WO2010151030 A2 WO 2010151030A2
Authority
WO
WIPO (PCT)
Prior art keywords
measurement object
sensing unit
reflected
curved reflector
point
Prior art date
Application number
PCT/KR2010/004044
Other languages
English (en)
French (fr)
Other versions
WO2010151030A3 (ko
Inventor
서봉민
Original Assignee
Seo Bongmin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seo Bongmin filed Critical Seo Bongmin
Priority to US13/380,546 priority Critical patent/US8817274B2/en
Priority to CN201080038383.1A priority patent/CN102625902B/zh
Priority claimed from KR1020100059064A external-priority patent/KR101169586B1/ko
Publication of WO2010151030A2 publication Critical patent/WO2010151030A2/ko
Publication of WO2010151030A3 publication Critical patent/WO2010151030A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/245Devices for focusing using auxiliary sources, detectors

Definitions

  • the present invention relates to a thickness change measuring apparatus, a system using the same, a surface microscope using the same, a thickness change measuring method, and a method for obtaining a surface image using the same.
  • the present invention relates to a thickness change measuring apparatus capable of acquiring surface images, a system using the same, a surface microscope using the same, a method of measuring thickness variation, and a method of acquiring surface images using the same.
  • the thickness change measuring device is a device for measuring the thickness of the thin film or the thickness change of the thin film.
  • the thickness is monitored by measuring the amount actually deposited using a sensor using a crystal oscillator.
  • This method requires frequent changes of the crystal oscillator sensor, requires accurate calibration, and, after a certain degree of deposition, causes the sensor to saturate and exhibit a non-linear response, making it difficult to monitor real-time thickness changes.
  • the second method is to measure the thickness of the thin film that has already been deposited.
  • various methods such as ellipsometry, white light interferometer, alpha-step, and laser triangulation system are used. There are many problems to measure. Even the thickness measurement of 1 ⁇ size encounters various difficulties such as the preparation of samples or the assumption of other variables when the thickness measurement is performed using the above method.
  • optical systems such as confocal optics also require precision and precise alignment is required, which inevitably increases the price of all parts or components.
  • the present invention is to solve the various problems including the above problems, a thickness change measuring device that can accurately and accurately measure the fine thickness change or obtain a surface image with a simple yet inexpensive configuration, a system using the same, using the same
  • An object of the present invention is to provide a surface microscope, a method for measuring thickness change, and a method for obtaining a surface image using the same.
  • the present invention includes a light source for irradiating a beam to the measurement object, a curved reflector that can reflect when the beam reflected from the measurement object is incident, and a sensing unit for sensing the beam reflected from the curved reflector, Provide a thickness change measuring device.
  • the light source can be irradiated with a beam at a 45 ° angle to the measurement object.
  • the lens unit further comprises a lens disposed to pass before the beam emitted from the light source reaches the measurement object, the lens unit is the curved surface after the beam emitted from the light source passes through the lens unit The beam diameter may be gradually reduced until it enters the reflector.
  • the lens unit further comprises a lens disposed to pass before the beam emitted from the light source reaches the measurement object, the sensing unit after the beam emitted from the light source is reflected by the curved reflector
  • the lens unit may be such that the beam diameter is changed after the beam emitted from the light source passes through the lens unit so that the beam diameter is constant until incident.
  • the light emitting apparatus further includes a lens unit disposed to pass before the beam emitted from the light source reaches the measurement target, and the beam reflected from the measurement target is curvature at the beam incident point of the curved reflector.
  • the lens unit may be such that the beam diameter is changed after the beam emitted from the light source passes through the lens unit.
  • the light source may be a laser light source.
  • the light source may include a light emitting element and a pin hole for passing a part of the light emitted from the light emitting element.
  • the curved reflector may be at least a part of the reflector surface.
  • the beam reflected from the measurement object before the change in the thickness of the measurement object, the beam reflected from the measurement object is reflected by the curved reflector is incident on the sensing unit and the first point sensed by the sensing unit and the thickness change of the measurement object Afterwards, the beam reflected from the measurement object may be reflected by the curved reflector to be incident on the sensing part, and the thickness change of the measurement object may be measured according to the position difference between the second points sensed by the sensing part.
  • the beam reflected from one point of the measurement object is reflected from the curved reflector and incident on the sensing unit and the first point sensed by the sensing unit and the beam reflected from another point of the measurement object
  • the change in the thickness of the measurement object may be measured according to the positional difference between the second point reflected by the curved reflector and incident on the sensing unit and sensed by the sensing unit.
  • the beam reflected from the curved reflector may be further provided with an amplifying tube having at least two mutually opposite reflecting surfaces arranged to pass before entering the sensing unit.
  • At least two mutually opposite reflecting surfaces of the amplifying tube may be parallel.
  • the sensing unit may be disposed at one end of at least one reflective surface of the at least two reflective surfaces of the amplifying tube.
  • the sensing unit includes a first sensing unit disposed at one end of one of the at least two reflective surfaces facing each other of the amplifying tube and a second sensing unit disposed at an end of the other reflecting surface. I can do it.
  • the incident angle adjusting unit for adjusting the angle of incidence of the beam reflected from the curved reflector to the amplification tube, and the emission angle adjustment for adjusting the angle of incidence of the beam passing through the amplification tube to the sensing unit At least one of the parts may be further provided.
  • it may be further provided with a light source actuator that can adjust the angle of incidence of the beam irradiated from the light source to the measurement object.
  • the present invention also provides a system using any one of the above-described thickness change measuring apparatuses.
  • the present invention also provides a surface microscope having any one of the above-described thickness change measuring apparatuses, and a scanner capable of changing the position of a measurement object on a plane.
  • the present invention also includes the steps of (a) irradiating a beam to the measurement object before the thickness change of the measurement object, and (b) when the beam reflected from the measurement object is reflected by the curved reflector and enters the sensing unit, the sensing unit enters the sensing unit Determining a first point; (c) irradiating a beam to the measurement object after the thickness change of the measurement object; and (d) the beam reflected from the measurement object is reflected by the curved reflector and is incident on the sensing unit. Determining a thickness change of the object to be measured according to a position difference between the first point and the second point, and determining a second point incident to the sensing unit. Provide a measurement method.
  • the present invention also includes the steps of (a) irradiating a beam to a point of the measurement object, and (b) when the beam reflected from the measurement object is reflected by the curved reflector and enters the sensing unit, the first incident incident to the sensing unit Determining a point; (c) irradiating a beam to another point of the measurement object; and (d) when the beam reflected from the measurement object is reflected from the curved reflector and enters the sensing unit, And determining (e) determining a thickness change of the object to be measured according to the position difference between the first point and the second point.
  • step (a) and step (c) may be a step of irradiating a beam at a 45 ° angle to the measurement object.
  • the step (a) and the step (c) is a step of irradiating the beam to pass through the lens unit before the beam reaches the measurement object, the lens unit the beam passes through the lens unit After that, the beam diameter may gradually decrease until it enters the curved reflector.
  • step (a) and step (c) is a step of irradiating the beam through the lens unit before the beam reaches the measurement object, after the beam is reflected from the curved reflector
  • the lens unit may change the beam diameter after the beam emitted from the light source passes through the lens unit such that the beam diameter is constant until incident on the sensing unit.
  • step (a) and (c) is a step of irradiating the beam to pass through the lens unit before the beam reaches the measurement object, the beam reflected from the measurement object,
  • the lens unit may change the beam diameter after the beam passes through the lens unit in order to converge at the center of the radius of curvature in consideration of the radius of curvature at the beam incident point of the curved reflector.
  • the beam may be a laser beam.
  • the curved reflector may be at least a part of the reflector surface.
  • the step (b) and the step (d), the amplifying tube is at least two surfaces facing each other before the beam reflected from the curved reflector is incident on the sensing unit It can be said that it is a step which makes it pass.
  • At least two mutually opposite reflecting surfaces of the amplifying tube may be parallel.
  • the present invention also includes the steps of (a) irradiating a beam to a point of the measurement object, and (b) when the beam reflected from the measurement object is reflected by the curved reflector and enters the sensing unit, the incident point of the sensing unit is determined. (C) changing the position of the measurement object on a plane to change the beam incidence point on the measurement object, repeating steps (a) and (b), and (d) determining the sensing unit.
  • a method of acquiring a surface image includes determining a surface image of a measurement object by using data about points at which a beam is incident.
  • the thickness change measuring apparatus of the present invention made as described above, a system using the same, a surface microscope using the same, the thickness change measuring method and the surface image acquisition method using the same, it is possible to precisely and accurately measure the minute thickness change with a cheap and simple configuration Can be.
  • FIG 1 and 2 are conceptual views schematically showing the measurement of the thickness change of the measurement object using the thickness change measuring apparatus according to an embodiment of the present invention.
  • 3 and 4 are conceptual views schematically showing the principle of determining the thickness change.
  • FIG. 5 is a schematic conceptual view illustrating a necessity of collimating a beam when using the thickness change measuring apparatus of FIGS. 1 and 2.
  • FIG. 6 is a conceptual diagram schematically showing a thickness change measuring apparatus according to another embodiment of the present invention.
  • FIG. 7 is a conceptual diagram schematically illustrating an apparatus for measuring thickness change according to another embodiment of the present invention.
  • FIGS. 8 to 10 are schematic conceptual views for explaining a thickness change measuring apparatus according to another embodiment of the present invention.
  • FIG. 11 is a conceptual diagram schematically showing a part of a thickness change measuring apparatus according to another embodiment of the present invention.
  • FIG. 12 is a conceptual diagram schematically showing a portion of a thickness change measuring apparatus according to another embodiment of the present invention.
  • FIG. 13 is a conceptual diagram schematically illustrating a portion of a thickness change measuring apparatus according to still another embodiment of the present invention.
  • the thickness change measuring apparatus includes a light source 10, a curved reflector 20, and a sensing unit 30. Of course, if necessary, it may further include a stage 40, etc. on which the measurement object 42 may be arranged.
  • the light source 10 may irradiate the beam 11 to the measurement object 42.
  • Laser may be used as the light source 10, but the present invention is not limited thereto.
  • the light source 10 may include a light emitting element and a pin hole through which some of the light emitted from the light emitting element passes. That is, if the beam 11 having the straightness can be irradiated to the measuring object 42, any one can be a light source 10 of the measuring apparatus according to the present embodiment.
  • a beam having a diameter of several mm can emit such a beam if the diameter does not become larger than several mm even when propagated by 10 m, and can be used as the light source 10 of the measuring apparatus according to the present embodiment, and this condition is satisfied.
  • the light source 10 of the measuring device may be a laser.
  • the curved reflector 20 may be emitted when the beam 13 reflected from the measurement target 42 is emitted from the light source 10.
  • the curved reflector 20 may have various shapes, for example, may be a reflective sphere as shown in the drawing. Hereinafter, the case where the curved reflector 20 is a reflecting sphere will be described for convenience.
  • the sensing unit 30 may sense the beam 15 reflected from the curved reflector 20.
  • the sensing unit 30 may include, for example, a CCD or a CMOS.
  • the thickness change measuring method using the thickness change measuring apparatus according to the present embodiment is as follows.
  • the beam 11 is irradiated onto the measurement object 42 on the stage 40 using the light source 10.
  • the incident angle is shown to be "90 ° - ⁇ ".
  • the beam 11 is reflected at the surface of the measurement object 42.
  • the reflected beam 13 enters the curved reflector 20 and is reflected back from the curved reflector 20.
  • the reflected beam 15 finally enters the sensing unit 30.
  • the sensing unit 30 may determine the position where the reflection beam 15 is incident as the first point.
  • the beam 11 is irradiated onto the measurement object 42 on the stage 40 using the light source 10 again.
  • the thickness of the measurement target 42 is reduced by t. This may correspond to the case of etching the thin film.
  • the beam 11 is irradiated to the measurement object 42 at the same angle of incidence as before the thickness change.
  • the beam 11 is reflected at the surface of the measurement object 42.
  • the reflected beam 17 enters the curved reflector 20 and is reflected back from the curved reflector 20.
  • the reflected beam 19 finally enters the sensing unit 30.
  • the sensing unit 30 may determine a position where the reflection beam 19 is incident as the second point.
  • the distance between the reflected beam 13 and the reflected beam 17 is geometrically determined to be t / sin ⁇ .
  • the distance d between the first point and the second point determined as described above corresponds to a thickness change t of the measurement object 42 at 1: 1. Therefore, the thickness change t of the measurement object 42 can be accurately measured using the distance d between the first point and the second point.
  • the measurement of the thickness change (t) of the measurement object 42 can also be attempted by using a conventional measuring device, but the result is not accurate or there is a problem that a very expensive measuring device must be used to obtain accurate results. .
  • the measuring device according to the present embodiment is inexpensive and has a simple measuring device, accurate measurement is possible.
  • the distance d between the first point and the second point determined by the sensing unit 30 is smaller than the thickness change t of the measurement object 42. It is much larger because it is possible to measure the distance d between the first point and the second point, which is a large distance, even if the cheaper sensing part 30 is used instead of the high-precision sensing part 30. This means that the thickness change t can be accurately measured.
  • the distance d between the first point and the second point corresponds 1: 1 to the thickness change t of the measurement object 42.
  • the correspondence may be determined in various ways according to the situation.
  • the reflection beam 13 before the thickness change of the measurement target 42 is the equator of the curved reflector 20 (reflective sphere) with reference to FIGS. 1 and 2. The case where it enters into a phase is demonstrated.
  • the reflection beam 13 is at an angle of incidence of 90 ° - ⁇ to the curved reflector 20 under the above conditions.
  • the reflected beam 15 is reflected by the curved reflector 20 at a reflection angle of 90 ° - ⁇ .
  • 3 and 4 are conceptual views schematically showing the principle of determining the thickness change.
  • the radius of the curved reflector 20 (reflective sphere) is R
  • the angle between the incident point of the reflective beam 13 on the curved reflector 20 and the incident point of the reflective beam 17 at the center of the curved reflector 20 is It is defined as ⁇ .
  • the distance to the point of incidence of the reflection beam 13 on the curved reflector 20 is geometrically determined by Rtan ⁇ .
  • the point of incidence of the reflective beam 13 on the curved reflector 20 at the point where the plane of contact with the curved reflector 20 meets the reflective beam 17 at the point of incidence of the reflective beam 13 on the curved reflector 20 is geometrically determined to be 2t / tan ⁇ .
  • the angle between the reflected beam 15 and the reflected beam 19 is geometrically determined as 2 ⁇ .
  • the distance from the incident point AC of the reflective beam 13 on the curved reflector 20 to the incident point of the reflective beam 15 on the sensing unit 30 (which is approximately the reflected beam 13 on the curved reflector 20).
  • L which is the shortest distance from the incident point AC of the sensor to the sensing unit 30, may be referred to as a point where the reflection beam 15 and the reflection beam 19 converge as described later. Since the center C is close to the incident point AC of the reflective beam 13 on the curved reflector 20 and can be approximated as the same, the distance between the first point and the second point on the sensing unit 30 ( d) may be referred to as L2 ⁇ .
  • L2 ⁇ is the length of a circular arc having a radius L and a center angle of 2 ⁇ , which may be considered to be different from the distance d between the first point and the second point on the sensing unit 30, but as described later, 2 ⁇ . Since is a very small value, this approximation is possible.
  • is a very small value
  • the center C which is a point where the reflection beam 15 and the reflection beam 19 converge, is incident on the reflection beam 13 on the curved reflector 20. Since it is very close to the point (AC) it can be seen that both are the same, it will be described below with a specific value.
  • the thickness t of the measurement target is 10 nm
  • the incident angle 90- ⁇ is 45 °
  • the curved reflector 20 is a reflector surface having a radius R of 10 mm.
  • the distance (d) between the first point and the second point determined by the sensing unit 30 under the conditions as described above to determine how much is as follows.
  • the measurement unit according to the present embodiment may be used by using only a sensing unit capable of detecting a change of 4 ⁇ m, which is about 400 times that of the sensing unit, capable of sensing a change of 10 nm. That means the device can detect a change of 10 nm. This means that the measuring device according to the present embodiment can measure minute thickness changes very precisely even with a simple configuration using the inexpensive sensing unit 30.
  • the value may be calculated geometrically accurately without approximation. It is geometrically clear that the thickness change t of the measurement object 42 corresponds 1: 1 with the distance d between the first point and the second point in the sensing unit 30. Therefore, when the positions of the light source 10, the measurement object 42, the curved reflector 20, and the sensing unit 30 are determined, the sensing unit 30 corresponding to the thickness change of the measurement object 42 through computer simulation or the like. It is, of course, possible to accurately and uniquely determine the distance d between the first point and the second point in.
  • the thickness change t of the measurement object 42 is sensed.
  • the one-to-one correspondence with the distance d between the first point and the second point in the part 30 is geometrically clear. Therefore, after setting the measuring device as shown in Figure 1, the distance (d) data between the first point and the second point in the sensing unit 30 corresponding to the thickness using a variety of samples that already know the thickness By acquiring the database and then, it is possible to accurately measure the thickness change of any measurement object 42.
  • the light source 10 irradiates the beam 11 to the measurement object 42 at a 45 ° angle at all times, and reflects the reflected beam 13.
  • the equator of the curved reflector 20 which is the reflecting spherical surface, it is possible to precisely measure the thickness change of the measurement object 42 without always changing the position of the sensing unit 30.
  • FIG. 5 is a schematic conceptual view illustrating a necessity of collimating a beam when using the thickness change measuring apparatus of FIGS. 1 and 2.
  • the beam width of the incident light (il) incident on the curved reflector 20 is constant, the reflected beam rl reflected from the curved reflector 20 is reflected.
  • the beam diameter of N increases as the distance from the curved reflector 20 increases. If the beam diameter increases, it may be difficult to accurately determine the first point and the second point in the sensing unit 30 as described above.
  • FIG. 6 is a conceptual diagram schematically illustrating a thickness change measuring apparatus according to another exemplary embodiment of the present invention
  • the beam emitted from the light source 10 passes through the beam before reaching the measurement target 42.
  • the lens unit 50 may be further provided.
  • the lens unit 50 may gradually reduce the beam diameter until the beam 11 emitted from the light source 10 enters the curved reflector 20 after passing through the lens unit 50. . That is, the wavefront of the beam emitted from the light source 10 and incident on the lens unit 50 may be deformed into a concave shape.
  • the beam diameter gradually increases after reflection.
  • the sensing unit 30 can accurately determine the first point and the second point.
  • the lens unit 50 may be referred to as a collimation lens unit.
  • the lens unit 50 has a beam emitted from the light source 10 such that the beam diameter is constant until the beam emitted from the light source 10 is reflected by the curved reflector 20 and then enters the sensing unit 30. After passing through the lens unit 50, the beam diameter may gradually decrease until it enters the curved reflector. That is, in order to maintain a constant beam diameter without diverging or converging after the beam is reflected from the curved reflector 20 (except diffraction angle), the incident beam wavefront to the lens unit 50 is concave. By matching the radius of curvature of the furnace curved reflector 20, the beam passing through the lens portion 50 can have a wavefront that converges to the center of the curved reflector 20.
  • the curved reflector 20 As shown in FIG. 5, when the incident light il having a constant beam diameter is incident on the curved reflector 20 (reflective sphere), the curved reflector 20 corresponding to the image of the incident light il on the curved reflector 20 is shown. If the angle at the center is ⁇ , the reflected beam rl spreads with an angle of 2 ⁇ . Accordingly, when the lens unit 50 adjusts the beam 11 emitted from the light source 10 such that the incident light il is incident on the curved reflector 20 with a convergence angle of 2 ⁇ , the reflected light 20 is reflected by the curved reflector 20.
  • the reflected beam rl has a constant beam diameter on the beam path.
  • the lens unit 50 adjusts the beam 11 emitted from the light source 10 to converge at an angle of 0.2 radians in the former case and at an angle of 0.02 radians in the latter case.
  • the beams 15 and 19 can be made beams of approximately constant beam diameter.
  • the lens unit 50 is a beam emitted from the light source 10 so that the beam diameter is constant until the beam emitted from the light source 10 is reflected by the curved reflector 20 and then incident on the sensing unit 30. After passing through the lens unit 50, it is sufficient to allow the beam diameter to change. For example, even if a beam having a constant diameter is irradiated to the measurement object 42, the beams 13 and 17 reflected from the measurement object 42 because the surface of the measurement object 42 is not uniform have a diameter of which depends on the path of the beam. It may become smaller. In this case, if the degree of the beam diameter becomes too small, even after being reflected by the curved reflector 20, the beam diameter may not become constant and the beam diameter may continue to decrease.
  • the lens unit 50 increases the beam diameter when the beam emitted from the light source 10 passes through the lens unit 50, so that the sensing unit 30 is reflected after the beam is reflected from the curved reflector 20.
  • the beam diameter can be made constant until it enters.
  • the beams 13 and 17 reflected from the measurement object 42 can converge at the center of the radius of curvature in consideration of the radius of curvature at the point of incidence of the beams 13 and 17 of the curved reflector 20.
  • the lens unit 50 is sufficient if the diameter of the beam emitted from the light source 10 can be changed.
  • the lens unit 50 may be uniformly determined to change the beam diameter of the beam 11 emitted from the light source 10, or may change the degree to change the beam diameter depending on the situation. (Active lens unit). For example, it may be necessary to adjust the degree of change in the beam diameter according to the radius of curvature of the curved reflector 20 used, the measurement object 42, and the light source 10.
  • the curved reflector 20 is a reflecting spherical surface in FIG. 1 and the like, as shown in FIG. 7, which is a conceptual diagram schematically illustrating a thickness change measuring apparatus according to another exemplary embodiment of the present invention
  • the curved reflector 20 is sufficient if it is at least a part of a reflecting surface.
  • the reflective surface may be any curved surface instead of a spherical surface. Cylinder surfaces, for example, may also be used. That is, as long as the thickness change (t, length change) of the measurement target 42 can be changed to the angle change, any one can be used as the curved reflector 20.
  • FIGS. 8 to 10 are schematic conceptual views for explaining a thickness change measuring apparatus according to another embodiment of the present invention.
  • the angle formed by the dashed line and the solid line is the same angle.
  • the distances d1 and d2 between the first point and the second point in the sensing unit 30 are different.
  • the distance d2 between the first point and the second point in the sensing unit 30 in the case of FIG. 9 is determined by the first point and the second point in the sensing unit 30 in the case of FIG. 8. It is larger than the distance d1 between two points.
  • a cheaper sensing unit having a lower sensing level can be used.
  • the sensing unit having the same sensing level is used in FIGS. 8 and 9, it means that the thickness change of the measurement object can be measured more accurately than in the case of FIG. 8.
  • both surfaces 61 and 63 may further include an amplifying tube 60 that is reflective surfaces. At least two mutually opposite reflecting surfaces 61 and 63 of the amplifying tube 60 may be parallel to each other. Of course, by making the at least two mutually opposite reflecting surfaces 61 and 63 of the amplifying tube 60 not parallel, the distance between the first point and the second point in the sensing unit 30 may be further increased. Of course, various modifications are possible.
  • the first and second points in the sensing unit 30 by lengthening the beam path from the spherical reflector to the sensing unit 30 after being reflected by the spherical reflector without an amplifying tube
  • the distance d2 between them can be made large.
  • FIG. 9 and FIG. 10 shows that the sizes S11 and S12 of the apparatus in FIG. 9 using the amplification tube 60 are smaller than the sizes S21 and S22 of the apparatus in FIG. 10 without the amplifying tube. Able to know.
  • the size of the thickness change measuring apparatus can be significantly reduced.
  • the sensing unit 30 is an amplifying tube 60 as shown in FIG. 11, which is a conceptual diagram schematically showing a part of the thickness change measuring apparatus according to another embodiment of the present invention.
  • the first sensing unit 31 disposed at the end of one of the reflecting surfaces 61 and the second sensing unit 32 disposed at the other reflecting surface 63 at the end of at least two mutually opposite reflective surfaces 61 and 63 ) May be included.
  • the sensing unit 30 may have at least two reflective surfaces facing each other of the amplifying tube 60. It may be disposed at one end of the reflective surface 61 of the one (61, 63).
  • the light source 10 has been described as irradiating the beam 11 to the measurement object 42 at a constant incidence angle, but the present invention is not limited thereto, and the measurement object of the beam 11 irradiated from the light source 10 is described.
  • a light source actuator (not shown) that can adjust the angle of incidence to 42 may be further provided as necessary.
  • the curved reflector 20 of the stage 40 on which the measurement target 42 may be disposed.
  • a stage actuator (not shown) which can change a position may further be provided as needed.
  • Figure 13 which is a conceptual diagram schematically showing a part of the measuring apparatus according to another embodiment of the present invention, may further include an incident angle control unit 65 and the exit angle control unit 67.
  • the incident angle adjusting unit 65 may adjust the incident angle of the beam reflected from the curved reflector 20 to the amplifying tube 60.
  • the emission angle adjusting unit 67 may adjust an angle of incidence of the beam passing through the amplifying tube 60 into the sensing unit 30.
  • the distance d2 between the first point and the second point in the sensing unit 30 may be increased by using the amplifying tube 60.
  • the incident angle adjusting unit 65 may be formed at the curved reflector 20.
  • the exit angle adjusting unit 67 also adjusts the angle of incidence of the beam passing through the amplifying tube 60 to the sensing unit 30, thereby finally providing a distance d2 between the first point and the second point in the sensing unit 30. ) Can be increased dramatically.
  • the present invention is not limited thereto, and various modifications may be made, including at least one of the incident angle control unit 65 and the exit angle control unit 67.
  • the incident angle control unit 65 and / or the exit angle control unit 67 may be used not only for increasing the distance d2 between the first point and the second point in the sensing unit 30 but also for other purposes. It may be.
  • the incident angle adjusting unit 65 may be used for the purpose of changing the beam path so that the beam reflected from the curved reflector 20 properly enters the amplifying tube 60, and the emission angle adjusting unit 67 may amplify the beam angle.
  • the beam passing through the tube 60 may be used for the purpose of changing the beam path so that the beam 30 is properly incident on the sensing unit 30.
  • the embodiments have been described in which the thickness of the measurement object is reduced as in FIGS. 1 and 2. This may be referred to as the case of reducing the thickness of the measurement object, for example, by etching.
  • the present invention is not limited thereto, and of course, the present invention can also be applied to a case where the thickness of the measurement object is increased.
  • the position of the reflection beam incident on the sensing unit 30 after the thickness change of the measurement object may be positioned on the opposite side of the reflection beam 19 of FIG. 2 with respect to the reflection beam 15.
  • the thickness change measuring device or the thickness change measuring method means that the thickness change can be measured, as well as the thickness of the thin film can be measured. For example, if the first point is identified in the same manner as in FIG. 1 before the thin film is deposited, and the second point is confirmed in the same manner as in FIG. 2 after the thin film is deposited, the deposited thin film is eventually deposited. It can be to measure the thickness of.
  • the thickness change measuring apparatus or the thickness change measuring method of the present invention can be modified and used in various ways.
  • An example of a system using a thickness change measuring apparatus may be a system for measuring thickness uniformity of a formed thin film. That is, the beam reflected from one point of the measurement object 42 is reflected by the curved reflector 20 and enters the sensing unit 30 to sense the first point sensed by the sensing unit 30 and the measurement object 42. The beam reflected at another point is reflected by the curved reflector 20 and enters the sensing unit 30 to measure the thickness change of the measuring object 42 according to the position difference of the second point sensed by the sensing unit 30. You may.
  • a system using a thickness change measuring device is a surface microscope. That is, when using a scanner (eg, xy scanner) that can change the position of the measurement object 42 on the plane, the position of the measurement object 42 is changed on the plane to change the beam incident point on the measurement object 42.
  • the incident point change data of the sensing unit 30 is secured, the surface image of the measurement object 42 may be determined using the data.
  • a surface image acquisition method using the same.
  • a thickness change measuring device capable of precisely and accurately measuring a small thickness change or obtaining a surface image, a system using the same, a surface microscope using the same, a thickness change measuring method, and a surface image obtaining method using the same.

Abstract

본 발명은 저렴하고 간단한 구성으로 미세한 두께변화를 정밀하고 정확하게 측정할 수 있는 두께변화 측정장치, 이를 이용한 시스템, 이를 이용한 표면 현미경, 두께변화 측정방법 및 이를 이용한 표면 이미지 획득방법을 위하여, 측정대상물에 빔을 조사할 수 있는 광원과, 측정대상물에서 반사된 빔이 입사할 시 반사시킬 수 있는 곡면 반사체와, 상기 곡면 반사체에서 반사된 빔을 센싱할 수 있는 센싱부를 구비하는, 두께변화 측정장치, 이를 이용한 시스템, 이를 이용한 표면 현미경, 두께변화 측정방법 및 이를 이용한 표면 이미지 획득방법을 제공한다.

Description

두께변화 측정장치, 이를 이용한 시스템, 이를 이용한 표면 현미경, 두께변화 측정방법 및 이를 이용한 표면 이미지 획득방법
본 발명은 두께변화 측정장치, 이를 이용한 시스템, 이를 이용한 표면 현미경, 두께변화 측정방법 및 이를 이용한 표면 이미지 획득방법에 관한 것으로서, 더 상세하게는 저렴하면서도 간단한 구성으로 미세한 두께변화를 정밀하고 정확하게 측정하거나 표면 이미지를 획득할 수 있는 두께변화 측정장치, 이를 이용한 시스템, 이를 이용한 표면 현미경, 두께변화 측정방법 및 이를 이용한 표면 이미지 획득방법에 관한 것이다.
일반적으로 두께변화 측정장치는 박막의 두께를 측정하거나 박막의 두께변화를 측정하는 장치이다.
종래의 박막두께 측정은 크게 두 가지로 대별될 수 있다.
첫째, 두께 변화량을 실시간으로 측정하는 경우 수정진동자를 이용한 센서를 이용하여 실제로 디포지션되는 량을 측정하여 두께를 모니터링하는 방법을 사용하고 있다. 이러한 방법은 수정진동자 센서를 자주 갈아주어야 하며 정확한 보정(calibration)이 요구되며 어느 정도 디포지션이 되면 센서가 포화 상태에 이르러 비선형적인 반응을 보이게 되므로 실시간 두께 변화의 모니터링에 어려운 점이 있게 된다.
둘째, 이미 디포지션이 끝난 상태의 박막 두께를 측정하는 방법이다. 이는 박막의 적층 재료에 따라 엘립소메트리(ellipsometry), 백색광 간섭계, 알파스텝(alpha-step), 레이저 삼각측량 시스템(laser triangulation system) 등의 여러 방법이 사용되고 있으나 두께가 10nm 전후의 박막인 경우 정확히 측정하기에 많은 문제점을 안고 있다. 심지어 1㎛ 크기의 두께 측정도 상기의 방법을 사용하여 두께 측정을 수행할 경우 샘플 준비나 다른 변수의 가정 등 여러 어려운 점에 봉착하게 된다.
또한 극미세 박막의 두께 측정의 정확도를 높이기 위하여 컨포컬 옵틱 등 사용되는 광학계도 정밀도를 요구하면서 정밀한 얼라인먼트가 요구되어 전체 부품이나 구성품의 가격이 높아질 수밖에 없다.
본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 저렴하면서도 간단한 구성으로 미세한 두께변화를 정밀하고 정확하게 측정하거나 표면 이미지를 획득할 수 있는 두께변화 측정장치, 이를 이용한 시스템, 이를 이용한 표면 현미경, 두께변화 측정방법 및 이를 이용한 표면 이미지 획득방법을 제공하는 것을 목적으로 한다.
본 발명은 측정대상물에 빔을 조사할 수 있는 광원과, 측정대상물에서 반사된 빔이 입사할 시 반사시킬 수 있는 곡면 반사체와, 상기 곡면 반사체에서 반사된 빔을 센싱할 수 있는 센싱부를 구비하는, 두께변화 측정장치를 제공한다.
이러한 본 발명의 다른 특징에 의하면, 상기 광원은 측정대상물에 45° 각도로 빔을 조사할 수 있는 것으로 할 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 광원에서 방출된 빔이 측정대상물에 도달하기 전 통과하도록 배치된 렌즈부를 더 구비하며, 상기 렌즈부는 상기 광원에서 방출된 빔이 상기 렌즈부를 통과한 이후 상기 곡면 반사체에 입사할 때까지, 빔직경이 점진적으로 작아지도록 하는 것으로 할 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 광원에서 방출된 빔이 측정대상물에 도달하기 전 통과하도록 배치된 렌즈부를 더 구비하며, 상기 광원에서 방출된 빔이 상기 곡면 반사체에서 반사된 이후 상기 센싱부에 입사할 때까지 빔직경이 일정하도록, 상기 렌즈부는 상기 광원에서 방출된 빔이 상기 렌즈부를 통과한 이후 빔직경이 변화되도록 하는 것으로 할 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 광원에서 방출된 빔이 측정대상물에 도달하기 전 통과하도록 배치된 렌즈부를 더 구비하며, 측정대상물에서 반사된 빔이, 상기 곡면 반사체의 빔 입사지점에서의 곡률반경을 고려하여 해당 곡률반경의 중심에서 수렴할 수 있도록, 상기 렌즈부는 상기 광원에서 방출된 빔이 상기 렌즈부를 통과한 이후 빔직경이 변화되도록 하는 것으로 할 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 광원은 레이저광원인 것으로 할 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 광원은 발광소자와 상기 발광소자에서 방출되는 광 중 일부를 통과시키는 핀홀(pin hole)을 포함하는 것으로 할 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 곡면 반사체는 반사구면의 적어도 일부인 것으로 할 수 있다.
본 발명의 또 다른 특징에 의하면, 측정대상물의 두께변화 전, 측정대상물에서 반사된 빔이 상기 곡면 반사체에서 반사되어 상기 센싱부에 입사해 상기 센싱부가 센싱한 제1지점과, 측정대상물의 두께변화 후, 측정대상물에서 반사된 빔이 상기 곡면 반사체에서 반사되어 상기 센싱부에 입사해 상기 센싱부가 센싱한 제2지점의 위치 차이에 따라, 측정대상물의 두께변화를 측정하는 것으로 할 수 있다.
본 발명의 또 다른 특징에 의하면, 측정대상물의 일 지점에서 반사된 빔이 상기 곡면 반사체에서 반사되어 상기 센싱부에 입사해 상기 센싱부가 센싱한 제1지점과, 측정대상물의 다른 지점에서 반사된 빔이 상기 곡면 반사체에서 반사되어 상기 센싱부에 입사해 상기 센싱부가 센싱한 제2지점의 위치 차이에 따라, 측정대상물의 두께변화를 측정하는 것으로 할 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 곡면 반사체에서 반사된 빔이 상기 센싱부에 입사하기 전 통과하도록 배치된, 상호 대향된 적어도 두 면들이 반사면들인 증폭관을 더 구비하는 것으로 할 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 증폭관의 상호 대향된 적어도 두 반사면들은 평행한 것으로 할 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 센싱부는 상기 증폭관의 상호 대향된 적어도 두 반사면들 중 어느 한 반사면 끝단에 배치된 것으로 할 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 센싱부는 상기 증폭관의 상호 대향된 적어도 두 반사면들 중 어느 한 반사면 끝단에 배치된 제1센싱부와 다른 반사면 끝단에 배치된 제2센싱부를 포함하는 것으로 할 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 곡면 반사체에서 반사된 빔의 상기 증폭관으로의 입사각을 조절하는 입사각조절부와, 상기 증폭관을 통과한 빔의 상기 센싱부로의 입사각을 조절하는 출사각조절부 중 적어도 어느 하나를 더 구비하는 것으로 할 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 광원에서 조사된 빔의 측정대상물에의 입사각을 조절할 수 있는 광원 액츄에이터를 더 구비하는 것으로 할 수 있다.
본 발명의 또 다른 특징에 의하면, 측정대상물이 배치될 수 있는 스테이지와, 상기 스테이지의 상기 곡면 반사체에 대한 위치를 변화시킬 수 있는 스테이지 액츄에이터를 더 구비하는 것으로 할 수 있다.
본 발명은 또한, 상기와 같은 두께변화 측정장치들 중 어느 하나를 이용한 시스템을 제공한다.
본 발명은 또한, 상기와 같은 두께변화 측정장치들 중 어느 하나와, 측정대상물의 위치를 평면 상에서 변화시킬 수 있는 스캐너를 구비하는, 표면 현미경을 제공한다.
본 발명은 또한, (a) 측정대상물의 두께변화 전 측정대상물에 빔을 조사하는 단계와, (b) 측정대상물에서 반사된 빔이 곡면 반사체에서 반사되어 센싱부에 입사하면, 상기 센싱부에 입사한 제1지점을 확정하는 단계와, (c) 측정대상물의 두께변화 후 측정대상물에 빔을 조사하는 단계와, (d) 측정대상물에서 반사된 빔이 상기 곡면 반사체에서 반사되어 상기 센싱부에 입사하면, 상기 센싱부에 입사한 제2지점을 확정하는 단계와, (e) 상기 제1지점과 상기 제2지점의 위치 차이에 따라, 측정대상물의 두께변화를 결정하는 단계를 포함하는, 두께변화 측정방법을 제공한다.
본 발명은 또한, (a) 측정대상물의 일 지점에 빔을 조사하는 단계와, (b) 측정대상물에서 반사된 빔이 곡면 반사체에서 반사되어 센싱부에 입사하면, 상기 센싱부에 입사한 제1지점을 확정하는 단계와, (c) 측정대상물의 다른 지점에 빔을 조사하는 단계와, (d) 측정대상물에서 반사된 빔이 상기 곡면 반사체에서 반사되어 상기 센싱부에 입사하면, 상기 센싱부에 입사한 제2지점을 확정하는 단계와, (e) 상기 제1지점과 상기 제2지점의 위치 차이에 따라, 측정대상물의 두께변화를 결정하는 단계를 포함하는, 두께변화 측정방법을 제공한다.
이러한 본 발명의 다른 특징에 의하면, 상기 (a) 단계 및 상기 (c) 단계는 측정대상물에 45° 각도로 빔을 조사하는 단계인 것으로 할 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 (a) 단계 및 상기 (c) 단계는, 빔이 측정대상물에 도달하기 전에 렌즈부를 통과하도록 빔을 조사하는 단계이며, 상기 렌즈부는 빔이 상기 렌즈부를 통과한 이후 상기 곡면 반사체에 입사할 때까지, 빔직경이 점진적으로 작아지도록 하는 것으로 할 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 (a) 단계 및 상기 (c) 단계는, 빔이 측정대상물에 도달하기 전에 렌즈부를 통과하도록 빔을 조사하는 단계이며, 빔이 상기 곡면 반사체에서 반사된 이후 상기 센싱부에 입사할 때까지 빔직경이 일정하도록, 상기 렌즈부는 상기 광원에서 방출된 빔이 상기 렌즈부를 통과한 이후 빔직경이 변화되도록 하는 것으로 할 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 (a) 단계 및 상기 (c) 단계는, 빔이 측정대상물에 도달하기 전에 렌즈부를 통과하도록 빔을 조사하는 단계이며, 측정대상물에서 반사된 빔이, 상기 곡면 반사체의 빔 입사지점에서의 곡률반경을 고려하여 해당 곡률반경의 중심에서 수렴할 수 있도록, 상기 렌즈부는 빔이 상기 렌즈부를 통과한 이후 빔직경이 변화되도록 하는 것으로 할 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 빔은 레이저빔인 것으로 할 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 곡면 반사체는 반사구면의 적어도 일부인 것으로 할 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 (b) 단계 및 상기 (d) 단계는, 상기 곡면 반사체에서 반사된 빔이 상기 센싱부에 입사하기 전, 상호 대향된 적어도 두 면들이 반사면들인 증폭관을 통과하도록 하는 단계인 것으로 할 수 있다.
본 발명의 또 다른 특징에 의하면, 상기 증폭관의 상호 대향된 적어도 두 반사면들은 평행한 것으로 할 수 있다.
본 발명은 또한, (a) 측정대상물의 일 지점에 빔을 조사하는 단계와, (b) 측정대상물에서 반사된 빔이 곡면 반사체에서 반사되어 센싱부에 입사하면, 상기 센싱부에 입사한 지점을 확정하는 단계와, (c) 측정대상물의 위치를 평면 상에서 변화시켜 측정대상물 상의 빔 입사지점을 변화시키며 상기 (a) 단계와 상기 (b) 단계를 반복하는 단계와, (d) 상기 센싱부가 확정한 빔이 입사한 지점들에 대한 데이터를 이용하여 측정대상물의 표면 이미지를 확정하는 단계를 포함하는, 표면 이미지 획득방법을 제공한다.
상기한 바와 같이 이루어진 본 발명의 두께변화 측정장치, 이를 이용한 시스템, 이를 이용한 표면 현미경, 두께변화 측정방법 및 이를 이용한 표면 이미지 획득방법에 따르면, 저렴하고 간단한 구성으로 미세한 두께변화를 정밀하고 정확하게 측정할 수 있다.
도 1 및 도 2는 본 발명의 일 실시예에 따른 두께변화 측정장치를 이용하여 측정대상물의 두께변화를 측정하는 것을 개략적으로 도시하는 개념도들이다.
도 3 및 도 4는 두께변화 결정 원리를 개략적으로 도시하는 개념도들이다.
도 5는 도 1 및 도 2의 두께변화 측정장치를 이용할 시 빔을 시준(collimation)할 필요성을 설명하기 위한 개략적인 개념도이다.
도 6은 본 발명의 다른 일 실시예에 따른 두께변화 측정장치를 개략적으로 도시하는 개념도이다.
도 7은 본 발명의 또 다른 일 실시예에 따른 두께변화 측정장치를 개략적으로 도시하는 개념도이다.
도 8 내지 도 10은 본 발명의 또 다른 일 실시예에 따른 두께변화 측정장치를 설명하기 위한 개략적 개념도들이다.
도 11은 본 발명의 또 다른 일 실시예에 따른 두께변화 측정장치의 일부분을 개략적으로 도시하는 개념도이다.
도 12는 본 발명의 또 다른 일 실시예에 따른 두께변화 측정장치의 일부분을 개략적으로 도시하는 개념도이다.
도 13은 본 발명의 또 다른 일 실시예에 따른 두께변화 측정장치의 일부분을 개략적으로 도시하는 개념도이다.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 상세히 설명하면 다음과 같다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 또한 설명의 편의를 위하여 도면에서는 구성 요소들이 그 크기가 과장 또는 축소될 수 있다.
도 1 및 도 2는 본 발명의 일 실시예에 따른 두께변화 측정장치를 이용하여 측정대상물의 두께변화를 측정하는 것을 개략적으로 도시하는 개념도들이다. 도 1 및 도 2를 참조하면, 본 실시예에 따른 두께변화 측정장치는 광원(10), 곡면 반사체(20) 및 센싱부(30)를 구비한다. 물론 필요에 따라 측정대상물(42)이 배치될 수 있는 스테이지(40) 등을 더 구비할 수도 있음은 물론이다.
광원(10)은 측정대상물(42)에 빔(11)을 조사할 수 있다. 이러한 광원(10)으로는 레이저를 이용할 수 있으나 본 발명이 이에 한정되는 것은 아니다. 예컨대 광원(10)은 발광소자와 이 발광소자에서 방출되는 광 중 일부를 통과시키는 핀홀(pin hole)을 포함하는 것일 수 있다. 즉, 직진성이 있는 빔(11)을 측정대상물(42)에 조사할 수 있다면, 그 어떤 것이라도 본 실시예에 따른 측정장치의 광원(10)이 될 수 있다. 예컨대, 수mm의 직경을 갖는 빔이 10m 전파하였을 때도 수mm 이상 직경이 커지지 않는다면 이러한 빔을 방출할 수 있는 것은 본 실시예에 따른 측정장치의 광원(10)으로 사용가능하며, 이런 조건을 만족시킨다면 예컨대 LED나 반도체 레이저, 혹은 백색광도 충분히 이용할 수 있다. 또한, 측정대상물 표면에서의 굴절률, 반사율 및/또는 흡수율 조건 등에 따라서 진행광의 파장이나 빔의 직경 등도 충분히 변화시킬 수 있다. 레이저빔은 직진성이 우수하다는 점에서, 본 실시예에 따른 측정장치의 광원(10)은 레이저일 수 있다.
곡면 반사체(20)는 광원(10)에서 방출되어 측정대상물(42)에서 반사된 빔(13)이 입사할 시 반사시킬 수 있다. 곡면 반사체(20)는 다양한 형상을 가질 수 있는데, 예컨대 도면에 도시된 것과 같이 반사구면일 수 있다. 이하에서는 편의상 곡면 반사체(20)가 반사구면인 경우에 대해 설명한다. 센싱부(30)는 곡면 반사체(20)에서 반사된 빔(15)을 센싱할 수 있다. 이러한 센싱부(30)는 예컨대 CCD나 CMOS 등을 포함하는 것일 수 있다.
이와 같은 본 실시예에 따른 두께변화 측정장치를 이용한 두께변화 측정방법을 설명하면 다음과 같다.
먼저 도 1에 도시된 것과 같이 광원(10)을 이용해서 스테이지(40) 상의 측정대상물(42)에 빔(11)을 조사한다. 도 1에서는 입사각이 "90˚-α"인 것으로 도시하고 있다. 빔(11)은 측정대상물(42)의 표면에서 반사된다. 반사빔(13)은 곡면 반사체(20)에 입사해 곡면 반사체(20)에서 다시 반사된다. 반사빔(15)은 최종적으로 센싱부(30)에 입사하게 된다. 센싱부(30)는 반사빔(15)이 입사한 위치를 제1지점으로 확정할 수 있다.
이후 측정대상물의 두께가 변한 후, 도 2에 도시된 것과 같이 다시 광원(10)을 이용해서 스테이지(40) 상의 측정대상물(42)에 빔(11)을 조사한다. 도 2에서는 측정대상물(42)의 두께가 t 만큼 줄어든 경우를 도시하고 있다. 이는 박막을 식각한 경우 등에 해당할 수 있다. 이 때도 두께변화 전과 동일한 입사각으로 빔(11)을 측정대상물(42)에 조사한다. 빔(11)은 측정대상물(42)의 표면에서 반사된다. 반사빔(17)은 곡면 반사체(20)에 입사해 곡면 반사체(20)에서 다시 반사된다. 반사빔(19)은 최종적으로 센싱부(30)에 입사하게 된다. 센싱부(30)는 반사빔(19)이 입사한 위치를 제2지점으로 확정할 수 있다. 참고로, 반사빔(13)과 반사빔(17) 사이의 거리는 기하학적으로 t/sinα로 결정된다.
이와 같이 확정된 제1지점과 제2지점 사이의 거리(d)는 측정대상물(42)의 두께변화(t)에 1:1 대응한다. 따라서 제1지점과 제2지점 사이의 거리(d)를 이용하여 측정대상물(42)의 두께변화(t)를 정확하게 측정할 수 있다.
물론 종래의 측정장치를 이용해서도 측정대상물(42)의 두께변화(t) 측정을 시도할 수 있지만, 그 결과가 정확하지 않거나 정확한 결과를 얻기 위해서는 매우 고가의 측정장치를 이용해야만 한다는 문제점이 있었다. 그러나 본 실시예에 따른 측정장치를 이용하면 저렴하면서도 간단한 구성을 갖는 측정장치임에도 불구하고 정확한 측정이 가능하다. 특히 도면에 도시된 바와 같이 곡면 반사체(20)를 이용하기 때문에 센싱부(30)에서 확정한 제1지점과 제2지점 사이의 거리(d)가 측정대상물(42)의 두께변화(t)보다 훨씬 큰바, 이는 고정밀의 센싱부(30)가 아닌 저렴한 센싱부(30)를 이용하더라도 큰 거리인 제1지점과 제2지점 사이의 거리(d)를 측정함으르써 측정대상물(42)의 미세한 두께변화(t)를 정밀하게 측정할 수 있다는 것을 의미한다.
전술한 바와 같이 제1지점과 제2지점 사이의 거리(d)는 측정대상물(42)의 두께변화(t)에 1:1 대응한다. 그 대응관계는 상황에 따라 다양한 방식으로 결정될 수 있는데, 이하에서는 도 1 및 도 2를 참조하여 편의상 측정대상물(42)의 두께변화 전 반사빔(13)이 곡면 반사체(20, 반사구면)의 적도 상에 입사한 경우에 대해 설명한다.
광원(10)이 측정대상물(42)에 90˚-α의 입사각으로 빔(11)을 조사하므로, 상기와 같은 조건 하에서 반사빔(13)은 곡면 반사체(20)에 90˚-α의 입사각으로 입사하여 반사빔(15)은 곡면 반사체(20)에서 90˚-α의 반사각으로 반사된다.
도 3 및 도 4는 두께변화 결정 원리를 개략적으로 도시하는 개념도들이다. 먼저 곡면 반사체(20, 반사구면)의 반지름이 R이고, 곡면 반사체(20)의 중심에서 곡면 반사체(20) 상의 반사빔(13)의 입사지점과 반사빔(17)의 입사지점 사이의 각도가 θ라고 정의한다.
도 3을 참조하면, 곡면 반사체(20) 상의 반사빔(13)의 입사지점에서 곡면 반사체(20)에 접하는 평면과, 곡면 반사체(20) 상의 반사빔(17)의 입사지점과 곡면 반사체(20)의 중심을 연결한 직선이 만나는 지점에서, 곡면 반사체(20) 상의 반사빔(13)의 입사지점까지의 거리는 기하학적으로 Rtanθ로 결정된다. 또한, 곡면 반사체(20) 상의 반사빔(13)의 입사지점에서 곡면 반사체(20)에 접하는 평면과 반사빔(17)이 만나는 지점에서, 곡면 반사체(20) 상의 반사빔(13)의 입사지점까지의 거리는 기하학적으로 2t/tanα로 결정된다. 후술하는 바와 같이 θ는 매우 작은 값이므로, 곡면 반사체(20) 상의 반사빔(13)의 입사지점에서 곡면 반사체(20)에 접하는 평면과, 곡면 반사체(20) 상의 반사빔(17)의 입사지점과 곡면 반사체(20)의 중심을 연결한 직선이 만나는 지점은, 곡면 반사체(20) 상의 반사빔(13)의 입사지점에서 곡면 반사체(20)에 접하는 평면과 반사빔(17)이 만나는 지점과 같은 것으로 볼 수 있다. 따라서 R tanθ = 2t / tanα라고 할 수 있으며, 결국 측정대상물(42)의 두께변화(t)는 R(tanθtanα)/2로 나타낼 수 있다.
도 4를 참조하면, 반사빔(15)과 반사빔(19) 사이의 각도는 기하학적으로 2θ로 결정된다. 곡면 반사체(20) 상의 반사빔(13)의 입사지점(AC)에서 센싱부(30) 상의 반사빔(15)의 입사지점까지의 거리(이는 근사적으로 곡면 반사체(20) 상의 반사빔(13)의 입사지점(AC)에서 센싱부(30)까지의 최단거리라고 할 수 있다)를 L이라 하면, 후술하는 바와 같이, 반사빔(15)과 반사빔(19)이 수렴하는 지점이라 할 수 있는 중심(C)은 곡면 반사체(20) 상의 반사빔(13)의 입사지점(AC)과 매우 가까워 동일한 것으로 근사할 수 있으므로, 센싱부(30) 상의 제1지점과 제2지점 사이의 거리(d)는 L2θ라 할 수 있다. 물론 L2θ는 반경이 L이고 중심각이 2θ인 부채꼴의 호의 길이로, 센싱부(30) 상의 제1지점과 제2지점 사이의 거리(d)와는 차이가 있는 것으로 볼 수 있으나, 후술하는 바와 같이 2θ가 매우 작은 값이므로 이와 같이 근사가 가능하다.
결국 θ는 θ = d / 2L이 되므로 측정대상물(42)의 두께변화(t)는 R(tanθtanα) / 2가 되어 그 구체적인 두께변화를 결정할 수 있다.
위와 같은 측정방법에서 θ가 매우 작은 값이고, 또한 반사빔(15)과 반사빔(19)이 수렴하는 지점이라 할 수 있는 중심(C)이 곡면 반사체(20) 상의 반사빔(13)의 입사지점(AC)과 매우 가까워 양자가 동일한 것으로 볼 수 있다고 하였는바, 이하에서는 구체적인 수치로 이에 대해 설명한다.
먼저 측정대상물의 두께변화(t)를 10nm, 입사각 90-α를 45˚, 곡면 반사체(20)가 반지름(R) 10mm의 반사구면임을 가정한다. R tanθ = 2t / tanα라는 수식에 상기와 같은 구체적인 수치를 입력하면 tanθ = 2 X 10-6이 되어 대략 θ = 2 X 10-6(단위: 라디안)이 되어 매우 작은 값임을 알 수 있다. θ가 이와 같이 매우 작은 값이므로, 도 4를 참조하면 반사빔(15)과 반사빔(19)이 수렴하는 지점이라 할 수 있는 중심(C)이 곡면 반사체(20) 상의 반사빔(13)의 입사지점(AC)과 매우 가까워 양자가 동일한 것으로 볼 수 있음이 명확하다. 따라서 상술한 바와 같은 논리의 전개가 가능한 것임을 확인할 수 있다.
한편, 상기와 같은 조건 하에서 센싱부(30)에서 확정한 제1지점과 제2지점 사이의 거리(d)가 어느 정도가 되는지 확인하면 다음과 같다. 전술한 바와 같이 센싱부(30)에서 확정한 제1지점과 제2지점 사이의 거리(d)는 L2θ로 나타낼 수 있는바, L이 1m라고 한다면 d = 1 X 2 X 2 X 10-6 = 4㎛가 된다. 즉, 측정대상물(42)의 두께변화 10nm는 센싱부(30)에서 4㎛로 나타나게 된다. 이는 10nm의 두께변화를 측정하기 위해서 10nm의 변화를 감지할 수 있는 수준의 센싱부가 아니라 그 400배 정도인 4㎛의 변화를 감지할 수 있는 수준의 센싱부만 이용해도, 본 실시예에 따른 측정장치는 10nm의 변화를 감지할 수 있다는 것을 의미한다. 이는 결국 본 실시예에 따른 측정장치는 저렴한 센싱부(30)를 이용한 간단한 구성만으로도 미세한 두께변화를 매우 정밀하게 측정할 수 있음을 의미한다.
상술한 바와 같이 근사가 가능한바, 물론 근사를 하지 않고 기하학적으로 정확하게 값을 계산할 수도 있다. 측정대상물(42)의 두께변화(t)가 센싱부(30)에서의 제1지점과 제2지점 사이의 거리(d)와 1:1 대응됨은 기하학적으로 명확하다. 따라서 광원(10), 측정대상물(42), 곡면 반사체(20) 및 센싱부(30)의 위치가 결정되면, 컴퓨터 시뮬레이션 등을 통해 측정대상물(42)의 두께변화에 대응하는 센싱부(30)에서의 제1지점과 제2지점 사이의 거리(d)를 정확하게 일의(一意)적으로 결정할 수 있음은 물론이다.
지금까지는 다양한 조건 하에서의 두께측정방법에 대해 설명하였으나 본 발명이 이에 한정되지 않음은 물론이다. 즉, 전술한 바와 같이 기하학적으로 θ = d / 2L과 t = R(tanθtanα) / 2라는 수식이 결정되도록 하기 위한 조건들 없이도, 측정대상물(42)의 두께변화(t)를 결정할 수 있다. 즉, 본 실시예에 따른 측정장치의 핵심은 미세한 두께변화(t), 즉 직선거리 변화가, 빔이 곡면 반사체(20)에서 반사됨에 따라 각도변화(θ)로 바뀌고, 곡면 반사체(20)에서 센싱부(30)까지 빔이 진행함에 따라 상기 미세한 두께변화(t)가 결국 수평거리(d)로 변환되되, 이 수평거리(d)의 크기가, 상기 미세한 두께변화(t)가 획기적으로 증폭된 값에 대응하는 원리를 이용하는 것이다.
반사빔(13)이 반사구면인 곡면 반사체(20)의 적도로 입사하지 않더라도, 나아가 곡면 반사체(20)가 반사구면이 아닌 임의의 곡면이더라도, 측정대상물(42)의 두께변화(t)가 센싱부(30)에서의 제1지점과 제2지점 사이의 거리(d)와 1:1 대응됨은 기하학적으로 명확하다. 따라서 도 1에 도시된 것과 같은 측정장치를 세팅한 후, 두께를 이미 알고 있는 다양한 시료들을 이용해 해당 두께에 대응하는 센싱부(30)에서의 제1지점과 제2지점 사이의 거리(d) 데이터를 획득하여 데이터베이스화하면, 이후 임의의 측정대상물(42)의 두께변화를 정확하게 측정할 수 있다.
한편, 도 1 및 도 2에 도시된 것과 같이 곡면 반사체(20)가 반사구면일 경우, 광원(10)이 측정대상물(42)에 언제나 45° 각도로 빔(11)을 조사하고 반사빔(13)이 반사구면인 곡면 반사체(20)의 적도 상에 입사하게 한다면, 센싱부(30)의 위치를 언제나 변화시키지 않고 측정대상물(42)의 두께변화를 정밀하게 측정할 수 있게 된다.
도 5는 도 1 및 도 2의 두께변화 측정장치를 이용할 시 빔을 시준(collimation)할 필요성을 설명하기 위한 개략적인 개념도이다. 도 5에 도시된 것과 같이, 곡면 반사체(20)에 입사하는 입사광(il; incident light)의 빔직경(light width)이 일정하다면, 곡면 반사체(20)에서 반사된 반사빔(rl; reflected light)의 빔직경은 곡면 반사체(20)에서 멀어질수록 커지게 된다. 빔직경이 커지게 되면 전술한 바와 같은 센싱부(30)에서 제1지점과 제2지점을 정확하게 확정하는데 어려움이 발생할 수 있다.
따라서 본 발명의 다른 일 실시예에 따른 두께변화 측정장치를 개략적으로 도시하는 개념도인 도 6에 도시된 것과 같이, 광원(10)에서 방출된 빔이 측정대상물(42)에 도달하기 전 통과하도록 배치된 렌즈부(50)를 더 구비할 수 있다. 이 렌즈부(50)는 광원(10)에서 방출된 빔(11)이 렌즈부(50)를 통과한 이후 곡면 반사체(20)에 입사할 때까지, 빔직경이 점진적으로 작아지도록 하는 것일 수 있다. 즉, 광원(10)에서 방출되어 렌즈부(50)로 입사하는 빔의 파면을 오목(concave)한 형태로 변형시키는 것일 수 있다. 도 5에 도시된 것과 같이 빔직경이 일정한 입사광(il)의 경우 반사 후 빔직경이 점진적으로 커지는바, 이와 달리 곡면 반사체(20)에 입사하기 전 빔직경이 점진적으로 작아지는 빔은 곡면 반사체(20)에서 반사된 후 센싱부(30)에 입사할 때까지, 빔직경이 점진적으로 커지지 않고 일정하게 유지되거나 점진적으로 살짝 작아지게 된다(collimation). 이에 따라 센싱부(30)에서 제1지점과 제2지점을 정확하게 확정할 수 있게 된다. 이런 의미에서 렌즈부(50)를 시준구현 렌즈부라고 할 수도 있다.
이러한 렌즈부(50)는, 광원(10)에서 방출된 빔이 곡면 반사체(20)에서 반사된 이후 센싱부(30)에 입사할 때까지 빔직경이 일정하도록, 광원(10)에서 방출된 빔이 렌즈부(50)를 통과한 이후 곡면 반사체에 입사할 때까지 빔직경이 점진적으로 작아지도록 하는 것일 수 있다. 즉, 빔이 곡면 반사체(20)에서 반사된 이후 발산(diverge)하거나 수렴(converge)하지 않고 일정한 빔직경을 유지할 수 있도록(회절한계각 제외), 렌즈부(50)로의 입사빔 파면을 오목한 형태로 곡면 반사체(20)의 곡률 반경과 매치시킴으로써, 렌즈부(50)를 통과한 빔이 곡면 반사체(20)의 중심부로 수렴(converge)하는 파면을 갖도록 할 수 있다.
도 5에 도시된 것과 같이 빔직경이 일정한 입사광(il)이 곡면 반사체(20, 반사구면)에 입사할 경우, 곡면 반사체(20) 상에서의 입사광(il)의 이미지에 대응하는 곡면 반사체(20) 중심에서의 각도를 β라 하면, 반사빔(rl)은 2β의 각도를 가지고 퍼지게 된다. 따라서 반대로 입사광(il)이 2β의 수렴각도를 가지고 곡면 반사체(20)에 입사하도록 렌즈부(50)가 광원(10)에서 방출된 빔(11)을 조절하면, 곡면 반사체(20)에서 반사된 반사빔(rl)은 빔경로 상에서 빔직경이 일정하게 된다.
도 5에서 빔직경일 일정할 경우의 빔직경을 w라 하고 곡면 반사체(20)가 반경 R의 반사구면이라 하면, β가 매우 작고 빔직경도 작은 값이므로 w = Rβ라고 근사할 수 있으며, 따라서 R = 10mm라 하면 β = w / R = w X 100(β단위: 라디안, w단위: 미터)이 된다. 곡면 반사체(20)에서 반사된 후의 빔(15, 19)의 일정한 빔직경이 1mm라면 β = 0.1라디안이 되고, 곡면 반사체(20)에서 반사된 후의 빔(15, 19)의 일정한 빔직경이 0.1mm라면 β = 0.01라디안이 된다. 따라서 렌즈부(50)는 광원(10)에서 방출된 빔(11)이 전자의 경우 0.2라디안의 각도로, 후자의 경우 0.02라디안의 각도로 수렴하도록 조절하면, 곡면 반사체(20)에서 반사된 후의 빔(15, 19)이 대략 일정한 빔직경의 빔이 되도록 할 수 있다.
물론 렌즈부(50)는, 광원(10)에서 방출된 빔이 곡면 반사체(20)에서 반사된 이후 센싱부(30)에 입사할 때까지 빔직경이 일정하도록, 광원(10)에서 방출된 빔이 렌즈부(50)를 통과한 이후 빔직경이 변화되도록 하기만 하면 족하다. 예컨대 직경이 일정한 빔을 측정대상물(42)에 조사하더라도, 측정대상물(42)의 표면이 균일하지 못해 측정대상물(42)에서 반사된 빔(13, 17)이, 빔의 진행경로에 따라 직경이 점점 작아지게 될 수도 있다. 이 경우 빔직경이 작아지는 정도가 과도한 경우 곡면 반사체(20)에서 반사된 이후에도, 빔직경이 일정하게 되지 않고 계속해서 빔직경이 작아지게 될 수도 있다. 이 경우에는 렌즈부(50)는 광원(10)에서 방출된 빔이 렌즈부(50)를 통과할 시 빔직경이 커지도록 함으로써, 곡면 반사체(20)에서 빔이 반사된 이후 센싱부(30)에 입사할 때까지 빔직경이 일정해 지도록 할 수 있다.
결국, 측정대상물(42)에서 반사된 빔(13, 17)이, 곡면 반사체(20)의 빔(13, 17) 입사지점에서의 곡률반경을 고려하여 해당 곡률반경의 중심에서 수렴할 수 있도록, 렌즈부(50)는 광원(10)에서 방출된 빔의 직경을 변화시킬 수 있으면 족하다.
이러한 렌즈부(50)는 광원(10)에서 방출된 빔(11)의 빔직경을 변화시키는 정도가 일률적으로 정해진 것일 수도 있고, 상황에 따라 빔직경을 변화시키는 정도를 변화시킬 수 있는 것일 수도 있다(액티브 렌즈부). 예컨대 사용되는 곡면 반사체(20)의 곡률반경, 측정대상물(42), 그리고 광원(10)에 따라 빔직경이 변하는 정도를 조절할 필요가 있을 수 있다.
한편, 도 1 등에서는 곡면 반사체(20)가 반사구면인 것으로 도시하고 있으나 본 발명의 또 다른 일 실시예에 따른 두께변화 측정장치를 개략적으로 도시하는 개념도인 도 7에 도시된 것과 같이, 곡면 반사체(20)는 반사구면의 적어도 일부이면 족하다. 물론 전술한 바와 같이 반사면이 구면이 아닌 임의의 곡면일 수도 있다. 예컨대 실린더 형태의 원기둥면 등도 이용가능하다. 즉, 측정대상물(42)의 두께변화(t, 길이변화)를 각도 변화로 변경시킬 수 있는 것이라면 어떤 것이든 곡면 반사체(20)로 이용할 수 있다.
도 8 내지 도 10은 본 발명의 또 다른 일 실시예에 따른 두께변화 측정장치를 설명하기 위한 개략적 개념도들이다.
도 8과 도 9에서 파선으로 표시된 빔과 실선으로 표시된 빔이 최초 이루는 각도는 동일하다. 그러나 센싱부(30)에서의 제1지점과 제2지점 사이의 거리(d1, d2)는 상이하다. 구체적으로는 도 9에 도시된 경우의 센싱부(30)에서의 제1지점과 제2지점 사이의 거리(d2)가 도 8에 도시된 경우의 센싱부(30)에서의 제1지점과 제2지점 사이의 거리(d1)보다 더 크다. 이는 도 9의 경우 도 8의 경우보다 감지 수준이 낮은 더 저렴한 센싱부를 사용할 수 있음을 의미한다. 또는 반대로 도 8과 도 9에서 동일한 감지 수준의 센싱부를 이용하더라도 도 9의 경우 도 8의 경우보다 측정대상물의 미세한 두께변화를 더욱 정확하게 측정할 수 있음을 의미한다.
이와 같이 도 9에서와 같은 장점을 위해, 본 실시예에 따른 두께변화 측정장치는 도 9에 도시된 것과 같이 곡면 반사체에서 반사된 빔이 센싱부에 입사하기 전 통과하도록 배치된, 상호 대향된 적어도 두 면들(61, 63)이 반사면들인 증폭관(60)을 더 구비할 수 있다. 이 증폭관(60)의 상호 대향된 적어도 두 반사면들(61, 63)은 평행한 것일 수 있다. 물론 증폭관(60)의 상호 대향된 적어도 두 반사면들(61, 63)이 평행하지 않도록 함으로써, 센싱부(30)에서의 제1지점과 제2지점 사이의 거리를 더욱 크게 늘릴 수도 있는 등 다양한 변형이 가능함은 물론이다.
한편 도 10에 도시된 것과 같이, 증폭관 없이도 구면 반사체에서 반사된 이후 반사빔이 센싱부(30)에 입사하기까지의 빔경로를 길게 함으로써 센싱부(30)에서의 제1지점과 제2지점 사이의 거리(d2)를 크게 할 수도 있다. 그러나 도 9와 도 10을 비교하면 증폭관(60)을 이용한 도 9의 경우의 장치의 사이즈(S11, S12)가 증폭관이 없는 도 10의 경우의 장치의 사이즈(S21, S22)보다 작음을 알 수 있다. 이와 같이 증폭관(60)을 이용함으로써 두께변화 측정장치의 사이즈를 획기적으로 줄일 수 있다.
증폭관(60)을 이용할 경우, 본 발명의 또 다른 일 실시예에 따른 두께변화 측정장치의 일부분을 개략적으로 도시하는 개념도인 도 11에 도시된 것과 같이 센싱부(30)는 증폭관(60)의 상호 대향된 적어도 두 반사면들(61, 63) 중 어느 한 반사면(61) 끝단에 배치된 제1센싱부(31)와 다른 반사면(63) 끝단에 배치된 제2센싱부(32)를 포함할 수 있다. 물론 본 발명의 또 다른 일 실시예에 따른 두께변화 측정장치의 일부분을 개략적으로 도시하는 개념도인 도 12에 도시된 것과 같이 센싱부(30)는 증폭관(60)의 상호 대향된 적어도 두 반사면들(61, 63) 중 어느 한 반사면(61) 끝단에 배치될 수도 있다.
지금까지는 광원(10)이 측정대상물(42)에 빔(11)을 일정한 입사각으로 조사하는 것과 같이 설명되었으나 본 발명이 이에 한정되는 것은 아니며, 광원(10)에서 조사된 빔(11)의 측정대상물(42)에의 입사각을 조절할 수 있는 광원 액츄에이터(미도시)를 필요에 따라 더 구비할 수도 있다. 또한, 측정대상물(42)에서 반사된 빔(13)의 곡면 반사체(20) 상의 입사지점을 조절하기 위해, 측정대상물(42)이 배치될 수 있는 스테이지(40)의 곡면 반사체(20)에 대한 위치를 변화시킬 수 있는 스테이지 액츄에이터(미도시)를 필요에 따라 더 구비할 수도 있다.
한편, 본 발명의 또 다른 일 실시예에 따른 측정장치의 일부분을 개략적으로 도시하는 개념도인 도 13에 도시된 것과 같이, 입사각조절부(65)와 출사각조절부(67)를 더 구비할 수도 있다. 입사각조절부(65)는 곡면 반사체(20)에서 반사된 빔의 증폭관(60)으로의 입사각을 조절할 수 있다. 출사각조절부(67)는 증폭관(60)을 통과한 빔의 센싱부(30)로의 입사각을 조절할 수 있다. 측정대상물(42)의 두께변화가 매우 작은 경우, 곡면 반사체(20)에서 반사된 두 빔들(15, 19) 사이의 각도가 매우 작을 수 있다. 이 경우 증폭관(60)을 이용해서 센싱부(30)에서의 제1지점과 제2지점 사이의 거리(d2)를 증가시킬 수 있는데, 나아가 입사각조절부(65)가 곡면 반사체(20)에서 반사된 빔의 증폭관(60)으로의 입사각을 조절함으로써, 동일한 길이의 증폭관(60)을 이용하더라도 최종적으로 센싱부(30)에서의 제1지점과 제2지점 사이의 거리(d2)를 획기적으로 증가시킬 수 있다. 출사각조절부(67) 역시 증폭관(60)을 통과한 빔의 센싱부(30)로의 입사각을 조절함으로써, 최종적으로 센싱부(30)에서의 제1지점과 제2지점 사이의 거리(d2)를 획기적으로 증가시킬 수 있다.
물론 본 발명이 이에 한정되는 것은 아니며, 입사각조절부(65)와 출사각조절부(67) 중 적어도 어느 하나만을 구비할 수도 있는 등 다양한 변형이 가능하다. 또한 입사각조절부(65) 및/또는 출사각조절부(67)는 센싱부(30)에서의 제1지점과 제2지점 사이의 거리(d2)를 증가시키기 위한 목적이 아니라 다른 목적으로도 사용될 수도 있다. 예컨대 입사각조절부(65)는 곡면 반사체(20)에서 반사된 빔이 증폭관(60)으로 적절히 입사하도록 그 빔경로에 변화를 주기 위한 목적으로 사용될 수도 있고, 출사각조절부(67)는 증폭관(60)을 통과한 빔이 센싱부(30)에 적절히 입사하도록 그 빔경로에 변화를 주기 위한 목적으로 사용될 수도 있다.
지금까지 실시예들에서는 도 1 및 도 2에서와 같이 측정대상물의 두께가 줄어드는 경우에 대해 설명하였다. 이는 예컨대 식각 등의 방식으로 측정대상물의 두께를 줄이는 경우라 할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며, 측정대상물의 두께가 늘어나는 경우에 대해서도 적용 가능함은 물론이다. 이 경우에는 측정대상물의 두께변화 후 센싱부(30)로 입사하는 반사빔의 위치가 반사빔(15)을 중심으로 도 2의 반사빔(19)의 반대편에 위치하게 될 수 있다.
두께변화 측정장치 또는 두께변화 측정방법이라 함은 두께변화를 측정할 수 있음을 의미하는 것 외에 박막의 두께를 측정할 수 있음도 의미한다. 예컨대 박막이 증착되기 전 박막이 증착될 면에 대해 도 1에서와 같은 방식으로 제1지점을 확인하고, 박막을 증착한 후 도 2에서와 같은 방식으로 제2지점을 확인하면, 결국 증착된 박막의 두께를 측정하는 것이 될 수 있다.
또한, 본 발명의 두께변화 측정장치 또는 두께변화 측정방법은 다양한 방식으로 변형하여 이용할 수 있다.
두께변화 측정장치를 이용한 시스템의 일 예로서, 형성된 박막의 두께 균일도를 측정하는 시스템을 들 수 있다. 즉, 측정대상물(42)의 일 지점에서 반사된 빔이 곡면 반사체(20)에서 반사되어 센싱부(30)에 입사해 센싱부(30)가 센싱한 제1지점과, 측정대상물(42)의 다른 지점에서 반사된 빔이 곡면 반사체(20)에서 반사되어 센싱부(30)에 입사해 센싱부(30)가 센싱한 제2지점의 위치 차이에 따라, 측정대상물(42)의 두께변화를 측정할 수도 있다. 여기서 측정대상물(42)의 일 지점에 빔을 조사한 후 다른 지점에 빔을 조사하기 위해서, 측정대상물(42)의 위치를 평면 상에서 변화시키는 스캐너(예컨대 xy 스캐너)를 더 구비할 수도 있는 등 다양한 변형이 가능함은 물론이다. 이를 이용한 박막의 두께 균일도 측정방법도 상정할 수 있음은 물론이다.
두께변화 측정장치를 이용한 시스템의 다른 예로서, 표면 현미경(morphology microscope)을 들 수 있다. 즉, 측정대상물(42)의 위치를 평면 상에서 변화시킬 수 있는 스캐너(예컨대 xy 스캐너)를 이용할 경우, 측정대상물(42)의 위치를 평면 상에서 변화시켜 측정대상물(42) 상의 빔 입사지점을 변화시키며 센싱부(30)에서의 입사지점 변화 데이터를 확보하면, 해당 데이터를 이용하여 측정대상물(42)의 표면 이미지를 확정할 수 있다. 이를 이용한 표면 이미지 획득방법도 상정할 수 있음은 물론이다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
저렴하면서도 간단한 구성으로 미세한 두께변화를 정밀하고 정확하게 측정하거나 표면 이미지를 획득할 수 있는 두께변화 측정장치, 이를 이용한 시스템, 이를 이용한 표면 현미경, 두께변화 측정방법 및 이를 이용한 표면 이미지 획득방법을 구현할 수 있다.

Claims (28)

  1. 측정대상물에 빔을 조사할 수 있는 광원;
    측정대상물에서 반사된 빔이 입사할 시 반사시킬 수 있는 곡면 반사체; 및
    상기 곡면 반사체에서 반사된 빔을 센싱할 수 있는 센싱부;를 구비하는, 두께변화 측정장치.
  2. 제1항에 있어서,
    상기 광원은 측정대상물에 45° 각도로 빔을 조사할 수 있는, 두께변화 측정장치.
  3. 제1항에 있어서,
    상기 광원에서 방출된 빔이 측정대상물에 도달하기 전 통과하도록 배치된 렌즈부를 더 구비하며, 상기 렌즈부는 상기 광원에서 방출된 빔이 상기 렌즈부를 통과한 이후 상기 곡면 반사체에 입사할 때까지, 빔직경이 점진적으로 작아지도록 하는, 두께변화 측정장치.
  4. 제1항에 있어서,
    상기 광원에서 방출된 빔이 측정대상물에 도달하기 전 통과하도록 배치된 렌즈부를 더 구비하며, 상기 광원에서 방출된 빔이 상기 곡면 반사체에서 반사된 이후 상기 센싱부에 입사할 때까지 빔직경이 일정하도록, 상기 렌즈부는 상기 광원에서 방출된 빔이 상기 렌즈부를 통과한 이후 빔직경이 변화되도록 하는, 두께변화 측정장치.
  5. 제1항에 있어서,
    상기 광원에서 방출된 빔이 측정대상물에 도달하기 전 통과하도록 배치된 렌즈부를 더 구비하며, 측정대상물에서 반사된 빔이, 상기 곡면 반사체의 빔 입사지점에서의 곡률반경을 고려하여 해당 곡률반경의 중심에서 수렴할 수 있도록, 상기 렌즈부는 상기 광원에서 방출된 빔이 상기 렌즈부를 통과한 이후 빔직경이 변화되도록 하는, 두께변화 측정장치.
  6. 제1항에 있어서,
    상기 광원은 레이저광원인, 두께변화 측정장치.
  7. 제1항에 있어서,
    상기 광원은 발광소자와 상기 발광소자에서 방출되는 광 중 일부를 통과시키는 핀홀(pin hole)을 포함하는, 두께변화 측정장치.
  8. 제1항에 있어서,
    상기 곡면 반사체는 반사구면의 적어도 일부인, 두께변화 측정장치.
  9. 제1항에 있어서,
    측정대상물의 두께변화 전, 측정대상물에서 반사된 빔이 상기 곡면 반사체에서 반사되어 상기 센싱부에 입사해 상기 센싱부가 센싱한 제1지점과, 측정대상물의 두께변화 후, 측정대상물에서 반사된 빔이 상기 곡면 반사체에서 반사되어 상기 센싱부에 입사해 상기 센싱부가 센싱한 제2지점의 위치 차이에 따라, 측정대상물의 두께변화를 측정하는, 두께변화 측정장치.
  10. 제1항에 있어서,
    측정대상물의 일 지점에서 반사된 빔이 상기 곡면 반사체에서 반사되어 상기 센싱부에 입사해 상기 센싱부가 센싱한 제1지점과, 측정대상물의 다른 지점에서 반사된 빔이 상기 곡면 반사체에서 반사되어 상기 센싱부에 입사해 상기 센싱부가 센싱한 제2지점의 위치 차이에 따라, 측정대상물의 두께변화를 측정하는, 두께변화 측정장치.
  11. 제1항에 있어서,
    상기 곡면 반사체에서 반사된 빔이 상기 센싱부에 입사하기 전 통과하도록 배치된, 상호 대향된 적어도 두 면들이 반사면들인 증폭관을 더 구비하는, 두께변화 측정장치.
  12. 제11항에 있어서,
    상기 증폭관의 상호 대향된 적어도 두 반사면들은 평행한, 두께변화 측정장치.
  13. 제11항에 있어서,
    상기 센싱부는 상기 증폭관의 상호 대향된 적어도 두 반사면들 중 어느 한 반사면 끝단에 배치된, 두께변화 측정장치.
  14. 제11항에 있어서,
    상기 센싱부는 상기 증폭관의 상호 대향된 적어도 두 반사면들 중 어느 한 반사면 끝단에 배치된 제1센싱부와 다른 반사면 끝단에 배치된 제2센싱부를 포함하는, 두께변화 측정장치.
  15. 제11항에 있어서,
    상기 곡면 반사체에서 반사된 빔의 상기 증폭관으로의 입사각을 조절하는 입사각조절부와, 상기 증폭관을 통과한 빔의 상기 센싱부로의 입사각을 조절하는 출사각조절부 중 적어도 어느 하나를 더 구비하는, 두께변화 측정장치.
  16. 제1항에 있어서,
    상기 광원에서 조사된 빔의 측정대상물에의 입사각을 조절할 수 있는 광원 액츄에이터를 더 구비하는, 두께변화 측정장치.
  17. 제1항에 있어서,
    측정대상물이 배치될 수 있는 스테이지와, 상기 스테이지의 상기 곡면 반사체에 대한 위치를 변화시킬 수 있는 스테이지 액츄에이터를 더 구비하는, 두께변화 측정장치.
  18. 제1항 내지 제17항 중 어느 한 항의 두께변화 측정장치를 이용한 시스템.
  19. 제1항 내지 제8항 및 제11항 내지 제16항 중 어느 한 항의 두께변화 측정장치; 및
    측정대상물의 위치를 평면 상에서 변화시킬 수 있는 스캐너;를 구비하는, 표면 현미경.
  20. (a) 측정대상물의 두께변화 전 측정대상물에 빔을 조사하는 단계;
    (b) 측정대상물에서 반사된 빔이 곡면 반사체에서 반사되어 센싱부에 입사하면, 상기 센싱부에 입사한 제1지점을 확정하는 단계;
    (c) 측정대상물의 두께변화 후 측정대상물에 빔을 조사하는 단계;
    (d) 측정대상물에서 반사된 빔이 상기 곡면 반사체에서 반사되어 상기 센싱부에 입사하면, 상기 센싱부에 입사한 제2지점을 확정하는 단계; 및
    (e) 상기 제1지점과 상기 제2지점의 위치 차이에 따라, 측정대상물의 두께변화를 결정하는 단계;를 포함하는, 두께변화 측정방법.
  21. (a) 측정대상물의 일 지점에 빔을 조사하는 단계;
    (b) 측정대상물에서 반사된 빔이 곡면 반사체에서 반사되어 센싱부에 입사하면, 상기 센싱부에 입사한 제1지점을 확정하는 단계;
    (c) 측정대상물의 다른 지점에 빔을 조사하는 단계;
    (d) 측정대상물에서 반사된 빔이 상기 곡면 반사체에서 반사되어 상기 센싱부에 입사하면, 상기 센싱부에 입사한 제2지점을 확정하는 단계; 및
    (e) 상기 제1지점과 상기 제2지점의 위치 차이에 따라, 측정대상물의 두께변화를 결정하는 단계;를 포함하는, 두께변화 측정방법.
  22. 제20항 또는 제21항에 있어서,
    상기 (a) 단계 및 상기 (c) 단계는 측정대상물에 45° 각도로 빔을 조사하는 단계인, 두께변화 측정방법.
  23. 제20항 또는 제21항에 있어서,
    상기 (a) 단계 및 상기 (c) 단계는, 빔이 측정대상물에 도달하기 전에 렌즈부를 통과하도록 빔을 조사하는 단계이며, 상기 렌즈부는 빔이 상기 렌즈부를 통과한 이후 상기 곡면 반사체에 입사할 때까지, 빔직경이 점진적으로 작아지도록 하는, 두께변화 측정방법.
  24. 제20항 또는 제21항에 있어서,
    상기 (a) 단계 및 상기 (c) 단계는, 빔이 측정대상물에 도달하기 전에 렌즈부를 통과하도록 빔을 조사하는 단계이며, 빔이 상기 곡면 반사체에서 반사된 이후 상기 센싱부에 입사할 때까지 빔직경이 일정하도록, 상기 렌즈부는 빔이 상기 렌즈부를 통과한 이후 빔직경이 변화되도록 하는, 두께변화 측정방법.
  25. 제20항 또는 제21항에 있어서,
    상기 (a) 단계 및 상기 (c) 단계는, 빔이 측정대상물에 도달하기 전에 렌즈부를 통과하도록 빔을 조사하는 단계이며, 측정대상물에서 반사된 빔이, 상기 곡면 반사체의 빔 입사지점에서의 곡률반경을 고려하여 해당 곡률반경의 중심에서 수렴할 수 있도록, 상기 렌즈부는 빔이 상기 렌즈부를 통과한 이후 빔직경이 변화되도록 하는, 두께변화 측정방법.
  26. 제20항 또는 제21항에 있어서,
    상기 곡면 반사체는 반사구면의 적어도 일부인, 두께변화 측정방법.
  27. 제20항 또는 제21항에 있어서,
    상기 (b) 단계 및 상기 (d) 단계는, 상기 곡면 반사체에서 반사된 빔이 상기 센싱부에 입사하기 전, 상호 대향된 적어도 두 면들이 반사면들인 증폭관을 통과하도록 하는 단계인, 두께변화 측정방법.
  28. (a) 측정대상물의 일 지점에 빔을 조사하는 단계;
    (b) 측정대상물에서 반사된 빔이 곡면 반사체에서 반사되어 센싱부에 입사하면, 상기 센싱부에 입사한 지점을 확정하는 단계;
    (c) 측정대상물의 위치를 평면 상에서 변화시켜 측정대상물 상의 빔 입사지점을 변화시키며 상기 (a) 단계와 상기 (b) 단계를 반복하는 단계; 및
    (d) 상기 센싱부가 확정한 빔이 입사한 지점들에 대한 데이터를 이용하여 측정대상물의 표면 이미지를 확정하는 단계;를 포함하는, 표면 이미지 획득방법.
PCT/KR2010/004044 2009-06-23 2010-06-22 두께변화 측정장치, 이를 이용한 시스템, 이를 이용한 표면 현미경, 두께변화 측정방법 및 이를 이용한 표면 이미지 획득방법 WO2010151030A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/380,546 US8817274B2 (en) 2009-06-23 2010-06-22 Thickness variation measuring device, system using same, surface microscope using same, thickness variation measuring method, and surface image acquiring method using same
CN201080038383.1A CN102625902B (zh) 2009-06-23 2010-06-22 用于测量厚度变化的设备、使用该设备的系统、使用该设备的形貌显微镜、测量厚度变化的方法、以及使用该测量方法获取形貌图像的方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20090055711 2009-06-23
KR10-2009-0055711 2009-06-23
KR10-2010-0059064 2010-06-22
KR1020100059064A KR101169586B1 (ko) 2009-06-23 2010-06-22 두께변화 측정장치, 이를 이용한 시스템, 이를 이용한 표면 현미경, 두께변화 측정방법 및 이를 이용한 표면 이미지 획득방법

Publications (2)

Publication Number Publication Date
WO2010151030A2 true WO2010151030A2 (ko) 2010-12-29
WO2010151030A3 WO2010151030A3 (ko) 2011-04-14

Family

ID=43387029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/004044 WO2010151030A2 (ko) 2009-06-23 2010-06-22 두께변화 측정장치, 이를 이용한 시스템, 이를 이용한 표면 현미경, 두께변화 측정방법 및 이를 이용한 표면 이미지 획득방법

Country Status (1)

Country Link
WO (1) WO2010151030A2 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100456352B1 (ko) * 1999-03-31 2004-11-09 프라운호퍼-게젤샤프트 츄어 푀르더룽 데어 안게반텐 포르슝에.파우. 미세 구조 표면에서의 각도 의존적 회절 효과를 빠르게측정하기 위한 장치
JP2007155393A (ja) * 2005-12-01 2007-06-21 Univ Of Fukui 肉厚測定装置及び肉厚測定方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3181655B2 (ja) * 1992-01-29 2001-07-03 オリンパス光学工業株式会社 偏光解析装置における光学系および試料支持体
JPH06180254A (ja) * 1992-12-15 1994-06-28 Hitachi Ltd 分光光度計
JP3374941B2 (ja) * 1994-03-22 2003-02-10 旭硝子株式会社 透明板の厚み測定装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100456352B1 (ko) * 1999-03-31 2004-11-09 프라운호퍼-게젤샤프트 츄어 푀르더룽 데어 안게반텐 포르슝에.파우. 미세 구조 표면에서의 각도 의존적 회절 효과를 빠르게측정하기 위한 장치
JP2007155393A (ja) * 2005-12-01 2007-06-21 Univ Of Fukui 肉厚測定装置及び肉厚測定方法

Also Published As

Publication number Publication date
WO2010151030A3 (ko) 2011-04-14

Similar Documents

Publication Publication Date Title
KR101169586B1 (ko) 두께변화 측정장치, 이를 이용한 시스템, 이를 이용한 표면 현미경, 두께변화 측정방법 및 이를 이용한 표면 이미지 획득방법
TWI715121B (zh) 一種感測裝置及感測方法
JP2004531062A (ja) 裏側アライメントシステム及び方法
WO2010062149A2 (en) Multi-channel surface plasmon resonance sensor using beam profile ellipsometry
CN101210806B (zh) 基于辅助光源的激光发射轴与机械基准面法线沿方位轴方向角度偏差及俯仰角度偏差的测量方法
JPH0333641A (ja) 散乱光の反射率測定装置
WO2010062150A2 (en) Surface plasmon resonance sensor using beam profile ellipsometry
JPS6127682B2 (ko)
JPH11344436A (ja) 楕円偏光計に対する試料の自動調整方法及び装置
JPH1082627A (ja) 光ファイバの傾斜状態角度の識別方法及びその装置
WO2013141537A1 (ko) 광학적 방법을 이용한 두께 및 형상 측정 장치 및 측정 방법
CN108803248A (zh) 投影物镜的数值孔径的在线检测装置及方法
WO2010151030A2 (ko) 두께변화 측정장치, 이를 이용한 시스템, 이를 이용한 표면 현미경, 두께변화 측정방법 및 이를 이용한 표면 이미지 획득방법
WO2021172647A1 (ko) 다층박막 두께 및 형상 측정을 위한 진동둔감 간섭계
US4380395A (en) Reduction projection aligner system
CN208207508U (zh) 用于光刻机系统的在线检测装置
JP2004020337A (ja) 温度測定装置
JP2002005631A (ja) 板体特性測定方法、及び板体特性測定装置
CN106403829A (zh) 基于双光路红外反射法的涂层测厚仪
WO2023167384A1 (ko) 입사각을 갖는 오프-액시스 광학계의 정렬 방법
WO2023177029A1 (ko) 입사각을 갖는 오프-액시스 렌즈 조립체
JP2592906B2 (ja) コネクタの構造パラメータの測定装置
KR20040022401A (ko) 다수의 간섭계 빔을 사용하는 레티클 초점 측정 시스템 및방법
CN113566727B (zh) 一种基于相移剪切电子散斑干涉的高精度视频引伸计及测量方法
WO2023146085A1 (ko) 광학 검사 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080038383.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792312

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13380546

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27.04.2012)

122 Ep: pct application non-entry in european phase

Ref document number: 10792312

Country of ref document: EP

Kind code of ref document: A2