WO2010150807A1 - 無線基地局装置、移動端末装置及び送信電力制御方法 - Google Patents

無線基地局装置、移動端末装置及び送信電力制御方法 Download PDF

Info

Publication number
WO2010150807A1
WO2010150807A1 PCT/JP2010/060623 JP2010060623W WO2010150807A1 WO 2010150807 A1 WO2010150807 A1 WO 2010150807A1 JP 2010060623 W JP2010060623 W JP 2010060623W WO 2010150807 A1 WO2010150807 A1 WO 2010150807A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile terminal
base station
transmission power
station apparatus
ulcomp
Prior art date
Application number
PCT/JP2010/060623
Other languages
English (en)
French (fr)
Inventor
大祐 西川
祥久 岸山
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to EP10792125.6A priority Critical patent/EP2448338A4/en
Priority to US13/378,682 priority patent/US8958355B2/en
Publication of WO2010150807A1 publication Critical patent/WO2010150807A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • H04W52/244Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70702Intercell-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/246TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter calculated in said terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/247TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter sent by another terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/248TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where transmission power control commands are generated based on a path parameter

Definitions

  • the present invention relates to a radio base station apparatus, a mobile terminal apparatus, and a transmission power control method for controlling transmission power during uplink CoMP (Uplink Coordinated Multiple Point reception).
  • uplink CoMP Uplink Coordinated Multiple Point reception
  • the role of uplink transmission power control plays a large role, and the radio base station apparatus takes into account the propagation loss between the user and the radio base station apparatus and the interference given to neighboring cells. Therefore, it is required to control the transmission power of the mobile terminal apparatus so as to satisfy the received quality.
  • fractional transmission power control is adopted as a transmission power control method considering inter-cell interference.
  • the radio base station apparatus notifies the transmission power of signals (PUSCH (Physical Uplink Shared Channel), PUCCH (Physical Uplink Control Channel), SRS (Sounding Reference Signal)) transmitted in the uplink of the LTE system in a relatively long cycle.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • SRS Sounding Reference Signal
  • Open loop control based on parameters and propagation loss measured by the mobile terminal apparatus, and communication status between the radio base station apparatus and the mobile terminal apparatus (for example, received SINR (Signal to Interference plus Noise Ratio) in the radio base station apparatus)
  • SINR Signal to Interference plus Noise Ratio
  • P PUSCH (i) min ⁇ P MAX, 10log 10 (M PUSCH (i)) + P 0 _ PUSCH (j) + ⁇ ⁇ PL + ⁇ TF (i) + f (i) ⁇ Equation (1)
  • This fractional transmission power control can reduce inter-cell interference by setting the target reception power according to the propagation loss PL of the mobile terminal device (implemented with the parameter ⁇ of the open loop control).
  • FIG. 25 is a diagram for explaining fractional transmission power control.
  • the vertical axis represents the target received power (P O — PUSCH ), and the horizontal axis represents the propagation loss (PL).
  • Fractional transmission power control is set so as to reduce the target reception power of a mobile terminal device existing at the cell edge for the purpose of suppressing inter-cell interference. That is, if the propagation loss (PL) is large, the user is present at the cell edge, and if the propagation loss is small, it is considered that the user is present near the radio base station apparatus.
  • the target received power of the user's mobile terminal apparatus is relatively increased, and the target received power of the user's mobile terminal apparatus at the cell edge is relatively decreased.
  • the slope of the primary characteristic line of such a relationship is-(1- ⁇ ).
  • both “UL Overload Indication (OI)” and “UL High Interference Indication (HII)” signaling (signaling via the X2 interface between radio base station devices).
  • OFI UL Overload Indication
  • HII UL High Interference Indication
  • the ULOI is used by a radio base station apparatus (neighboring cell) having a high reception interference level to notify the surrounding radio base station apparatus (own cell). For example, the radio base station of the own cell that has received ULOI performs control to reduce the transmission power at the cell edge.
  • ULHII is used to notify resource base station apparatuses of neighboring cells in advance of resource block (RB) information to be allocated to the mobile terminal apparatus when the subordinate mobile terminal apparatus is located at the cell edge.
  • the radio base station apparatus in the neighboring cell that has received ULHII performs control to perform frequency scheduling so as to avoid the RB.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • Physical layer procedures 3GPP, TS 36.423, V8.4.0, “Evolved Universal Terrestrial Radio Access Network (E-UTRAN); X2 application protocol (X2AP)”
  • uplink multipoint reception (ULCoMP: Uplink Coordinated Multiple Point reception) is scheduled to be adopted as a further countermeasure against inter-cell interference (3GPP TR36.814).
  • ULCoMP Uplink Multipoint reception
  • the radio base station apparatus of its own cell directly receives the desired signal transmitted from the mobile terminal apparatus and also transmits the desired signal transmitted from the mobile terminal apparatus to the radio of the neighboring cell. Receive via the base station device. That is, in ULCoMP, a signal that becomes a conventional interference wave is used as a desired signal, so that uplink reception quality can be improved, and in particular, it can be expected to improve the quality of mobile terminal devices at the cell edge. .
  • a remote base station (RRE: Remote Radio Equipment) that is a radio device at a transmission / reception point located away from the base station body is actively used. It is considered to enhance the effect of ULCoMP.
  • this ULCoMP is a technology that uses a conventional interference wave as a desired signal, adopting the conventional inter-cell interference reduction technology (Fractional transmission power control, UL Overload Indication, UL High Interference Indication) in the LTE system, There is a risk of reducing the gain of ULCoMP.
  • ULCoMP is not applied to all mobile terminal devices because of its large processing amount, and it is assumed that whether or not ULCoMP is applied is dynamically controlled according to the propagation environment of the mobile terminal device. The Although it is necessary to use a conventional inter-cell interference reduction technique and ULCoMP in combination, a method for realizing the technique has not been established.
  • the present invention has been made in view of such points, and an object thereof is to provide a radio base station apparatus, a mobile terminal apparatus, and a transmission power control method capable of using a conventional inter-cell interference reduction technique and ULCoMP together. To do.
  • the radio base station apparatus of the present invention includes a first propagation loss PL 1 between a mobile terminal apparatus and a first radio base station apparatus to which the mobile terminal apparatus is connected, the mobile terminal apparatus, and the mobile terminal apparatus.
  • the mobile terminal apparatus Multipoint reception processing means for applying uplink multipoint reception to the mobile station, performing transmission power control when applying uplink multipoint reception when applying the uplink multipoint reception, and performing uplink multipoint reception.
  • Transmission power control means for performing transmission power control when the uplink multipoint reception is not applied when not applied.
  • the mobile terminal apparatus of the present invention includes an uplink multipoint reception notification signal processing means for receiving an uplink multipoint reception application / non-application notification signal transmitted from the radio base station apparatus, and transmitted from the radio base station apparatus.
  • a transmission power control parameter receiving means for receiving the transmitted transmission power control parameter, and a transmission power control parameter different from the transmission power control parameter when the uplink multipoint reception is not applied when the uplink multipoint reception is applied.
  • Transmission power setting means for setting transmission power by using.
  • the transmission power control method of the present invention in the first radio base station apparatus to which the mobile terminal apparatus is connected, the first propagation loss PL 1 between the mobile terminal apparatus, the mobile terminal apparatus, and the mobile terminal apparatus
  • the mobile terminal apparatus Applying uplink multipoint reception to the mobile terminal apparatus and transmitting transmission power control parameters at the time of applying uplink multipoint reception to the mobile terminal apparatus when applying the uplink multipoint reception, Transmitting the transmission power control parameter when the uplink multipoint reception is not applied to the mobile terminal device when the point reception is not applied; and Receiving the transmission power control parameter transmitted from the first radio base station apparatus, and when applying the uplink multipoint reception, the transmission power control parameter when the uplink multipoint reception is not applied, And setting a transmission power using different transmission power control parameters.
  • uplink multipoint reception since transmission power control at the time of applying uplink multipoint reception is adopted when uplink multipoint reception is applied, conventional inter-cell interference reduction technology can be achieved without reducing the gain of uplink multipoint reception. And uplink multipoint reception can be used together.
  • FIG. 1 is a diagram showing a radio communication system having radio base station apparatuses and mobile terminal apparatuses according to an embodiment of the present invention.
  • the wireless communication system is a system to which, for example, E-UTRA (Evolved UTRA and UTRAN) is applied.
  • the radio communication system includes a base station apparatus (eNB: eNodeB) 200 (200 1 , 200 2 ... 200 l , l is an integer satisfying l> 0), and a plurality of mobile terminals (UE) communicating with the base station apparatus 200 100 n (100 1 , 100 2 , 100 3 ,... 100 n , n is an integer of n> 0).
  • Base station apparatus 200 is connected to an upper station, for example, access gateway apparatus 300, and access gateway apparatus 300 is connected to core network 400.
  • the mobile terminal 100 n communicates with the base station apparatus 200 by E-UTRA in the cell 50 (50 1 , 50 2 ). Although the present embodiment shows two cells, the present invention can be similarly applied to three or more cells. In addition, since each mobile terminal (100 1 , 100 2 , 100 3 ,... 100 n ) has the same configuration, function, and state, the following description will be given as the mobile terminal 100 n unless otherwise specified. .
  • OFDM Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • OFDM is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single carrier transmission scheme in which frequency bands are divided for each terminal, and a plurality of terminals use different frequency bands to reduce interference between terminals.
  • a physical downlink shared channel (PDSCH) shared by each mobile terminal 100 n and a physical downlink control channel (PDCCH) are used.
  • the physical downlink control channel is also called a downlink L1 / L2 control channel.
  • User data that is, a normal data signal is transmitted through the physical downlink shared channel.
  • downlink scheduling information DL Scheduling Information
  • acknowledgment information ACK / NACK
  • uplink scheduling grant UL Scheduling Grant
  • TPC command Transmission Power Control Command
  • the downlink scheduling information includes, for example, the ID of a user who performs communication using a physical downlink shared channel, and information on the transport format of the user data, that is, data size, modulation scheme, retransmission control (HARQ: Hybrid ARQ) And downlink resource block allocation information.
  • HARQ Hybrid ARQ
  • the uplink scheduling grant includes, for example, the ID of a user who performs communication using the physical uplink shared channel, information on the transport format of the user data, that is, information on the data size and modulation scheme, This includes resource block allocation information, information related to uplink shared channel transmission power, and the like.
  • the uplink resource block corresponds to a frequency resource and is also called a resource unit.
  • the delivery confirmation information (ACK / NACK) is delivery confirmation information related to the uplink shared channel.
  • the content of the acknowledgment information is expressed by either an acknowledgment (ACK: Acknowledgement) indicating that the transmission signal has been properly received or a negative acknowledgment (NACK: Negative Acknowledgement) indicating that the transmission signal has not been properly received. Is done.
  • a physical uplink shared channel (PUSCH) shared by each mobile terminal 100 n and a physical uplink control channel (PUCCH) are used.
  • User data that is, a normal data signal is transmitted through the physical uplink shared channel.
  • downlink quality information CQI: Channel Quality Indicator
  • AMC adaptive modulation and coding scheme
  • a scheduling request that requests resource allocation of an uplink shared channel (Scheduling Request), a release request (Release Request) in persistent scheduling, etc. May be sent.
  • the resource allocation of the uplink shared channel means that the base station apparatus may perform communication using the uplink shared channel in the subsequent subframe using the physical downlink control channel of a certain subframe. Means to notify the mobile terminal.
  • the mobile terminal 100 n communicates with the optimal base station apparatus.
  • the mobile terminal 100 1, 100 2 communicates with the base station apparatus 200 1
  • the mobile terminal 100 3 is in communication with the base station apparatus 200 2.
  • the uplink transmission of the mobile terminal 100 1, 100 2 is a peripheral cell.
  • This neighboring cell interference greatly varies because uplink mobile scheduling changes the mobile terminal to which transmission allocation is performed for each TTI (Transmission Time Interval) and for each RB (Resource Block).
  • the radio base station apparatus 200 in order to reduce interference in the base station apparatus 200 2, signals to be transmitted in uplink, an open loop due to propagation loss parameters and mobile terminal the radio base station apparatus notifies a relatively long period to measure
  • the transmission power is controlled by a combination of the control and the closed loop control by the TPC command that the radio base station apparatus notifies in a relatively short cycle based on the communication status between the radio base station apparatus and the mobile terminal apparatus.
  • the base station apparatus 200 2 using ULOI, notifies reception interference level is high to the base station apparatus 200 1.
  • the base station apparatus 200 1 after receiving a ULOI, performs control to decrease the transmission power of the cell edge.
  • the base station apparatus 200 1 uses ULHII to transmit resource block (RB) information to be allocated to the mobile terminals 100 1 and 100 2 when the subordinate mobile terminals 100 1 and 100 2 are located at the cell edge. It notifies the base station apparatus 200 2 cells in advance.
  • the base station apparatus 200 2 in the peripheral cell that has received the ULHII performs control for performing frequency scheduling to avoid the RB.
  • RB resource block
  • uplink multipoint reception can be applied as a further countermeasure against inter-cell interference.
  • ULCoMP uplink multipoint reception
  • the base station apparatus 200 1 is connected to the mobile terminal 100 2, receives a desired signal from the mobile terminal 100 2 via the base station apparatus 200 2 in the neighboring cell. In other words, it receives a desired signal from the mobile terminal 100 2 in the base station apparatus 200 1, 200 2 of the plurality of cells.
  • inter-cell interference reduction technology Fractional transmission power control, ULOI, ULHII
  • ULOI Reactional transmission power control
  • ULHII UL transmission power control
  • the ULCoMP gain may be reduced as described above.
  • the present inventors have performed transmission power control when ULCoMP is not applied and when ULCoMP is applied. It has been found that the use of different transmission power control can prevent the reduction of the ULCoMP gain when ULCoMP is applied.
  • transmission power control for enhancing the effect of ULCoMP transmission power control for increasing the gain of ULCoMP
  • transmission power control for reducing inter-cell interference is performed.
  • the use of transmission power control different from the transmission power control when ULCoMP is not applied when ULCoMP is applied is to change the transmission power control parameter when ULCoMP is applied and the transmission power control parameter when ULCoMP is not applied.
  • the transmission power control parameters are the attenuation coefficient ⁇ and the propagation loss PL of the ⁇ ⁇ PL term in the above equation (1) in the fractional transmission power control, the P 0 _PUSCH (j) in the above equation (1), and the TPC command.
  • a parameter used for transmission power control in inter-cell interference reduction technology in LTE systems such as ULOI and ULHII.
  • a connection base station is applied to a mobile terminal to which ULCoMP is applied, if necessary. Notify that the device is ULCoMP-applied. Conversely, the mobile terminal applying ULCoMP is also notified that ULCoMP is not applied (exit from the ULCoMP state).
  • Application / non-application of ULCoMP is determined as follows, for example.
  • the propagation loss value PL 1 with the base station apparatus 200 1 of the mobile terminal 100 1 and the connecting cell the base station apparatus 200 2 small neighboring cell most propagation loss with the mobile terminal 100 1 (UL CoMP cooperation
  • the base station apparatus 200 of the connected cell 1 applies ULCoMP to the mobile terminal 100 1 .
  • the propagation loss difference PL Diff the base station apparatus 200 1 is determined.
  • the propagation loss value PL 2 is acquired from the base station apparatus 200 2 by X2 interfaces.
  • it may be obtained from the mobile terminal 100 1 is connected to the base station apparatus 200 1.
  • a propagation loss difference PL Diff calculated in the mobile terminal 100 1 may notify the PL Diff base station apparatus 200 1 of the connected cell.
  • the base station apparatus 200 2 for ULCoMP cooperation cell may be a base station apparatus 200 1 and the same base station apparatus connected cell.
  • the determination of ULCoMP application / non-application is not limited to this, and can be changed as appropriate.
  • the ULCoMP application / non-application information is notified to the mobile terminal to which ULCoMP is applied, for example, by higher layer signaling via PDSCH. Specifically, “1” is signaled when switching from ULCoMP non-application to ULCoMP application, and “0” is notified when changing from ULCoMP application to ULCoMP non-application.
  • ULCoMP application / non-application information is notified to a mobile terminal to which ULCoMP is applied, for example, by L1 / L2 signaling via PDCCH. Specifically, “1” is notified when ULCoMP is applied, and “0” is notified when ULCoMP is not applied (always). Note that the notification of ULCoMP application / non-application information is not limited to these, and can be changed as appropriate.
  • the value of the attenuation coefficient ⁇ of the ⁇ ⁇ PL term in the above equation (1) in the fractional transmission power control is changed between when ULCoMP is applied and when ULCoMP is not applied (two attenuation coefficients are prepared). That is, the value of the attenuation coefficient ⁇ of fractional transmission power control can be set separately for a mobile terminal to which ULCoMP is applied. For a mobile terminal to which ULCoMP is applied, it is not necessary to lower the transmission power so as not to reduce the ULCoMP gain. For this reason, the effect of ULCoMP is enhanced by increasing the value of the attenuation coefficient ⁇ for the mobile terminal.
  • the attenuation coefficient alpha 2 for the mobile terminal 100 2 of ULCoMP non-application may be broadcast via PBCH (Physical Broadcast Channel), individually notified by higher layer signaling via PDSCH, or by L1 / L2 signaling via PDCCH. You may notify separately.
  • PBCH Physical Broadcast Channel
  • the attenuation coefficients ⁇ 1 and ⁇ 2 are broadcast by PBCH, for example, the value of the attenuation coefficient ⁇ 1 for ULCoMP application may be larger than the value of the attenuation coefficient ⁇ 2 for ULCoMP non-application.
  • ⁇ 1 of the value may be a fixed 1.0. Further, when the attenuation coefficients ⁇ 1 and ⁇ 2 are notified by PDSCH or PDCCH, the same attenuation coefficient ⁇ 1 may be uniformly notified to all the ULCoMP-applied mobile terminals, and different attenuation coefficients for each mobile terminal. ⁇ 1 may be notified. When the attenuation coefficients ⁇ 1 and ⁇ 2 are broadcast by PBCH, ULCoMP application / non-application information needs to be notified to the mobile terminal as described above.
  • the value of the propagation loss PL of the ⁇ ⁇ PL term in the above equation (1) in the fractional transmission power control is changed between when ULCoMP is applied and when ULCoMP is not applied.
  • the transmission power is weighted by the attenuation coefficient ⁇ to the propagation loss value PL 1 between the mobile terminal 100 1 and the base station apparatus 200 1 of the connected cell. Therefore, to apply the PL 1, a composite value PL CoMP obtained by the propagation loss value PL 2 with the base station apparatus 200 2 of the mobile terminal 100 1 and ULCoMP cooperation cell.
  • PL CoMP PL 1 ⁇ PL 2 / (PL 1 + PL 2 ) (calculated by correcting to true value and finally converted to dB), a value smaller than the value PL 1 applied in normal transmission power calculation
  • the transmission power may be set to an appropriate transmission power considering the neighboring cell interference.
  • the values of the propagation loss PL and the propagation loss difference PL Diff of the mobile terminal applied to the transmission power control by the base station apparatus are changed between when ULCoMP is applied and when ULCoMP is not applied.
  • the target received power PRx or target received SINR (T SINR ) of the mobile terminal is set using the propagation loss difference PL Diff between the mobile terminal and the base station apparatus of the neighboring cell having the smallest propagation loss. .
  • the propagation loss difference correction coefficient ⁇ can be described from the target received power (P Rx ), the target received SINR (T SINR ), and the propagation loss difference PL Diff as shown in FIG.
  • the target received power and the target received SINR are set to be small for the mobile terminal existing at the cell edge. That is, if the propagation loss difference (PL Diff ) is large, the user is present near the base station apparatus. If the propagation loss is small, the user is considered to be present at the cell edge.
  • the target received power and target received SINR of the user's mobile terminal are relatively increased, and the target received power and target received SINR of the user's mobile terminal at the cell edge are relatively decreased.
  • PL CoMP is the same as PL CoMP in aspects 2.
  • the propagation loss value PL 3 represents the propagation loss between the base station apparatus small neighboring cell most propagation loss except ULCoMP cooperation cell.
  • the base station apparatus calculates the difference between the measured received power and PRx obtained by Equation (2), or the difference between the measured received SINR and T SINR obtained by Equation (3). , It is reflected in the TPC command and P 0_PUSCH and notified to the mobile terminal in a closed loop. Therefore, in this aspect, transmission power control is performed with the target reception power or target reception SINR obtained by changing PL Diff . In this aspect, it is not necessary to notify the mobile terminal of ULCoMP application / non-application information.
  • the transmission power of fractional transmission power control is changed between when ULCoMP is applied and when ULCoMP is not applied.
  • the final transmission power is set from the transmission power obtained from the propagation loss with the base station apparatus of the connected cell and the transmission power obtained from the propagation loss with the base station apparatus of the ULCoMP cooperating cell.
  • transmission power P 1 calculated from the propagation loss value PL 1 for the connected cell is applied. In this embodiment, as shown in FIG.
  • the transmission power P 1 which is calculated from the propagation loss value PL 1 with the base station apparatus 200 1 of the mobile terminal 100 1 and the connecting cell, the mobile terminal 100 1 and ULCoMP cooperation cells of (in general, becomes a value greater than P 1) transmit power P 2 is calculated from the propagation loss value PL 2 with the base station apparatus 200 2 as the final transmission power P CoMP considering.
  • the transmission power value in Fractional transmission power control at the time of ULCoMP application becomes large, the effect of ULCoMP can be enhanced.
  • the range or the number of bits of the transmission power control command (TPC command) in the UL scheduling grant is changed between when ULCoMP is applied and when ULCoMP is not applied. That is, the range or the number of bits of the transmission power control command (TPC command) in the UL scheduling grant is expanded for the mobile terminal to which ULCoMP is applied. In this way, by expanding the range of the TPC command, it is possible to respond quickly to changes in the target received power mainly at the time of ULCoMP application switching.
  • the base station apparatus 200 1 of the connected cell sends a TPC command of 3 bits or more with UL scheduling grant to the mobile terminal 100 1 to which ULCoMP is applied, and ULCoMP non- to the mobile terminal 100 2 applications, 2-bit TPC commands in UL scheduling grant ( ⁇ -1,0, + 1, + 3 ⁇ dB) to send.
  • 3-bit TPC commands are ⁇ -5, -3, -1, 0, +1, +3, +5, +7 ⁇ dB, ⁇ -3, -1, 0, +1, +3, +5, +7, +9 ⁇ dB, etc. It is.
  • the base station apparatus 200 1 of the connected cell to the mobile terminal 100 1 of ULCoMP application sends a TPC command of an enlarged range by UL scheduling grant, the mobile terminal 100 2 of ULCoMP non-application, UL scheduling
  • a normal range TPC command ( ⁇ 1, 0, +1, +3 ⁇ dB) is sent by grant.
  • the TPC command whose range is expanded is ⁇ 0, +1, +3, +5 ⁇ dB, ⁇ 0, +2, +4, +6 ⁇ dB, etc. (2 bits).
  • ULCoMP application / non-application information needs to be notified to the mobile terminal, but the TPC-Index indicating the 3-bit TPC command or the expanded TPC command is notified by higher layer signaling.
  • the mobile terminal may recognize that ULCoMP is applied regardless of the presence / absence of the ULCoMP application / non-application information.
  • the present invention is not limited to this, and the system may use either ULOI or ULHII. .
  • the base station apparatus sends an OLI directly (on a radio basis) to a mobile terminal under a neighboring cell, and the mobile terminal has already proposed the transmission power control according to the OLI in WO2008 / 044528. is doing. All this content is included here.
  • the ULCoMP non-application ⁇ ULCoMP application is adopted here.
  • the mobile terminal 100 1 to the base station apparatus 200 2 which became a neighboring cell to ULCoMP cooperation cell transmits a radio signal indicating that releasing the OLI (reset).
  • the radio signals to the effect that releasing the OLI (reset) for example, such as a wireless signal to the offset term of the transmission power for the mobile terminal 100 1 to zero, and the like.
  • FIG. 10 is a block diagram showing a schematic configuration of the mobile terminal apparatus according to the embodiment of the present invention.
  • a mobile terminal 100 n illustrated in FIG. 10 mainly includes an antenna 102, an amplifier unit 104, a transmission / reception unit 106, a baseband signal processing unit 108, a call processing unit 110, and an application unit 112.
  • the radio frequency signal received by the antenna 102 is corrected by the amplifier unit 104 and the received power is corrected to a constant power under AGC (Auto Gain Control). So that it is amplified.
  • the amplified radio frequency signal is frequency-converted into a baseband signal by the transmission / reception unit 106.
  • the baseband signal is subjected to predetermined processing (error correction, decoding, etc.) by the baseband signal processing unit 108 and then sent to the call processing unit 110 and the application unit 112.
  • the call processing unit 110 manages communication with the base station apparatus 200, and the application unit 112 performs processing related to a layer higher than the physical layer and the MAC layer.
  • Uplink data is input from the application unit 112 to the baseband signal processing unit 108.
  • the baseband signal processing unit 108 performs retransmission control processing, scheduling, transmission format selection, channel coding, and the like, and transfers the result to the transmission / reception unit 106.
  • the transmission / reception unit 106 frequency-converts the baseband signal output from the baseband signal processing unit 108 into a radio frequency signal. The frequency-converted signal is then amplified by the amplifier unit 104 and transmitted from the antenna 102.
  • FIG. 11 is a block diagram showing a configuration of a baseband signal processing unit in the mobile terminal apparatus shown in FIG.
  • the baseband signal processing unit 108 includes a layer 1 processing unit 1081, a MAC (Medium Access Control) processing unit 1082, an RLC (Radio Link Control) processing unit 1083, an ULCoMP notification signal reception processing unit 1084, and an ⁇ reception processing unit. 1085, a TPC command reception processing unit 1086, an OLI reception processing unit 1087, a PL CoMP calculation unit 1088, and a transmission power setting unit 1089.
  • the ⁇ reception processing unit 1085, the TPC command reception processing unit 1086, and the OLI reception processing unit 1087 are transmission power control parameter reception units that receive transmission power control parameters transmitted from the base station apparatus.
  • the layer 1 processing unit 1081 mainly performs processing related to the physical layer. For example, the layer 1 processing unit 1081 performs channel decoding, discrete Fourier transform (DFT: Discrete Fourier Transform), frequency demapping, inverse fast Fourier transform (IFFT: Inverse Fast Fourier Transform) on a signal received on the downlink. Processing such as data demodulation. Further, the layer 1 processing unit 1081 performs processing such as channel coding, data modulation, frequency mapping, and inverse fast Fourier transform (IFFT) on a signal transmitted on the uplink.
  • DFT discrete Fourier transform
  • IFFT Inverse Fast Fourier Transform
  • the MAC processing unit 1082 performs retransmission control (HARQ) at the MAC layer for a signal received on the downlink, analysis of downlink scheduling information (specification of PDSCH transmission format, identification of PDSCH resource block), and the like. Further, the MAC processing unit 1082 performs processing such as MAC retransmission control for signals transmitted on the uplink, analysis of uplink scheduling information (specification of PUSCH transmission format, specification of PUSCH resource block), and the like.
  • HARQ retransmission control
  • the RLC processing unit 1083 performs packet division, packet combination, retransmission control in the RLC layer, etc. on packets received on the downlink / packets transmitted on the uplink.
  • the ULCoMP notification signal reception processing unit 1084 receives the ULCoMP notification signal notified from the base station apparatus of the connected cell, and determines the content of the ULCoMP notification signal (ULCoMP application / ULCoMP non-application). Information on the ULCoMP notification signal is sent to the transmission power setting unit 1089 and also sent to the PL CoMP calculation unit 1088, the TPC command reception processing unit 1086, or the ⁇ reception processing unit 1085. The ULCoMP notification signal is transmitted on the downlink PDSCH or PDCCH.
  • the ⁇ reception processing unit 1085 receives a signal of an attenuation coefficient ⁇ , which is a parameter used for transmission power control, notified from the base station apparatus, and determines the content of the signal.
  • the information on the attenuation coefficient ⁇ is sent to the transmission power setting unit 1089.
  • the ⁇ reception processing unit 1085 receives the attenuation coefficient ⁇ 1 when ULCoMP is applied when ULCoMP is applied (when receiving information of the ULCoMP notification signal), and receives the attenuation coefficient ⁇ 2 when ULCoMP is not applied when ULCoMP is not applied. To do.
  • the ⁇ reception processing unit 1085 sends the attenuation coefficient ⁇ 1 and the attenuation coefficient ⁇ 2 to the transmission power setting unit 1089.
  • the TPC command reception processing unit 1086 receives the TPC command notified from the base station apparatus, and determines the content of the TPC command. The information of the TPC command is sent to the transmission power setting unit 1089.
  • the TPC command reception processing unit 1086 receives a TPC command (for example, a 3-bit TPC command) when ULCoMP is applied when ULCoMP is applied (when receiving information of a ULCoMP notification signal), and when ULCoMP is not applied.
  • the TPC command (2-bit TPC command) is received.
  • the TPC command reception processing unit 1086 sends the TPC command to the transmission power setting unit 1089.
  • the OLI reception processing unit 1087 receives the OLI notified from the base station apparatus in the neighboring cell, and determines the contents of the OLI (with OLI restriction, OLI restriction release). The OLI information is sent to the transmission power setting unit 1089.
  • the OLI reception processing unit 1087 receives an OLI restriction release OLI when ULCoMP is applied, and receives an OLI restricted OLI (normal OLI) when ULCoMP is not applied.
  • the PL CoMP calculation unit 1088 calculates a propagation loss value used for transmission power control.
  • the PL CoMP information is sent to the transmission power setting section 1089.
  • the PL CoMP calculating unit 1088 when applying ULCoMP (when receiving information of the ULCoMP notification signal), the propagation loss PL 1 between the own device and the base station device of the connected cell, and the base of the own device and the ULCoMP cooperating cell.
  • PL CoMP is calculated using the propagation loss PL 2 between the station apparatus (base station apparatus having the smallest propagation loss with respect to the own apparatus).
  • the PL CoMP calculation unit 1088 sends PL CoMP to the transmission power setting unit 1089.
  • the propagation loss PL 1 is the propagation loss obtained by the own device
  • the propagation loss PL 2 is the propagation loss obtained by the own device, or the base station device of the connected cell from the base station device of the ULCoMP cooperating cell through the X2 interface. Is transmitted to the PL CoMP calculating unit 1088. When ULCoMP is not applied, the propagation loss PL 1 is sent to the transmission power setting unit 1089.
  • the transmission power setting unit 1089 sets transmission power using transmission power control parameters. That is, the transmission power setting unit 1089 sets transmission power using a transmission power control parameter that is different from the transmission power control parameter when ULCoMP is not applied when ULCoMP is applied, and when ULCoMP is not applied.
  • the transmission power is set using the transmission power control parameter at the time of application.
  • the transmission power setting unit 1089 uses the attenuation coefficient ⁇ 1 at the time of applying ULCoMP output from the ⁇ reception processing unit 1085 at the time of applying ULCoMP (when receiving the information of the ULCoMP notification signal) to the above equation (1). based sets the transmission power, sets the transmission power based on the equation (1) using the attenuation coefficient alpha 2 of UL CoMP non-application time during non-application of UL CoMP (embodiment 1).
  • the transmission power setting unit 1089 when applying ULCoMP (when receiving information of the ULCoMP notification signal), instead of the propagation loss PL 1 with the connected base station apparatus as a propagation loss when applying ULCoMP.
  • the transmission power is set based on the above equation (1) using the propagation loss PL CoMP output from the PL CoMP calculation unit 1088, and is connected as a propagation loss when ULCoMP is not applied when ULCoMP is not applied.
  • the transmission power is set based on the above equation (1) using the propagation loss PL 1 with the base station apparatus (Aspect 2).
  • transmission power setting section 1089 uses propagation loss PL 1 with the connected base station apparatus when ULCoMP is applied (when information on the ULCoMP notification signal is received).
  • the transmission is determined power P 1, the transmission power P CoMP using a transmission power P 2 obtained based on the equation (1) using the propagation loss PL 2 between the base station apparatus cooperation cells ULCoMP Is set (mode 4).
  • the transmission power setting unit 1089 has a larger number of bits and a range than the TPC command output from the TPC command reception processing unit 1086 and output from the TPC command reception processing unit 1086 when ULCoMP is applied (when information of the ULCoMP notification signal is received).
  • the transmission power is set by the TPC command, and the transmission power is set by the TPC command output from the TPC command reception processing unit 1086 when ULCoMP is not applied when ULCoMP is not applied (mode 5).
  • FIG. 12 is a block diagram showing a schematic configuration of the radio base station apparatus according to the embodiment of the present invention.
  • the base station apparatus 200 n shown in FIG. 12 mainly includes an antenna 202, an amplifier unit 204, a transmission / reception unit 206, a baseband signal processing unit 208, a call processing unit 210, and a transmission path interface 212. Yes.
  • the uplink data is amplified so that the radio frequency signal received by the antenna 202 is corrected by the amplifier unit 204 and the received power is corrected to a constant power under the AGC. Is done.
  • the amplified radio frequency signal is frequency converted into a baseband signal in the transmission / reception unit 206.
  • the baseband signal is subjected to predetermined processing (error correction, decoding, etc.) by the baseband signal processing unit 208 and then transferred to an access gateway device (not shown) via the transmission path interface 212.
  • the access gateway device is connected to the core network and manages each mobile terminal.
  • the received SINR and interference level of the radio frequency signal received by the base station apparatus 200 are measured based on the uplink baseband signal.
  • the call processing unit 210 transmits / receives a call processing control signal to / from a radio control station of the host device, and manages the state of the base station device 200 and allocates resources. Note that the processing in the layer 1 processing unit 2081 and the MAC processing unit 2082 is performed based on the communication state between the base station apparatus 200 and the mobile station apparatus 100 set in the call processing unit 210.
  • Downlink data is input from the host device to the baseband signal processing unit 208 via the transmission path interface 212.
  • the baseband signal processing unit 208 performs retransmission control processing, scheduling, transmission format selection, channel coding, and the like, and transfers the result to the transmission / reception unit 206.
  • the transmission / reception unit 206 converts the frequency of the baseband signal output from the baseband signal processing unit 208 into a radio frequency signal. The frequency-converted signal is then amplified by the amplifier unit 204 and transmitted from the antenna 202.
  • FIG. 13 is a block diagram showing a configuration of a baseband signal processing unit in the radio base station apparatus shown in FIG.
  • the baseband signal processing unit 208 includes a layer 1 processing unit 2081, a MAC processing unit 2082, an RLC processing unit 2083, a propagation loss difference calculation unit 2084, an ULCoMP processing unit 2085, an OI processing unit 2086, and an HII processing unit. 2087, an OLI processing unit 2088, and a transmission power control unit 2089 are mainly configured.
  • the layer 1 processing unit 2081 mainly performs processing related to the physical layer. For example, the layer 1 processing unit 2081 performs processing such as channel decoding, discrete Fourier transform (DFT), frequency demapping, inverse fast Fourier transform (IFFT), and data demodulation on a signal received on the uplink. Also, the layer 1 processing unit 2081 performs processing such as channel coding, data modulation, frequency mapping, and inverse fast Fourier transform (IFFT) on a signal transmitted on the downlink.
  • DFT discrete Fourier transform
  • IFFT inverse fast Fourier transform
  • IFFT inverse fast Fourier transform
  • the MAC processing unit 2082 performs processing such as retransmission control in the MAC layer for a signal received in the uplink, scheduling for the uplink / downlink, selection of a PUSCH / PDSCH transmission format, selection of a PUSCH / PDSCH resource block, and the like. .
  • the RLC processing unit 2083 performs packet division, packet combination, retransmission control in the RLC layer, etc. on packets received on the uplink / packets transmitted on the downlink.
  • the propagation loss difference calculation unit 2084 calculates a propagation loss difference between the mobile terminal and the base station apparatus of the peripheral cell of the mobile terminal (base station apparatus candidate of the ULCoMP cooperative cell). That is, the propagation loss between the connected mobile terminal and a plurality of base station apparatuses in the neighboring cells of the mobile terminal is calculated, and the minimum propagation loss is extracted from the propagation loss.
  • the propagation loss difference calculation unit 2084 sends this minimum propagation loss information to the ULCoMP processing unit 2085. At this time, the propagation loss difference calculation unit 2084 also sends information on the base station device (base station device of the ULCoMP cooperating cell) having the minimum propagation loss to the ULCoMP processing unit 2085.
  • the ULCoMP processing unit 2085 determines whether or not the ULCoMP is applied to the mobile terminal based on the calculation result of the propagation loss difference calculation unit 2084.
  • the ULCoMP processing unit 2085 determines that ULCoMP is not applied to the mobile terminal when the difference (PL 2 ⁇ PL 1 ) is not within a predetermined range.
  • the ULCoMP processing unit 2085 sends the ULCoMP application / non-application determination result to the OI processing unit 2086, the HII processing unit 2087, or the OLI processing unit 2088 and also sends it to the transmission power control unit 2089.
  • the ULCoMP processing unit 2085 notifies the mobile terminal of ULCoMP application / non-application information. This information is notified to the mobile terminal to which ULCoMP is applied via PBCH, PDSCH or PDCCH.
  • the OI processing unit 2086 When the base station apparatus is a base station apparatus of a ULCoMP cooperating cell and the number of mobile terminals to which ULCoMP is applied is changed, the OI processing unit 2086 generates a ULOI when the contents of the ULOI change. Then, this ULOI is notified to the base station apparatus of the connected cell (mode 6). The OI processing unit 2086 generates a ULOI restriction cancellation OI when a change occurs in the contents of the ULOI when ULCoMP is applied, and notifies this OI to the base station apparatus of the connected cell via the X2 interface.
  • the OI processing unit 2086 generates a ULOI-restricted OI if necessary when ULCoMP is not applied, and notifies the OI to the base station apparatus of the connected cell via the X2 interface.
  • the base station apparatus of the ULCoMP cooperating cell is notified of ULCoMP application / non-application information from the base station apparatus of the connected cell via the X2 interface.
  • the HII processing unit 2087 generates ULHII and notifies the ULHII to the base station apparatus of the ULCoMP cooperating cell.
  • the HII processing unit 2087 changes the contents of the HII when ULCoMP is applied (when the ULCoMP application determination result is received from the ULCoMP processing unit 2085), that is, when the number of mobile terminals to which ULCoMP is applied is changed. Is generated, the HII of the HII restriction release is generated, and this HII is notified to the base station apparatus of the ULCoMP cooperating cell via the X2 interface (Aspect 6).
  • the HII processing unit 2087 generates an HII restricted HII if necessary when the ULCoMP is not applied (when the ULCoMP non-application determination result is received from the ULCoMP processing unit 2085). Via the base station apparatus of the ULCoMP cooperating cell.
  • the OLI processing unit 2088 generates an OLI and notifies the mobile terminal communicating with the base station apparatus of the connected cell (neighboring cell) (mode 7).
  • the base station apparatus is a base station apparatus of a ULCoMP cooperating cell
  • the OLI processing unit 2088 generates an OLI for releasing the OLI restriction, and directly notifies the mobile terminal communicating with the base station apparatus of the connected cell.
  • the OLI processing unit 2088 generates an OLI-restricted OLI as needed, and directly notifies the mobile terminal communicating with the base station apparatus of the connected cell.
  • the base station apparatus of the ULCoMP cooperating cell is notified of ULCoMP application / non-application information from the base station apparatus of the connected cell via the X2 interface.
  • the transmission power control unit 2089 performs transmission power control when ULCoMP is applied when ULCoMP is applied, and performs transmission power control when ULCoMP is not applied when ULCoMP is not applied.
  • the transmission power control unit 2089 mainly includes an ⁇ processing unit 20891, a PL CoMP calculation unit 20892, and a TPC command processing unit 20893.
  • the ⁇ processing unit 20891 generates an attenuation coefficient ⁇ used for transmission power control. An attenuation coefficient ⁇ 1 when ULCoMP is applied and an attenuation coefficient ⁇ 2 when ULCoMP is not applied are generated. Further, the ⁇ processing unit 20891 notifies the attenuation coefficients ⁇ 1 and ⁇ 2 to the ULCoMP-applied mobile terminal via the PDSCH or PDCCH, or broadcasts them via the PBCH (Aspect 1).
  • the PL CoMP calculator 20892 calculates a propagation loss value used for closed-loop transmission power control.
  • the PL CoMP calculating unit 20892 when applying ULCoMP (when receiving the determination result of ULCoMP application), the propagation loss PL 1 between the own device (base station device of the connected cell) and the mobile terminal, the mobile terminal and the ULCoMP PL CoMP is calculated using the propagation loss PL 2 with the base station apparatus of the cooperation cell (mode 2).
  • the propagation loss PL 1 is a propagation loss acquired from the mobile terminal and is sent to the PL CoMP calculation unit 20892
  • the propagation loss PL 2 is acquired from the mobile terminal or the base station apparatus of the ULCoMP cooperating cell through the X2 interface. And sent to the PL CoMP calculation unit 20892.
  • these propagation losses PL 1 and PL 2 are sent to the TPC command processing unit 20893.
  • the TPC command processing unit 20893 uses the propagation loss difference (PL Diff ), the received power reference value (Px), the propagation loss difference correction coefficient ( ⁇ ), the offset ( ⁇ ), and the target received SINR reference value (Tx).
  • the target received power (P Rx ) or target received SINR (T SINR ) is set, and the difference between the measured received power and the target received power, or between the measured received SINR and the target received SINR.
  • a TPC command is generated from the difference between the two.
  • the propagation loss PL 3 represents the propagation loss between the base station apparatus and the mobile terminal of the neighboring cell having the smallest propagation loss except for the ULCoMP cooperative cell.
  • the propagation loss PL 1 is acquired from the mobile terminal, and PL 2 and PL 3 are acquired from the mobile terminal or the peripheral base station apparatus through the X2 interface.
  • the TPC command processing unit 20893 makes the transmission power control amount when ULCoMP is applied larger than the transmission power control amount when ULCoMP is not applied (mode 4).
  • mode 4 the transmission power control amount when ULCoMP is not applied.
  • a TPC command having a larger number of bits and range than the TPC command when ULCoMP is not applied is generated, and ULCoMP is not applied.
  • a TPC command is generated when ULCoMP is not applied. The TPC command generated in this way is transmitted to the mobile terminal via the PDCCH.
  • the base station apparatus 200 1 in which the mobile terminal 100 1 is connected the propagation loss PL 1 between the mobile terminal 100 1, the mobile terminal 100 1 and the mobile terminal 100 1 when the propagation loss PL 2 between the small base station apparatus 200 2 most propagation loss, the difference (PL 2 -PL 1) between in a predetermined range for the mobile terminal 100 1
  • Applying ULCoMP transmitting ULCoMP transmission power control parameters when ULCoMP is applied to the mobile terminal 100 1
  • transmitting ULCoMP non-application transmission power control parameters to the mobile terminal 100 1 when ULCoMP is not applied in the mobile terminal 100 1 receives the transmission power control parameter transmitted from the base station apparatus 200 1, the ULCoMP
  • FIG. 15 is a flowchart showing an example of a procedure regarding notification of ULCoMP application / non-application of the transmission power control method according to the present invention.
  • the difference between the propagation loss between the mobile terminal and the base station apparatus of the connected cell and the propagation loss between the mobile terminal and the base station apparatus of the neighboring cell is within a predetermined range. It is determined whether it is within (within X dB) (ST1).
  • the ULCoMP processing unit 2085 of the base station apparatus excludes the mobile terminal from the ULCoMP target, and to that effect To the mobile terminal (ST4).
  • the propagation loss difference is within X dB
  • the ULCoMP processing unit 2085 of the base station apparatus adds the mobile terminal to the target of ULCoMP. Then, this is notified to the mobile terminal (ST5).
  • higher layer signaling such as PDSCH is used.
  • FIG. 16 is a flowchart showing another example of a procedure related to ULCoMP application / non-application notification of the transmission power control method according to the present invention.
  • the difference between the propagation loss between the mobile terminal and the base station apparatus of the connected cell and the propagation loss between the mobile terminal and the base station apparatus of the neighboring cell is within a predetermined range. It is determined whether it is within (within X dB) (ST11).
  • the ULCoMP processing unit 2085 of the base station apparatus excludes the mobile terminal from the ULCoMP target (ST14). The mobile terminal is notified that it is not a ULCoMP target (ST15).
  • the propagation loss difference is within X dB, if the mobile terminal is not already the target of ULCoMP (ST13), the ULCoMP processing unit 2085 of the base station apparatus adds the mobile terminal to the target of ULCoMP. (ST16) The mobile terminal is notified that it is a ULCoMP target (ST17).
  • L1 / L2 signaling such as PDCCH is used.
  • FIG. 17 is a flowchart showing an example of the procedure of the aspect 1 of the transmission power control method according to the invention.
  • the ⁇ processing unit 20891 of the base station apparatus generates an attenuation coefficient ⁇ 2 for a normal mobile terminal (a mobile terminal not applying ULCoMP) and an attenuation coefficient ⁇ 1 for a mobile terminal applying ULCoMP, and generates two types of attenuation.
  • the coefficient is broadcast via PBCH (ST21).
  • the transmission power setting section 1089 determines that ULCoMP is applied.
  • the transmission power is set based on the above equation (1) using the attenuation coefficient ⁇ 1 for the applied mobile terminal (ST23).
  • transmission power setting section 1089 sets transmission power based on the above equation (1) using normal mobile terminal attenuation coefficient ⁇ 2 (ST24).
  • FIG. 18 is a flowchart showing another example of the procedure of the aspect 1 of the transmission power control method according to the invention.
  • Mobile terminal determines whether the mobile terminal is applied UL CoMP (ST31), if not the mobile terminal is UL CoMP applied, the transmission power setting unit 1089 uses the broadcast attenuation coefficient alpha 2 of the normal for the mobile terminal Then, the transmission power is set based on the above equation (1) (ST33).
  • the mobile terminal when a mobile terminal that is applied ULCoMP, the base station apparatus notifies the individual attenuation coefficient alpha 1 to the mobile terminal (ST32). For this notification, higher layer signaling such as PDSCH or L1 / L2 signaling such as PDCCH is used. Then, in the mobile terminal, transmission power setting section 1089 sets transmission power based on the above equation (1) using attenuation coefficient ⁇ 1 notified individually (ST34).
  • FIG. 19 is a flowchart showing the procedure of the aspect 2 of the transmission power control method according to the invention.
  • the PL CoMP calculation unit of the mobile terminal 1088 calculates the combined propagation loss PL CoMP , and the transmission power setting section 1089 sets the transmission power based on the above equation (1) using the PL CoMP (ST42).
  • transmission power setting section 1089 sets transmission power based on the above equation (1) using propagation loss PL 1 with the base station device of the connected cell (ST43).
  • FIG. 20 is a flowchart showing the procedure of the aspect 3 of the transmission power control method according to the invention. It is determined whether the mobile terminal is a mobile terminal to which ULCoMP is applied (ST51). If the mobile terminal is a mobile terminal to which ULCoMP is applied, the base station apparatus calculates a combined propagation loss PL CoMP by the PL CoMP calculation unit 20892, This is applied to the closed loop transmission power control of the mobile terminal (ST52). Then, the TPC command processing unit 20893 generates a TPC command from the difference between the measured reception level and the target reception level. The transmission power control unit 2089 executes closed loop transmission power control and transmits a TPC command to the mobile terminal (ST54).
  • the base station apparatus applies the propagation loss PL 1 to the closed-loop transmission power control of the mobile terminal (ST53). Then, the TPC command processing unit 20893 generates a TPC command from the difference between the measured reception level and the target reception level.
  • the transmission power control unit 2089 executes closed loop transmission power control and transmits a TPC command to the mobile terminal (ST54).
  • FIG. 21 is a flowchart showing the procedure of the aspect 4 of the transmission power control method according to the invention.
  • the transmission power setting unit of the mobile terminal 1089 calculates the combined transmission power P CoMP as transmission power (ST62).
  • transmission power setting section 1089 calculates transmission power P 1 by the normal method using the above equation (1) and sets it as transmission power (ST63).
  • FIG. 22 is a flowchart showing the procedure of the aspect 5 of the transmission power control method according to the invention. It is determined whether or not the mobile terminal is a mobile terminal to which ULCoMP is applied (ST71). If the mobile terminal is a mobile terminal to which ULCoMP is applied, the TPC command processing unit 20893 of the base station apparatus generates a TPC command for ULCoMP. The TPC command is notified to the mobile terminal by UL grant (ST72). On the other hand, if it is not a mobile terminal to which ULCoMP is applied, TPC command processing section 20893 of the base station apparatus generates a normal TPC command and notifies this TPC command to the mobile terminal with UL grant (ST73).
  • FIG. 23 is a flowchart showing the procedure of the aspect 6 of the transmission power control method according to the invention. It is determined whether the mobile terminal is a mobile terminal to which ULCoMP is applied (ST81). If the mobile terminal is a mobile terminal to which ULCoMP is applied, the content of the ULOI is changed by the OI processing unit 2086 of the base station apparatus of the ULCoMP cooperating cell ( It is determined whether or not the ULOI restriction is canceled (ST82). When changing the contents of the ULOI, the base station apparatus of the ULCoMP cooperating cell immediately updates the ULOI and notifies the base station apparatus of the connected cell (ST83).
  • FIG. 24 is a flowchart showing the procedure of the aspect 7 of the transmission power control method according to the invention. It is determined whether or not the mobile terminal is a mobile terminal to which ULCoMP is applied (ST91). If the mobile terminal is a mobile terminal to which ULCoMP is applied, the OLI processing unit 2088 of the base station apparatus of the ULCoMP cooperating cell transmits to the mobile terminal (past Whether or not OI is notified is determined (ST92). If the OI has been notified to the mobile terminal (in the past), the OLI processing unit 2088 of the base station apparatus of the ULCoMP cooperating cell immediately notifies the mobile terminal to reset the content of the OI (ST93).
  • the present invention is useful for an LTE-A system radio base station apparatus, mobile terminal apparatus, and transmission power control method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Transmitters (AREA)

Abstract

 従来のセル間干渉低減技術とULCoMPとを併用することができる無線基地局装置、移動端末装置及び送信電力制御方法を提供すること。本発明の無線基地局装置は、移動端末(100)と前記移動端末(100)が接続している基地局装置(200)との間の伝搬ロスPLと、前記移動端末(100)と前記移動端末(100)に対して最も伝搬ロスの小さい基地局装置(200)との間の伝搬ロスPLと、の間の差分(PL-PL)が所定の範囲内にあるときに、前記移動端末(100)に対してULCoMPを適用とするULCoMP処理部(2085)と、前記ULCoMPの適用時にULCoMP適用時の送信電力制御を行うと共に、前記ULCoMPの非適用時に前記ULCoMP非適用時の送信電力制御を行う送信電力制御部(2089)と、を具備することを特徴とする。

Description

無線基地局装置、移動端末装置及び送信電力制御方法
 本発明は、上りリンクのCoMP(Uplink Coordinated Multiple Point reception)時の送信電力を制御する無線基地局装置、移動端末装置及び送信電力制御方法に関する。
 3GPP(3rd Generation Partnership Project)で規定されるLTE(Long Term Evolution)システムでは、上りリンクにおいて、低いピーク対平均電力比(PAPR:Peak-to-Average Power Ratio)を実現し、カバレッジの増大に有効であるSC-FDMA(Single-Carrier Frequency Division Multiple Access)が採用されている。よって、無線基地局装置でのスケジューリングにより、基本的には、ある周波数及び時間の無線リソースを一つの移動端末装置(UE:User Equipment)に割り当てるため、同一セル内のユーザ間は周波数及び時間領域で直交している。しかしながら、LTEシステムでは、1セル周波数繰り返しをベースとするため、周辺セルからの干渉が大きく、特にセル端に存在するUEからの干渉レベルは高い。このため、このような周辺セル干渉を補償し一定の受信品質を維持するため、セル間干渉の対策が必要となる。
 セル間干渉対策として、上りリンクの送信電力制御の果たす役割は大きく、無線基地局装置は、ユーザと無線基地局装置との間の伝搬ロス、及び、周辺セルに与える干渉を考慮して、所要の受信品質を満たすように移動端末装置の送信電力を制御することが要求される。LTEシステムにおいては、セル間干渉を考慮した送信電力制御法として、Fractional送信電力制御が採用されている。
 LTEシステムの上りリンクで送信する信号(PUSCH(Physical Uplink Shared Channel)、PUCCH(Physical Uplink Control Channel)、SRS(Sounding Reference Signal))の送信電力は、無線基地局装置が比較的長周期で通知するパラメータ及び移動端末装置が測定する伝搬ロスによる開ループ制御と、無線基地局装置と移動端末装置との間の通信状況(例えば、無線基地局装置での受信SINR(Signal to Interference plus Noise Ratio)に基づいて無線基地局装置が比較的短周期で通知するTPCコマンドによる閉ループ制御との組み合わせにより制御される。具体的には、PUSCHの送信電力は下記式(1)で与えられる(非特許文献1)。
 PPUSCH(i)=min{PMAX, 10log10(MPUSCH(i))+P0_PUSCH(j)+α・PL+ΔTF(i)+f(i)} 式(1)
 このFractional送信電力制御は、移動端末装置の伝搬ロスPLに応じて目標受信電力を設定する(開ループ制御のパラメータαで実現)ことにより、セル間干渉を低減することができる。
 図25は、Fractional送信電力制御を説明するための図である。図25において縦軸は目標受信電力(PO_PUSCH)を示し、横軸は伝搬ロス(PL)を示す。Fractional送信電力制御においては、セル間干渉を抑制する目的でセル端に存在する移動端末装置の目標受信電力を小さくするように設定されている。すなわち、伝搬ロス(PL)が大きいとユーザがセル端に存在しており、伝搬ロスが小さいとユーザが無線基地局装置の近くに存在していると考えられるので、無線基地局装置の近くのユーザの移動端末装置の目標受信電力を相対的に大きくし、セル端のユーザの移動端末装置の目標受信電力を相対的に小さくする。このような関係の一次特性線の傾きが-(1-α)である。
 さらに、上りリンクにおけるセル間干渉対策として、LTEシステムでは、”UL Overload Indication(OI)”及び”UL High Interference Indication(HII)”の両シグナリング(無線基地局装置間のX2インタフェースを介したシグナリング)が規定されている(非特許文献2)。ULOIは、図26に示すように、受信干渉レベルが大きい無線基地局装置(周辺セル)が、それを周辺の無線基地局装置(自セル)に通知するために使用される。例えば、ULOIを受けた自セルの無線基地局はセル端の送信電力を下げる制御を行う。また、ULHIIは、配下の移動端末装置がセル端に位置するときに、当該移動端末装置に割り当てるリソースブロック(RB)情報を周辺セルの無線基地局装置に事前に通知するために使用される。ULHIIを受信した周辺セルの無線基地局装置は、当該RBを避けるように周波数スケジューリングを行う制御を行う。
 一方、LTE-A(LTE-Advanced)システムでは、さらなるセル間干渉対策として、上りリンクマルチポイント受信(ULCoMP:Uplink Coordinated Multiple Point reception)が採用される予定である(3GPP TR36.814)。このULCoMPにおいては、図27に示すように、自セルの無線基地局装置で、移動端末装置から送信された所望信号を直接受信すると共に、移動端末装置から送信された所望信号を周辺セルの無線基地局装置を経由して受信する。すなわち、ULCoMPにおいては、従来の干渉波となる信号を所望信号として利用するため、上りリンクの受信品質を改善することができ、特に、セル端の移動端末装置の品質を改善することが期待できる。特に、LTE-Aシステムでは、従来の独立基地局構成に加えて、基地局本体から離れて位置する送受信点における無線装置であるリモート基地局(RRE:Remote Radio Equipment)を積極的に利用して、ULCoMPの効果を高めることが考えられている。
 しかしながら、このULCoMPは、従来の干渉波を所望信号として利用する技術であるため、LTEシステムにおける従来のセル間干渉低減技術(Fractional送信電力制御、UL Overload Indication、UL High Interference Indication)を採用すると、ULCoMPの利得を低減する恐れがある。また、ULCoMPは、その処理量が大きいために全ての移動端末装置に適用されるとは限らず、移動端末装置の伝搬環境に応じてULCoMP適用の有無が動的に制御されることが想定される。従来のセル間干渉低減技術とULCoMPとを併用する必要があるが、その実現法については確立されていないのが現状である。
 本発明はかかる点に鑑みてなされたものであり、従来のセル間干渉低減技術とULCoMPとを併用することができる無線基地局装置、移動端末装置及び送信電力制御方法を提供することを目的とする。
 本発明の無線基地局装置は、移動端末装置と前記移動端末装置が接続している第1無線基地局装置との間の第1伝搬ロスPLと、前記移動端末装置と前記移動端末装置に対して最も伝搬ロスの小さい第2無線基地局装置との間の第2伝搬ロスPLと、の間の差分(PL-PL)が所定の範囲内にあるときに、前記移動端末装置に対して上りリンクマルチポイント受信を適用とするマルチポイント受信処理手段と、前記上りリンクマルチポイント受信の適用時に上りリンクマルチポイント受信適用時の送信電力制御を行うと共に、前記上りリンクマルチポイント受信の非適用時に前記上りリンクマルチポイント受信非適用時の送信電力制御を行う送信電力制御手段と、を具備することを特徴とする。
 本発明の移動端末装置は、無線基地局装置から送信された、上りリンクマルチポイント受信の適用/非適用の通知信号を受信する上りリンクマルチポイント受信通知信号処理手段と、無線基地局装置から送信された送信電力制御パラメータを受信する送信電力制御パラメータ受信手段と、前記上りリンクマルチポイント受信の適用時において、前記上りリンクマルチポイント受信の非適用時の送信電力制御パラメータと異なる送信電力制御パラメータを用いて送信電力を設定する送信電力設定手段と、を具備することを特徴とする。
 本発明の送信電力制御方法は、移動端末装置が接続している第1無線基地局装置において、移動端末装置との間の第1伝搬ロスPLと、前記移動端末装置と前記移動端末装置に対して最も伝搬ロスの小さい第2無線基地局装置との間の第2伝搬ロスPLと、の間の差分(PL-PL)が所定の範囲内にあるときに、前記移動端末装置に対して上りリンクマルチポイント受信を適用とする工程と、前記上りリンクマルチポイント受信の適用時に上りリンクマルチポイント受信適用時の送信電力制御パラメータを前記移動端末装置に送信すると共に、前記上りリンクマルチポイント受信の非適用時に前記上りリンクマルチポイント受信非適用時の送信電力制御パラメータを前記移動端末装置に送信する工程と、前記移動端末装置において、前記第1無線基地局装置から送信された送信電力制御パラメータを受信する工程と、前記上りリンクマルチポイント受信の適用時において、前記上りリンクマルチポイント受信の非適用時の送信電力制御パラメータと異なる送信電力制御パラメータを用いて送信電力を設定する工程と、を具備することを特徴とする。
 本発明によれば、上りリンクマルチポイント受信の適用時に上りリンクマルチポイント受信適用時の送信電力制御を採用するので、上りリンクマルチポイント受信の利得を低減させることなく、従来のセル間干渉低減技術と上りリンクマルチポイント受信とを併用することができる。
本発明の実施の形態に係る無線基地局装置及び移動端末装置を有する無線通信システムを示す図である。 本発明の実施の形態に係る送信電力制御方法を説明するための図である。 本発明の実施の形態に係る送信電力制御方法の態様1を説明するための図である。 本発明の実施の形態に係る送信電力制御方法の態様2を説明するための図である。 本発明の実施の形態に係る送信電力制御方法の態様3を説明するための図である。 本発明の実施の形態に係る送信電力制御方法の態様4を説明するための図である。 本発明の実施の形態に係る送信電力制御方法の態様5を説明するための図である。 本発明の実施の形態に係る送信電力制御方法の態様6を説明するための図である。 本発明の実施の形態に係る送信電力制御方法の態様7を説明するための図である。 本発明の実施の形態に係る移動端末装置の概略構成を示すブロック図である。 図10に示す移動端末装置におけるベースバンド信号処理部の構成を示すブロック図である。 本発明の実施の形態に係る無線基地局装置の概略構成を示すブロック図である。 図12に示す無線基地局装置におけるベースバンド信号処理部の構成を示すブロック図である。 図13に示すベースバンド信号処理部における送信電力制御部の構成を示すブロック図である。 本発明に係る送信電力制御方法のULCoMP適用/非適用の通知に関する手順を示すフロー図である。 本発明に係る送信電力制御方法のULCoMP適用/非適用の通知に関する手順の他の例を示すフロー図である。 本発明に係る送信電力制御方法の態様1の手順の一例を示すフロー図である。 本発明に係る送信電力制御方法の態様1の手順の他の例を示すフロー図である。 本発明に係る送信電力制御方法の態様2の手順を示すフロー図である。 本発明に係る送信電力制御方法の態様3の手順を示すフロー図である。 本発明に係る送信電力制御方法の態様4の手順を示すフロー図である。 本発明に係る送信電力制御方法の態様5の手順を示すフロー図である。 本発明に係る送信電力制御方法の態様6の手順を示すフロー図である。 本発明に係る送信電力制御方法の態様7の手順を示すフロー図である。 Fractional送信電力制御を説明するための図である。 ULOI及びULHIIのシグナリングを説明するための図である。 ULCoMPを説明するための図である。
 以下、本発明の実施の形態について添付図面を参照して詳細に説明する。
 図1は、本発明の実施の形態に係る無線基地局装置及び移動端末装置を有する無線通信システムを示す図である。
 無線通信システムは、例えばE-UTRA(Evolved UTRA and UTRAN)が適用されるシステムである。無線通信システムは、基地局装置(eNB:eNodeB)200(200,200・・・200、lはl>0の整数)と、基地局装置200と通信する複数の移動端末(UE)100(100,100,100,・・・100、nはn>0の整数)とを備える。基地局装置200は、上位局、例えばアクセスゲートウェイ装置300と接続され、アクセスゲートウェイ装置300は、コアネットワーク400と接続される。移動端末100はセル50(50,50)において基地局装置200とE-UTRAにより通信を行っている。本実施の形態では、2個のセルについて示しているが、本発明は3個以上のセルについても同様に適用することができる。なお、各移動端末(100,100,100,・・・100)は、同一の構成、機能、状態を有するので、以下では特段の断りがない限り移動端末100として説明を進める。
 無線通信システムでは、無線アクセス方式として、下りリンクについてはOFDM(直交周波数分割多元接続)が適用され、上りリンクについてはSC-FDMA(シングルキャリア-周波数分割多元接続)が適用される。OFDMは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、周波数帯域を端末毎に分割し、複数の端末が互いに異なる周波数帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。
 ここで、E-UTRAにおける通信チャネルについて説明する。
 下りリンクについては、各移動端末100で共有される物理下りリンク共有チャネル(PDSCH:Physical Downlink Shared Channel)と、物理下りリンク制御チャネル(PDCCH:Physical Downlink Control Channel)とが用いられる。物理下りリンク制御チャネルは下りL1/L2制御チャネルとも呼ばれる。上記物理下りリンク共有チャネルにより、ユーザデータ、すなわち、通常のデータ信号が伝送される。また、物理下りリンク制御チャネルにより、下りスケジューリング情報(DL Scheduling Information)、送達確認情報(ACK/NACK)、上りスケジューリンググラント(UL Scheduling Grant)、TPCコマンド(Transmission Power Control Command)などが伝送される。下りスケジューリング情報には、例えば、物理下りリンク共有チャネルを用いて通信を行うユーザのIDや、そのユーザデータのトランスポートフォーマットの情報、すなわち、データサイズ、変調方式、再送制御(HARQ:Hybrid ARQ)に関する情報や、下りリンクのリソースブロックの割り当て情報などが含まれる。
 また、上りスケジューリンググラントには、例えば、物理上りリンク共有チャネルを用いて通信を行うユーザのIDや、そのユーザデータのトランスポートフォーマットの情報、すなわち、データサイズ、変調方式に関する情報や、上りリンクのリソースブロックの割り当て情報、上りリンクの共有チャネルの送信電力に関する情報などが含まれる。ここで、上りリンクのリソースブロックとは、周波数リソースに相当し、リソースユニットとも呼ばれる。
 また、送達確認情報(ACK/NACK)とは、上りリンクの共有チャネルに関する送達確認情報のことである。送達確認情報の内容は、送信信号が適切に受信されたことを示す肯定応答(ACK:Acknowledgement)又はそれが適切に受信されなかったことを示す否定応答(NACK:Negative Acknowledgement)の何れかで表現される。
 上りリンクについては、各移動端末100で共有して使用される物理上りリンク共有チャネル(PUSCH:Physical Uplink Shared Channel)と、物理上りリンク制御チャネル(PUCCH:Physical Uplink Control Channel)とが用いられる。上記物理上りリンク共有チャネルにより、ユーザデータ、すなわち、通常のデータ信号が伝送される。また、物理上りリンク制御チャネルにより、下りリンクにおける共有物理チャネルのスケジューリング処理や適応変復調及び符号化処理(AMC:Adaptive Modulation and Coding scheme)に用いるための下りリンクの品質情報(CQI:Channel Quality Indicator)、及び物理下りリンク共有チャネルの送達確認情報が伝送される。
 物理上りリンク制御チャネルでは、CQIや送達確認情報に加えて、上りリンクの共有チャネルのリソース割り当てを要求するスケジューリング要求(Scheduling Request)や、パーシステントスケジューリング(Persistent Scheduling)におけるリリース要求(Release Request)などが送信されてもよい。ここで、上りリンクの共有チャネルのリソース割り当てとは、あるサブフレームの物理下りリンク制御チャネルを用いて、後続のサブフレームにおいて上りリンクの共有チャネルを用いて通信を行ってよいことを基地局装置が移動端末に通知することを意味する。
 移動端末100は、最適な基地局装置に対して通信を行う。図1の例では、移動端末100,100は、基地局装置200と通信し、移動端末100は基地局装置200と通信している。このとき、移動端末100,100の上り送信は、周辺セルである基地局装置200に対して干渉となる。この周辺セル干渉は、上りリンクパケットスケジューリングによって、TTI(Transmission Time Interval)毎に、かつ、RB(Resource Block)ごとに送信割り当てが行われる移動端末が変わるため、大幅に変動する。
 このため、基地局装置200での干渉を低減させるために、上りリンクで送信する信号は、無線基地局装置が比較的長周期で通知するパラメータ及び移動端末装置が測定する伝搬ロスによる開ループ制御と、無線基地局装置と移動端末装置との間の通信状況に基づいて無線基地局装置が比較的短周期で通知するTPCコマンドによる閉ループ制御との組み合わせにより、送信電力が制御される。
 また、基地局装置200は、ULOIを用いて、受信干渉レベルが大きい旨を基地局装置200に通知する。基地局装置200では、ULOIを受けた後に、セル端の送信電力を下げる制御を行う。また、基地局装置200は、ULHIIを用いて、配下の移動端末100,100がセル端に位置するときに、当該移動端末100,100に割り当てるリソースブロック(RB)情報を周辺セルの基地局装置200に事前に通知する。ULHIIを受信した周辺セルの基地局装置200は、当該RBを避けるように周波数スケジューリングを行う制御を行う。
 さらに、この無線通信システムでは、さらなるセル間干渉対策として、上りリンクマルチポイント受信(ULCoMP)も適用できるようになっている。このULCoMPにおいては、例えば、移動端末100と接続している基地局装置200において、移動端末100からの所望信号を周辺セルの基地局装置200を経由して受信する。すなわち、移動端末100からの所望信号を複数セルの基地局装置200,200で受信する。
 図1に示す無線通信システムにおいて、LTEシステムにおけるセル間干渉低減技術(Fractional送信電力制御、ULOI、ULHII)と、ULCoMPとを併用することができるが、セル間干渉低減技術を適用してULCoMPを適用すると、上述したようにULCoMPの利得を低減する恐れがある。また、ULCoMPは、移動端末の伝搬環境に応じて適用の有無を動的に制御することが望ましい。
 そこで、本発明者らは、LTEシステムにおけるセル間干渉低減技術と、ULCoMPとを併用する際の課題を解決すべく鋭意検討を重ねた結果、ULCoMP適用時に、ULCoMP非適用時の送信電力制御と異なる送信電力制御を用いることにより、ULCoMP適用時のULCoMP利得の低減を防止できることを見出し本発明をするに至った。すなわち、ULCoMP適用時には、セル端のユーザの移動端末に対して、ULCoMPの効果を高める送信電力制御(ULCoMPの利得を高める送信電力制御)を行い、ULCoMP非適用時には、セル端のユーザの移動端末に対して、セル間干渉を低減させる送信電力制御を行う。
 ULCoMP適用時に、ULCoMP非適用時の送信電力制御と異なる送信電力制御を用いるとは、ULCoMP適用時の送信電力制御パラメータとULCoMP非適用時の送信電力制御パラメータとを変えることである。ここで、送信電力制御パラメータとは、Fractional送信電力制御における上記式(1)のα・PL項の減衰係数αや伝搬ロスPL、上記式(1)のP0_PUSCH(j)、TPCコマンド、ULOI、ULHIIなどのLTEシステムでのセル間干渉低減技術における送信電力制御に用いられるパラメータをいう。
 本発明の送信電力制御方法において、ULCoMP適用時に、ULCoMP非適用時の送信電力制御と異なる送信電力制御を用いる場合には、必要に応じて、ULCoMPを適用する移動端末に対して、接続基地局装置がULCoMP適用であることを通知する。また、逆に、ULCoMPを適用している移動端末に対して、ULCoMP非適用(ULCoMP状態から抜ける)であることも通知する。
 ULCoMP適用/非適用は、例えば、次のようにして判断する。図2に示すように、移動端末100と接続セルの基地局装置200との伝搬ロス値PLと、移動端末100と最も伝搬ロスの小さい周辺セルの基地局装置200(ULCoMP協力セルの基地局装置)との伝搬ロス値PLと、の間の伝搬ロス差PLDiff(=PL-PL)が、所定の閾値XdB以内である場合に、接続セルの基地局装置200が移動端末100に対してULCoMPを適用する。なお、伝搬ロス差PLDiffについては、基地局装置200が求める。この場合において、伝搬ロス値PLについては、X2インタフェースにより基地局装置200より取得する。ただし、基地局装置200での伝搬ロス値PLの取得方法についてはこれに限定せず、例えば、基地局装置200と接続している移動端末100より取得しても良い。あるいは、移動端末100において伝搬ロス差PLDiffを計算し、PLDiffを接続セルの基地局装置200に通知してもよい。なお、ULCoMP協力セルの基地局装置200が接続セルの基地局装置200と同一基地局装置であっても良い。また、ULCoMP適用/非適用の判断は、これに限定されず、適宜変更することができる。
 ULCoMP適用/非適用の情報は、ULCoMPを適用する移動端末に対して、例えば、PDSCHを介してHigher layer signalingで通知する。具体的には、ULCoMP非適用からULCoMP適用に変わる場合に”1”をシグナリングし、ULCoMP適用からULCoMP非適用に変わる場合に”0”を通知する。また、ULCoMP適用/非適用の情報は、ULCoMPを適用する移動端末に対して、例えば、PDCCHを介してL1/L2 signalingで通知する。具体的には、ULCoMP適用時は(常に)“1”を通知し、ULCoMP非適用時は(常に)”0”を通知する。なお、ULCoMP適用/非適用の情報の通知は、これらに限定されず、適宜変更することができる。
 本発明の送信電力制御方法において、ULCoMP適用時に、ULCoMP非適用時の送信電力制御と異なる送信電力制御を用いる態様として以下のものがある。
(態様1)
 この態様においては、ULCoMP適用時とULCoMP非適用時とで、Fractional送信電力制御における上記式(1)のα・PL項の減衰係数αの値を変える(減衰係数を2つ準備する)。すなわち、ULCoMPを適用する移動端末に対しては、Fractional送信電力制御の減衰係数αの値を別途設定可能にする。ULCoMPを適用する移動端末には、ULCoMP利得を低減させないように、送信電力を下げる必要はない。このため、当該移動端末に対しては減衰係数αの値を上げてULCoMPの効果を高める。
 この態様においては、図3に示すように、ULCoMP適用の移動端末100用の減衰係数αと、ULCoMP非適用の移動端末100用の減衰係数αとを用いる。この減衰係数α,αは、PBCH(Physical Broadcast Channel)を介して報知しても良く、PDSCHを介したHigher layer signalingで個別に通知しても良く、PDCCHを介したL1/L2 signalingで個別に通知しても良い。減衰係数α,αをPBCHで報知する場合においては、例えば、ULCoMP適用用の減衰係数αの値はULCoMP非適用用の減衰係数αの値よりも大きくしても良く、減衰係数αの値を1.0の固定としても良い。また、減衰係数α,αをPDSCHやPDCCHで通知する場合には、全てのULCoMP適用移動端末に対して一律に同じ減衰係数αを通知しても良く、移動端末毎に異なる減衰係数αを通知しても良い。なお、減衰係数α,αをPBCHで報知する場合については、上述したように、ULCoMP適用/非適用の情報を移動端末に通知する必要がある。
(態様2)
 この態様においては、ULCoMP適用時とULCoMP非適用時とで、Fractional送信電力制御における上記式(1)のα・PL項の伝搬ロスPLの値を変える。Fractional送信電力制御では、送信電力は、移動端末100と接続セルの基地局装置200との伝搬ロス値PLに対して減衰係数αの重み付けがなされる。そこで、PLと、移動端末100とULCoMP協力セルの基地局装置200との伝搬ロス値PLとで求められた合成値PLCoMPを適用する。PLよりも大きい値をPLCoMPとして適用する場合、上記式(1)のα・PL項の値が大きくなるので、ULCoMP効果を高めることができる。あるいは、PLよりも小さい値を合成値PLCoMPとして適用する場合、ULCoMP適用の移動端末100が与える周辺セル干渉を抑えることができる。
 この態様においては、図4に示すように、移動端末100とULCoMP協力セルの基地局装置200との伝搬ロス値PLとを用いて合成値(伝搬ロスの合成値)PLCoMPを求める。この合成値PLCoMPを用いて移動端末100は送信電力を求める。例えば、PLCoMP=(PL+PL)/2として、通常送信電力計算で適用する値PLよりも大きい値に設定してULCoMP適用の移動端末100の送信電力を上げてもよく、逆に、PLCoMP=PL・PL/(PL+PL)(真値に直して計算し、最後にdB換算する)のように、通常送信電力計算で適用する値PLよりも小さい値に設定して、送信電力は下がるものの、周辺セル干渉を考慮した適切な送信電力としても良い。なお、合成値PLCoMPの求め方については、特に制限はない。また、この態様においては、上述したように、ULCoMP適用/非適用の情報を移動端末に通知する必要がある。
(態様3)
 この態様においては、ULCoMP適用時とULCoMP非適用時とで、基地局装置が送信電力制御に適用する移動端末の伝搬ロスPL及び伝搬ロス差PLDiffの値を変える。基地局装置では、移動端末の目標受信電力PRxあるいは目標受信SINR(TSINR)を、当該移動端末と最も伝搬ロスの小さい周辺セルの基地局装置との伝搬ロス差PLDiffを用いて設定する。
   PRx=Px+β・PLDiff+γ         式(2)
 Px:受信電力基準値、β:伝搬ロス差補正係数、γ:オフセット
   TSINR=Tx+β・PLDiff+γ        式(3)
 Tx:目標受信SINR基準値、β:伝搬ロス差補正係数、γ:オフセット
 ここで、伝搬ロス差補正係数βは、図5に示すように、目標受信電力(PRx)、目標受信SINR(TSINR)と伝搬ロス差PLDiffとから説明することができる。図5に示す関係においては、セル間干渉を抑制する目的で、セル端に存在する移動端末に対しては目標受信電力や目標受信SINRを小さく設定する。すなわち、伝搬ロス差(PLDiff)が大きいとユーザが基地局装置の近くに存在しており、伝搬ロスが小さいとユーザがセル端に存在していると考えられるので、基地局装置の近くのユーザの移動端末の目標受信電力や目標受信SINRを相対的に大きくし、セル端のユーザの移動端末の目標受信電力や目標受信SINRを相対的に小さくする。このような関係の一次特性線の傾きがβである。例えば、Fractional送信電力制御の式(1)との整合性を考慮すれば、β=1-αとすることができるが、これに限定されない。
 本態様においては、PLDiff=PL-PLとするところを、ULCoMP適用移動端末に対して、例えば、PLDiff=PL-PLCoMPとする。ここで、PLCoMPは態様2におけるPLCoMPと同じである。また、伝搬ロス値PLは、ULCoMP協力セルを除いて最も伝搬ロスの小さい周辺セルの基地局装置との間の伝搬ロスを表す。このようにPLDiffを変えることにより、主にセル端に存在するULCoMP適用移動端末に対して目標受信電力や目標受信SINRを大きく設定することができ、ULCoMPの効果を高めることができる。なお、PLCoMPに関して、従来のPLより小さい値となるように設定する方が、確実に目標受信電力や目標受信SINRを大きくする観点からは有利である。
 基地局装置は、例えば、測定された受信電力と式(2)で求められるPRxとの間の差分や、測定された受信SINRと式(3)で求められるTSINRとの間の差分を、TPCコマンドやP0_PUSCHに反映して移動端末に閉ループで通知する。したがって、本態様においては、PLDiffを変えて求められた目標受信電力や目標受信SINRで送信電力制御される。なお、本態様においては、ULCoMP適用/非適用の情報を移動端末に通知する必要はない。
(態様4)
 この態様においては、ULCoMP適用時とULCoMP非適用時とで、Fractional送信電力制御の送信電力を変える。ULCoMPを適用する移動端末において、接続セルの基地局装置との伝搬ロスから求まる送信電力と、ULCoMP協力セルの基地局装置との伝搬ロスから求まる送信電力と、から最終的な送信電力を設定する。LTEシステムにおけるFractional送信電力制御では、接続セルに対する伝搬ロス値PLから計算される送信電力Pが適用される。本態様においては、図6に示すように、移動端末100と接続セルの基地局装置200との伝搬ロス値PLから計算される送信電力Pと、移動端末100とULCoMP協力セルの基地局装置200との伝搬ロス値PLから計算される送信電力P(一般には、Pよりも大きい値となる)を考慮したPCoMPを最終的な送信電力とする。これにより、ULCoMP適用時のFractional送信電力制御での送信電力値が大きくなるので、ULCoMPの効果を高めることができる。
 本態様においては、例えば、ULCoMP適用時に、移動端末100において、接続セルの基地局装置200との伝搬ロス値PLを用いて計算される送信電力Pと、ULCoMP協力セルの基地局装置200との伝搬ロス値PLを用いて計算される送信電力Pとの平均値を送信電力PCoMP(送信電力の合成値:PCoMP=(P+P)/2)としても良く、送信電力Pをそのまま送信電力PCoMP(PCoMP=P)としても良い。また、この態様においては、上述したように、ULCoMP適用/非適用の情報を移動端末に通知する必要がある。
(態様5)
 この態様においては、ULCoMP適用時とULCoMP非適用時とで、UL scheduling grant中の送信電力制御コマンド(TPCコマンド)のレンジあるいはビット数を変える。すなわち、ULCoMPを適用する移動端末に対して、UL scheduling grant中の送信電力制御コマンド(TPCコマンド)のレンジあるいはビット数を拡大する。このように、TPCコマンドのレンジを拡大することにより、主にULCoMP適用切り替え時の目標受信電力の変化に迅速に対応することができる。
 本態様においては、例えば、図7に示すように、接続セルの基地局装置200は、ULCoMP適用の移動端末100に対して、UL scheduling grantで3ビット以上のTPCコマンドを送り、ULCoMP非適用の移動端末100に対して、UL scheduling grantで2ビットのTPCコマンド({-1,0,+1,+3}dB)を送る。3ビットのTPCコマンドは、{-5,-3,-1,0,+1,+3,+5,+7}dB、{-3,-1,0,+1,+3,+5,+7,+9}dBなどである。
 また、接続セルの基地局装置200は、ULCoMP適用の移動端末100に対して、UL scheduling grantでレンジを拡大したTPCコマンドを送り、ULCoMP非適用の移動端末100に対して、UL scheduling grantで通常のレンジのTPCコマンド({-1,0,+1,+3}dB)を送る。レンジを拡大したTPCコマンドは、{0,+1,+3,+5}dB、{0,+2,+4,+6}dBなど(2ビット)である。この態様においては、移動端末100でTPCコマンドの内容を判別する必要がある。そのため、前記3ビットのTPCコマンドやレンジを拡大したTPCコマンドの内容を、例えばTPC-Indexとして、Higher layer signalingで個別に通知しておく。また、上述したように、ULCoMP適用/非適用の情報を移動端末に通知する必要があるが、前記3ビットのTPCコマンドやレンジを拡大したTPCコマンドを指示したTPC-IndexがHigher layer signalingで通知された場合、移動端末は前記ULCoMP適用/非適用の情報の有無によらず、ULCoMPが適用されることを認識しても良い。
(態様6)
 この態様においては、ULCoMP適用の移動端末に変更が生じた場合(ULCoMP適用⇔ULCoMP非適用のようにULCoMPを適用する移動端末に増減が生じた場合)、基地局装置がULOI及びULHIIを更新する。LTEシステムにおけるULOI及びULHIIは、周辺セルの送信電力制御やスケジューリングに制限を加えるものであり、ULCoMPが適用される場合、特に状態遷移直後に、前記制限がULCoMPの効果を低減させる可能性がある。そこで、本態様においては、ULCoMP適用時に、ULOI及びULHIIのシグナリングを更新する。これにより、状態遷移直後であっても、ULCoMP適用の際のULCoMPの効果を高めることができる。
 本態様においては、図8に示すように、ULCoMP適用の移動端末100に変更が生じた場合、ここではULCoMP非適用→ULCoMP適用となった場合(ULCoMPを適用する移動端末が増加した場合)に、ULOI及びULHIIの内容に変更が生じる場合に、前記変更内容を周辺セルの基地局装置に通知する。すなわち、接続セルの基地局装置200から、周辺セルであってULCoMP協力セルになった基地局装置200に対して、ULHIIによる制限が不要となった場合、制限解除の内容のULHIIを通知する。また、周辺セルであってULCoMP協力セルになった基地局装置200から、接続セルの基地局装置200に対して、ULOIによる制限が不要となった場合、制限解除の内容のULOIを通知する。あるいは、ULCoMP協力セルになった基地局装置200はなお、本態様においては、ULCoMP適用/非適用の情報を移動端末に通知する必要はない。なお、上記説明においては、無線通信システムにおいてULOI及びULHIIを共に使用する場合について説明しているが、本発明はこれに限定されず、ULOI又はULHIIのいずれかを使用するシステムであっても良い。
(態様7)
 この態様においては、送信電力制御に無線ベースのOverload Indicator(OLI)を適用する移動端末にULCoMPが適用された場合、当該移動端末に対してOLIの制限をリセットする通知を行う。この場合においては、基地局装置が、周辺セル配下の移動端末に対して、直接(無線ベースで)OLIを送り、移動端末は、前記OLIに従う送信電力制御を行うものとする。これにより、態様6と同様に、状態遷移直後であっても、ULCoMP適用の際のULCoMPの効果を高めることができる。なお、基地局装置が、周辺セル配下の移動端末に対して、直接(無線ベースで)OLIを送り、移動端末が、前記OLIに従う送信電力制御については、WO2008/044528において本出願人がすでに提案している。この内容はすべてここに含めておく。
 本態様においては、図9に示すように、接続セルの基地局装置200と通信しているULCoMP適用の移動端末100に変更が生じた場合、ここではULCoMP非適用→ULCoMP適用となった場合に、周辺セルであってULCoMP協力セルになった基地局装置200から移動端末100に対して、OLIを解除(リセット)する旨の無線信号を送信する。ここで、OLIを解除(リセット)する旨の無線信号としては、例えば、当該移動端末100に対する送信電力のオフセット項をゼロにする無線信号などが挙げられる。なお、本態様においては、ULCoMP適用/非適用の情報を移動端末に通知する必要はない。
 図10は、本発明の実施の形態に係る移動端末装置の概略構成を示すブロック図である。
 図10に示す移動端末100は、アンテナ102と、アンプ部104と、送受信部106と、ベースバンド信号処理部108と、呼処理部110と、アプリケーション部112とから主に構成されている。
 このような構成の移動端末100において、下りリンクのデータについては、アンテナ102で受信された無線周波数信号がアンプ部104で、AGC(Auto Gain Control)の下で受信電力が一定電力に補正されるように増幅される。増幅された無線周波数信号は、送受信部106においてベースバンド信号へ周波数変換される。このベースバンド信号は、ベースバンド信号処理部108で所定の処理(誤り訂正、復号など)がなされた後、呼処理部110及びアプリケーション部112に送られる。呼処理部110は、基地局装置200との通信の管理などを行い、アプリケーション部112は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。
 上りリンクのデータについては、アプリケーション部112からベースバンド信号処理部108に入力される。ベースバンド信号処理部108では、再送制御の処理、スケジューリング、伝送フォーマット選択、チャネル符号化などがなされて送受信部106に転送される。送受信部106では、ベースバンド信号処理部108から出力されたベースバンド信号を無線周波数信号へ周波数変換する。周波数変換された信号は、その後、アンプ部104で増幅されてアンテナ102から送信される。
 図11は、図10に示す移動端末装置におけるベースバンド信号処理部の構成を示すブロック図である。
 ベースバンド信号処理部108は、レイヤ1処理部1081と、MAC(Medium Access Control)処理部1082と、RLC(Radio Link Control)処理部1083と、ULCoMP通知信号受信処理部1084と、α受信処理部1085と、TPCコマンド受信処理部1086と、OLI受信処理部1087と、PLCoMP計算部1088と、送信電力設定部1089とから主に構成されている。なお、α受信処理部1085、TPCコマンド受信処理部1086及びOLI受信処理部1087は、基地局装置から送られた送信電力制御パラメータを受信する送信電力制御パラメータ受信部である。
 レイヤ1処理部1081は、主に物理レイヤに関する処理を行う。レイヤ1処理部1081は、例えば、下りリンクで受信した信号に対して、チャネル復号化、離散フーリエ変換(DFT:Discrete Fourier Transform)、周波数デマッピング、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)、データ復調などの処理を行う。また、レイヤ1処理部1081は、上りリンクで送信する信号に対して、チャネル符号化、データ変調、周波数マッピング、逆高速フーリエ変換(IFFT)などの処理を行う。
 MAC処理部1082は、下りリンクで受信した信号に対するMACレイヤでの再送制御(HARQ)、下りスケジューリング情報の解析(PDSCHの伝送フォーマットの特定、PDSCHのリソースブロックの特定)などを行う。また、MAC処理部1082は、上りリンクで送信する信号に対するMAC再送制御、上りスケジューリング情報の解析(PUSCHの伝送フォーマットの特定、PUSCHのリソースブロックの特定)などの処理を行う。
 RLC処理部1083は、下りリンクで受信したパケット/上りリンクで送信するパケットに対して、パケットの分割、パケットの結合、RLCレイヤでの再送制御などを行う。
 ULCoMP通知信号受信処理部1084は、接続セルの基地局装置から通知されるULCoMP通知信号を受信し、ULCoMP通知信号の内容(ULCoMP適用/ULCoMP非適用)を判定する。ULCoMP通知信号の情報は、送信電力設定部1089に送られると共に、PLCoMP計算部1088、TPCコマンド受信処理部1086又はα受信処理部1085に送られる。なお、ULCoMP通知信号は、下りリンクのPDSCHやPDCCHで送られる。
 α受信処理部1085は、基地局装置から通知される、送信電力制御に用いるパラメータである減衰係数αの信号を受信し、その信号の内容を判定する。減衰係数αの情報は、送信電力設定部1089に送られる。α受信処理部1085は、ULCoMP適用時(ULCoMP通知信号の情報を受けた時)にはULCoMP適用時の減衰係数αを受信し、ULCoMP非適用時にはULCoMP非適用時の減衰係数αを受信する。α受信処理部1085は、減衰係数α及び減衰係数αを送信電力設定部1089に送る。
 TPCコマンド受信処理部1086は、基地局装置から通知されるTPCコマンドを受信し、そのTPCコマンドの内容を判定する。TPCコマンドの情報は、送信電力設定部1089に送られる。TPCコマンド受信処理部1086は、ULCoMP適用時(ULCoMP通知信号の情報を受けた時)にはULCoMP適用時のTPCコマンド(例えば、3ビットTPCコマンド)を受信し、ULCoMP非適用時にはULCoMP非適用時のTPCコマンド(2ビットTPCコマンド)を受信する。TPCコマンド受信処理部1086は、TPCコマンドを送信電力設定部1089に送る。
 OLI受信処理部1087は、周辺セルの基地局装置から通知されるOLIを受信し、そのOLIの内容(OLI制限有、OLI制限解除)を判定する。OLIの情報は、送信電力設定部1089に送られる。OLI受信処理部1087は、ULCoMP適用時にはOLI制限解除のOLIを受信し、ULCoMP非適用時にはOLI制限有のOLI(通常のOLI)を受信する。
 PLCoMP計算部1088は、送信電力制御に用いる伝搬ロス値の計算を行う。PLCoMPの情報は、送信電力設定部1089に送られる。PLCoMP計算部1088は、ULCoMP適用時(ULCoMP通知信号の情報を受けた時)に、自装置と接続セルの基地局装置との間の伝搬ロスPLと、自装置とULCoMP協力セルの基地局装置(自装置に対して最も伝搬ロスの小さい基地局装置)との間の伝搬ロスPLとを用いてPLCoMPを計算する。PLCoMP計算部1088は、PLCoMPを送信電力設定部1089に送る。この場合において、伝搬ロスPLは自装置で求められた伝搬ロス、伝搬ロスPLは自装置で求められた伝搬ロス、もしくはX2インタフェースによりULCoMP協力セルの基地局装置から接続セルの基地局装置を介して取得された伝搬ロスであり、それぞれPLCoMP計算部1088に送られる。ULCoMP非適用時においては、伝搬ロスPLが送信電力設定部1089に送られる。
 送信電力設定部1089は、送信電力制御パラメータを用いて送信電力の設定を行う。すなわち、送信電力設定部1089は、ULCoMPの適用時において、ULCoMPの非適用時の送信電力制御パラメータと異なる送信電力制御パラメータを用いて送信電力を設定し、ULCoMPの非適用時において、ULCoMPの非適用時の送信電力制御パラメータを用いて送信電力を設定する。
 送信電力設定部1089は、ULCoMPの適用時(ULCoMP通知信号の情報を受けた時)に、α受信処理部1085から出力されたULCoMP適用時の減衰係数αを用いて上記式(1)に基づいて送信電力を設定し、ULCoMPの非適用時にULCoMP非適用時の減衰係数αを用いて上記式(1)に基づいて送信電力を設定する(態様1)。
 送信電力設定部1089は、ULCoMPの適用時(ULCoMP通知信号の情報を受けた時)に、ULCoMP適用時の伝搬ロスとして、接続している基地局装置との間の伝搬ロスPLの代わりに、PLCoMP計算部1088から出力された伝搬ロスPLCoMPを用いて上記式(1)に基づいて送信電力を設定し、ULCoMPの非適用時に、ULCoMP非適用時の伝搬ロスとして、接続している基地局装置との間の伝搬ロスPLを用いて上記式(1)に基づいて送信電力を設定する(態様2)。
 送信電力設定部1089は、ULCoMPの適用時(ULCoMP通知信号の情報を受けた時)に、接続している基地局装置との間の伝搬ロスPLを用いて上記式(1)に基づいて求められる送信電力Pと、ULCoMPの協力セルの基地局装置との間の伝搬ロスPLを用いて上記式(1)に基づいて求められる送信電力Pと、を用いて送信電力PCoMPを設定する(態様4)。
 送信電力設定部1089は、ULCoMPの適用時(ULCoMP通知信号の情報を受けた時)に、TPCコマンド受信処理部1086から出力された、ULCoMPの適用時のTPCコマンドよりもビット数やレンジの大きいTPCコマンドで送信電力を設定し、ULCoMPの非適用時に、TPCコマンド受信処理部1086から出力された、ULCoMPの非適用時のTPCコマンドで送信電力を設定する(態様5)。
 図12は、本発明の実施の形態に係る無線基地局装置の概略構成を示すブロック図である。
 図12に示す基地局装置200は、アンテナ202と、アンプ部204と、送受信部206と、ベースバンド信号処理部208と、呼処理部210と、伝送路インタフェース212とから主に構成されている。
 このような構成の基地局装置200において、上りリンクのデータについては、アンテナ202で受信された無線周波数信号がアンプ部204で、AGCの下で受信電力が一定電力に補正されるように増幅される。増幅された無線周波数信号は、送受信部206においてベースバンド信号へ周波数変換される。このベースバンド信号は、ベースバンド信号処理部208で所定の処理(誤り訂正、復号など)がなされた後、伝送路インタフェース212を介して図示しないアクセスゲートウェイ装置に転送される。アクセスゲートウェイ装置は、コアネットワークに接続されており、各移動端末を管理している。また、上りリンクに関しては、上りリンクのベースバンド信号に基づいて、基地局装置200で受信された無線周波数信号の受信SINR及び干渉レベルが測定される。
 呼処理部210は、上位装置の無線制御局との間で呼処理制御信号を送受信し、基地局装置200の状態管理やリソース割り当てをする。なお、上記レイヤ1処理部2081とMAC処理部2082における処理は、呼処理部210において設定されている、基地局装置200と移動局装置100との間の通信状態に基づいてなされる。
 下りリンクのデータについては、上位装置から伝送路インタフェース212を介してベースバンド信号処理部208に入力される。ベースバンド信号処理部208では、再送制御の処理、スケジューリング、伝送フォーマット選択、チャネル符号化などがなされて送受信部206に転送される。送受信部206では、ベースバンド信号処理部208から出力されたベースバンド信号を無線周波数信号へ周波数変換する。周波数変換された信号は、その後、アンプ部204で増幅されてアンテナ202から送信される。
 図13は、図12に示す無線基地局装置におけるベースバンド信号処理部の構成を示すブロック図である。
 ベースバンド信号処理部208は、レイヤ1処理部2081と、MAC処理部2082と、RLC処理部2083と、伝搬ロス差計算部2084と、ULCoMP処理部2085と、OI処理部2086と、HII処理部2087と、OLI処理部2088と、送信電力制御部2089とから主に構成されている。
 レイヤ1処理部2081は、主に物理レイヤに関する処理を行う。レイヤ1処理部2081は、例えば、上りリンクで受信した信号に対して、チャネル復号化、離散フーリエ変換(DFT)、周波数デマッピング、逆高速フーリエ変換(IFFT)、データ復調などの処理を行う。また、レイヤ1処理部2081は、下りリンクで送信する信号に対して、チャネル符号化、データ変調、周波数マッピング、逆高速フーリエ変換(IFFT)などの処理を行う。
 MAC処理部2082は、上りリンクで受信した信号に対するMACレイヤでの再送制御、上りリンク/下りリンクに対するスケジューリング、PUSCH/PDSCHの伝送フォーマットの選択、PUSCH/PDSCHのリソースブロックの選択などの処理を行う。
 RLC処理部2083は、上りリンクで受信したパケット/下りリンクで送信するパケットに対して、パケットの分割、パケットの結合、RLCレイヤでの再送制御などを行う。
 伝搬ロス差計算部2084は、移動端末と、移動端末の周辺セルの基地局装置(ULCoMP協力セルの基地局装置候補)との間の伝搬ロス差を計算する。すなわち、接続している移動端末と、その移動端末の周辺セルの複数の基地局装置との間の伝搬ロスをそれぞれ計算し、その伝搬ロスのうち最小の伝搬ロスを抽出する。伝搬ロス差計算部2084は、この最小の伝搬ロスの情報をULCoMP処理部2085に送る。このとき、伝搬ロス差計算部2084は、最小の伝搬ロスとなる基地局装置(ULCoMP協力セルの基地局装置)の情報もULCoMP処理部2085に送る。
 ULCoMP処理部2085は、伝搬ロス差計算部2084の計算結果に基づいて、移動端末のULCoMP適用/非適用を決定する。ULCoMP処理部2085は、自装置と移動端末との間の伝搬ロスPLと、移動端末とこの移動端末に対して最も伝搬ロスの小さい基地局装置との間の伝搬ロスPLと、の間の差分(PL-PL)が所定の範囲内にあるときに、当該移動端末についてULCoMP適用と決定する。ULCoMP処理部2085は、差分(PL-PL)が所定の範囲内にないときに、当該移動端末についてULCoMP非適用と決定する。ULCoMP処理部2085は、ULCoMP適用/非適用の決定結果をOI処理部2086、HII処理部2087又はOLI処理部2088に送ると共に、送信電力制御部2089に送る。
 また、ULCoMP処理部2085は、ULCoMP適用/非適用の情報を移動端末に通知する。この情報は、PBCH、PDSCH又はPDCCHを介して、ULCoMP適用の移動端末に通知される。
 OI処理部2086は、基地局装置がULCoMP協力セルの基地局装置である場合において、ULCoMPを適用する移動端末の数に変更があったときに、ULOIの内容に変更が生じる場合、ULOIを生成し、このULOIを接続セルの基地局装置に通知する(態様6)。OI処理部2086は、ULCoMP適用時に、ULOIの内容に変更が生じる場合、ULOI制限解除のOIを生成し、このOIを、X2インタフェースを介して接続セルの基地局装置に通知する。また、OI処理部2086は、ULCoMP非適用時に、必要があればULOI制限のOIを生成し、このOIを、X2インタフェースを介して接続セルの基地局装置に通知する。この場合においては、ULCoMP協力セルの基地局装置は、ULCoMP適用/非適用の情報を、接続セルの基地局装置からX2インタフェースで通知される。
 HII処理部2087は、ULHIIを生成し、このULHIIをULCoMP協力セルの基地局装置に通知する。HII処理部2087は、ULCoMP適用時(ULCoMP処理部2085からULCoMP適用の決定結果を受けた時)に、すなわち、ULCoMPを適用する移動端末の数に変更があったときに、HIIの内容に変更が生じる場合、HII制限解除のHIIを生成し、このHIIを、X2インタフェースを介してULCoMP協力セルの基地局装置に通知する(態様6)。また、HII処理部2087は、ULCoMP非適用時(ULCoMP処理部2085からULCoMP非適用の決定結果を受けた時)に、必要があればHII制限のHIIを生成し、このHIIを、X2インタフェースを介してULCoMP協力セルの基地局装置に通知する。
 OLI処理部2088は、OLIを生成し、このOLIを接続セル(周辺セル)の基地局装置と通信している移動端末に通知する(態様7)。OLI処理部2088は、基地局装置がULCoMP協力セルの基地局装置である場合において、OLI制限解除のOLIを生成し、このOLIを接続セルの基地局装置と通信している移動端末に直接通知する。また、OLI処理部2088は、ULCoMP非適用時には、必要に応じてOLI制限のOLIを生成し、このOLIを接続セルの基地局装置と通信している移動端末に直接通知する。この場合においては、ULCoMP協力セルの基地局装置は、ULCoMP適用/非適用の情報を、接続セルの基地局装置からX2インタフェースで通知される。
 送信電力制御部2089は、ULCoMPの適用時にULCoMP適用時の送信電力制御を行うと共に、ULCoMPの非適用時にULCoMP非適用時の送信電力制御を行う。
 図14は、図13に示すベースバンド信号処理部における送信電力制御部の構成を示すブロック図である。
 送信電力制御部2089は、α処理部20891と、PLCoMP計算部20892と、TPCコマンド処理部20893と、から主に構成されている。
 α処理部20891は、送信電力制御に用いる減衰係数αを生成する。ULCoMP適用時の減衰係数α及びULCoMP非適用時の減衰係数αを生成する。また、α処理部20891は、これらの減衰係数α,αをPDSCHやPDCCHを介してULCoMP適用の移動端末に通知する、あるいはPBCHを介して報知する(態様1)。
 PLCoMP計算部20892は、閉ループ送信電力制御に用いる伝搬ロス値の計算を行う。PLCoMP計算部20892は、ULCoMP適用時(ULCoMP適用の決定結果を受けた時)に、自装置(接続セルの基地局装置)と移動端末との間の伝搬ロスPLと、移動端末とULCoMP協力セルの基地局装置との間の伝搬ロスPLとを用いてPLCoMPを計算する(態様2)。この場合において、伝搬ロスPLは移動端末から取得した伝搬ロスであり、PLCoMP計算部20892に送られ、伝搬ロスPLは、移動端末あるいは、X2インタフェースによりULCoMP協力セルの基地局装置から取得され、PLCoMP計算部20892に送られる。ULCoMP非適用時においては、これらの伝搬ロスPL及びPLがTPCコマンド処理部20893に送られる。
 TPCコマンド処理部20893は、伝搬ロス差(PLDiff)、受信電力基準値(Px)、伝搬ロス差補正係数(β)、オフセット(γ)、目標受信SINR基準値(Tx)を用いて移動端末の目標受信電力(PRx)あるいは、目標受信SINR(TSINR)を設定し、測定された受信電力と目標受信電力との間の差分、あるいは、測定された受信SINRと目標受信SINRとの間の差分からTPCコマンドを生成する。
 TPCコマンド処理部20893において、ULCoMP適用時(ULCoMP適用の決定結果を受けた時)には、伝搬ロス差(PLDiff)として、伝搬ロスPLと、ULCoMP協力セルの基地局装置と移動端末との間の伝搬ロスPLとから求められた伝搬ロスPLCoMPを用いて得られた伝搬ロス差を用いる(態様3)。例えば、ULCoMP適用時には、伝搬ロス差(PLDiff)として、PLDiff=PL-PLCoMPとする。ここで、伝搬ロスPLは、ULCoMP協力セルを除いて最も伝搬ロスの小さい周辺セルの基地局装置と移動端末との間の伝搬ロスを表す。なお、伝搬ロスPLは移動端末から取得され、PL,PLは移動端末あるいは、X2インタフェースにより周辺基地局装置から取得される。
 TPCコマンド処理部20893は、ULCoMP適用時の送信電力制御量をULCoMP非適用時の送信電力制御量よりも大きくする(態様4)。TPCコマンド処理部20893において、ULCoMP適用時(ULCoMP適用の決定結果を受けた時)には、ULCoMPの非適用時のTPCコマンドよりもビット数やレンジの大きいTPCコマンドを生成し、ULCoMPの非適用時に、ULCoMPの非適用時のTPCコマンドを生成する。このように生成されたTPCコマンドは、PDCCHを介して移動端末に送信される。
 上記構成を有する無線通信システムにおいては、移動端末100が接続している基地局装置200において、移動端末100との間の伝搬ロスPLと、移動端末100と移動端末100に対して最も伝搬ロスの小さい基地局装置200との間の伝搬ロスPLと、の間の差分(PL-PL)が所定の範囲内にあるときに、移動端末100に対してULCoMPを適用とし、ULCoMPの適用時にULCoMP適用時の送信電力制御パラメータを移動端末100に送信すると共に、ULCoMPの非適用時にULCoMP非適用時の送信電力制御パラメータを移動端末100に送信し、移動端末100において、基地局装置200から送信された送信電力制御パラメータを受信し、ULCoMPの適用時において、ULCoMPの非適用時の送信電力制御パラメータと異なる送信電力制御パラメータを用いて送信電力を設定する。
 このような送信電力制御方法によれば、ULCoMPの適用時にULCoMP適用時の送信電力制御を採用するので、ULCoMPの利得を低減させることなく、従来のセル間干渉低減技術とULCoMPとを併用することができる。
 なお、上記無線基地局装置及び移動端末装置の構成においては、説明の関係上すべての態様に対応できるように図示している。したがって、各態様で用いられないブロックについては、その態様に係る装置において設けなくても良い。
 次に、本発明の送信電力制御方法における各態様の処理手順について説明する。
 図15は、本発明に係る送信電力制御方法のULCoMP適用/非適用の通知に関する手順の一例を示すフロー図である。
 まず、基地局装置のULCoMP処理部2085において、移動端末と接続セルの基地局装置との伝搬ロスと、移動端末と周辺セルの基地局装置との伝搬ロスと、の間の差が所定の範囲内(XdB以内)であるかどうかを判断する(ST1)。
 伝搬ロス差がXdB以内でない場合においては、当該移動端末がすでにULCoMPの対象となっていれば(ST2)、基地局装置のULCoMP処理部2085は、当該移動端末をULCoMPの対象から外し、その旨を移動端末に通知する(ST4)。一方、伝搬ロス差がXdB以内である場合においては、当該移動端末がすでにULCoMPの対象となっていなければ(ST3)、基地局装置のULCoMP処理部2085は、当該移動端末をULCoMPの対象に加え、その旨を移動端末に通知する(ST5)。移動端末への通知には、PDSCHのようなHigher Layer signalingを用いる。
 図16は、本発明に係る送信電力制御方法のULCoMP適用/非適用の通知に関する手順の他の例を示すフロー図である。
 まず、基地局装置のULCoMP処理部2085において、移動端末と接続セルの基地局装置との伝搬ロスと、移動端末と周辺セルの基地局装置との伝搬ロスと、の間の差が所定の範囲内(XdB以内)であるかどうかを判断する(ST11)。
 伝搬ロス差がXdB以内でない場合においては、当該移動端末がすでにULCoMPの対象となっていれば(ST12)、基地局装置のULCoMP処理部2085は、当該移動端末をULCoMPの対象から外し(ST14)、ULCoMP対象でないことを移動端末に通知する(ST15)。一方、伝搬ロス差がXdB以内である場合においては、当該移動端末がすでにULCoMPの対象となっていなければ(ST13)、基地局装置のULCoMP処理部2085は、当該移動端末をULCoMPの対象に加え(ST16)、ULCoMP対象であることを移動端末に通知する(ST17)。移動端末への通知には、PDCCHのようなL1/L2 signalingを用いる。
 図17は、本発明に係る送信電力制御方法の態様1の手順の一例を示すフロー図である。
 基地局装置のα処理部20891は、通常の移動端末(ULCoMP非適用の移動端末)用の減衰係数αと、ULCoMP適用の移動端末用の減衰係数αとを生成し、2種類の減衰係数を、PBCHを介して報知する(ST21)。
 移動端末においては、自装置がULCoMP適用され、かつ、それを認識しているかどうか判断し(ST22)、自装置がULCoMP適用されていることを認識していれば、送信電力設定部1089がULCoMP適用の移動端末用の減衰係数αを用いて上記式(1)に基づいて送信電力を設定する(ST23)。一方、自装置がULCoMP適用でないのであれば、送信電力設定部1089が通常の移動端末用の減衰係数αを用いて上記式(1)に基づいて送信電力を設定する(ST24)。
 図18は、本発明に係る送信電力制御方法の態様1の手順の他の例を示すフロー図である。
 移動端末がULCoMP適用される移動端末かどうか判断し(ST31)、ULCoMP適用される移動端末でない場合には、送信電力設定部1089は、報知された通常の移動端末用の減衰係数αを用いて上記式(1)に基づいて送信電力を設定する(ST33)。一方、移動端末がULCoMP適用される移動端末である場合には、基地局装置は移動端末に個別の減衰係数αを通知する(ST32)。この通知には、PDSCHのようなHigher Layer signalingやPDCCHのようなL1/L2 signalingを用いる。そして、移動端末においては、送信電力設定部1089は、個別に通知された減衰係数αを用いて上記式(1)に基づいて送信電力を設定する(ST34)。
 図19は、本発明に係る送信電力制御方法の態様2の手順を示すフロー図である。
 移動端末においては、自装置がULCoMP適用され、かつ、それを認識しているかどうか判断し(ST41)、自装置がULCoMP適用されていることを認識していれば、移動端末のPLCoMP計算部1088が合成後の伝搬ロスPLCoMPを計算し、送信電力設定部1089がPLCoMPを用いて上記式(1)に基づいて送信電力を設定する(ST42)。一方、自装置がULCoM適用でないのであれば、送信電力設定部1089が接続セルの基地局装置との伝搬ロスPLを用いて上記式(1)に基づいて送信電力を設定する(ST43)。
 図20は、本発明に係る送信電力制御方法の態様3の手順を示すフロー図である。
 移動端末がULCoMP適用される移動端末かどうか判断し(ST51)、ULCoMP適用される移動端末である場合には、基地局装置はPLCoMP計算部20892が合成後の伝搬ロスPLCoMPを計算し、移動端末の閉ループ送信電力制御に適用する(ST52)。そして、TPCコマンド処理部20893が測定受信レベルと目標受信レベルとの差分からTPCコマンドを生成する。送信電力制御部2089は、閉ループ送信電力制御を実行して、TPCコマンドを当該移動端末に送信する(ST54)。一方、ULCoMP適用される移動端末でない場合には、基地局装置は伝搬ロスPLを移動端末の閉ループ送信電力制御に適用する(ST53)。そして、TPCコマンド処理部20893が測定受信レベルと目標受信レベルとの差分からTPCコマンドを生成する。送信電力制御部2089は、閉ループ送信電力制御を実行して、TPCコマンドを当該移動端末に送信する(ST54)。
 図21は、本発明に係る送信電力制御方法の態様4の手順を示すフロー図である。
 移動端末においては、自装置がULCoMP適用され、かつ、それを認識しているかどうか判断し(ST61)、自装置がULCoMP適用されていることを認識していれば、移動端末の送信電力設定部1089が合成後の送信電力PCoMPを計算して送信電力とする(ST62)。一方、自装置がULCoM適用でないのであれば、送信電力設定部1089が上記式(1)を用いて通常の方法で送信電力Pを計算して送信電力とする(ST63)。
 図22は、本発明に係る送信電力制御方法の態様5の手順を示すフロー図である。
 移動端末がULCoMP適用される移動端末かどうか判断し(ST71)、ULCoMP適用される移動端末である場合には、基地局装置のTPCコマンド処理部20893は、ULCoMP用のTPCコマンドを生成し、このTPCコマンドをUL grantで移動端末に通知する(ST72)。一方、ULCoMP適用される移動端末でない場合には、基地局装置のTPCコマンド処理部20893は、通常のTPCコマンドを生成し、このTPCコマンドをUL grantで移動端末に通知する(ST73)。
 図23は、本発明に係る送信電力制御方法の態様6の手順を示すフロー図である。
 移動端末がULCoMP適用される移動端末かどうか判断し(ST81)、ULCoMP適用される移動端末である場合には、当該ULCoMP協力セルの基地局装置のOI処理部2086でULOIの内容を変更する(ULOI制限解除にする)かどうか判断する(ST82)。ULOIの内容を変更する場合には、当該ULCoMP協力セルの基地局装置は、直ちにULOIを更新して、接続セルの基地局装置に通知する(ST83)。一方、ULOIの内容を変更しない場合には、接続セルの基地局装置のHII処理部2087でULHIIの内容を変更する(ULHII制限解除にする)かどうか判断する(ST84)。ULHIIの内容を変更する場合には、当該接続セルの基地局装置は、直ちにULHIIを更新して、接続セルの基地局装置に通知する(ST85)。
 図24は、本発明に係る送信電力制御方法の態様7の手順を示すフロー図である。
 移動端末がULCoMP適用される移動端末かどうか判断し(ST91)、ULCoMP適用される移動端末である場合には、当該ULCoMP協力セルの基地局装置のOLI処理部2088は、当該移動端末に(過去に)OIを通知しているかどうかを判断する(ST92)。当該移動端末に(過去に)OIを通知していれば、当該ULCoMP協力セルの基地局装置のOLI処理部2088は、直ちに、OIの内容をリセットするよう当該移動端末に通知する(ST93)。
 また、今回開示された実施の形態は、全ての点で例示であってこの実施の形態に制限されるものではない。本発明の範囲は、上記した実施の形態のみの説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
 本発明は、LTE-Aシステムの無線基地局装置、移動端末装置及び送信電力制御方法に有用である。
 本出願は、2009年6月23日出願の特願2009-148998に基づく。この内容は、全てここに含めておく。

Claims (16)

  1.  移動端末装置と前記移動端末装置が接続している第1無線基地局装置との間の第1伝搬ロスPLと、前記移動端末装置と前記移動端末装置に対して最も伝搬ロスの小さい第2無線基地局装置との間の第2伝搬ロスPLと、の間の差分(PL-PL)が所定の範囲内にあるときに、前記移動端末装置に対して上りリンクマルチポイント受信を適用とするマルチポイント受信処理手段と、前記上りリンクマルチポイント受信の適用時に上りリンクマルチポイント受信適用時の送信電力制御を行うと共に、前記上りリンクマルチポイント受信の非適用時に前記上りリンクマルチポイント受信非適用時の送信電力制御を行う送信電力制御手段と、を具備することを特徴とする無線基地局装置。
  2.  前記無線基地局装置がFractional送信電力制御する無線基地局装置であって、前記送信電力制御手段は、上りリンクマルチポイント受信適用時の減衰係数と、上りリンクマルチポイント受信の非適用時の減衰係数とを生成することを特徴とする請求項1記載の無線基地局装置。
  3.  前記無線基地局装置がFractional送信電力制御する無線基地局装置であって、前記送信電力制御手段は、上りリンクマルチポイント受信適用時の伝搬ロスとして、前記第1伝搬ロス差の代わりに、前記第1伝搬ロスと、前記第2無線基地局装置と前記移動端末装置との間の伝搬ロスとから求められた伝搬ロスを用いて得られた伝搬ロス差を用いることを特徴とする請求項1記載の無線基地局装置。
  4.  前記送信電力制御手段は、上りリンクマルチポイント受信適用時の送信電力制御量を前記上りリンクマルチポイント受信非適用時の送信電力制御量よりも大きくすることを特徴とする請求項1記載の無線基地局装置。
  5.  前記無線基地局装置がUL Overload Indicationを用いた制御を行う無線基地局装置であって、前記上りリンクマルチポイント受信を適用する移動端末装置の数に変更があったときに、UL Overload Indicationの内容を変更するOI処理手段を有することを特徴とする請求項1記載の無線基地局装置。
  6.  前記無線基地局装置がUL High Interference Indicationを用いた制御を行う無線基地局装置であって、前記上りリンクマルチポイント受信を適用する移動端末装置の数に変更があったときに、UL High Interference Indicationの内容を変更するHII処理手段を有することを特徴とする請求項1記載の無線基地局装置。
  7.  前記無線基地局装置がOverload Indicatorを用いた制御を行う無線基地局装置であって、前記上りリンクマルチポイント受信を適用する移動端末装置に対してOverload Indicatorの内容をリセットする旨を通知することを特徴とする請求項1記載の無線基地局装置。
  8.  上りリンクマルチポイント受信を適用する移動端末装置に対して、上りリンクマルチポイント受信を適用/非適用の通知信号を送信することを特徴とする請求項1記載の無線基地局装置。
  9.  無線基地局装置から送信された、上りリンクマルチポイント受信の適用/非適用の通知信号を受信する上りリンクマルチポイント受信通知信号処理手段と、無線基地局装置から送信された送信電力制御パラメータを受信する送信電力制御パラメータ受信手段と、前記上りリンクマルチポイント受信の適用時において、前記上りリンクマルチポイント受信の非適用時の送信電力制御パラメータと異なる送信電力制御パラメータを用いて送信電力を設定する送信電力設定手段と、を具備することを特徴とする移動端末装置。
  10.  前記送信電力設定手段は、前記上りリンクマルチポイント受信の適用時に、上りリンクマルチポイント受信適用時の減衰係数を用いて送信電力を設定し、前記上りリンクマルチポイント受信の非適用時に上りリンクマルチポイント受信非適用時の減衰係数を用いて送信電力を設定することを特徴とする請求項9記載の移動端末装置。
  11.  前記送信電力設定手段は、上りリンクマルチポイント受信適用時の伝搬ロスとして、接続している無線基地局装置との間の第1伝搬ロスの代わりに、前記第1伝搬ロスと、前記移動端末装置と前記上りリンクマルチポイント受信を適用する無線基地局装置との間の伝搬ロスとを用いて得られた伝搬ロスを用いることを特徴とする請求項9記載の移動端末装置。
  12.  前記送信電力設定手段は、接続している第1無線基地局装置との間の第1伝搬ロスから求められる送信電力と、上りリンクマルチポイント受信を適用する無線基地局装置との間の伝搬ロスから求められる送信電力と、を用いて送信電力を設定することを特徴とする請求項9記載の移動端末装置。
  13.  前記送信電力設定手段は、前記上りリンクマルチポイント受信の適用時に、前記上りリンクマルチポイント受信の非適用時の送信電力制御量よりも大きい送信電力制御量で送信電力を設定することを特徴とする請求項9記載の移動端末装置。
  14.  上りリンクマルチポイント受信の協力セルの基地局装置から送信された、上りリンクマルチポイント受信を適用/非適用の通知信号を受信することを特徴とする請求項9記載の移動端末装置。
  15.  移動端末装置が接続している第1無線基地局装置において、移動端末装置との間の第1伝搬ロスPLと、前記移動端末装置と前記移動端末装置に対して最も伝搬ロスの小さい第2無線基地局装置との間の第2伝搬ロスPLと、の間の差分(PL-PL)が所定の範囲内にあるときに、前記移動端末装置に対して上りリンクマルチポイント受信を適用とする工程と、前記上りリンクマルチポイント受信の適用時に上りリンクマルチポイント受信適用時の送信電力制御パラメータを前記移動端末装置に送信すると共に、前記上りリンクマルチポイント受信の非適用時に前記上りリンクマルチポイント受信非適用時の送信電力制御パラメータを前記移動端末装置に送信する工程と、
     前記移動端末装置において、前記第1無線基地局装置から送信された送信電力制御パラメータを受信する工程と、前記上りリンクマルチポイント受信の適用時において、前記上りリンクマルチポイント受信の非適用時の送信電力制御パラメータと異なる送信電力制御パラメータを用いて送信電力を設定する工程と、を具備することを特徴とする送信電力方法。
  16.  前記第1無線基地局装置は、上りリンクマルチポイント受信を適用する移動端末装置に対して、上りリンクマルチポイント受信を適用/非適用を通知する工程を有することを特徴とする請求項15記載の送信電力制御方法。
PCT/JP2010/060623 2009-06-23 2010-06-23 無線基地局装置、移動端末装置及び送信電力制御方法 WO2010150807A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10792125.6A EP2448338A4 (en) 2009-06-23 2010-06-23 WIRELESS BASE STATION, MOBILE TERMINAL AND POWER TRANSMISSION PROCESS
US13/378,682 US8958355B2 (en) 2009-06-23 2010-06-23 Radio base station apparatus, mobile terminal apparatus and transmission power control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009148998A JP5101568B2 (ja) 2009-06-23 2009-06-23 無線基地局装置、移動端末装置及び送信電力制御方法
JP2009-148998 2009-06-23

Publications (1)

Publication Number Publication Date
WO2010150807A1 true WO2010150807A1 (ja) 2010-12-29

Family

ID=43386576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060623 WO2010150807A1 (ja) 2009-06-23 2010-06-23 無線基地局装置、移動端末装置及び送信電力制御方法

Country Status (4)

Country Link
US (1) US8958355B2 (ja)
EP (1) EP2448338A4 (ja)
JP (1) JP5101568B2 (ja)
WO (1) WO2010150807A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2503829A1 (en) * 2009-11-20 2012-09-26 Huawei Technologies Co., Ltd. Method for obtaining uplink transmission power control parameters
WO2013077782A1 (en) 2011-11-21 2013-05-30 Telefonaktiebolaget L M Ericsson (Publ) Improved telecommunications system, base station, user equipment and method for ensuring high quality connections
WO2013102485A1 (en) * 2012-01-02 2013-07-11 Huawei Technologies Co., Ltd. Power control in a wireless communication system for uplink transmissions with coordinated reception
WO2013129418A1 (ja) * 2012-02-29 2013-09-06 京セラ株式会社 移動通信システム、移動通信方法及び無線基地局
WO2013129419A1 (ja) * 2012-02-29 2013-09-06 京セラ株式会社 移動通信システム、移動通信方法、無線基地局及び無線端末
CN103298091A (zh) * 2012-03-01 2013-09-11 中兴通讯股份有限公司 上行发射功率确定方法及装置
WO2013132772A1 (ja) * 2012-03-08 2013-09-12 パナソニック株式会社 送信装置、受信装置及び送信電力制御方法
CN103621155A (zh) * 2011-06-21 2014-03-05 瑞典爱立信有限公司 用于上行链路发送的发送功率控制的用户设备及其方法
CN104067673A (zh) * 2012-01-23 2014-09-24 英特尔公司 控制上行链路控制信道的功率电平
US10292109B2 (en) 2011-08-31 2019-05-14 Alcatel Lucent Method for coordinating at least one first transmission from a single-point transmitter to a single-point receiver and at least one second transmission from a multipoint transmitter or to a multipoint receiver in a radio communication system, network node and mobile station thereof

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101618283B1 (ko) * 2009-05-22 2016-05-04 삼성전자주식회사 통합 다중 포인트 통신을 위한 정보 피드백 방법
EP2698011A4 (en) * 2011-04-15 2014-10-22 Alcatel Lucent METHOD AND DEVICE FOR CONTROLLING UPLINK POWER
KR20140016363A (ko) * 2011-05-05 2014-02-07 후지쯔 가부시끼가이샤 전력 보상 방법, 사용자 기기 및 기지국
JP5927801B2 (ja) * 2011-08-02 2016-06-01 シャープ株式会社 基地局、端末および通信方法
JP2013034115A (ja) * 2011-08-02 2013-02-14 Sharp Corp 基地局、端末、通信システムおよび通信方法
JP5927802B2 (ja) 2011-08-02 2016-06-01 シャープ株式会社 基地局、端末および通信方法
JP2013034111A (ja) 2011-08-02 2013-02-14 Sharp Corp 基地局、端末、通信システムおよび通信方法
KR20130018051A (ko) * 2011-08-12 2013-02-20 주식회사 팬택 무선 통신 시스템에서 상향링크 전송 전력을 제어하는 장치 및 방법
JP5814041B2 (ja) * 2011-08-12 2015-11-17 株式会社Nttドコモ 無線通信システム、無線基地局装置、ユーザ端末、及び無線通信方法
US9369971B2 (en) * 2011-09-28 2016-06-14 Sharp Kabushiki Kaisha Mobile station device, communication system, communication method, and integrated circuit
WO2013161054A1 (ja) * 2012-04-27 2013-10-31 富士通株式会社 無線基地局、無線端末、無線通信システム及び通信制御方法
US8874103B2 (en) 2012-05-11 2014-10-28 Intel Corporation Determining proximity of user equipment for device-to-device communication
GB2506749B (en) 2012-08-30 2014-12-17 Zte Wistron Telecom Ab Methods and apparatus for using a geometry indicator in hetnet deployments
EP2938140A4 (en) * 2012-12-19 2015-11-04 Fujitsu Ltd RADIO COMMUNICATION PROCEDURE, RADIO COMMUNICATION SYSTEM, RADIO STATION AND WIRELESS DEVICE
CN105379380A (zh) 2013-05-08 2016-03-02 Zte维创通讯公司 在异构网络部署中使用几何指示
US9756657B2 (en) * 2013-07-22 2017-09-05 Texas Instruments Incorporated Wireless network signal to interference plus noise ratio estimation for a random access channel
CN105264802B (zh) 2013-09-04 2020-01-31 华为技术有限公司 信道测量方法、终端设备及基站
CN105659671B (zh) 2013-09-25 2019-07-02 Zte维创通讯公司 异构无线网络中的发现信号
KR101931948B1 (ko) * 2014-04-08 2018-12-24 엘지전자 주식회사 무선 자원의 용도 변경을 지원하는 무선 통신 시스템에서 상향링크 제어 정보 송신 방법 및 이를 위한 장치
JP6535530B2 (ja) 2015-07-09 2019-06-26 日本碍子株式会社 ハニカム構造体の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044528A1 (fr) 2006-10-03 2008-04-17 Ntt Docomo, Inc. Procédé de commande de puissance de transmission, terminal utilisateur et station de base
JP2009148998A (ja) 2007-12-21 2009-07-09 Keihin Corp 樹脂部品の締結部構造

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525254A (ja) * 1991-07-23 1993-02-02 Toshiba Chem Corp 封止用樹脂組成物及び半導体封止装置
WO2005025254A1 (ja) 2003-08-29 2005-03-17 Mitsubishi Denki Kabushiki Kaisha 移動局及び通信システム
KR101241909B1 (ko) * 2007-01-08 2013-03-12 엘지전자 주식회사 개선된 부분 전력 제어 방법
CN101399579A (zh) * 2007-11-26 2009-04-01 北京邮电大学 一种无线通信系统上行(反向)链路功率控制方法
TWI596969B (zh) * 2009-03-17 2017-08-21 內數位專利控股公司 在多輸入多輸出中上鏈功率控制方法和裝置
US8526407B2 (en) * 2009-05-14 2013-09-03 Telefonaktiebolaget L M Ericsson (Publ) Extended coordinated multipoint cells to mitigate inter-comp-cell downlink interference

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044528A1 (fr) 2006-10-03 2008-04-17 Ntt Docomo, Inc. Procédé de commande de puissance de transmission, terminal utilisateur et station de base
JP2009148998A (ja) 2007-12-21 2009-07-09 Keihin Corp 樹脂部品の締結部構造

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"3GPP TSG RAN WG1 Meeting #57 R1 -092145, 2009.05", article "Uplink coordinated multi-point reception with distributed inter-cell interference suppression for LTE-A", pages: 1 - 4, XP050339588 *
3GPP TS 36.213 V8.7.0, May 2009 (2009-05-01), pages 9 - 15, XP050377562 *
See also references of EP2448338A4 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2503829A4 (en) * 2009-11-20 2012-10-17 Huawei Tech Co Ltd METHOD OF OBTAINING UPLINK TRANSMISSION POWER CONTROL PARAMETERS
US9042926B2 (en) 2009-11-20 2015-05-26 Huawei Technologies Co., Ltd. Method for obtaining uplink transmit power control parameter, base station, and user equipment
EP2503829A1 (en) * 2009-11-20 2012-09-26 Huawei Technologies Co., Ltd. Method for obtaining uplink transmission power control parameters
CN103621155A (zh) * 2011-06-21 2014-03-05 瑞典爱立信有限公司 用于上行链路发送的发送功率控制的用户设备及其方法
US10292109B2 (en) 2011-08-31 2019-05-14 Alcatel Lucent Method for coordinating at least one first transmission from a single-point transmitter to a single-point receiver and at least one second transmission from a multipoint transmitter or to a multipoint receiver in a radio communication system, network node and mobile station thereof
WO2013077782A1 (en) 2011-11-21 2013-05-30 Telefonaktiebolaget L M Ericsson (Publ) Improved telecommunications system, base station, user equipment and method for ensuring high quality connections
US20140329554A1 (en) * 2011-11-21 2014-11-06 Telefonaktiebolaget L M Ericsson (Publ) Telecommunications System, Base Station, User Equipment and Method for Ensuring High Quality Connections
US9661581B2 (en) 2012-01-02 2017-05-23 Huawei Technologies Co., Ltd. Power control in a wireless communication system
CN104145512A (zh) * 2012-01-02 2014-11-12 华为技术有限公司 无线通信系统中的功率控制
WO2013102485A1 (en) * 2012-01-02 2013-07-11 Huawei Technologies Co., Ltd. Power control in a wireless communication system for uplink transmissions with coordinated reception
CN104067673A (zh) * 2012-01-23 2014-09-24 英特尔公司 控制上行链路控制信道的功率电平
EP2807871A4 (en) * 2012-01-23 2015-10-14 Intel Corp METHOD FOR REGULATING THE POWER LEVEL OF A CONTROL CHANNEL ON THE UPLINK
WO2013129419A1 (ja) * 2012-02-29 2013-09-06 京セラ株式会社 移動通信システム、移動通信方法、無線基地局及び無線端末
WO2013129418A1 (ja) * 2012-02-29 2013-09-06 京セラ株式会社 移動通信システム、移動通信方法及び無線基地局
US9560603B2 (en) 2012-02-29 2017-01-31 Kyocera Corporation Mobile communication system, mobile communication method, radio base station, and radio terminal
JPWO2013129418A1 (ja) * 2012-02-29 2015-07-30 京セラ株式会社 移動通信システム、移動通信方法及び無線基地局
JPWO2013129419A1 (ja) * 2012-02-29 2015-07-30 京セラ株式会社 移動通信システム、移動通信方法、無線基地局及び無線端末
US9313748B2 (en) 2012-02-29 2016-04-12 Kyocera Corporation Mobile communication system, mobile communication method, and radio base station
CN103298091A (zh) * 2012-03-01 2013-09-11 中兴通讯股份有限公司 上行发射功率确定方法及装置
JPWO2013132772A1 (ja) * 2012-03-08 2015-07-30 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 送信装置、受信装置及び送信電力制御方法
US9439155B2 (en) 2012-03-08 2016-09-06 Panasonic Intellectual Property Corporation Of America Transmission device, reception device, and method for controlling transmission power
EP2824977A4 (en) * 2012-03-08 2015-03-25 Panasonic Ip Corp America TRANSMISSION DEVICE, RECEIVING DEVICE, AND METHOD FOR CONTROLLING TRANSMISSION POWER
US20140376487A1 (en) * 2012-03-08 2014-12-25 Panasonic Intellectual Property Corporation Of America Transmission device, reception device, and method for controlling transmission power
WO2013132772A1 (ja) * 2012-03-08 2013-09-12 パナソニック株式会社 送信装置、受信装置及び送信電力制御方法

Also Published As

Publication number Publication date
JP2011009866A (ja) 2011-01-13
EP2448338A1 (en) 2012-05-02
US20120127911A1 (en) 2012-05-24
JP5101568B2 (ja) 2012-12-19
US8958355B2 (en) 2015-02-17
EP2448338A4 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
JP5101568B2 (ja) 無線基地局装置、移動端末装置及び送信電力制御方法
US10313984B2 (en) User terminal and radio communication method
JP6620870B2 (ja) 保護されたサブフレームにおけるチャネル品質情報報告
JP6001598B2 (ja) パワーヘッドルーム報告、資源配分及び電力制御方法
US9468018B2 (en) Uplink transmission power configuration method and apparatus for mobile communication system
US11212688B2 (en) Power headroom reporting for carrier aggregation
JP5080607B2 (ja) 無線基地局装置及び送信電力制御方法
EP2448349B1 (en) Radio communication apparatuses and radio communication method
US8812040B2 (en) Communication system, user equipment, base station, transmit power deciding method, and program
CN107277908B (zh) 一种功率控制方法及设备
WO2011162156A1 (ja) 送信電力制御方法、移動端末装置及び無線基地局装置
US8335168B2 (en) Mobile communication system, base station apparatus, user equipment, and method
US8843171B2 (en) Transmission power control method, base station apparatus and mobile station apparatus
KR20140140591A (ko) 업링크 전력 제어 방법, 장치 및 시스템
WO2010125737A1 (ja) 基地局装置、無線通信システム、基地局の制御方法、および無線通信システムの制御方法
US20120087306A1 (en) Method and apparatus for determining maximum transmission power per carrier in mobile communication system supporting carrier aggregation
JP6609357B2 (ja) 無線基地局及びユーザ端末
CN108632967A (zh) 上行链路功率控制方法和装置
JPWO2014097352A1 (ja) 無線通信方法、無線通信システム、無線局および無線端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010792125

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13378682

Country of ref document: US