WO2010150806A1 - 移動端末装置、無線基地局装置および通信制御方法 - Google Patents

移動端末装置、無線基地局装置および通信制御方法 Download PDF

Info

Publication number
WO2010150806A1
WO2010150806A1 PCT/JP2010/060620 JP2010060620W WO2010150806A1 WO 2010150806 A1 WO2010150806 A1 WO 2010150806A1 JP 2010060620 W JP2010060620 W JP 2010060620W WO 2010150806 A1 WO2010150806 A1 WO 2010150806A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclic shift
mobile terminal
base station
reference signal
antenna ports
Prior art date
Application number
PCT/JP2010/060620
Other languages
English (en)
French (fr)
Inventor
祥久 岸山
輝雄 川村
元博 丹野
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to CN201080028182.3A priority Critical patent/CN102804629B/zh
Priority to RU2012101078/07A priority patent/RU2510137C2/ru
Priority to AU2010263607A priority patent/AU2010263607B2/en
Priority to EP10792124.9A priority patent/EP2448162A4/en
Priority to CA 2765255 priority patent/CA2765255C/en
Priority to KR20117030739A priority patent/KR101345312B1/ko
Priority to US13/378,679 priority patent/US9048912B2/en
Publication of WO2010150806A1 publication Critical patent/WO2010150806A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0671Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different delays between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/003Interference mitigation or co-ordination of multi-user interference at the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0003Code application, i.e. aspects relating to how codes are applied to form multiplexed channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • H04J13/18Allocation of orthogonal codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26134Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • H04J13/0062Zadoff-Chu
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03777Arrangements for removing intersymbol interference characterised by the signalling
    • H04L2025/03783Details of reference signals
    • H04L2025/03789Codes therefore

Definitions

  • the present invention relates to a mobile terminal apparatus, a radio base station apparatus, and a communication control method for transmitting a demodulation reference signal (RS) on the uplink.
  • RS demodulation reference signal
  • uplink data signals and uplink control signals are transmitted from a mobile terminal device to a radio base station using PUSCH (Physical Uplink Shared Channel) and PUCCH (Physical Uplink Control Channel).
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • a reference signal for demodulation is multiplexed on the uplink data signal and uplink control signal transmitted by PUSCH or PUCCH, and this uplink reference signal is used for channel estimation for synchronous detection in the radio base station.
  • a common ZC sequence (Zadoff-Chu Sequence) is used as the signal sequence of the uplink reference signal among a plurality of mobile terminal devices, and a cyclic shift is performed for each mobile terminal device. Is called.
  • cyclic shift a different sequence is generated by shifting the last part of a predetermined sequence to the beginning, and a plurality of different sequences are generated by repeating this.
  • the reference signal from a some mobile terminal device is orthogonalized by carrying out the cyclic shift peculiar to a ZC series for every mobile terminal device.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • MIMO Multiple Input Multiple Output
  • transmission speed is improved by transmitting different information from each transmitting antenna at the same frequency and at the same timing.
  • orthogonality of reference signals between a plurality of antennas remains as a problem.
  • the present invention has been made in view of the above points, and provides a mobile terminal apparatus, a radio base station apparatus, and a communication control method capable of realizing orthogonality of uplink reference signals between a plurality of antennas in MIMO transmission. With the goal.
  • the mobile terminal apparatus of the present invention includes a reference signal generation unit that generates an uplink reference signal using a signal sequence that is orthogonalized by shifting a start position, and cyclically shifts the uplink reference signal for each of a plurality of antenna ports.
  • a cyclic shift unit that orthogonally crosses the uplink reference signals corresponding to the plurality of antenna ports between the plurality of antenna ports, and the plurality of antenna ports corresponding to the plurality of cyclically shifted uplink reference signals.
  • a transmitter that transmits to the radio base station apparatus via an uplink.
  • the reference signal is a signal sequence that is orthogonalized by the shift of the start position
  • the uplink reference signals between the plurality of antenna ports are orthogonalized by performing a cyclic shift for each of the plurality of antenna ports. Multiplex transmission to the base station apparatus is possible.
  • FIG. 1 It is a figure which shows embodiment of this invention and is a functional block diagram of a radio base station apparatus. It is a figure which shows embodiment of this invention, and is a figure which shows another example of the table which linked
  • FIG. 1 is an explanatory diagram outlining transmission control of an uplink demodulation reference signal in the communication system according to the embodiment of the present invention.
  • a plurality of mobile terminal apparatuses U1, U2, U3, U4 each have a plurality of antennas, and a radio base station apparatus eNB1 that covers cell C1 and a radio base that covers cell C2 It is comprised so that communication with the station apparatus eNB2 is possible.
  • uplink data signals and uplink control signals are transmitted from the mobile terminal apparatuses U1, U2, U3, and U4 to the radio base station apparatuses eNB1 and eNB2 using uplink communication channels.
  • the demodulation reference signal is time-multiplexed with the uplink data signal and the uplink control signal transmitted through the uplink communication channel.
  • the radio base station apparatuses eNB1 and eNB2 perform channel estimation based on the received demodulation reference signal and perform synchronous detection on the uplink communication channel.
  • the demodulation reference signal uses a common ZC sequence within the same cell as the signal sequence.
  • the ZC sequence has a constant amplitude in the frequency band, autocorrelation other than the synchronization point becomes 0, and is orthogonalized by shifting the start position of the signal sequence.
  • the demodulation reference signal of the ZC sequence is cyclically shifted for each antenna port, so that the demodulation reference signal is orthogonalized between the respective antennas of the mobile terminal devices U1, U2, U3, and U4. Yes.
  • a ZC sequence cannot use a common ZC sequence unless the serving cell and the transmission band match among a plurality of users. Therefore, if the serving cell is different as in the mobile terminal devices U1 and U2 or the transmission band is different as in the mobile terminal devices U3 and U4 only by performing a cyclic shift for each antenna port of each mobile terminal device. Therefore, the demodulation reference signal cannot be orthogonalized among a plurality of users.
  • LTE Advanced the successor system of LTE, includes SU-MIMO (Single-User Multiple-Input Multiple-Output), MU-MIMO (Multi-User Multi-Input Multi-Output), CoMP, etc.
  • SU-MIMO Single-User Multiple-Input Multiple-Output
  • MU-MIMO Multi-User Multi-Input Multi-Output
  • CoMP etc.
  • demodulation reference signals are orthogonally multiplexed among a plurality of users by using distributed FDMA (Distributed Frequency Division Multiple Access) and block spreading (Block Spreading) in addition to cyclic shift.
  • FDMA Distributed Frequency Division Multiple Access
  • Block Spreading Block Spreading
  • a ZC sequence will be described as an example of the signal sequence of the uplink demodulation reference signal, but the present invention is not limited to this signal sequence. Any signal sequence may be used as long as the demodulation reference signal can be orthogonalized by shifting the start position of the signal sequence.
  • FIG. 2 is a functional block diagram of the mobile terminal apparatus according to the embodiment of the present invention.
  • the mobile terminal apparatus according to the present embodiment includes a plurality of transmission systems, only one transmission system is specifically illustrated in FIG. 2 for convenience of explanation.
  • each mobile terminal apparatus U includes a demodulation reference signal generation unit 11 and a plurality of transmission systems 12 corresponding to the transmission antennas A1.
  • Each transmission system 12 includes a cyclic shift unit 13, an uplink data signal generation unit 14, a DFT (Discrete Fourier Transform) unit 15, a multiplexing unit 16, an IFFT (Inverse Fast Fourier Transform) unit 17, and a CP (Cyclic). Prefix) addition unit 18.
  • the demodulation reference signal generation unit 11 generates a demodulation reference signal.
  • the demodulation reference signal is generated using the above-described ZC sequence as a signal sequence, and is used in the radio base station apparatus eNB for measurement of the radio transmission path state for demodulation by synchronous detection.
  • the demodulation reference signal generated by the demodulation reference signal generation unit 11 is output to the transmission system 12 corresponding to each antenna port 19.
  • the cyclic shift unit 13 cyclically shifts the signal sequence of the demodulation reference signal input from the demodulation reference signal generation unit 11 based on the cyclic shift value notified from the radio base station apparatus eNB.
  • the cyclic shift is different from the antenna port 19 of the other transmission system 12 by shifting from the cyclic shift start position to the last part indicated by the cyclic shift value to the beginning of the signal sequence of the demodulation reference signal.
  • a signal sequence of a demodulation reference signal is generated.
  • the mobile terminal device U has a table in which cyclic shift values and cyclic shift start positions are associated with each other.
  • the cyclic shift value is, for example, a 3-bit signal, and is configured to be able to specify a total of eight types of cyclic shift start positions. Then, the cyclic shift unit 13 starts the cyclic shift from the cyclic shift start position corresponding to the cyclic shift value notified from the radio base station apparatus eNB.
  • the cyclic shift start position is “3”. Therefore, as shown in FIG. 4, the cyclic shift start position of the signal sequence of the demodulation reference signal “3” to the last part are shifted to the beginning part. Similarly, in the antenna port 19 of the other transmission system 12, the signal sequence of the demodulation reference signal is shifted by another cyclic shift value.
  • the demodulation reference signal having the ZC sequence as a signal sequence is cyclically shifted, so that the demodulation reference signal is orthogonalized between the antenna ports 19.
  • the cyclic-shifted demodulation reference signal is output to the DFT unit 15.
  • the notification method of the cyclic shift value with respect to the mobile terminal apparatus U by the radio base station apparatus eNB is mentioned later.
  • the uplink data signal generation unit 14 generates an uplink data signal including user data and the like using data passed from the upper layer, and adds an error correction code of the uplink data signal and modulates each subcarrier.
  • the generated uplink data signal is output to the DFT unit 15.
  • the DFT unit 15 performs a discrete Fourier transform process on the demodulation reference signal and the uplink data signal input from the cyclic shift unit 13 and the uplink data signal generation unit 14.
  • the demodulation reference signal and the uplink data signal are converted from a time domain signal to a frequency domain signal by discrete Fourier transform processing, and output to the multiplexing unit 16.
  • the multiplexing unit 16 multiplexes the demodulation reference signal with the uplink data signal and outputs the uplink transmission signal to the IFFT unit 17.
  • the demodulation reference signal is multiplexed, for example, on the third symbol and the tenth symbol of one subframe (see FIGS. 5 and 6). Further, when multiplexing the demodulation reference signal, the multiplexing unit 16 orthogonalizes the demodulation reference signal among a plurality of users by distributed FDMA or block spreading.
  • subcarriers constituting a resource block are allocated to a plurality of users according to a certain rule based on allocation information notified from the radio base station apparatus eNB in a symbol in which a demodulation reference signal is multiplexed.
  • a demodulation reference signal is multiplexed every other subcarrier within a symbol.
  • user A for example, mobile terminal apparatus U1
  • user B for example, mobile terminal apparatus U2
  • the demodulation reference signal is orthogonalized among the plurality of users.
  • the resource block is distributed between two users and the demodulation reference signal is orthogonalized.
  • the present invention is not limited to this configuration.
  • the demodulating reference signals are multiplexed every two subcarriers, and the subcarriers allocated among a plurality of users do not overlap.
  • subcarriers are allocated in a certain order.
  • the notification method of the allocation information with respect to the mobile terminal apparatus U by the radio base station apparatus eNB is mentioned later.
  • a demodulation reference signal is multiplied by a spreading code notified from the radio base station apparatus eNB and spread in the frequency direction.
  • the spreading code is an orthogonal code, and a plurality of user demodulation reference signals are multiplexed on the same symbol.
  • the reference signal of user A (for example, mobile terminal apparatus U1) is multiplied by orthogonal code ⁇ 1, 1 ⁇
  • user B (for example, for example)
  • the reference signal of the mobile terminal device U2) is multiplied by the orthogonal code ⁇ 1, -1 ⁇ .
  • the demodulation reference signal is orthogonalized between two users.
  • the demodulator reference signals of a plurality of users may be configured to be orthogonal with the same symbol. For example, when demodulating the reference signals for demodulation among four users, a four-chip orthogonal code is used.
  • the multiplexing unit 16 can orthogonalize the demodulation reference signals in a plurality of mobile terminal apparatuses U having different serving cells and transmission bands by distributed FDMA and block spreading.
  • the IFFT unit 17 performs an inverse fast Fourier transform process on the multiplexed uplink transmission signal input from the multiplexing unit 16.
  • the uplink transmission signal is converted from a frequency domain signal to a time domain signal by inverse fast Fourier transform processing, and output to the CP adding unit 18.
  • the CP adding unit 18 adds a cyclic prefix to the uplink transmission signal input from the IFFT unit 17.
  • the uplink transmission signal to which the cyclic prefix is added is transmitted toward the radio base station apparatus eNB via the transmission antenna A1.
  • user data included in the uplink transmission signal is transmitted using PUSCH or the like, and a control signal included in the uplink transmission signal is transmitted using PUCCH or the like.
  • FIG. 7 is a functional block diagram of the radio base station apparatus according to the embodiment of the present invention.
  • the radio base station apparatus according to the present embodiment includes a plurality of reception systems, FIG. 7 shows only one reception system for convenience of explanation.
  • the radio base station apparatus eNB includes, as a reception system, a CP removal unit 21, an FFT (Fast Fourier Transform) unit 22, a separation unit 23, a channel estimation unit 24, a demodulation unit 25, And a decoding unit 26.
  • the radio base station apparatus eNB includes a cyclic shift information generation unit 31, an allocation information generation unit 32, a spreading code generation unit 33, and a transmission unit 34.
  • the CP removing unit 21 removes the cyclic prefix from the uplink transmission signal received by the receiving antenna A2.
  • the uplink transmission signal from which the cyclic prefix has been removed is output to the FFT unit 22.
  • the FFT unit 22 performs fast Fourier transform processing on the uplink transmission signal after CP removal input from the CP removal unit 21.
  • the uplink transmission signal is converted from a time domain signal to a frequency domain signal by a fast Fourier transform process, and is output to the separation unit 23.
  • the separating unit 23 extracts the demodulation reference signal and the uplink data signal from the uplink transmission signal, and separates the uplink data signal and the demodulation reference signal. At this time, if the demodulation reference signal is user-multiplexed by distributed FDMA, the demultiplexing unit 23 acquires allocation information from the allocation information generation unit 32 and extracts a demodulation amount reference signal based on the allocation information. The extracted demodulation reference signal is output to the channel estimation unit 24, and the uplink data signal is output to the demodulation unit 25.
  • the demultiplexing unit 23 obtains the despread code from the spreading code generation unit 33 and reverses it to the demodulation reference signal multiplexed with other users. Multiply the spreading codes to extract the demodulation reference signal addressed to you.
  • the extracted demodulation reference signal is output to the channel estimation unit 24, and the uplink data signal is output to the demodulation unit 25.
  • the channel estimation unit 24 performs channel estimation based on the input demodulation reference signal. At this time, the channel estimation unit 24 acquires the cyclic shift value and the ZC sequence of the mobile terminal apparatus U from the cyclic shift information generation unit 31, and based on the cyclic shift start position indicated by the cyclic shift value. The shift amount for each antenna port is detected. Thereby, the channel estimation unit 24 acquires a channel estimation result for each antenna port 19.
  • the demodulator 25 demodulates the uplink data signal based on the uplink data signal input from the separator 23 and the channel estimation result input from the channel estimator 24.
  • the uplink data signal demodulated by the demodulator 25 is input to the decoder 26 after channel equalization, inverse discrete Fourier transform (IDFT) processing, and the like.
  • the decoding unit 26 removes the error correction code from the uplink data signal and extracts user data and the like.
  • the cyclic shift information generation unit 31 generates a cyclic shift value for each antenna port 19 of the mobile terminal device U, and notifies the mobile terminal device U via the transmission unit 34 in the downlink.
  • the cyclic shift value is a signal indicating the start position of the cyclic shift, and has a different value for each antenna port.
  • the radio base station apparatus eNB has different cyclic shift values for the mobile terminal apparatus U having four antenna ports, the cyclic shift value “000” for antenna port # 0, and the cyclic shift value “000” for antenna port # 1. 010 ”, the cyclic shift value“ 100 ”of antenna port # 2, and the cyclic shift value“ 110 ”of antenna port # 3 are notified.
  • the cyclic shift start positions of the antenna ports # 0, # 1, # 2, and # 3 of the mobile terminal apparatus U are “0”, “3”, “6”, Set to “9”.
  • the cyclic shift information generation unit 31 generates a total of 12 bits of cyclic shift values for each antenna port 19 and notifies the mobile terminal apparatus U of the four antenna ports. It is possible to orthogonalize the demodulation reference signal between the nineteen.
  • the cyclic shift value has been described as 3 bits here, it is not limited to this configuration. The number of control bits is varied in accordance with the number of cyclic shift start positions selected.
  • the cyclic shift information generation unit 31 instead of the configuration in which the cyclic shift information generation unit 31 notifies the mobile terminal apparatus U of the cyclic shift value for each antenna port 19, the cyclic shift value for the reference antenna port 19 and each antenna port 19, etc. It is good also as a structure which notifies the difference value of the cyclic shift value set by an interval. In this case, the cyclic shift information generation unit 31 generates a cyclic shift value of the reference antenna port 19 and a difference value between the antenna ports 19.
  • the radio base station apparatus eNB sends three bits of the cyclic shift value “000” of the reference antenna port # 0 and 2 bits of the difference value “10” to the mobile terminal apparatus U having four antenna ports. A total of 5 bits are notified. As a result, the difference value of the cyclic shift value between the antenna ports 19 of the mobile terminal apparatus U becomes “2”. As shown in FIG. 3, the cyclic values of the antenna ports # 0, # 1, # 2, # 3 The click shift start positions are set to “0”, “3”, “6”, and “9”, respectively.
  • the mobile terminal apparatus U is notified of the cyclic shift value and the difference value as a reference, for example, 3 bits for the cyclic shift value and 2 bits for the difference value, the total number of antenna ports is increased.
  • the number of control bits does not increase proportionally, and the number of control bits can be reduced.
  • the cyclic shift value is 3 bits and the difference value is 2 bits here, the configuration is not limited to this.
  • the number of control bits is varied in accordance with the number of cyclic shift start positions selected and the size of the difference value.
  • a plurality of cyclic shift value allocation patterns are set in advance between the mobile terminal apparatus U and the radio base station apparatus eNB, and allocation pattern selection information is transmitted from the radio base station apparatus eNB. You may make it notify.
  • the cyclic shift information generation unit 31 generates allocation pattern selection information. The selection information is for selecting one allocation pattern from among a plurality of types of allocation patterns possessed by the mobile terminal apparatus U.
  • 1-bit selection information is notified from the radio base station apparatus eNB to the mobile terminal apparatus U.
  • the first cyclic shift start positions “0”, “2”, “3”, “4” are assigned to the antenna ports # 0, # 1, # 2, # 3.
  • the allocation pattern is selected and the selection information is “1”
  • the cyclic shift start positions “0”, “3”, “6”, and “9” are assigned to the antenna ports # 0, # 1, # 2, and # 3.
  • a second allocation pattern to be allocated is selected.
  • control bits can be further reduced.
  • the selection information is described as 1 bit here, the selection information is not limited to this.
  • the number of control bits is varied according to the type of allocation pattern.
  • a configuration in which an allocation pattern (table) is selected according to the spreading code notified from the radio base station apparatus eNB may be employed. For example, as shown in FIG. 10, when the orthogonal code ⁇ 1, 1 ⁇ is notified from the radio base station apparatus eNB, the allocation pattern 1 is selected and the orthogonal code ⁇ 1, -1 ⁇ is notified For this, allocation pattern 2 is selected.
  • the cyclic shift value of the allocation pattern may be associated with each antenna port in advance, or may be associated according to the cyclic shift value notified from the radio base station apparatus eNB. Good. With this configuration, selection information is not notified separately from the orthogonal code from the radio base station apparatus eNB to the mobile terminal apparatus U, and the number of control bits can be reduced.
  • each is determined based on the cyclic shift value for the reference antenna port notified together with the spreading code from the radio base station apparatus eNB. You may make it set the starting position of the cyclic shift with respect to the antenna port 19.
  • FIG. the mobile terminal apparatus U sets the cyclic shift start position for each antenna port 19 based on the spreading code and the cyclic shift value as a reference, in addition to several types of allocation patterns corresponding to the spreading code. Setting conditions.
  • the setting condition here is a calculation formula for setting the cyclic shift start position for each antenna port 19 based on the spreading code notified from the radio base station apparatus eNB and the reference cyclic shift value. Show. That is, the mobile terminal apparatus U is automatically notified of the spread code and the cyclic shift value as a reference from the radio base station apparatus eNB, and automatically starts the cyclic shift for each antenna port 19 based on the setting conditions. Is calculated. Thus, in this configuration, the radio base station apparatus eNB notifies the control bit by notifying the combination of the spreading code (Block spreading code) used for the above-described block spreading and the reference cyclic shift value. The number of bits has been reduced.
  • the spreading code Block spreading code
  • the mobile terminal apparatus U assigns an allocation pattern corresponding to the orthogonal codes ⁇ 1, 1 ⁇ , ⁇ 1, -1 ⁇ notified from the radio base station apparatus eNB as a spreading code.
  • allocation patterns There are two types of allocation patterns, 1 and allocation pattern 2.
  • the allocation pattern shown in FIG. 11 (a) is a two-dimensional display of the allocation pattern shown in FIG. 10 in which resources allocated with an orthogonal code in the vertical direction and a cyclic shift value in the horizontal direction are arranged. is there.
  • the resources indicated by hatching indicate resources that can actually be allocated to the antenna ports # 0, # 1, # 2, and # 3. Each resource corresponds to the cyclic shift start position shown in FIG.
  • allocation pattern 1 indicates the cyclic shift start position indicated by resources other than resources “1”, “5”, “7”, and “11” for each antenna port # 0, # Assignable to 1, # 2, and # 3.
  • allocation pattern 2 is a cyclic shift indicated by resources other than resources “0”, “2”, “6”, and “8” by offsetting allocation pattern 1 one by one. The start position can be assigned to each antenna port # 0, # 1, # 2, # 3.
  • the mobile terminal apparatus U sets the cyclic shift start positions of the remaining antenna ports # 1, # 2, and # 3 with reference to the antenna port # 0. have.
  • the cyclic shift value (CS1) for antenna port # 1 is set by shifting six resources in the horizontal direction from the cyclic shift value (CS0) for reference antenna port # 0.
  • the allocation pattern set to the antenna port # 1 is selected according to the spreading code notified from the radio base station apparatus eNB.
  • the spread code (BS1) used for selecting the allocation pattern is notified from the radio base station apparatus eNB in the same manner as the spread code (BS0) used for selecting the allocation pattern in the antenna port # 0.
  • a spreading code is used. Therefore, the same allocation pattern as antenna port # 0 is set for antenna port # 1.
  • the spreading code is notified by 1 bit such as “0” or “1”. For example, “0” indicates the orthogonal code ⁇ 1, 1 ⁇ , and “1” indicates the orthogonal code ⁇ 1, ⁇ 1 ⁇ . Show.
  • the cyclic shift value (CS2) for antenna port # 2 is set by shifting three resources in the horizontal direction from the cyclic shift value (CS0) for antenna port # 0.
  • a spreading code (BS2) used for selection of an allocation pattern one resource is vertically arranged with respect to the spreading code (BS0) used for selection of an allocation pattern in antenna port # 0.
  • a spreading code shifted in minutes is used.
  • the spreading code (BS2) is inverted by shifting one resource in the vertical direction with respect to the spreading code (BS0). Therefore, an allocation pattern different from antenna ports # 0 and # 1 is selected for antenna port # 2.
  • the cyclic shift value (CS3) for antenna port # 3 is set by shifting nine resources in the horizontal direction from the cyclic shift value (CS0) for antenna port # 0.
  • a spreading code (BS3) used for selection of the allocation pattern one resource in the vertical direction with respect to the spreading code (BS0) used for selection of the allocation pattern in the antenna port # 0
  • a spreading code shifted in minutes is used. Therefore, an allocation pattern different from antenna ports # 0 and # 1 is selected for antenna port # 3.
  • the cyclic shift start positions are set to the antenna ports # 0, # 1, # 2, and # 3.
  • Allocation pattern 1 corresponding to orthogonal code ⁇ 1, 1 ⁇ is selected for antenna ports # 0 and # 1, and resources “0” and “6” of allocation pattern 1 are allocated, respectively.
  • Allocation pattern 2 corresponding to orthogonal code ⁇ 1, -1 ⁇ is selected for antenna ports # 2 and # 3, and resources “3” and “9” of allocation pattern 2 are allocated to antenna ports # 2 and # 3, respectively.
  • the cyclic shift start positions of antenna ports # 0, # 1, # 2, and # 3 are set to “0”, “6”, “3”, and “9”.
  • cyclic shift start positions are set in the antenna ports # 0, # 1, # 2, and # 3 as shown in FIG.
  • Allocation pattern 1 corresponding to orthogonal code ⁇ 1, 1 ⁇ is selected for antenna ports # 0 and # 1, and resources “2” and “8” of allocation pattern 1 are allocated, respectively.
  • Allocation pattern 2 corresponding to orthogonal code ⁇ 1, -1 ⁇ is selected for antenna ports # 2 and # 3, and resources “5” and “11” of allocation pattern 2 are allocated to antenna ports # 2 and # 3, respectively. Therefore, the cyclic shift start positions of antenna ports # 0, # 1, # 2, and # 3 are set to “2”, “8”, “5”, and “11”.
  • the setting conditions are not limited to the above-described contents, and may be setting conditions as shown in FIG.
  • the cyclic shift values (CS1, CS2, CS3) for antenna ports # 1, # 2, and # 3 are each one resource in the horizontal direction from the cyclic shift value (CS0) for antenna port # 0. It is set by shifting 2 resources and 3 resources. Also, different allocation patterns are set alternately for the antenna ports # 0, # 1, # 2, and # 3.
  • the mobile terminal apparatus U having this setting condition is notified of “0” indicating the orthogonal code ⁇ 1, 1 ⁇ as the spreading code and “000” indicating the reference cyclic shift value “0”. Then, as shown in FIG. 12B, the cyclic shift start positions are set in the antenna ports # 0, # 1, # 2, and # 3. Allocation pattern 1 corresponding to orthogonal code ⁇ 1, 1 ⁇ is selected for antenna ports # 0 and # 2, and resources “0” and “2” of allocation pattern 1 are allocated, respectively. For antenna ports # 1 and # 3, allocation pattern 2 corresponding to orthogonal code ⁇ 1, -1 ⁇ is selected, and resources “1” and “3” of allocation pattern 2 are allocated, respectively. Therefore, the cyclic shift start positions of antenna ports # 0, # 1, # 2, and # 3 are set to “0”, “1”, “2”, and “3”.
  • the mobile terminal apparatus U is notified of a total of 4 bits including 1 bit for the orthogonal code and 3 bits for the cyclic shift value as a reference, so that the control bits may increase in proportion to the number of antenna ports.
  • the number of control bits can be reduced.
  • the cyclic shift value is 3 bits and the orthogonal code is 1 bit here, the present invention is not limited to this configuration.
  • the number of control bits is varied according to the number of cyclic shift start positions selected and the number of assigned patterns. Also in this configuration, selection information for selecting an allocation pattern is not notified separately from the orthogonal code.
  • the cyclic shift start position is set over a plurality of allocation patterns.
  • the cyclic shift start position may be set in a single allocation pattern.
  • two types of allocation patterns have been described, two or more types of allocation patterns can be used depending on the number of spreading codes.
  • the mobile terminal device U has been described as a configuration having a single setting condition, it is not limited to this configuration.
  • a plurality of setting conditions may be defined for the mobile terminal apparatus U, and setting selection information for the setting conditions may be notified from the radio base station apparatus eNB.
  • the cyclic shift information generation unit 31 generates setting selection information for setting conditions.
  • the setting selection information is for selecting one setting condition from a plurality of setting conditions.
  • 1-bit setting selection information is notified from the radio base station apparatus eNB to the mobile terminal apparatus U.
  • setting selection information “0” the setting condition shown in FIG. 11B is selected
  • setting selection information “1” the setting condition shown in FIG. 12A is selected.
  • the setting selection information is described as 1 bit, but is not limited to this configuration.
  • the number of control bits is varied according to the number of setting conditions.
  • a predetermined allocation pattern may be set in the mobile terminal device U in advance.
  • the radio base station apparatus eNB does not have the cyclic shift information generation unit 31.
  • the cyclic shift start position and spreading code for each antenna port 19 may be set based on the cyclic shift value notified from the radio base station apparatus eNB.
  • the mobile terminal apparatus U further associates a spreading code with a table in which a cyclic shift value and a cyclic shift start position are associated.
  • the spreading code ⁇ 1, 1 ⁇ is associated with the cyclic shift values “010” and “110”
  • the spreading code ⁇ 1, ⁇ 1 is associated with the cyclic shift values “010” and “110”.
  • Are associated.
  • the cyclic shift value “000” of the antenna port # 0 the cyclic shift value “010” of the antenna port # 1, the cyclic shift value “100” of the antenna port # 2, the antenna port
  • the mobile terminal apparatus U is notified of the cyclic shift value “110” of # 3. Accordingly, the cyclic shift start positions of the antenna ports # 0, # 1, # 2, and # 3 of the mobile terminal device U are set to “0”, “3”, “6”, and “9”, Spreading code ⁇ 1, 1 ⁇ is set for antenna ports # 0 and # 2, and spreading code ⁇ 1, -1 ⁇ is set for antenna ports # 1 and # 3.
  • the spreading code is transmitted from the radio base station apparatus eNB to the mobile terminal apparatus U. It is possible to reduce the number of control bits for the spreading code.
  • the cyclic shift value has been described as 3 bits here, it is not limited to this configuration. The number of control bits is varied in accordance with the number of cyclic shift start positions selected.
  • the structure which sets the cyclic shift start position and spreading code for each antenna port 19 based on the cyclic shift value notified from the radio base station apparatus eNB notifies the cyclic shift value for each antenna port 19.
  • the configuration is not limited.
  • the radio base station apparatus eNB may be configured to notify the cyclic shift value for the reference antenna port 19 as described above and the difference value between the cyclic shift values set to each antenna port 19 at equal intervals.
  • the cyclic shift information generation unit 31 generates a cyclic shift value of the reference antenna port 19 and a difference value between the antenna ports 19.
  • the radio base station apparatus eNB notifies a total of 5 bits as 3 bits of the cyclic shift value “000” and 2 bits of the difference value “10” of the reference antenna port # 0.
  • the difference value of the cyclic shift value between each antenna port 19 of the mobile terminal apparatus U becomes “2”, and the cyclic shift start position of each antenna port # 0, # 1, # 2, # 3 is “0”.
  • the cyclic shift start position and the spreading code can be set in each antenna port 19 of the mobile terminal apparatus U with fewer control bits by notifying the cyclic shift difference value.
  • the cyclic shift value is 3 bits and the difference value is 2 bits here, the configuration is not limited to this.
  • the number of control bits is varied in accordance with the number of cyclic shift start positions selected and the size of the difference value.
  • the radio base station apparatus eNB may be configured to notify only the cyclic shift value for the reference antenna port 19 and set the cyclic shift start position and the spreading code for each antenna port 19.
  • the mobile terminal device U is set to calculate the cyclic shift start position of each antenna port 19 based on the cyclic shift value as a reference.
  • each antenna port 19 is set with a difference value from the reference cyclic shift value
  • antenna port # 0 has a difference value “0”
  • antenna port # 1 has a difference value “2”
  • antenna port # 2 has a difference value.
  • the difference value “6” is set for the value “4” and the antenna port # 3, respectively. Then, the radio base station apparatus eNB notifies 3 bits of the cyclic shift value “000” of the reference antenna port # 0.
  • the cyclic shift start positions of the antenna ports # 0, # 1, # 2, and # 3 of the mobile terminal device U are set to “0”, “3”, “6”, and “9”,
  • Spreading code ⁇ 1, 1 ⁇ is set for antenna ports # 0 and # 2
  • spreading code ⁇ 1, -1 ⁇ is set for antenna ports # 1 and # 3.
  • the start position of the cyclic shift of each antenna port 19 is calculated from the reference cyclic shift value for the mobile terminal apparatus U, the start position of the cyclic shift and the spreading code with fewer control bits. Can be set for each antenna port 19 of the mobile terminal apparatus U.
  • the cyclic shift value has been described as 3 bits here, it is not limited to this configuration. The number of control bits is varied in accordance with the number of cyclic shift start positions selected.
  • the mobile terminal apparatus U may be configured to have a plurality of tables in which cyclic shift values, cyclic shift start positions, and spreading codes are associated.
  • the cyclic shift information generation unit 31 generates table selection information for selecting one table from a plurality of tables.
  • the mobile terminal apparatus U receives the table selection information from the radio base station apparatus eNB and uses the table indicated by the table selection information.
  • the allocation information generation unit 32 generates allocation information for each user, and notifies the mobile terminal device U of each user via the transmission unit 34 on the downlink.
  • the allocation information is information for allocating subcarriers constituting a resource block to a plurality of users according to a certain rule by distributed FDMA, and includes the number of users to be allocated (RPF) and an allocation order (Comb). For example, when multiplexing demodulation reference signals between two users, each mobile terminal device U is notified of allocation information of 2 bits in total, that is, 1 bit of RPF and 1 bit of Comb indicating odd or even number.
  • the radio base station apparatus eNB notifies RPF “1” to each mobile terminal apparatus U with 1 bit.
  • the radio base station apparatus eNB notifies one mobile terminal apparatus U of RPF “2” and Comb # 0 indicating that it is even-numbered in a total of 2 bits, and the other mobile terminal apparatus U receives RPF “2”.
  • Comb # 1 indicating that it is an odd number is notified in a total of 2 bits.
  • the allocation information generation unit 32 generates RPF and Comb for each user, and notifies the mobile terminal device U of each user, thereby orthogonalizing the demodulation reference signal among a plurality of users. It becomes possible.
  • RPF is assumed to be 1 bit and Comb is assumed to be 1 bit.
  • the present invention is not limited to this configuration.
  • the number of control bits is varied according to the number of users.
  • the Comb may be notified in the lower layer and the RPF may be notified in the upper layer by Higher-layer Signaling or the like.
  • Comb is further associated with a table in which the cyclic shift value of the mobile terminal apparatus U is associated with the cyclic shift start position. For example, cyclic shift values “000” to “011” are associated with Comb # 0, and cyclic shift values “100” to “111” are associated with Comb # 1.
  • the allocation order can be specified in the mobile terminal apparatus U according to the cyclic shift value notified from the radio base station apparatus eNB, it is necessary to notify the Comb value from the radio base station apparatus eNB to the mobile terminal apparatus U.
  • the number of control bits of the allocation information can be reduced.
  • the RPF is described as 1 bit, but is not limited to this configuration. The number of control bits is varied according to the number of users.
  • the allocation information is not limited to RPF or Comb, and may be any information as long as it can be distributed among a plurality of users so that subcarriers do not overlap.
  • the spreading code generation unit 33 generates a spreading code and a despreading code for each user, and notifies the spreading code to the mobile terminal device U of each user via the transmission unit 34 in the downlink.
  • the spreading code is a so-called orthogonal code, and a plurality of user demodulation reference signals are orthogonally multiplexed on the same symbol by block spreading. For example, when a demodulation reference signal is multiplexed between two users, each mobile terminal apparatus U is notified of the orthogonal code with 1 bit.
  • the orthogonal code ⁇ 1, 1 ⁇ is notified to one mobile terminal apparatus U, and the orthogonal code ⁇ 1, -1 ⁇ is notified to the other mobile terminal apparatus U.
  • the orthogonal signal is multiplied by the reference signal of each mobile terminal apparatus U, and the reference signals of a plurality of users are multiplexed in the same frequency band.
  • the spreading code generation unit 33 generates orthogonal codes for each user and notifies the mobile terminal apparatus U of each user to orthogonalize the demodulation reference signal among a plurality of users. Is possible.
  • the orthogonal code is described as 1 bit here, the present invention is not limited to this configuration. The number of control bits is varied according to the number of users.
  • demodulation reference signals are orthogonalized between a plurality of antennas according to a cyclic shift value, and demodulation reference signals between a plurality of users according to allocation information or orthogonal codes.
  • each part of the mobile terminal apparatus U and the radio base station apparatus eNB described above is stored in a RAM (Random Access Memory) according to various control programs in a CPU (Central Processing Unit) incorporated in the apparatus in a ROM (Read Only Memory). It is realized by calculating the data of the above and executing the process in cooperation with the communication interface or the like.
  • a RAM Random Access Memory
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • FIG. 9 is a flowchart showing communication control processing of the mobile terminal apparatus according to the embodiment of the present invention. It is assumed that the mobile terminal apparatus is notified of the cyclic shift value, the allocation information, and the spreading code from the radio base station apparatus in the initial state.
  • the demodulation reference signal generation unit 11 generates a demodulation reference signal having a ZC sequence as a signal sequence (step S01).
  • the demodulation reference signal is cyclically shifted for each antenna port of the mobile terminal device U based on the cyclic shift value (step S02).
  • the demodulation reference signals are orthogonalized between the antenna ports of the mobile terminal apparatus U.
  • the demodulation reference signal is multiplexed with the uplink data signal, and distributed FDMA or block spreading processing is performed (step S03). At this time, the demodulation reference signal is orthogonalized between the mobile terminal device U and the mobile terminal device U of another user.
  • various processes are performed in the IFFT unit 17 and the CP adding unit 18 and transmitted to the radio base station apparatus eNB (step S04).
  • a demodulation reference signal is generated using a ZC sequence, the demodulation reference signal is cyclically shifted for each of a plurality of antenna ports, and the cyclic shift is performed.
  • the plurality of uplink reference signals that have been transmitted are transmitted in uplink to the radio base station apparatus eNB via a plurality of corresponding antenna ports. Therefore, by performing a cyclic shift for each of the plurality of antenna ports, the demodulation reference signal can be orthogonalized between the plurality of antenna ports and multiplexed and transmitted to the radio base station apparatus eNB.
  • the demodulation reference signal is orthogonalized between the antenna ports of the mobile terminal device by cyclic shift, and further, the demodulation reference signal is distributed among a plurality of users by distributed FDMA or block spreading.
  • the present invention is not limited to this configuration. If orthogonality of the reference signal for demodulation between users is not necessary, a configuration in which distributed FDMA or block spreading is not performed may be employed.
  • the demodulation reference signal is orthogonalized among a plurality of users by distributed FDMA or block spreading.
  • the present invention is not limited to this configuration.
  • a configuration in which the demodulated reference signal is orthogonalized among a plurality of users by combining distributed FDMA and block spreading may be adopted.
  • the cyclic shift control bits notified from the radio base station apparatus to the mobile terminal apparatus may be notified to the mobile terminal apparatus in any configuration.
  • the control bit is reported in a control channel such as PDCCH (Physical Downlink Control Channel), a broadcast channel such as PBCH (Physical Broadcast Channel), a data sharing channel such as PDSCH (Physical Downlink Shared Channel), or a higher layer. It is good.
  • the present invention has an effect of being able to realize orthogonality of uplink reference signals between a plurality of antennas in MIMO transmission, and in particular, a mobile terminal apparatus that transmits a demodulation reference signal in the uplink, This is useful for a radio base station apparatus and a communication control method.

Abstract

 MIMO伝送において複数のアンテナ間の上りリファレンス信号の直交を実現することができる移動端末装置、無線基地局装置および通信制御方法を提供すること。ZC系列を用いて復調用リファレンス信号を生成するリファレンス信号生成部(11)と、復調用リファレンス信号を複数のアンテナポート(19)毎にサイクリックシフトさせて、複数のアンテナポート(19)に対応した復調用リファレンス信号を複数のアンテナポート(19)間で直交するサイクリックシフト部(13)とを備え、サイクリックシフトされた複数の復調用リファレンス信号を、対応する複数のアンテナポート(19)を介して無線基地局装置eNBに上りリンクで送信する構成とした。

Description

移動端末装置、無線基地局装置および通信制御方法
 本発明は、上りリンクで復調用リファレンス信号(RS:Reference Signal)を送信する移動端末装置、無線基地局装置および通信制御方法に関する。
 LTE(Long Term Evolution)システムでは、移動端末装置からPUSCH(Physical Uplink Shared Channel)やPUCCH(Physical Uplink Control Channel)で上りデータ信号および上り制御信号が無線基地局に送信される。PUSCHやPUCCHで送信される上りデータ信号および上り制御信号には、復調用のリファレンス信号が多重されており、この上りリファレンス信号は無線基地局において同期検波のためのチャネル推定に用いられている。
 この場合、複数の移動端末装置間では、上りのリファレンス信号の信号系列として、共通のZC系列(Zadoff-Chu Sequence)が用いられており、移動端末装置毎にサイクリックシフト(Cyclic Shift)が行われる。サイクリックシフトでは、所定の系列の最後部を先頭に付け替えてシフトさせることで異なる系列を生成し、これを繰り返すことで複数の異なる系列が生成される。そして、移動端末装置毎に、ZC系列を固有のサイクリックシフトさせることで、複数の移動端末装置からのリファレンス信号が直交される。
 ところで、LTEシステムにおいては、伝送速度の高速化を実現するため、複数のアンテナを使用したMIMO(Multiple Input Multiple Output)伝送が用いられている。このMIMO伝送では、各送信アンテナから異なる情報を、同一周波数で、同一タイミングで送信することにより、伝送速度を向上させている。しかしながら、MIMO伝送では、複数のアンテナ間におけるリファレンス信号の直交が課題として残っている。
 本発明は、かかる点に鑑みてなされたものであり、MIMO伝送において複数のアンテナ間の上りリファレンス信号の直交を実現することができる移動端末装置、無線基地局装置および通信制御方法を提供することを目的とする。
 本発明の移動端末装置は、開始位置をシフトさせることで直交される信号系列を用いて上りリファレンス信号を生成するリファレンス信号生成部と、前記上りリファレンス信号を複数のアンテナポート毎にサイクリックシフトさせて、前記複数のアンテナポートに対応した前記上りリファレンス信号を前記複数のアンテナポート間で直交するサイクリックシフト部と、サイクリックシフトされた前記複数の上りリファレンス信号を、対応する前記複数のアンテナポートを介して無線基地局装置に上りリンクで送信する送信部とを備えたことを特徴とする。
 この構成によれば、リファレンス信号が開始位置のシフトにより直交される信号系列であるため、複数のアンテナポート毎にサイクリックシフトさせることにより、複数のアンテナポート間の上りリファレンス信号を直交させて無線基地局装置に多重伝送することができる。
 本発明によれば、MIMO伝送において移動端末装置の複数のアンテナ間の上りリファレンス信号の直交を実現することができる。
本発明の実施の形態を示す図であり、通信システムにおける上り復調用リファレンス信号の送信制御の概要の説明図である。 本発明の実施の形態を示す図であり、移動端末装置の機能ブロック図である。 本発明の実施の形態を示す図であり、サイクリックシフト値とサイクリックシフトの開始位置とを関連付けたテーブルの一例を示す図である。 本発明の実施の形態を示す図であり、サイクリックシフトの一例を示す図である。 本発明の実施の形態を示す図であり、ディストリビューテッドFDMAの一例を示す図である。 本発明の実施の形態を示す図であり、ブロックスプレッディングの一例を示す図である。 本発明の実施の形態を示す図であり、無線基地局装置の機能ブロック図である。 本発明の実施の形態を示す図であり、サイクリックシフト値とサイクリックシフトの開始位置とを関連付けたテーブルの他の一例を示す図である。 本発明の実施の形態を示す図であり、移動端末装置の通信制御処理を示すフローチャートである。 本発明の実施の形態を示す図であり、直交コードによりサイクリックシフト値の割当パターンを選択する一例を示す図である。 本発明の実施の形態を示す図であり、移動端末装置に設定されたサイクリックシフト値の割当パターンおよび設定条件の一例を示す図である。 本発明の実施の形態を示す図であり、移動端末装置に設定されたサイクリックシフト値の割当パターンおよび設定条件の他の一例を示す図である。 本発明の実施の形態を示す図であり、サイクリックシフト値、サイクリックシフトの開始位置、および直交コードを関連付けたテーブルの一例を示す図である。
 以下、本発明の実施の形態について添付図面を参照して詳細に説明する。なお、本実施の形態においては、復調用リファレンス信号(DM RS:Demodulation Reference Signal)の直交化について説明するが、復調用リファレンス信号に限定されるものではなく、上りリンクで複数のアンテナポート間および複数のユーザ間で直交多重させる信号であればよく、例えば、CQI測定用リファレンスシグナル(Sounding Reference Signal)であってもよい。図1は、本発明の実施の形態における通信システムにおける上り復調用リファレンス信号の送信制御の概要の説明図である。
 図1に示す通信システムにおいて、複数の移動端末装置U1、U2、U3、U4は、それぞれ複数のアンテナを有しており、セルC1をカバーする無線基地局装置eNB1およびセルC2をカバーする無線基地局装置eNB2と通信可能に構成されている。上りリンクでは、移動端末装置U1、U2、U3、U4から無線基地局装置eNB1、eNB2に上り用の通信チャネルで上りデータ信号および上り制御信号が送信される。
 上り用の通信チャネルで送信される上りデータ信号および上り制御信号には、復調用リファレンス信号が時間多重されている。無線基地局装置eNB1、eNB2は、受信した復調用リファレンス信号に基づいてチャネル推定を行い、上りの通信チャネルを同期検波する。この場合、復調用リファレンス信号は、信号系列として同一セル内で共通のZC系列が用いられている。ZC系列は、周波数帯域で一定振幅であり同期点以外の自己相関が0となり、信号系列の開始位置をシフトさせることで直交されるものである。この通信システムでは、ZC系列の復調用リファレンス信号がアンテナポート毎にサイクリックシフトされることで、各移動端末装置U1、U2、U3、U4のそれぞれのアンテナ間で復調用リファレンス信号が直交されている。
 ところで、ZC系列は、複数ユーザ間で在圏セルや送信帯域が一致していないと、共通のZC系列を使用することができない。したがって、各移動端末装置のアンテナポート毎にサイクリックシフトさせただけでは、移動端末装置U1、U2のように在圏セルが異なる場合や、移動端末装置U3、U4のように送信帯域が異なる場合には、複数のユーザ間で復調用リファレンス信号の直交化を図ることができない。
 特に、LTEの後継のシステムであるLTEアドバンスト(LTE-A)では、SU-MIMO(Single-User Multiple-Input Multiple-Output)、MU-MIMO(Multi-User Multi-Input Multi-Output)やCoMP等の導入が検討されており、1ユーザの複数のアンテナ間の直交だけでなく、多ユーザ間の直交が望まれている。そこで、このシステムにおいては、サイクリックシフトに加え、ディストリビューテッドFDMA(Distributed Frequency Division Multiple Access)やブロックスプレッディング(Block Spreading)を用いて、複数のユーザ間で復調用リファレンス信号を直交多重している。
 なお、本実施の形態においては、上りの復調用リファレンス信号の信号系列としてZC系列を例に挙げて説明するが、この信号系列に限定されるものではない。信号系列の開始位置をシフトさせることにより、復調用リファレンス信号の直交化させることが可能であれば、どのような信号系列であってもよい。
 以下、図2から図8を参照して、移動端末装置および無線基地局装置の機能構成について詳細に説明する。最初に、図2を参照して移動端末装置の機能構成について説明する。図2は、本発明の実施の形態に係る移動端末装置の機能ブロック図である。なお、本実施の形態に係る移動端末装置は複数の送信系を備えるが、図2においては、説明の便宜上、一つの送信系のみ具体的に図示している。
 図2に示すように、各移動端末装置Uは、復調用リファレンス信号生成部11と、各送信アンテナA1に対応した複数の送信系12とを備えている。各送信系12は、サイクリックシフト部13と、上りデータ信号生成部14と、DFT(Discrete Fourier Transform)部15と、多重部16と、IFFT(Inverse Fast Fourier Transform)部17と、CP(Cyclic Prefix)付加部18とを有している。
 復調用リファレンス信号生成部11は、復調用リファレンス信号を生成する。復調用リファレンス信号は、上記したZC系列を信号系列として生成され、無線基地局装置eNBにおいて同期検波による復調用の無線伝送路状態の測定に用いられる。復調用リファレンス信号生成部11により生成された復調用リファレンス信号は、各アンテナポート19に対応する送信系12に出力される。
 サイクリックシフト部13は、復調用リファレンス信号生成部11から入力された復調用リファレンス信号の信号系列を無線基地局装置eNBから通知されたサイクリックシフト値に基づいてサイクリックシフトする。サイクリックシフトは、サイクリックシフト値が示すサイクリックシフトの開始位置から最後部までを復調用リファレンス信号の信号系列の先頭に付け替えてシフトさせることで、他の送信系12のアンテナポート19と異なる復調用リファレンス信号の信号系列を生成する。
 具体的には、図3に示すように、移動端末装置Uは、サイクリックシフト値とサイクリックシフトの開始位置とを関連付けたテーブルを有している。サイクリックシフト値は、例えば、3ビットの信号であり、計8種類のサイクリックシフトの開始位置を特定可能に構成されている。そして、サイクリックシフト部13は、無線基地局装置eNBから通知されたサイクリックシフト値に対応するサイクリックシフトの開始位置からサイクリックシフトを開始する。
 例えば、サイクリックシフト値が「010」の場合には、サイクリックシフトの開始位置が「3」であるため、図4に示すように、復調用リファレンス信号の信号系列のサイクリックシフトの開始位置「3」から最後部までが先頭部にシフトされる。同様に、他の送信系12のアンテナポート19においても、別のサイクリックシフト値により復調用リファレンス信号の信号系列がシフトされる。
 このように、ZC系列を信号系列とする復調用リファレンス信号がサイクリックシフトされることで、各アンテナポート19間で復調用リファレンス信号が直交される。サイクリックシフトされた復調用リファレンス信号は、DFT部15に出力される。なお、無線基地局装置eNBによる移動端末装置Uに対するサイクリックシフト値の通知方法については後述する。
 上りデータ信号生成部14は、上位レイヤから渡されるデータを用いてユーザデータ等を含む上りデータ信号を生成し、上りデータ信号の誤り訂正符号の付加やサブキャリア毎に変調を行う。生成された上りデータ信号は、DFT部15に出力される。
 DFT部15は、サイクリックシフト部13および上りデータ信号生成部14から入力された復調用リファレンス信号および上りデータ信号を離散フーリエ変換処理する。復調用リファレンス信号および上りデータ信号は、離散フーリエ変換処理により時間領域の信号から周波数領域の信号に変換され、多重部16に出力される。
 多重部16は、上りデータ信号に復調用リファレンス信号を多重し、上り送信信号をIFFT部17に出力する。復調用リファレンス信号は、例えば、1サブフレームの3シンボル目と10シンボル目に多重される(図5、図6参照)。また、多重部16は、復調用リファレンス信号を多重する際に、ディストリビューテッドFDMAやブロックスプレッディングにより、複数のユーザ間で復調用リファレンス信号を直交化させる。
 ディストリビューテッドFDMAでは、復調用リファレンス信号が多重されるシンボルにおいて、無線基地局装置eNBから通知された割当情報に基づいて、リソースブロックを構成するサブキャリアが一定の規則に従って複数のユーザに割り当てられる。図5に示すように、2ユーザ間で多重する場合には、シンボル内において1サブキャリアおきに復調用リファレンス信号が多重される。この場合、ユーザA(例えば、移動端末装置U1)には3シンボル目において偶数番目のサブキャリアが割り当てられ、ユーザB(例えば、移動端末装置U2)には3シンボル目において奇数番目のサブキャリアが割り当てられる。
 このように、サブキャリアが複数のユーザ間で分配されるため、復調用リファレンス信号が複数のユーザ間で直交される。なお、図5においては、2ユーザ間でリソースブロックを分配して復調用リファレンス信号を直交化させる構成としたが、この構成に限定されるものではない。複数のユーザ間で割り当てられるサブキャリアが重ならなければよく、例えば、3ユーザ間で復調用リファレンス信号を直交化させる場合には、2サブキャリアおきに復調用リファレンス信号が多重され、各ユーザに対して一定順序でサブキャリアが割り当てられる。なお、無線基地局装置eNBによる移動端末装置Uに対する割当情報の通知方法については後述する。
 また、ディストリビューテッドFDMAに代えてブロックスプレッディングにより複数のユーザ間で復調用リファレンス信号を直交化させることも可能である。ブロックスプレッディングは、復調用リファレンス信号に無線基地局装置eNBから通知された拡散コードを掛け合わせて周波数方向に拡散させている。この場合、拡散コードは直交コードであり、同一シンボルに複数のユーザの復調用リファレンス信号が多重される。
 図6に示すように、復調用リファレンス信号を2ユーザ間で多重する場合、ユーザA(例えば、移動端末装置U1)のリファレンス信号には直交コード{1、1}が掛け合わされ、ユーザB(例えば、移動端末装置U2)のリファレンス信号には直交コード{1、-1}が掛け合わされる。このように、復調用リファレンス信号に直交コードが掛け合わされることにより、同一の周波数帯域において複数のユーザの復調用リファレンス信号の混信を防止することができる。
 なお、図6においては、2ユーザ間で復調用リファレンス信号を直交化させる構成としたが、この構成に限定されるものではない。複数のユーザの復調用リファレンス信号が同一シンボルで直交する構成であればよく、例えば、4ユーザ間で復調用リファレンス信号を直交化させる場合には、4チップの直交コードを使用するようにする。
 このように、多重部16において、ディストリビューテッドFDMAやブロックスプレッディングにより、在圏セルや送信帯域が異なる複数の移動端末装置Uにおいて、復調用リファレンス信号を直交化させることが可能となる。
 IFFT部17は、多重部16から入力された多重後の上り送信信号を逆高速フーリエ変換処理する。上り送信信号は、逆高速フーリエ変換処理により、周波数領域の信号から時間領域の信号に変換され、CP付加部18に出力される。
 CP付加部18は、IFFT部17から入力された上り送信信号にサイクリックプレフィックスを付加する。サイクリックプレフィックスが付加された上り送信信号は、送信アンテナA1を介して無線基地局装置eNBに向けて送信される。この場合、上り送信信号に含まれるユーザデータはPUSCH等で送信され、上り送信信号に含まれる制御信号はPUCCH等で送信される。
 続いて図7に参照して、無線基地局装置の機能構成について説明する。図7は、本発明の実施の形態に係る無線基地局装置の機能ブロック図である。なお、本実施の形態に係る無線基地局装置は複数の受信系を備えるが、図7においては、説明の便宜上、一つの受信系のみを図示している。
 図7に示すように、無線基地局装置eNBは、受信系として、CP除去部21と、FFT(Fast Fourier Transform)部22と、分離部23と、チャネル推定部24と、復調部25と、復号部26とを有している。また、無線基地局装置eNBは、サイクリックシフト情報生成部31と、割当情報生成部32と、拡散コード生成部33と、送信部34とを有している。
 CP除去部21は、受信アンテナA2で受信した上り送信信号からサイクリックプレフィックスを除去する。サイクリックプレフィックスが除去された上り送信信号は、FFT部22に出力される。FFT部22は、CP除去部21から入力されたCP除去後の上り送信信号を高速フーリエ変換処理する。上り送信信号は、高速フーリエ変換処理により、時間領域の信号から周波数領域の信号に変換され、分離部23に出力される。
 分離部23は、上り送信信号から復調用リファレンス信号および上りデータ信号を取り出し、上りデータ信号と復調用リファレンス信号とを分離する。このとき、復調用リファレンス信号がディストリビューテッドFDMAでユーザ多重されていた場合には、分離部23が割当情報生成部32から割当情報を取得して、割当情報に基づいて復調量リファレンス信号を取り出す。取り出された復調用リファレンス信号は、チャネル推定部24に出力され、上りデータ信号は、復調部25に出力される。
 一方、復調用リファレンス信号がブロックスプレッディングでユーザ多重された場合には、分離部23が拡散コード生成部33から逆拡散コードを取得して、他ユーザと多重化された復調用リファレンス信号に逆拡散コードを掛け合わして、自分宛の復調用リファレンス信号を取り出す。取り出された復調用リファレンス信号は、チャネル推定部24に出力され、上りデータ信号は、復調部25に出力される。
 チャネル推定部24は、入力された復調用リファレンス信号に基づいてチャネル推定する。このとき、チャネル推定部24は、サイクリックシフト情報生成部31からサイクリックシフト値および移動端末装置UのZC系列を取得して、サイクリックシフト値に示されるサイクリックシフトの開始位置に基づいてアンテナポート毎のシフト量を検出する。これにより、チャネル推定部24は、アンテナポート19毎のチャネル推定結果を取得する。
 復調部25は、分離部23から入力された上りデータ信号およびチャネル推定部24から入力されたチャネル推定結果に基づいて、上りデータ信号を復調する。復調部25に復調された上りデータ信号は、チャネル等化や逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理等がなされた後、復号部26に入力される。復号部26は、上りデータ信号から誤り訂正符号の除去し、ユーザデータ等を取り出す。
 サイクリックシフト情報生成部31は、移動端末装置Uのアンテナポート19毎にサイクリックシフト値を生成し、送信部34を介して下りリンクで移動端末装置Uに通知する。サイクリックシフト値は、サイクリックシフトの開始位置を示す信号であり、アンテナポート毎に異なる値となっている。例えば、無線基地局装置eNBが、アンテナポート数が4である移動端末装置Uに異なるサイクリックシフト値、アンテナポート#0のサイクリックシフト値「000」、アンテナポート#1のサイクリックシフト値「010」、アンテナポート#2のサイクリックシフト値「100」、アンテナポート#3のサイクリックシフト値「110」を通知する。
 これにより、図3に示すように、移動端末装置Uの各アンテナポート#0、#1、#2、#3のサイクリックシフトの開始位置がそれぞれ「0」、「3」、「6」、「9」に設定される。このように、サイクリックシフト情報生成部31は、各アンテナポート19に対して3ビットの計12ビットのサイクリックシフト値を生成して、移動端末装置Uに通知することにより、4つのアンテナポート19間において復調用リファレンス信号を直交化させることが可能となる。なお、ここでは、サイクリックシフト値を3ビットとして説明したが、この構成に限定されるものではない。サイクリックシフトの開始位置の選択数に応じて制御ビットのビット数は可変される。
 また、サイクリックシフト情報生成部31がアンテナポート19毎にサイクリックシフト値を移動端末装置Uに通知する構成に代えて、基準となるアンテナポート19に対するサイクリックシフト値と各アンテナポート19に等間隔で設定されるサイクリックシフト値の差分値とを通知する構成としてもよい。この場合、サイクリックシフト情報生成部31は、基準となるアンテナポート19のサイクリックシフト値と各アンテナポート19間の差分値とを生成する。
 例えば、無線基地局装置eNBが、アンテナポート数が4である移動端末装置Uに、基準となるアンテナポート#0のサイクリックシフト値「000」の3ビット、差分値「10」の2ビットとして計5ビットを通知する。これにより、移動端末装置Uの各アンテナポート19間のサイクリックシフト値の差分値が「2」となり、図3に示すように、各アンテナポート#0、#1、#2、#3のサイクリックシフトの開始位置がそれぞれ「0」、「3」、「6」、「9」に設定される。
 このように、基準となるサイクリックシフト値および差分値、例えば、サイクリックシフト値を3ビット、差分値を2ビットの計5ビットを移動端末装置Uに通知するようにしたため、アンテナポート数に比例して制御ビット数が増大することがなく、制御ビット数を削減することが可能となる。なお、ここでは、サイクリックシフト値を3ビット、差分値を2ビットとして説明したが、この構成に限定されるものではない。サイクリックシフトの開始位置の選択数や差分値の大きさに応じて制御ビットのビット数は可変される。
 また、上記構成に代えて、移動端末装置Uと無線基地局装置eNBとの間にサイクリックシフト値の複数の割当パターンを予め設定しておき、無線基地局装置eNBから割当パターンの選択情報を通知するようにしてもよい。この場合、サイクリックシフト情報生成部31は、割当パターンの選択情報を生成する。選択情報は、移動端末装置Uの有する複数種類の割当パターンの中から1つの割当パターンを選択するものである。
 移動端末装置Uが、第1、第2の割当パターンの2種類の割当パターンを有する場合には、無線基地局装置eNBから1ビットの選択情報が移動端末装置Uに通知される。例えば、選択情報「0」の場合、アンテナポート#0、#1、#2、#3にサイクリックシフトの開始位置「0」、「2」、「3」、「4」を割り当てる第1の割当パターンが選択され、選択情報「1」の場合、アンテナポート#0、#1、#2、#3にサイクリックシフトの開始位置「0」、「3」、「6」、「9」を割り当てる第2の割当パターンが選択される。
 このように、割当パターンの選択情報のみを通知するようにしたため、さらに制御ビットを削減することが可能となる。なお、ここでは、選択情報を1ビットとして説明したが、この構成に限定されるものではない。割当パターンの種類に応じて制御ビットのビット数は可変される。
 また、割当パターンの選択情報を通知する構成に代えて、無線基地局装置eNBから通知された拡散コードに応じて割当パターン(テーブル)を選択する構成としてもよい。例えば、図10に示すように、無線基地局装置eNBから直交コード{1、1}が通知された場合には、割当パターン1が選択され、直交コード{1、-1}が通知された場合には、割当パターン2が選択される。この場合、予め割当パターンのサイクリックシフト値と各アンテナポートとを対応させておくようにしてもよいし、無線基地局装置eNBから通知されたサイクリックシフト値に応じて対応させるようにしてもよい。この構成により、無線基地局装置eNBから移動端末装置Uに、直交コードとは別に選択情報が通知されることがなく、制御ビットのビット数を削減することが可能となる。
 また、無線基地局装置eNBから通知された拡散コードに応じて割当パターンを選択する場合、無線基地局装置eNBから拡散コードと共に通知された、基準となるアンテナポートに対するサイクリックシフト値に基づいて各アンテナポート19に対するサイクリックシフトの開始位置を設定するようにしてもよい。この場合、移動端末装置Uは、拡散コードに応じた数種類の割当パターンの他、拡散コードおよび基準となるサイクリックシフト値に基づいて各アンテナポート19に対してサイクリックシフトの開始位置を設定する設定条件とを有している。
 ここでいう設定条件とは、無線基地局装置eNBから通知された拡散コードおよび基準となるサイクリックシフト値に基づいて、各アンテナポート19に対してサイクリックシフトの開始位置を設定する計算式を示している。すなわち、移動端末装置Uは、無線基地局装置eNBから拡散コードおよび基準となるサイクリックシフト値が通知されることで、設定条件に基づいて自動的に各アンテナポート19に対するサイクリックシフトの開始位置を算出する。このように、本構成においては、無線基地局装置eNBが、上記したブロックスプレッディングに用いられる拡散コード(Block spreading code)と基準となるサイクリックシフト値との組み合わせを通知することで、制御ビットのビット数を削減している。
 例えば、図11(a)に示すように、移動端末装置Uは、無線基地局装置eNBから拡散コードとして通知される直交コード{1、1}、{1、-1}に対応して割当パターン1および割当パターン2の2種類の割当パターンを有している。なお、図11(a)に示す割当パターンは、図10に示した割当パターンを、縦方向に直交コード、横方向にサイクリックシフト値で割り当てられるリソースをそれぞれ配置して2次元表示したものである。また、図11(a)において、ハッチングで示されるリソースが、各アンテナポート#0、#1、#2、#3に対して実際に割当可能なリソースを示している。各リソースは、図10で示されるサイクリックシフトの開始位置に対応している。
 したがって、割当パターン1は、ハッチングで示されるように、リソース「1」、「5」、「7」、「11」以外のリソースで示されるサイクリックシフトの開始位置を各アンテナポート#0、#1、#2、#3に割当可能としている。一方、割当パターン2は、ハッチングで示されるように、割当パターン1を1つずつオフセットしてリソース「0」、「2」、「6」、「8」以外のリソースで示されるサイクリックシフトの開始位置を各アンテナポート#0、#1、#2、#3に割当可能としている。
 また、図11(b)に示すように、移動端末装置Uは、アンテナポート#0を基準として、残りのアンテナポート#1、#2、#3のサイクリックシフトの開始位置を設定する設定条件を有している。アンテナポート#1に対するサイクリックシフト値(CS1)は、基準となるアンテナポート#0に対するサイクリックシフト値(CS0)から横方向に6リソース分をシフトして設定される。このとき、アンテナポート#1に設定される割当パターンは、無線基地局装置eNBから通知される拡散コードに応じて選択される。
 アンテナポート#1では、割当パターンの選択に使用される拡散コード(BS1)として、アンテナポート#0で割当パターンの選択に使用される拡散コード(BS0)と同様に無線基地局装置eNBから通知された拡散コードが使用される。したがって、アンテナポート#1は、アンテナポート#0と同一の割当パターンが設定される。なお、拡散コードは、「0」または「1」等の1ビットで通知され、例えば、「0」が直交コード{1、1}を示し、「1」が直交コード{1、-1}を示している。
 アンテナポート#2に対するサイクリックシフト値(CS2)は、アンテナポート#0に対するサイクリックシフト値(CS0)から横方向に3リソース分をシフトして設定される。このとき、アンテナポート#2では、割当パターンの選択に使用される拡散コード(BS2)として、アンテナポート#0で割当パターンの選択に使用される拡散コード(BS0)に対して縦方向に1リソース分をシフトした拡散コードが使用される。図11(b)に示す例では、拡散コード(BS2)は、拡散コード(BS0)に対して縦方向に1リソース分をシフトすることで、コードが反転される。したがって、アンテナポート#2は、アンテナポート#0、#1と異なる割当パターンが選択される。
 アンテナポート#3に対するサイクリックシフト値(CS3)は、アンテナポート#0に対するサイクリックシフト値(CS0)から横方向に9リソース分をシフトして設定される。このとき、アンテナポート#3では、割当パターンの選択に使用される拡散コード(BS3)として、アンテナポート#0で割当パターンの選択に使用される拡散コード(BS0)に対して縦方向に1リソース分をシフトした拡散コードが使用される。したがって、アンテナポート#3は、アンテナポート#0、#1と異なる割当パターンが選択される。
 このような割当パターンと設定条件を有する移動端末装置Uに対して、拡散コードとして直交コード{1、1}を示す「0」と、基準となるサイクリックシフト値「0」を示す「000」とが通知されると、図11(c)に示すように、各アンテナポート#0、#1、#2、#3にサイクリックシフトの開始位置が設定される。アンテナポート#0、#1には、直交コード{1、1}に対応した割当パターン1が選択され、それぞれ割当パターン1のリソース「0」、「6」が割り当てられる。アンテナポート#2、#3には、直交コード{1、-1}に対応した割当パターン2が選択され、それぞれ割当パターン2のリソース「3」、「9」が割り当てられる。したがって、アンテナポート#0、#1、#2、#3のサイクリックシフトの開始位置が「0」、「6」、「3」、「9」に設定される。
 また、上記した割当パターンと設定条件を有する移動端末装置Uに対して、拡散コードとして直交コード{1、1}を示す「0」と、基準となるサイクリックシフト値「2」を示す「001」とが通知されると、図11(d)に示すように、各アンテナポート#0、#1、#2、#3にサイクリックシフトの開始位置が設定される。アンテナポート#0、#1には、直交コード{1、1}に対応した割当パターン1が選択され、それぞれ割当パターン1のリソース「2」、「8」が割り当てられる。アンテナポート#2、#3には、直交コード{1、-1}に対応した割当パターン2が選択され、それぞれ割当パターン2のリソース「5」、「11」が割り当てられる。したがって、アンテナポート#0、#1、#2、#3のサイクリックシフトの開始位置が「2」、「8」、「5」、「11」に設定される。
 なお、設定条件は、上記した内容に限定されるものではなく、例えば、図12(a)に示すような設定条件でもよい。この設定条件では、アンテナポート#1、#2、#3に対するサイクリックシフト値(CS1、CS2、CS3)は、アンテナポート#0に対するサイクリックシフト値(CS0)から、それぞれ横方向に1リソース分、2リソース分、3リソース分をシフトして設定される。また、各アンテナポート#0、#1、#2、#3に対する割当パターンは交互に異なる割当パターンが設定される。
 この設定条件を有する移動端末装置Uに対して、拡散コードとして直交コード{1、1}を示す「0」と、基準となるサイクリックシフト値「0」を示す「000」とが通知されると、図12(b)に示すように、各アンテナポート#0、#1、#2、#3にサイクリックシフトの開始位置が設定される。アンテナポート#0、#2には、直交コード{1、1}に対応した割当パターン1が選択され、それぞれ割当パターン1のリソース「0」、「2」が割り当てられる。アンテナポート#1、#3には、直交コード{1、-1}に対応した割当パターン2が選択され、それぞれ割当パターン2のリソース「1」、「3」が割り当てられる。したがって、アンテナポート#0、#1、#2、#3のサイクリックシフトの開始位置が「0」、「1」、「2」、「3」に設定される。
 このように、直交コードを1ビット、基準となるサイクリックシフト値を3ビットの計4ビットを移動端末装置Uに通知するようにしたため、アンテナポート数に比例して制御ビットが増大することがなく、制御ビット数を削減することが可能である。なお、ここでは、サイクリックシフト値を3ビット、直交コードを1ビットとして説明したが、この構成に限定されるものではない。サイクリックシフトの開始位置の選択数や割当パターン数に応じて制御ビットのビット数は可変される。また、この構成においても、直交コードとは別に割当パターンを選択するための選択情報が通知されることがない。
 なお、上記した構成では、複数の割当パターンにわたってサイクリックシフトの開始位置を設定する構成としたが、単一の割当パターンでサイクリックシフトの開始位置を設定する構成としてもよい。また、割当パターンを2種類として説明したが、拡散コードのコード数に応じて、2種類以上の割当パターンを使用することが可能である。
 また、移動端末装置Uは、単一の設定条件を有する構成として説明したが、この構成に限定されるものではない。移動端末装置Uに複数の設定条件を規定しておき、無線基地局装置eNBから設定条件の設定選択情報を通知するようにしてもよい。この場合、サイクリックシフト情報生成部31は、設定条件の設定選択情報を生成する。設定選択情報は、複数の設定条件の中から1つの設定条件を選択するものである。
 移動端末装置Uが、2種類の設定条件を有する場合には、無線基地局装置eNBから1ビットの設定選択情報が移動端末装置Uに通知される。例えば、設定選択情報「0」の場合、図11(b)に示す設定条件が選択され、設定選択情報「1」の場合、図12(a)に示す設定条件が選択される。このように、拡散コードおよび基準となるサイクリックシフト値に加えて設定条件の設定選択情報を通知することにより、各アンテナポート#0、#1、#2、#3のサイクリックシフトの開始位置を、さらに自由に設定することが可能となる。なお、ここでは、設定選択情報を1ビットとして説明したが、この構成に限定されるものではない。設定条件の条件数に応じて制御ビットのビット数は可変される。
 また、上記構成に代えて、予め移動端末装置Uに規定の割当パターンを設定する構成としてもよい。この場合、無線基地局装置eNBは、サイクリックシフト情報生成部31を有さない。この構成により、無線基地局装置eNBから移動端末装置Uにサイクリックシフト値を通知することなく、移動端末装置Uの複数のアンテナポート19間で復調用リファレンス信号を直交化させることが可能となる。
 また、無線基地局装置eNBから通知されたサイクリックシフト値に基づいて各アンテナポート19に対するサイクリックシフトの開始位置及び拡散コードを設定するようにしてもよい。この場合、移動端末装置Uは、図13に示すように、サイクリックシフト値とサイクリックシフトの開始位置とを関連付けたテーブルに、さらに拡散コードを関連付けるようにする。図13に示すテーブルでは、サイクリックシフト値「010」、「110」以外に拡散コード{1、1}が関連付けられ、サイクリックシフト値「010」、「110」に拡散コード{1、-1}が関連付けられている。
 例えば、無線基地局装置eNBから、アンテナポート#0のサイクリックシフト値「000」、アンテナポート#1のサイクリックシフト値「010」、アンテナポート#2のサイクリックシフト値「100」、アンテナポート#3のサイクリックシフト値「110」が移動端末装置Uに通知される。これにより、移動端末装置Uの各アンテナポート#0、#1、#2、#3のサイクリックシフト開始位置が「0」、「3」、「6」、「9」に設定されると共に、アンテナポート#0、#2に拡散コード{1、1}、アンテナポート#1、#3に拡散コード{1、-1}が設定される。
 これにより、無線基地局装置eNBから通知されたサイクリックシフト値に応じて、移動端末装置Uにおいてサイクリック開始位置と拡散コードを特定できるため、無線基地局装置eNBから移動端末装置Uに拡散コードを通知する必要がなく、拡散コード用の制御ビット数を削減することが可能である。なお、ここでは、サイクリックシフト値を3ビットとして説明したが、この構成に限定されるものではない。サイクリックシフトの開始位置の選択数に応じて制御ビットのビット数は可変される。
 また、無線基地局装置eNBから通知されたサイクリックシフト値に基づいて各アンテナポート19に対するサイクリックシフトの開始位置及び拡散コードを設定する構成は、アンテナポート19毎にサイクリックシフト値を通知する構成に限定されるものではない。無線基地局装置eNBは、上記したような基準となるアンテナポート19に対するサイクリックシフト値と各アンテナポート19に等間隔で設定されるサイクリックシフト値の差分値とを通知する構成としてもよい。この場合、サイクリックシフト情報生成部31は、基準となるアンテナポート19のサイクリックシフト値と各アンテナポート19間の差分値とを生成する。
 例えば、無線基地局装置eNBが、基準となるアンテナポート#0のサイクリックシフト値「000」の3ビット、差分値「10」の2ビットとして計5ビットを通知する。これにより、移動端末装置Uの各アンテナポート19間のサイクリックシフト値の差分値が「2」となり、各アンテナポート#0、#1、#2、#3のサイクリックシフト開始位置が「0」、「3」、「6」、「9」に設定されると共に、アンテナポート#0、#2に拡散コード{1、1}、アンテナポート#1、#3に拡散コード{1、-1}が設定される。
 このように、サイクリックシフトの差分値を通知することにより、さらに少ない制御ビットで、サイクリックシフトの開始位置および拡散コードを移動端末装置Uの各アンテナポート19に設定することが可能である。なお、ここでは、サイクリックシフト値を3ビット、差分値を2ビットとして説明したが、この構成に限定されるものではない。サイクリックシフトの開始位置の選択数や差分値の大きさに応じて制御ビットのビット数は可変される。
 さらに、無線基地局装置eNBは、基準となるアンテナポート19に対するサイクリックシフト値だけを通知して、各アンテナポート19に対するサイクリックシフトの開始位置及び拡散コードを設定する構成としてもよい。この場合、移動端末装置Uには、基準となるサイクリックシフト値に基づいて、各アンテナポート19のサイクリックシフトの開始位置を算出する設定がなされている。
 例えば、各アンテナポート19に基準となるサイクリックシフト値との差分値が設定され、アンテナポート#0は差分値「0」、アンテナポート#1は差分値「2」、アンテナポート#2は差分値「4」、アンテナポート#3は差分値「6」がそれぞれ設定されている。そして、無線基地局装置eNBが、基準となるアンテナポート#0のサイクリックシフト値「000」の3ビットを通知する。これにより、移動端末装置Uの各アンテナポート#0、#1、#2、#3のサイクリックシフト開始位置が「0」、「3」、「6」、「9」に設定されると共に、アンテナポート#0、#2に拡散コード{1、1}、アンテナポート#1、#3に拡散コード{1、-1}が設定される。
 このように、移動端末装置Uに基準となるサイクリックシフト値から各アンテナポート19のサイクリックシフトの開始位置を算出するようにしたため、さらに少ない制御ビットで、サイクリックシフトの開始位置および拡散コードを移動端末装置Uの各アンテナポート19に設定することが可能である。なお、ここでは、サイクリックシフト値を3ビットとして説明したが、この構成に限定されるものではない。サイクリックシフトの開始位置の選択数に応じて制御ビットのビット数は可変される。
 また、移動端末装置Uは、サイクリックシフト値、サイクリックシフトの開始位置および拡散コードを関連付けた複数のテーブルを有する構成としてもよい。この場合、サイクリックシフト情報生成部31は、複数のテーブルから一のテーブルを選択するテーブル選択情報を生成するようにする。移動端末装置Uは、無線基地局装置eNBからテーブル選択情報を受信して、テーブル選択情報が示すテーブルを用いるようにする。
 割当情報生成部32は、ユーザ毎に割当情報を生成し、送信部34を介して下りリンクで各ユーザの移動端末装置Uに通知する。割当情報は、ディストリビューテッドFDMAによりリソースブロックを構成するサブキャリアを一定の規則に従って複数のユーザに割り当てるものであり、割当対象のユーザ数(RPF)、割当順序(Comb)を含むものである。例えば、2ユーザ間で復調用リファレンス信号を多重させる場合には、RPFを1ビット、奇数番目か偶数番目かを示すCombを1ビットの計2ビットの割当情報が各移動端末装置Uに通知される。
 例えば、割当対象が1ユーザの場合、各移動端末装置Uにそれぞれ1シンボル目の周波数全域が割り当てられ、ユーザ間で復調用リファレンス信号が直交されない。この場合、無線基地局装置eNBからRPF「1」が1ビットで各移動端末装置Uに通知される。
 一方、割当対象が2ユーザの場合、各移動端末装置Uにサブキャリアが交互に割り当てられ、2ユーザ間で復調用リファレンス信号が直交される。この場合、無線基地局装置eNBから一方の移動端末装置UにRPF「2」および偶数番目であることを示すComb#0が計2ビットで通知され、他方の移動端末装置UにRPF「2」および奇数番目であることを示すComb#1が計2ビットで通知される。
 これにより、図5に示すように、ユーザAには3シンボル目の偶数番目のサブキャリアが割り当てられ、ユーザBには3シンボル目の奇数番目のサブキャリアが割り当てられる。このように、割当情報生成部32は、各ユーザに対してRPFとCombとを生成して、各ユーザの移動端末装置Uに通知することにより、複数ユーザ間において復調用リファレンス信号を直交化させることが可能となる。なお、ここでは、RPFを1ビットおよびCombを1ビットとして説明したが、この構成に限定されるものではない。ユーザ数に応じて制御ビットのビット数は可変される。
 また、この場合、Combを下位レイヤで通知すると共に、RPFをHigher-layer Signaling等により上位レイヤで通知するようにしてもよい。
 また、割当情報生成部32がユーザ毎にRPFおよびCombを移動端末装置Uに通知する構成に代えて、割当情報としてRPFのみを移動端末装置Uに通知する構成としてもよい。この場合、図8に示すように、移動端末装置Uの有するサイクリックシフト値とサイクリックシフトの開始位置とを関連付けたテーブルに、さらにCombを関連付けるようにする。例えば、サイクリックシフト値「000」から「011」までをComb#0と関連付け、サイクリックシフト値「100」から「111」までをComb#1と関連付ける。
 これにより、無線基地局装置eNBから通知されたサイクリックシフト値に応じて、移動端末装置Uにおいて割当順序を特定できるため、無線基地局装置eNBから移動端末装置UにComb値を通知する必要がなく、割当情報の制御ビット数を削減することが可能となる。なお、ここでは、RPFを1ビットとして説明したが、この構成に限定されるものではない。ユーザ数に応じて制御ビットのビット数は可変される。
 また、割当情報は、RPFやCombに限定されるものではなく、サブキャリアを重ならないように複数のユーザで分配できる構成であれば、どのような情報であってもよい。
 拡散コード生成部33は、ユーザ毎に拡散コードおよび逆拡散コードを生成し、送信部34を介して拡散コードを下りリンクで各ユーザの移動端末装置Uに通知する。拡散コードは、いわゆる直交コードであり、ブロックスプレッディングにより同一シンボルに複数のユーザの復調用リファレンス信号を直交多重させる。例えば、2ユーザ間で復調用リファレンス信号を多重する場合には、直交コードが1ビットで各移動端末装置Uに通知される。
 例えば、一方の移動端末装置Uに直交コード{1、1}が通知され、他方の移動端末装置Uに直交コード{1、-1}が通知される。これにより、図6に示すように、各移動端末装置Uのリファレンス信号にそれぞれ直交コードが掛け合わされ、同一の周波数帯域において複数のユーザのリファレンス信号が多重される。このように、拡散コード生成部33は、各ユーザに対してそれぞれ直交コードを生成して、各ユーザの移動端末装置Uに通知することにより、複数ユーザ間において復調用リファレンス信号を直交化させることが可能となる。なお、ここでは、直交コードを1ビットとして説明したが、この構成に限定されるものではない。ユーザ数に応じて制御ビットのビット数は可変される。
 このように構成された移動端末装置Uにおいては、サイクリックシフト値に応じて複数のアンテナ間で復調用リファレンス信号が直交され、割当情報または直交コードに応じて複数のユーザ間で復調用リファレンス信号が直交される。したがって、複数の移動端末装置Uにおいて在圏セルや送信帯域が異なり、共通のZC系列を用いない場合であっても、復調用リファレンス信号を直交化させることが可能となる。
 なお、上記した移動端末装置Uおよび無線基地局装置eNBの各部は、装置内に組み込まれたCPU(Central Processing Unit)がROM(Read Only Memory)内の各種制御プログラムに従ってRAM(Random Access Memory)内のデータを演算し、通信インターフェース等と協働して処理を実行することにより実現される。
 図9を参照して、移動端末装置による通信制御処理について説明する。図9は、本発明の実施の形態に係る移動端末装置の通信制御処理を示すフローチャートである。なお、移動端末装置は、初期状態において無線基地局装置からサイクリックシフト値、割当情報、拡散コードの通知がされたものとする。
 図9に示すように、復調用リファレンス信号生成部11において、ZC系列を信号系列とする復調用リファレンス信号が生成される(ステップS01)。次に、サイクリックシフト部13において、復調用リファレンス信号がサイクリックシフト値に基づいて移動端末装置Uのアンテナポート毎にサイクリックシフトされる(ステップS02)。このとき、移動端末装置Uの各アンテナポート間で復調用リファレンス信号が直交される。
 次に、多重部16において、復調用リファレンス信号が上りデータ信号と多重されると共に、ディストリビューテッドFDMAまたはブロックスプレッディングの処理がなされる(ステップS03)。このとき、移動端末装置Uは、他ユーザの移動端末装置Uとの間で復調用リファレンス信号が直交される。次に、IFFT部17やCP付加部18において、各種処理がなされて、無線基地局装置eNBに向けて送信される(ステップS04)。
 以上のように、本実施の形態に係る移動端末装置UによればZC系列を用いて復調用リファレンス信号を生成し、復調用リファレンス信号を複数のアンテナポート毎にサイクリックシフトさせ、サイクリックシフトされた複数の上りリファレンス信号を、対応する複数のアンテナポートを介して無線基地局装置eNBに上りリンクで送信する構成を有している。したがって、複数のアンテナポート毎にサイクリックシフトさせることにより、複数のアンテナポート間で復調用リファレンス信号を直交化させて無線基地局装置eNBに多重伝送することが可能となる。
 なお、上記した実施の形態においては、サイクリックシフトにより移動端末装置のアンテナポート間で復調用リファレンス信号を直交化させ、さらに、ディストリビューテッドFDMAやブロックスプレッディングにより複数のユーザ間で復調用リファレンス信号を直交化させる構成としたが、この構成に限定されるものではない。ユーザ間での復調用リファレンス信号の直交が不要であれば、ディストリビューテッドFDMAやブロックスプレッディングを行わない構成としてもよい。
 また、上記した実施の形態においては、ディストリビューテッドFDMAまたはブロックスプレッディングにより複数のユーザ間で復調用リファレンス信号を直交化させる構成としたが、この構成に限定されるものではない。ディストリビューテッドFDMAおよびブロックスプレッディングを組み合わせて複数のユーザ間で復調用リファレンス信号を直交化させる構成としてもよい。
 また、上記した実施の形態において、無線基地局装置から移動端末装置に通知されるサイクリックシフト用の制御ビットは、移動端末装置に対してどのような構成で通知されてもよい。例えば、制御ビットは、PDCCH(Physical Downlink Control Channel)等の制御チャネル、PBCH(Physical Broadcast Channel)等の報知チャネル、PDSCH(Physical Downlink Shared Channel)等のデータ共有チャネル、または上位レイヤで通知される構成としてもよい。
 また、今回開示された実施の形態は、全ての点で例示であってこの実施の形態に制限されるものではない。本発明の範囲は、上記した実施の形態のみの説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
 以上説明したように、本発明は、MIMO伝送において複数のアンテナ間の上りリファレンス信号の直交を実現することができるという効果を有し、特に上りリンクで復調用リファレンス信号を送信する移動端末装置、無線基地局装置および通信制御方法に有用である。
 本出願は、2009年6月23日出願の特願2009-149000、2010年1月6日出願の特願2010-001127及び2010年4月2日出願の特願2010-086034に基づく。これらの内容は、全てここに含めておく。

Claims (27)

  1.  開始位置をシフトさせることで直交される信号系列を用いて上りリファレンス信号を生成するリファレンス信号生成部と、
     前記上りリファレンス信号を複数のアンテナポート毎にサイクリックシフトさせて、前記複数のアンテナポートに対応した前記上りリファレンス信号を前記複数のアンテナポート間で直交するサイクリックシフト部と、
     サイクリックシフトされた前記複数の上りリファレンス信号を、対応する前記複数のアンテナポートを介して無線基地局装置に上りリンクで送信する送信部とを備えたことを特徴とする移動端末装置。
  2.  前記サイクリックシフト部は、基準となるアンテナポートに対するサイクリックシフト値と、前記複数のアンテナポートのそれぞれに対して等間隔に割り当てられるサイクリックシフト値の差分値とを前記無線基地局装置から取得し、基準となる前記サイクリックシフト値および前記差分値に基づいてサイクリックシフトすることを特徴とする請求項1に記載の移動端末装置。
  3.  前記サイクリックシフト部は、前記複数のアンテナポートに対するサイクリックシフト値の複数の割当パターンのうち、前記無線基地局装置から取得したパターン情報に示された割当パターンに基づいてサイクリックシフトすることを特徴とする請求項1に記載の移動端末装置。
  4.  前記サイクリックシフト部は、予め設定された前記複数のアンテナポートに対するサイクリックシフト値の割当パターンに基づいてサイクリックシフトすることを特徴とする請求項1に記載の移動端末装置。
  5.  周波数単位を構成する複数の周波数エレメントを一定の規則で複数のユーザに割り当てる割当情報を前記無線基地局装置から取得し、前記割当情報に基づく前記周波数エレメントの割当により、前記上りリファレンス信号を前記複数のユーザ間で直交する割当部を備えたことを特徴とする請求項1に記載の移動端末装置。
  6.  前記割当情報は、前記周波数単位で多重されるユーザ多重数および一定の規則における割当順序を示す順序情報であることを特徴とする請求項5に記載の移動端末装置。
  7.  前記割当部は、前記ユーザ多重数を上位レイヤで取得し、前記順序情報を下位レイヤで取得することを特徴とする請求項6に記載の移動端末装置。
  8.  前記割当情報は、前記周波数単位で多重されるユーザ多重数であり、
     前記割当部は、前記ユーザ多重数および前記無線基地局装置から取得したサイクリックシフト値に対応した一定の規則における割当順序に基づいて前記周波数エレメントを割り当てることを特徴とする請求項5に記載の移動端末装置。
  9.  複数のユーザ間で直交するように前記上りリファレンス信号を拡散する拡散コードを前記無線基地局装置から取得し、前記拡散コードに基づく前記上りリファレンス信号の拡散により、前記上りリファレンス信号を前記複数のユーザ間で直交する拡散部を備えたことを特徴とする請求項1に記載の移動端末装置。
  10.  前記サイクリックシフト部は、複数のユーザ間で直交するように前記上りのリファレンス信号を拡散する拡散コードを前記無線基地局装置から取得し、前記拡散コードに応じて異なる前記複数のアンテナポートに対するサイクリックシフト値の割当パターンに基づいてサイクリックシフトすることを特徴とする請求項1に記載の移動端末装置。
  11.  前記サイクリックシフト部は、基準となるアンテナポートに対するサイクリックシフト値と、複数のユーザ間で直交するように前記上りのリファレンス信号を拡散する拡散コードとを前記無線基地局装置から取得し、前記拡散コードに基づいて前記複数のアンテナポート毎に、前記複数のアンテナポートに対するサイクリックシフト値の割当パターンを選択し、当該割当パターンにおいて前記基準となるアンテナポートのサイクリックシフト値を基準として前記複数のアンテナポートに対して割り当てられるサイクリックシフト値に基づいてサイクリックシフトすることを特徴とする請求項1に記載の移動端末装置。
  12.  前記サイクリックシフト部は、前記拡散コードに基づいて前記複数のアンテナポート毎に、前記複数のアンテナポートに対するサイクリックシフト値の割当パターンを選択すると共に、当該割当パターンにおいて前記基準となるアンテナポートのサイクリックシフト値を基準として、前記複数のアンテナポートに対してサイクリックシフト値を割り当てる複数の設定条件のうち、前記無線基地局から取得した設定選択情報に示された設定条件、前記基準となるアンテナポートに対するサイクリックシフト値、前記拡散コードに基づいてサイクリックシフトすることを特徴とする請求項11に記載の移動端末装置。
  13.  拡散コードを用いた前記上りリファレンス信号の拡散により、前記上りリファレンス信号を前記複数のユーザ間で直交化させる拡散部を備え、
     前記サイクリックシフト部は、前記無線基地局装置からサイクリックシフト値を取得し、前記サイクリックシフト値に基づいてサイクリックシフトし、
     前記拡散部は、前記無線基地局装置から取得されたサイクリックシフト値に対応づけられた拡散コードを用いて前記リファレンス信号を拡散することを特徴とする請求項1に記載の移動端末装置。
  14.  開始位置をシフトさせることで直交される信号系列を用いて生成された上りリファレンス信号を、移動端末装置の複数のアンテナポート毎にサイクリックシフトさせて、前記複数のアンテナポートに対応した前記上りリファレンス信号を前記複数のアンテナポート間で直交させるサイクリックシフト情報を生成するサイクリックシフト情報生成部と、
     前記サイクリックシフト情報を前記移動端末装置に下りリンクで送信する送信部とを備えたことを特徴とする無線基地局装置。
  15.  前記サイクリックシフト情報は、前記移動端末装置の基準となるアンテナポートに対するサイクリックシフト値および前記複数のアンテナポートのそれぞれに対して等間隔に割り当てられるサイクリックシフト値の差分値であることを特徴とする請求項14に記載の無線基地局装置。
  16.  前記サイクリックシフト情報は、前記移動端末装置の前記複数のアンテナポートに対するサイクリックシフト値の複数の割当パターンのうち一の割当パターンを示すパターン情報であることを特徴とする請求項14に記載の無線基地局装置。
  17.  周波数単位を構成する複数の周波数エレメントを一定の規則で複数のユーザに割り当てることにより前記上りリファレンス信号を前記複数のユーザ間で直交させる割当情報を生成する割当情報生成部を備え、
     前記送信部は、前記割当情報を前記移動端末装置に下りリンクで送信することを特徴とする請求項14に記載の無線基地局装置。
  18.  前記割当情報は、前記周波数単位で多重されるユーザ多重数および一定の規則における割当順序を示す順序情報であることを特徴とする請求項17に記載の無線基地局装置。
  19.  前記送信部は、前記ユーザ多重数を上位レイヤで送信し、前記順序情報を下位レイヤで送信することを特徴とする請求項18に記載の無線基地局装置。
  20.  複数のユーザ間で直交するように前記上りリファレンス信号を拡散させて、前記上りリファレンス信号を前記複数のユーザ間で直交させる拡散コードを生成する拡散コード生成部を備え、
     前記送信部は、前記拡散コードを前記移動端末装置に下りリンクで送信することを特徴とする請求項14に記載の無線基地局装置。
  21.  前記サイクリックシフト情報は、複数のユーザ間で直交するように前記上りリファレンス信号を拡散させて、前記上りリファレンス信号を前記複数のユーザ間で直交させる拡散コードに応じて選択され、異なる前記複数のアンテナポートに対するサイクリックシフト値の割当パターンであることを特徴とする請求項14に記載の無線基地局装置。
  22.  前記サイクリックシフト情報は、複数のユーザ間で直交するように前記上りのリファレンス信号を拡散させると共に、前記複数のアンテナポート毎に前記複数のアンテナポートに対するサイクリックシフト値の割当パターンを選択させる拡散コード、および当該割当パターンにおいて前記移動端末装置の複数のアンテナポートに対するサイクリックシフト値の割当の基準となるアンテナポートに対するサイクリックシフト値であることを特徴とする請求項14に記載の無線基地局装置。
  23.  前記サイクリックシフト情報は、前記拡散コードに基づいて前記移動端末装置の複数のアンテナポート毎に、前記複数のアンテナポートに対するサイクリックシフト値の割当パターンを選択すると共に、当該割当パターンにおいて前記基準となるアンテナポートのサイクリックシフト値を基準として、前記複数のアンテナポートに対してサイクリックシフト値を割り当てる複数の設定条件のうち一の設定条件を示す設定選択情報、前記拡散コード、前記基準となるアンテナポートに対するサイクリックシフト値であることを特徴とする請求項22に記載の無線基地局装置。
  24.  前記サイクリックシフト情報は、前記移動端末装置の複数のアンテナポート毎にサイクリックシフトさせるサイクリックシフト値であって、前記サイクリックシフト値は、複数のユーザ間で直交するように前記上りリファレンス信号を拡散する拡散コードに対応づけられていることを特徴とする請求項14に記載の無線基地局装置。
  25.  移動端末装置が、開始位置をシフトさせることで直交される信号系列を用いて上りリファレンス信号を生成するステップと、
     前記上りリファレンス信号系列を複数のアンテナポート毎にサイクリックシフトさせて、前記複数のアンテナポートに対応した前記上りリファレンス信号を前記複数のアンテナポート間で直交するステップと、
     サイクリックシフトされた前記複数の上りリファレンス信号系列を、対応する前記複数のアンテナポートを介して無線基地局装置に上りリンクで送信するステップとを有することを特徴とする通信制御方法。
  26.  移動端末装置が、周波数単位を構成する複数の周波数エレメントを一定の規則で複数のユーザに割り当てる割当情報を前記無線基地局装置から取得し、前記割当情報に基づく前記周波数エレメントの割当により、前記上りリファレンス信号を前記複数のユーザ間で直交するステップを有することを特徴とする請求項25に記載の通信制御方法。
  27.  移動端末装置が、複数のユーザ間で直交するように前記上りリファレンス信号を拡散する拡散コードを前記無線基地局から取得し、前記拡散コードに基づく前記上りリファレンス信号の拡散により、前記上りリファレンス信号を複数のユーザ間で直交するステップを有することを特徴とする請求項25に記載の通信制御方法。
PCT/JP2010/060620 2009-06-23 2010-06-23 移動端末装置、無線基地局装置および通信制御方法 WO2010150806A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201080028182.3A CN102804629B (zh) 2009-06-23 2010-06-23 移动终端装置、无线基站装置和通信控制方法
RU2012101078/07A RU2510137C2 (ru) 2009-06-23 2010-06-23 Мобильный терминал, базовая радиостанция и способ осуществления связи
AU2010263607A AU2010263607B2 (en) 2009-06-23 2010-06-23 Mobile terminal apparatus, radio base station apparatus and communication control method
EP10792124.9A EP2448162A4 (en) 2009-06-23 2010-06-23 MOBILE TERMINAL DEVICE, WIRELESS BASE STATION DEVICE, AND COMMUNICATION CONTROL METHOD
CA 2765255 CA2765255C (en) 2009-06-23 2010-06-23 Mobile terminal apparatus, radio base station apparatus and communication control method
KR20117030739A KR101345312B1 (ko) 2009-06-23 2010-06-23 이동단말장치, 무선기지국장치 및 통신제어방법
US13/378,679 US9048912B2 (en) 2009-06-23 2010-06-23 Mobile terminal apparatus, radio base station apparatus and communication control method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009149000 2009-06-23
JP2009-149000 2009-06-23
JP2010-001127 2010-01-06
JP2010001127 2010-01-06
JP2010086034A JP5203409B2 (ja) 2009-06-23 2010-04-02 移動端末装置、無線基地局装置および通信制御方法
JP2010-086034 2010-04-02

Publications (1)

Publication Number Publication Date
WO2010150806A1 true WO2010150806A1 (ja) 2010-12-29

Family

ID=43386575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060620 WO2010150806A1 (ja) 2009-06-23 2010-06-23 移動端末装置、無線基地局装置および通信制御方法

Country Status (10)

Country Link
US (1) US9048912B2 (ja)
EP (1) EP2448162A4 (ja)
JP (1) JP5203409B2 (ja)
KR (1) KR101345312B1 (ja)
CN (1) CN102804629B (ja)
AU (1) AU2010263607B2 (ja)
CA (1) CA2765255C (ja)
CL (1) CL2011003243A1 (ja)
RU (1) RU2510137C2 (ja)
WO (1) WO2010150806A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086920A1 (ja) * 2010-01-14 2011-07-21 パナソニック株式会社 無線通信端末装置、無線通信基地局装置及び無線通信方法
WO2012093449A1 (ja) * 2011-01-07 2012-07-12 パナソニック株式会社 送信装置、受信装置、送信方法、及び受信方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102282817B (zh) * 2008-08-19 2014-07-02 韩国电子通信研究院 用于接收和发送应答/无应答信息的方法
EP2448143B1 (en) 2009-06-26 2019-02-27 LG Electronics Inc. Method and apparatus for transmitting reference signals in uplink multiple input multiple output (mimo) transmission
JP2013017016A (ja) * 2011-07-04 2013-01-24 Sharp Corp 基地局装置、移動局装置、通信システムおよび通信方法
CN102984746A (zh) * 2011-09-05 2013-03-20 爱立信(中国)通信有限公司 提高网络中性能的参考信号功率测量和报告
US9300458B2 (en) * 2013-02-05 2016-03-29 Cable Television Laboratories, Inc. Transmission opportunity scheduling
CN105359605B (zh) * 2013-07-25 2019-02-19 华为技术有限公司 带有自组织中继终端的蜂窝网络的基于贪婪算法的自主资源块分配方案的系统和方法
WO2015130059A1 (en) * 2014-02-25 2015-09-03 Samsung Electronics Co., Ltd. Apparatus and method of transmitting and receiving reference signal in wireless communication system using multiple-input and multiple-output
JP7028646B2 (ja) * 2015-11-27 2022-03-02 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
WO2017164789A1 (en) * 2016-03-23 2017-09-28 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for reduction of cubic metric in a concatenated block reference signal design
US11038557B2 (en) 2016-03-31 2021-06-15 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving reference signals in wireless communication
WO2017184058A1 (en) * 2016-04-22 2017-10-26 Telefonaktiebolaget Lm Ericsson (Publ) A radio network node, a wireless device and methods therein for reference signal configuration
JP6877452B2 (ja) * 2016-09-28 2021-05-26 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 無線送信装置、無線受信装置、送信方法及び受信方法
JP7331112B2 (ja) * 2019-01-11 2023-08-22 ソニーグループ株式会社 複数のアンテナパネルを使用するチャネルサウンディング
CN111757330B (zh) * 2019-03-27 2021-12-28 华为技术有限公司 一种用户配对方法及相关设备
JP7201075B2 (ja) * 2019-04-25 2023-01-10 日本電気株式会社 復調装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008193414A (ja) * 2007-02-05 2008-08-21 Nec Corp 無線通信システム、その上りリンクにおけるデータ送信方法、基地局装置及び移動局装置
JP2009004926A (ja) * 2007-06-19 2009-01-08 Nec Corp 移動通信システムにおけるリファレンス信号系列の割当方法および装置
JP2009149000A (ja) 2007-12-21 2009-07-09 Tokai Aluminum Foil Co Ltd 遮熱材及び遮熱方法
JP2010001127A (ja) 2008-06-20 2010-01-07 Fuji Xerox Co Ltd 用紙搬送装置及び画像形成装置
JP2010086034A (ja) 2008-09-29 2010-04-15 Tokyo Electron Ltd オリフィス板及び流量制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7986742B2 (en) * 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
KR101035083B1 (ko) * 2006-04-26 2011-05-19 재단법인서울대학교산학협력재단 다중 셀 통신 시스템에서 자원 이용 방법 및 시스템
MX2009004503A (es) * 2006-11-01 2009-05-13 Qualcomm Inc Metodo y aparato para estructura hibrida de fdm-cdm para canales de control basados en una portadora sencilla.
CA2684364C (en) * 2007-04-30 2014-02-04 Nokia Siemens Networks Oy Coordinated cyclic shift and sequence hopping for zadoff-chu, modified zadoff-chu, and block-wise spreading sequences
US8503375B2 (en) * 2007-08-13 2013-08-06 Qualcomm Incorporated Coding and multiplexing of control information in a wireless communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008193414A (ja) * 2007-02-05 2008-08-21 Nec Corp 無線通信システム、その上りリンクにおけるデータ送信方法、基地局装置及び移動局装置
JP2009004926A (ja) * 2007-06-19 2009-01-08 Nec Corp 移動通信システムにおけるリファレンス信号系列の割当方法および装置
JP2009149000A (ja) 2007-12-21 2009-07-09 Tokai Aluminum Foil Co Ltd 遮熱材及び遮熱方法
JP2010001127A (ja) 2008-06-20 2010-01-07 Fuji Xerox Co Ltd 用紙搬送装置及び画像形成装置
JP2010086034A (ja) 2008-09-29 2010-04-15 Tokyo Electron Ltd オリフィス板及び流量制御装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP TSG RAN WG1 #51BIS R1-080293, 18 January 2008 (2008-01-18), XP050108814, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_51b/Docs/R1-080293.zip> *
3GPP TSG RAN WG1 #57 R1-091772, 8 May 2009 (2009-05-08), XP008148611, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_57/Docs/R1-091772.zip> *
See also references of EP2448162A4

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9025543B2 (en) 2010-01-14 2015-05-05 Panasonic Intellectual Property Corporation Of America Wireless communication terminal apparatus, wireless communication base station apparatus and wireless communication method
WO2011086920A1 (ja) * 2010-01-14 2011-07-21 パナソニック株式会社 無線通信端末装置、無線通信基地局装置及び無線通信方法
JP2016213898A (ja) * 2011-01-07 2016-12-15 サン パテント トラスト 受信装置、受信方法、及び集積回路
US9553750B2 (en) 2011-01-07 2017-01-24 Sun Patent Trust Transmitter, receiver, transmission method, and reception method
US9094955B2 (en) 2011-01-07 2015-07-28 Panasonic Intellectual Property Corporation Of America Transmitter, receiver, transmission method, and reception method
JP5771222B2 (ja) * 2011-01-07 2015-08-26 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 送信装置、受信装置、送信方法、及び受信方法
CN103270713B (zh) * 2011-01-07 2015-10-14 松下电器(美国)知识产权公司 发送装置、接收装置、发送方法以及接收方法
AU2011354040B2 (en) * 2011-01-07 2015-10-29 Sun Patent Trust Transmitter, receiver, transmission method, and reception method
JP2015228659A (ja) * 2011-01-07 2015-12-17 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 通信装置、通信方法、及び集積回路
RU2571420C2 (ru) * 2011-01-07 2015-12-20 Панасоник Интеллекчуал Проперти Корпорэйшн оф Америка Передатчик, приемник, способ передачи и способ приема
WO2012093449A1 (ja) * 2011-01-07 2012-07-12 パナソニック株式会社 送信装置、受信装置、送信方法、及び受信方法
CN103270713A (zh) * 2011-01-07 2013-08-28 松下电器产业株式会社 发送装置、接收装置、发送方法以及接收方法
EP2663000A4 (en) * 2011-01-07 2018-02-28 Sun Patent Trust Transmitter, receiver, transmission method, and reception method
KR101923745B1 (ko) * 2011-01-07 2018-11-29 선 페이턴트 트러스트 송신 장치, 수신 장치, 송신 방법 및 수신 방법
US10251174B2 (en) 2011-01-07 2019-04-02 Sun Patent Trust Transmitter, receiver, transmission method, and reception method
EP3515006A1 (en) * 2011-01-07 2019-07-24 Sun Patent Trust Transmitter and transmission method
EP3734893A1 (en) * 2011-01-07 2020-11-04 Sun Patent Trust Integrated circuit, base station and reception method
US11160076B2 (en) 2011-01-07 2021-10-26 Sun Patent Trust Transmitter, receiver, transmission method, and reception method
US11582082B2 (en) 2011-01-07 2023-02-14 Sun Patent Trust Transmitter, receiver, transmission method, and reception method
US11831483B2 (en) 2011-01-07 2023-11-28 Sun Patent Trust Transmitter, receiver, transmission method, and reception method

Also Published As

Publication number Publication date
KR20120025547A (ko) 2012-03-15
US20120163318A1 (en) 2012-06-28
CN102804629B (zh) 2015-06-24
CA2765255A1 (en) 2010-12-29
CL2011003243A1 (es) 2012-07-20
AU2010263607B2 (en) 2014-02-06
EP2448162A1 (en) 2012-05-02
CN102804629A (zh) 2012-11-28
JP5203409B2 (ja) 2013-06-05
US9048912B2 (en) 2015-06-02
RU2012101078A (ru) 2013-07-27
KR101345312B1 (ko) 2014-01-15
AU2010263607A1 (en) 2012-01-19
CA2765255C (en) 2014-08-26
RU2510137C2 (ru) 2014-03-20
JP2011160396A (ja) 2011-08-18
EP2448162A4 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
JP5203409B2 (ja) 移動端末装置、無線基地局装置および通信制御方法
US9807758B2 (en) Method and apparatus for transmitting reference signal in wireless communication system including relay station
CN101330321B (zh) 用于在移动通信系统中分配参考信号序列的方法和设备
US8755339B2 (en) Method and apparatus for generating a dedicated reference signal
CN105049168B (zh) 在通信系统中发送和接收参考信号的方法和装置
CN106411486B (zh) 一种上行解调导频的发送接收方法及装置
KR20170116601A (ko) 통신 장치 및 통신 방법
US9094065B2 (en) Transmission device and transmission method
US20190123876A1 (en) Method for operating a radio station in a mobile network
JP5237503B2 (ja) 中継局を含む無線通信システムにおける参照信号送信方法及び装置
EP2467985B1 (en) Methods and device for operating a radio station in a mobile network
JP5309254B2 (ja) 無線基地局装置、移動局装置、無線通信方法及び無線通信システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080028182.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792124

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2765255

Country of ref document: CA

Ref document number: 4962/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010263607

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20117030739

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010792124

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010263607

Country of ref document: AU

Date of ref document: 20100623

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012101078

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13378679

Country of ref document: US