WO2010147071A1 - Dispositif de purification de gaz d'échappement pour moteur à gaz - Google Patents

Dispositif de purification de gaz d'échappement pour moteur à gaz Download PDF

Info

Publication number
WO2010147071A1
WO2010147071A1 PCT/JP2010/060017 JP2010060017W WO2010147071A1 WO 2010147071 A1 WO2010147071 A1 WO 2010147071A1 JP 2010060017 W JP2010060017 W JP 2010060017W WO 2010147071 A1 WO2010147071 A1 WO 2010147071A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
oxidation catalyst
gas
gas engine
catalyst
Prior art date
Application number
PCT/JP2010/060017
Other languages
English (en)
Japanese (ja)
Inventor
中園 徹
大坪 弘幸
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Publication of WO2010147071A1 publication Critical patent/WO2010147071A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • F01N13/141Double-walled exhaust pipes or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0215Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/30Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/018Natural gas engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/08Gas passages being formed between the walls of an outer shell and an inner chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/18Structure or shape of gas passages, pipes or tubes the axis of inlet or outlet tubes being other than the longitudinal axis of apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/04Gas-air mixing apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to an exhaust gas purification apparatus for a gas engine that uses a gas fuel such as city gas (natural gas) mainly composed of methane, and more particularly, to a combustion chamber in a cylinder by mixing an air-fuel mixture in advance of air and gas fuel.
  • a gas fuel such as city gas (natural gas) mainly composed of methane
  • the present invention relates to an exhaust emission control device suitable for a premixed compression self-ignition gas engine (HCCI) that is supplied to the engine and that self-ignites by compressing the mixture.
  • HCCI premixed compression self-ignition gas engine
  • the premixed compression self-ignition gas engine can be operated at a higher compression ratio than the spark ignition engine, so that high thermal efficiency is obtained, thereby suppressing the generation of CO and the combustion temperature. By lowering, generation of NOx can be suppressed.
  • unburned methane is discharged at a high concentration in the exhaust gas. Since this unburned methane has a global warming potential 21 times that of CO 2 , it becomes a powerful greenhouse gas even in a small amount.
  • Patent Document 1 In order to remove such unburned methane, conventionally, an exhaust purification device has been developed in which a hydrocarbon oxidation catalyst is arranged in the exhaust path to oxidize and remove unburned methane (Patent Document 1).
  • the activation temperature of the hydrocarbon oxidation catalyst is about 350 ° C. to 370 ° C., but the exhaust gas temperature of the premixed compression auto-ignition gas engine rises only to about 340 ° at most. It is difficult to oxidize and remove hydrocarbons efficiently.
  • the present invention has been made in view of the above problems, and in an exhaust gas purification apparatus for a gas engine using gas fuel mainly composed of methane such as city gas, unburned methane is also efficiently purified together with CO and NOx.
  • the goal is to reduce total greenhouse gas emissions.
  • the present invention provides an exhaust gas purification apparatus for a gas engine that uses gas fuel containing methane as a main component, and an oxidation catalyst capable of oxidizing CO in an exhaust path of the gas engine in order from the exhaust upstream side. And a hydrocarbon oxidation catalyst having a higher methane removal rate than the oxidation catalyst.
  • the oxidation catalyst on the exhaust upstream side is disposed in an exhaust path in a cylinder head of the gas engine or in an exhaust path near the cylinder head.
  • the hydrocarbon oxidation catalyst is disposed in the inner exhaust passage of a double-pipe catalyst case having an inner exhaust passage and an outer exhaust passage, and the outer exhaust passage includes the inner exhaust passage.
  • the exhaust gas after passing is configured to flow.
  • the gas engine is a premixed compression self-ignition type gas engine in which a gas mixture and gas mixture mixed in advance are compressed and ignited in a combustion chamber for combustion.
  • the exhaust gas discharged from the cylinder is first oxidized and removed by the oxidation catalyst on the exhaust upstream side.
  • the exhaust gas temperature rises. Some of the unburned methane is also removed by oxidation.
  • the exhaust gas whose temperature has risen is supplied to the hydrocarbon oxidation catalyst on the downstream side of the exhaust gas, so that the remaining unburned methane having a high reaction temperature is also efficiently oxidized and removed by the hydrocarbon oxidation catalyst.
  • the emission amount of the whole greenhouse gas can be significantly reduced.
  • the oxidation catalyst on the upstream side of the exhaust is disposed in the exhaust path in the cylinder head of the gas engine or in the exhaust path in the vicinity of the cylinder head, the removal efficiency of HC, CO, etc. in the oxidation catalyst is improved.
  • the exhaust gas is repeatedly discharged and stopped from the combustion chamber to the exhaust path by opening and closing the exhaust valve, and the exhaust path or cylinder in the cylinder head that is close to the exhaust valve
  • the exhaust gas discharged in the exhaust stroke temporarily stays in the exhaust path near the head until the next exhaust stroke.
  • the purification performance can be improved by disposing the oxidation catalyst at the position where it temporarily stays. Further, since the exhaust gas immediately after being discharged from the combustion chamber accumulates, the temperature is high and the activation of the catalyst is promoted.
  • the hydrocarbon oxidation catalyst When the hydrocarbon oxidation catalyst is disposed in the inner exhaust passage of the double-pipe catalyst case having the inner exhaust passage and the outer exhaust passage, the temperature rises through the hydrocarbon oxidation catalyst. As the exhaust gas flows along the outer peripheral surface of the hydrocarbon oxidation catalyst, the hydrocarbon oxidation catalyst is thermally insulated from the outside, and the temperature of the hydrocarbon oxidation catalyst can be kept high, thereby maintaining high purification performance. it can. In particular, the hydrocarbon oxidation catalyst through which the exhaust gas passes has a higher temperature at the center than at the outer periphery, but when the double-pipe catalyst case is employed, the temperature of the hydrocarbon oxidation catalyst as a whole becomes substantially uniform. Can be high.
  • a premixed compression self-ignition type gas engine in which a gas mixture in which gas fuel and air are premixed is compressed and ignited in a combustion chamber and burned, NOx is reduced due to the low combustion temperature.
  • the exhaust gas whose temperature has been raised by the oxidation catalyst is supplied to the hydrocarbon oxidation catalyst while effectively reducing the generation of NO, and the activation can be promoted to remove unburned methane efficiently.
  • FIG. 1 is a schematic plan view of a premixed compression self-ignition gas engine equipped with an exhaust purification device according to a first embodiment of the present invention. It is a simplified perspective view of the exhaust manifold of the gas engine of FIG. It is the III-III cross-sectional enlarged view of FIG. It is the IV-IV cross-sectional enlarged view of FIG. It is a figure which shows the relationship between the catalyst temperature of a hydrocarbon oxidation catalyst, and a hydrocarbon removal rate. It is a figure which shows the relationship between NOx density
  • 3 is a schematic plan view of a premixed compression self-ignition gas engine according to a second embodiment of the present invention.
  • FIG. 1 to 4 show a premixed compression self-ignition type gas engine equipped with an exhaust emission control device according to a first embodiment of the present invention.
  • FIG. 1 is a schematic plan view of the gas engine
  • FIG. 1 is a perspective view of an exhaust device of a gas engine
  • FIG. 3 is an enlarged view of a cross section taken along the line III-III of FIG. 1, and FIG.
  • the first embodiment will be described with reference to these drawings.
  • the cylinder head 2 is fastened to the upper end surface of the engine body such as the cylinder block 1 of the gas engine, and the one end surface of the cylinder head 2 is fastened.
  • An intake manifold 3 is attached, and an exhaust manifold 4 is attached to the other end surface of the cylinder head 2.
  • the gas engine is an in-line four-cylinder engine.
  • the cylinder block 1 four cylinders C are arranged on the same crankshaft, and the cylinder head 2 has an opening in the combustion chamber of each cylinder C.
  • An intake port 10 (only part of which is indicated by a symbol) and an exhaust port 11, an intake passage 12 communicating with each intake port 10, and an exhaust passage 13 communicating with each exhaust port 11 are formed.
  • the intake manifold 3 includes four intake branch pipes 15 communicating with the intake passages 12 of the cylinder head 2 and an intake main pipe 16 that collects the intake branch pipes 15. It is connected to a supply source of city gas mainly composed of methane and an air supply source via a mixer 17 that mixes air and gas fuel.
  • the exhaust manifold 4 includes four exhaust branch pipes 20 respectively communicating with the respective exhaust passages 13 in the cylinder head 2 and exhaust main pipes 21 for collecting exhaust gases from the respective exhaust branch pipes 20.
  • the exhaust branch pipe 20 is integrally connected to each other by a pair of flanges 23 and 24, and the flanges 23 and 24 are fixed to the exhaust main pipe 21 and the cylinder head 2, respectively.
  • An oxidation catalyst 30 is inserted into each exhaust branch pipe 20 and fixed by appropriate fixing means.
  • the oxidation catalyst 30 is a general oxidation catalyst. For example, platinum or palladium is supported on an alumina carrier having a honeycomb structure.
  • a double-pipe catalyst case 25 is connected to the exhaust downstream end of the exhaust main pipe 21.
  • the catalyst case 25 includes an inner cylindrical wall 27 and an outer cylindrical wall 26 disposed on the radially outer side of the inner cylindrical wall 27 via an annular space.
  • An inner exhaust passage 27 a is formed in the inner cylindrical wall 27, and an annular outer exhaust passage 26 a is formed between the inner cylindrical wall 27 and the outer cylindrical wall 26.
  • the exhaust upstream end of the inner exhaust passage 27a communicates with the exhaust main pipe 21, and the exhaust downstream end communicates with the outer exhaust passage 26a.
  • a hydrocarbon oxidation catalyst 31 having a higher methane removal rate than the oxidation catalyst 30 is disposed in the inner exhaust passage 27a.
  • An exhaust pipe 35 is connected to a portion of the outer cylindrical wall 26 on the exhaust main pipe 21 side, and an exhaust muffler 36 is connected to the exhaust downstream end of the exhaust pipe 35 as shown in FIG.
  • the hydrocarbon oxidation catalyst 31 has a higher methane removal rate than the oxidation catalyst 30.
  • the basic structure is a structure in which platinum and palladium are supported on a silica support, but the amount of the platinum and palladium supported is large, so that the dispersibility of noble metals is high and a large amount of methane is purified. it can.
  • the horizontal axis indicates the catalyst temperature (° C.), and the vertical axis indicates the hydrocarbon removal rate.
  • the hydrocarbon removal rate increases as the catalyst temperature increases, and is 350 ° C. to 380 ° C.
  • the removal rate is about 100%. That is, the activation temperature is 350 ° C. to 380 ° C.
  • FIG. 6 is a graph in which the horizontal axis represents the amount of NOx generated, the upper stage of the vertical axis represents the CO emissions, the middle stage represents the greenhouse gas emissions, and the lower stage represents the exhaust gas temperature.
  • the horizontal axis represents the amount of NOx generated
  • the upper stage of the vertical axis represents the CO emissions
  • the middle stage represents the greenhouse gas emissions
  • the lower stage represents the exhaust gas temperature.
  • FIG. 7 is a graph showing changes in CO 2 emissions and greenhouse gas emissions due to differences in ignition methods and the presence or absence of catalyst placement.
  • the leftmost graph E 0 is a spark ignition gas when no catalyst is placed.
  • center graph E1 is a premixed compression auto-ignition type gas engine when only the hydrocarbon oxidation catalyst 31 is arranged in the exhaust path
  • right end graph E2 is the exhaust upstream side of the exhaust path as shown in FIG. That is, when the oxidation catalyst 30 in the exhaust branch pipe 20 is disposed and the hydrocarbon oxidation catalyst 31 is disposed in the catalyst case 25 at the exhaust downstream side of the exhaust path, that is, at the downstream end of the exhaust main pipe 21, It is an ignition gas engine.
  • the exhaust gas discharged from the combustion chamber of each cylinder C to each exhaust passage 13 of the cylinder head 2 passes through the oxidation catalyst 30 in each exhaust branch pipe 20, thereby oxygenated carbon (CO). And some hydrocarbons (HC) are removed by oxidation, and the exhaust gas temperature rises due to the heat of oxidation reaction.
  • the lower white triangle ⁇ is the inlet temperature of each oxidation catalyst 30, and the white square ⁇ is the outlet temperature of each oxidation catalyst 30.
  • the exhaust temperature rises by about 40 ° C. from around 330 ° C. to 340 ° C. to around 380 ° C. of the white square ⁇ .
  • the exhaust gas that has risen to about 380 ° C. gathers from each exhaust branch pipe 20 into the exhaust main pipe 21 and enters the inner exhaust passage 27a of the catalyst case 25.
  • unburned methane (CH 4 ) is oxidized and removed to approximately zero.
  • the exhaust gas temperature rises by about 50 ° C. from around 380 ° C. indicated by the white square ⁇ in the lower part of FIG. 6 to around 430 ° C.
  • the exhaust gas that has risen to around 430 ° C. flows in the outer exhaust passage 26a of the catalyst case 25, thereby insulating the hydrocarbon catalyst 31 in the inner exhaust passage 27a from the outside air, and the hydrocarbon oxidation catalyst The temperature drop due to the heat radiation of 31 is prevented.
  • the exhaust gas flowing through the outer exhaust passage 26a passes through the exhaust pipe 35 and the exhaust muffler 36 and is discharged to the outside air.
  • the spark ignition type gas engine is not lean combustion and the combustion temperature is high, so the amount of unburned methane is relatively small, while the CO 2 emission is The amount is large.
  • the center graph E1 As shown in the center graph E1, when only the hydrocarbon oxidation catalyst disposed in the catalyst case 25 having a double-pipe structure is provided, it burns with high thermal efficiency, so the CO 2 emission amount is a spark ignition type gas. Although it is reduced compared to the engine, the low exhaust temperature results in a low removal rate of unburned methane. Therefore, the total greenhouse gas emission is almost the same as that of a spark ignition type gas engine.
  • the oxidation catalyst 30 in each upstream exhaust branch pipe 21 oxidizes and removes CO and some HC and the like, and the downstream carbonization is performed in a state where the exhaust gas temperature has risen.
  • the hydrogen oxidation catalyst 31 By passing through the hydrogen oxidation catalyst 31, activation of the hydrocarbon oxidation catalyst 31 is promoted, and unburned methane can be removed until almost O, as shown in the rightmost graph E2 of FIG.
  • unburned methane whose global warming potential is 21 times that of CO 2 , can be removed to nearly zero.
  • the effect gas emission amount can be greatly reduced as compared with the central graph E1.
  • FIG. 8 shows a premixed compression self-ignition type gas engine according to the second embodiment of the present invention.
  • the length of each exhaust branch pipe 20 and the arrangement state of the exhaust upstream side oxidation catalyst 30 in each exhaust branch pipe 20 are shown.
  • the structure is different from the structure shown in FIGS. 1 to 4, and the other structure is the same as the structure shown in FIGS. 1 to 4, and the same components are denoted by the same reference numerals.
  • each exhaust branch pipe 20 is made shorter than that in the case of FIG. 1, and the end portion of each oxidation catalyst 30 on the exhaust downstream side projects into the exhaust main pipe 21. I am letting.
  • each oxidation catalyst 30 can be activated more efficiently.
  • the exhaust upstream side oxidation catalyst 30 is disposed in the exhaust branch pipe 20.
  • the exhaust in the cylinder head 2 in FIG. If the passage 13 has many straight portions and can be inserted with a certain length of the oxidation catalyst 30, the exhaust upstream-side oxidation catalyst 30 is disposed in the exhaust passage 13 in the cylinder head 2 closest to the combustion chamber. May be.
  • the present invention is optimal for a premixed compression self-ignition gas engine, but can also be applied to a spark ignition type gas engine, particularly a gas engine in which the exhaust temperature does not become so high. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

La présente invention se rapporte à un dispositif de purification de gaz d'échappement pour moteur à gaz à l'aide d'un combustible gazeux contenant du méthane imbrûlé comme composant principal. L'invention se rapporte en particulier à un dispositif de purification de gaz approprié pour un moteur à gaz de type allumage par compression de charge homogène dans lequel un mélange de combustible gazeux prémélangé et d'air est comprimé, s'allume automatiquement, et est brûlé dans une chambre de combustion. Dans un passage d'échappement du moteur à gaz, un catalyseur d'oxydation (30) et un catalyseur d'oxydation d'hydrocarbures (31) qui a un taux de retrait de méthane plus élevé, etc., que le catalyseur d'oxydation (30) sont agencés séquentiellement depuis le côté amont de l'échappement. Par exemple, dans un moteur à cylindres multiples, le catalyseur d'oxydation (30) est agencé dans chaque tuyau de dérivation d'échappement (20) d'une tubulure d'échappement (4) qui comporte les tuyaux de dérivation d'échappement (20), reliés chacun à une chambre de combustion de chaque cylindre. Le catalyseur d'oxydation d'hydrocarbures (31) est agencé dans un passage d'échappement intérieur (27) d'un boîtier de catalyseur (25) ayant une structure double tuyau reliée à une partie côté aval de l'échappement d'un tuyau d'échappement principal (21) de la tubulure d'échappement (4).
PCT/JP2010/060017 2009-06-16 2010-06-14 Dispositif de purification de gaz d'échappement pour moteur à gaz WO2010147071A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-143244 2009-06-16
JP2009143244A JP2011001829A (ja) 2009-06-16 2009-06-16 ガスエンジンの排気浄化装置

Publications (1)

Publication Number Publication Date
WO2010147071A1 true WO2010147071A1 (fr) 2010-12-23

Family

ID=43356389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060017 WO2010147071A1 (fr) 2009-06-16 2010-06-14 Dispositif de purification de gaz d'échappement pour moteur à gaz

Country Status (2)

Country Link
JP (1) JP2011001829A (fr)
WO (1) WO2010147071A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130174A (ja) * 2011-12-22 2013-07-04 Osaka Gas Co Ltd 副室式エンジン
EP2942504A1 (fr) 2014-05-09 2015-11-11 Winterthur Gas & Diesel AG Moteur à combustion interne à piston élévateur, traitement des gaz d'échappement, et procédé de fonctionnement d'un moteur à combustion interne à piston élévateur
EP3015679A1 (fr) 2014-10-31 2016-05-04 Winterthur Gas & Diesel AG Systeme d'alimentation en gaz et cylindre pour un moteur a combustion interne a piston elevateur, moteur a combustion interne a piston elevateur, ainsi que procede de fonctionnement d'un moteur a combustion interne a piston elevateur
EP3015698A1 (fr) 2014-10-31 2016-05-04 Winterthur Gas & Diesel AG Système d'alimentation en gaz équipé d'une isolation de tige et cylindre pour un moteur à combustion interne à piston élévateur, moteur à combustion interne à piston élévateur, ainsi que procédé de fonctionnement d'un moteur à combustion interne à piston élévateur
EP3015699A1 (fr) 2014-10-31 2016-05-04 Winterthur Gas & Diesel AG Système d'alimentation en gaz équipé d'un système de contrôle et cylindre pour un moteur à combustion interne à piston élévateur, moteur à combustion interne à piston élévateur, ainsi que procédé de fonctionnement d'un moteur à combustion interne à piston élévateur
WO2016124337A1 (fr) * 2015-02-05 2016-08-11 Man Diesel & Turbo Se Moteur à combustion interne et procédé permettant de faire fonctionner ledit moteur
EP3095993A1 (fr) 2015-05-19 2016-11-23 Winterthur Gas & Diesel AG Procede de fonctionnement d'un gros moteur diesel, utilisation d'un tel procede et gros moteur diesel
EP3109444A1 (fr) 2015-06-26 2016-12-28 Winterthur Gas & Diesel AG Procédé de fonctionnement à faible charge pour faire fonctionner un moteur à combustion interne à piston alternatif, ainsi que moteur correspondant
EP3121428A1 (fr) 2015-05-19 2017-01-25 Winterthur Gas & Diesel AG Procede de fonctionnement d'un gros moteur diesel, utilisation d'un tel procede et gros moteur diesel
EP3147477A1 (fr) 2015-09-23 2017-03-29 Winterthur Gas & Diesel AG Système d'alimentation en gaz et chemise de cylindre pour un moteur à combustion interne à piston élévateur, moteur à combustion interne à piston élévateur, ainsi que procédé de fonctionnement d'un moteur à combustion interne à piston élévateur

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012093449A1 (fr) 2011-01-07 2012-07-12 パナソニック株式会社 Émetteur, récepteur, procédé d'émission et procédé de réception
DE102012021778B4 (de) * 2012-11-06 2016-03-10 Mtu Friedrichshafen Gmbh Gemischaufgeladener Gasmotor und Verfahren zur Kompensation von Liefergradabweichungen in einem gemischaufgeladenen Gasmotor
GB2518360B (en) 2013-09-17 2018-01-24 Jaguar Land Rover Ltd Exhaust treatment apparatus and method
JP2022175502A (ja) * 2021-05-13 2022-11-25 日立造船株式会社 排気処理装置、エンジンシステムおよび排気処理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958716U (ja) * 1982-10-13 1984-04-17 東京瓦斯株式会社 メタンを主成分とする天然ガスを燃料とした2サイクルガスエンジンの排気ガス処理装置
JPH0725212U (ja) * 1993-09-30 1995-05-12 株式会社小松製作所 内燃機関の排気ガス浄化装置
JPH1089054A (ja) * 1996-09-19 1998-04-07 Toyota Motor Corp ディーゼル機関の排気浄化装置
JP2000213385A (ja) * 1999-01-21 2000-08-02 Osaka Gas Co Ltd 予混合圧縮自着火エンジンの自着火タイミング制御方法
JP2003120260A (ja) * 2001-10-18 2003-04-23 Hino Motors Ltd 排気浄化装置
JP2006125269A (ja) * 2004-10-28 2006-05-18 Hino Motors Ltd 排気浄化装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958716U (ja) * 1982-10-13 1984-04-17 東京瓦斯株式会社 メタンを主成分とする天然ガスを燃料とした2サイクルガスエンジンの排気ガス処理装置
JPH0725212U (ja) * 1993-09-30 1995-05-12 株式会社小松製作所 内燃機関の排気ガス浄化装置
JPH1089054A (ja) * 1996-09-19 1998-04-07 Toyota Motor Corp ディーゼル機関の排気浄化装置
JP2000213385A (ja) * 1999-01-21 2000-08-02 Osaka Gas Co Ltd 予混合圧縮自着火エンジンの自着火タイミング制御方法
JP2003120260A (ja) * 2001-10-18 2003-04-23 Hino Motors Ltd 排気浄化装置
JP2006125269A (ja) * 2004-10-28 2006-05-18 Hino Motors Ltd 排気浄化装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130174A (ja) * 2011-12-22 2013-07-04 Osaka Gas Co Ltd 副室式エンジン
EP2942504A1 (fr) 2014-05-09 2015-11-11 Winterthur Gas & Diesel AG Moteur à combustion interne à piston élévateur, traitement des gaz d'échappement, et procédé de fonctionnement d'un moteur à combustion interne à piston élévateur
EP3015679A1 (fr) 2014-10-31 2016-05-04 Winterthur Gas & Diesel AG Systeme d'alimentation en gaz et cylindre pour un moteur a combustion interne a piston elevateur, moteur a combustion interne a piston elevateur, ainsi que procede de fonctionnement d'un moteur a combustion interne a piston elevateur
EP3015698A1 (fr) 2014-10-31 2016-05-04 Winterthur Gas & Diesel AG Système d'alimentation en gaz équipé d'une isolation de tige et cylindre pour un moteur à combustion interne à piston élévateur, moteur à combustion interne à piston élévateur, ainsi que procédé de fonctionnement d'un moteur à combustion interne à piston élévateur
EP3015699A1 (fr) 2014-10-31 2016-05-04 Winterthur Gas & Diesel AG Système d'alimentation en gaz équipé d'un système de contrôle et cylindre pour un moteur à combustion interne à piston élévateur, moteur à combustion interne à piston élévateur, ainsi que procédé de fonctionnement d'un moteur à combustion interne à piston élévateur
WO2016124337A1 (fr) * 2015-02-05 2016-08-11 Man Diesel & Turbo Se Moteur à combustion interne et procédé permettant de faire fonctionner ledit moteur
US10876449B2 (en) 2015-02-05 2020-12-29 Man Energy Solutions Se Internal combustion engine and method for operating same
EP3095993A1 (fr) 2015-05-19 2016-11-23 Winterthur Gas & Diesel AG Procede de fonctionnement d'un gros moteur diesel, utilisation d'un tel procede et gros moteur diesel
EP3121428A1 (fr) 2015-05-19 2017-01-25 Winterthur Gas & Diesel AG Procede de fonctionnement d'un gros moteur diesel, utilisation d'un tel procede et gros moteur diesel
EP3109444A1 (fr) 2015-06-26 2016-12-28 Winterthur Gas & Diesel AG Procédé de fonctionnement à faible charge pour faire fonctionner un moteur à combustion interne à piston alternatif, ainsi que moteur correspondant
EP3147477A1 (fr) 2015-09-23 2017-03-29 Winterthur Gas & Diesel AG Système d'alimentation en gaz et chemise de cylindre pour un moteur à combustion interne à piston élévateur, moteur à combustion interne à piston élévateur, ainsi que procédé de fonctionnement d'un moteur à combustion interne à piston élévateur

Also Published As

Publication number Publication date
JP2011001829A (ja) 2011-01-06

Similar Documents

Publication Publication Date Title
WO2010147071A1 (fr) Dispositif de purification de gaz d'échappement pour moteur à gaz
ES2754356T3 (es) Método de reducción de óxidos de nitrógeno, monóxido de carbono e hidrocarburos en los gases de gases de escape de los motores de combustión interna
US7644578B2 (en) Vehicle exhaust aftertreatment system
US7293409B2 (en) Process and system for improving combustion and exhaust aftertreatment of motor vehicle engines
US7490463B2 (en) Process and system for removing soot from particulate filters of vehicle exhaust systems
WO2012104894A1 (fr) Dispositif de brûleur pour augmentation de la température des gaz d'échappement
KR20120017018A (ko) 디젤 후처리 시스템
WO2008150370A1 (fr) Système de moteur stœchiométrique utilisant des gaz d'échappement récupérés
US10934912B2 (en) Method for the exhaust aftertreatment of an internal combustion engine and exhaust aftertreatment system
JP2013087770A (ja) 煤煙フィルター再生システム、及びその方法
US7805931B2 (en) Self-sustaining oxy-exothermal filter regeneration system
JP4538429B2 (ja) ディーゼルエンジンの排気装置
US7204082B1 (en) System for combustion of reformate in an engine exhaust stream
US9797287B2 (en) Ruthenium based catalysts for NOx reduction
RU2591749C2 (ru) Установка риформинга топлива
JP5620696B2 (ja) 排気浄化装置
JP2005127260A (ja) 内燃機関の排気浄化装置
MX2023002871A (es) Aparato, sistema y metodo para oxidar metano en un escape de motor de quemado pobre.
KR101427933B1 (ko) 내연 기관의 촉매 장치 및 이를 구비한 배기 가스 정화 장치
KR100763411B1 (ko) 다중배열형 디젤 산화/환원 촉매변환장치
WO2012137247A1 (fr) Moteur à combustion interne équipé d'un appareil brûleur
Doornbos et al. Comparison of Lab Versus Engine Tests In the Development of a Highly Efficient Ammonia Formation Catalyst for a Passive SCR System
KR102385201B1 (ko) 저공해 가스엔진히트펌프 시스템
JP2006037817A (ja) 内燃機関
JP3552562B2 (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10789446

Country of ref document: EP

Kind code of ref document: A1