WO2010146959A1 - カムシャフト装置及びこれを備えたエンジン、並びにカムシャフト装置の製造方法 - Google Patents

カムシャフト装置及びこれを備えたエンジン、並びにカムシャフト装置の製造方法 Download PDF

Info

Publication number
WO2010146959A1
WO2010146959A1 PCT/JP2010/058439 JP2010058439W WO2010146959A1 WO 2010146959 A1 WO2010146959 A1 WO 2010146959A1 JP 2010058439 W JP2010058439 W JP 2010058439W WO 2010146959 A1 WO2010146959 A1 WO 2010146959A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
camshaft
divided
support frame
divided body
Prior art date
Application number
PCT/JP2010/058439
Other languages
English (en)
French (fr)
Inventor
和生 濱田
弘 上野
功雄 臼杵
邦夫 柳井
寛規 平岡
康太郎 山下
寛 佐藤
尚明 池田
良 大西
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Priority to US13/322,493 priority Critical patent/US20120073533A1/en
Priority to CN2010800266908A priority patent/CN102459825A/zh
Priority to EP10789334A priority patent/EP2444600A4/en
Publication of WO2010146959A1 publication Critical patent/WO2010146959A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L2001/0476Camshaft bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • F01L2001/0537Double overhead camshafts [DOHC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49293Camshaft making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/21Elements
    • Y10T74/2101Cams

Definitions

  • the present invention relates to a camshaft device mounted on a cylinder head of an engine, an engine equipped with the camshaft device, and a camshaft device manufacturing method.
  • An engine used for an automobile or the like is provided with a camshaft for opening / closing an intake / exhaust valve.
  • a camshaft is rotatably supported via a plurality of bearings attached to the upper part in the engine.
  • a bearing for supporting a camshaft a sliding bearing (for example, see Patent Document 1), a rolling bearing such as a deep groove ball bearing or a needle bearing (for example, see Patent Document 2) is used.
  • a bearing that supports the camshaft is fitted in a support hole provided in the engine.
  • the support hole is divided in half from an upwardly open semicircular recess formed in the upper part of the cylinder head and a downwardly open semicircular recess formed in a cap member bolted to the cylinder head. It is said that.
  • the plurality of support holes are formed by matching the semicircular recesses of the plurality of cap members with the plurality of semicircular recesses formed in the cylinder head, and fixing the cap members to the cylinder head with bolts. Is formed.
  • a slide bearing When a slide bearing is used as a bearing for supporting the camshaft, a slight gap is formed between the outer peripheral surface of the slide bearing and the inner peripheral surface of the support hole, so that the roundness of the plurality of support holes varies.
  • the sliding bearing can be rotated in the support hole even if the sliding bearing is low or the coaxiality is low, but it takes a long time until the sliding bearing is adapted to rotate smoothly.
  • the rotational torque is larger than that of the rolling bearing and noise is easily generated.
  • the rolling bearing since the rolling bearing has a smaller rotational resistance than the sliding bearing, it is considered that the rotational torque can be easily reduced if it is used as a bearing that supports the camshaft.
  • the rolling bearing is tightly tightened by the inner peripheral surface of the support hole, so if the misalignment between the rolling bearings becomes large due to the low coaxiality of the multiple support holes, the internal clearance of the rolling bearing becomes appropriate. In some cases, the rotational torque may increase.
  • one of the objects of the present invention is a camshaft device capable of reducing the rotational torque of a rolling bearing that rotatably supports the camshaft, an engine including the camshaft device, and the camshaft. It is to provide a method for manufacturing a device.
  • a camshaft device is mounted on a camshaft fitted with a cam, a plurality of rolling bearings attached to the camshaft with an interval in the axial direction, and a cylinder head of an engine. And a plurality of support holes on which the rolling bearings are fitted on the same axis, and a support frame that rotatably supports the camshaft via the rolling bearings fitted to the support holes,
  • the support frame is configured by connecting a plurality of divided bodies, In the plurality of divided bodies, a first divided body in which a plurality of first recesses constituting half of each of the support holes is integrally formed and a plurality of second recesses constituting the other half of each of the support holes are integrated. And the second divided body formed in the above.
  • An engine according to an aspect of the present invention is formed by connecting the above-described camshaft device to an upper surface portion of a cylinder case.
  • the first divided body and the second divided body in which the first and second recesses are not formed are temporarily assembled.
  • the rotational torque and vibration of the camshaft can be reduced.
  • FIG. 1 is a perspective view of a camshaft device according to a first embodiment of the present invention. It is a disassembled perspective view of the camshaft device and the cylinder head. It is a top view which shows the support frame of a camshaft apparatus.
  • FIG. 6 is a view taken along arrow VI-VI in FIG. 3. VV cross-sectional view of FIG. It is a top view which shows the support frame of the camshaft apparatus which concerns on the 2nd Embodiment of this invention.
  • FIG. 7 is a cross-sectional view taken along arrow VII-VII in FIG. 6. It is a perspective view of a camshaft device concerning a 3rd embodiment of the present invention.
  • FIG. 11 is a partial plan view of the camshaft device of FIG. 10. It is a disassembled perspective view of the camshaft apparatus and cylinder head which concern on the 6th Embodiment of this invention. It is a disassembled perspective view of the camshaft apparatus and cylinder head which concern on the 7th Embodiment of this invention. It is a disassembled perspective view of the camshaft apparatus and cylinder head which concern on the 8th Embodiment of this invention.
  • FIG. 1 is a perspective view showing a camshaft device of the present invention
  • FIG. 2 is an exploded perspective view of the camshaft device.
  • the camshaft device 10 includes a camshaft 11 and a support frame 13 that rotatably supports the camshaft 11 via a rolling bearing 12.
  • two camshaft devices 10 are arranged side by side and are mounted on the cylinder head 15 of the DOHC 4-cycle engine 14.
  • the camshaft 11 of each camshaft device 10 includes a shaft body 17 and a plurality of cams 18 provided on the shaft body 17 at intervals in the axial direction.
  • Four cams 18 of this embodiment are provided in the axial direction, with two cams 18 as one set.
  • a toothed pulley 19 is attached to one end of the camshaft 11 in the axial direction, and power from a crankshaft (not shown) is transmitted to the toothed pulley 19 via a timing belt.
  • a plurality of rolling bearings 12 are attached to the shaft body 17. Specifically, the rolling bearings 12 are respectively attached to a total of five locations between the two cams 18 in each set and the end of the shaft body 17 on the toothed pulley 19 side.
  • the rolling bearing 12 is, for example, a deep groove ball bearing, a needle bearing, or the like, and includes annular inner and outer rings and rolling elements.
  • the inner ring and the outer ring of the present embodiment are not the split type (half-split type) but an annular integrated type.
  • an integral type as the inner and outer rings, it is possible to prevent the occurrence of vibration and noise due to the rolling elements passing through the dividing surface as in the divided type inner and outer rings.
  • the above-described cam 18 is not formed integrally with the shaft body 17 but is formed as a separate part, and is attached by fitting to the outer peripheral surface of the shaft body 17. By using such a cam 18, even the rolling bearing 12 having an integrated inner and outer ring can be attached to the shaft body 17 together with the cam 18.
  • the rolling bearing 12 may be one in which the inner ring is omitted and the shaft body 17 itself is used as the inner ring. Further, the rolling bearing 12 may be attached between each set of cams 18.
  • FIG. 3 is a plan view showing the support frame 13 of the camshaft device 10
  • FIG. 4 is a view taken along arrow VI-VI in FIG. 3
  • FIG. 5 is a cross-sectional view taken along line VV in FIG.
  • the support frame 13 is made of an aluminum alloy or cast iron.
  • the support frame 13 includes a pair of side wall portions 23 arranged along the axis of the camshaft 11 and a plurality of support wall portions 24 laid between the pair of side wall portions 23, in plan view. It is formed in a ladder structure (ladder structure).
  • a plurality of support holes 25 for fitting the rolling bearings 12 are formed on each support wall 24 on the same axis.
  • the same number of five support wall portions 24 (support holes 25) as the rolling bearings 12 are provided.
  • the support frame 13 has a vertically divided structure. Specifically, as shown in FIG. 2, the support frame 13 is configured by connecting an upper first divided body 27 and a lower second divided body 28 to each other.
  • the side wall part 23 and the support wall part 24 of the eaves support frame 13 are each divided into two vertically, and the support hole 25 formed in the support wall part 24 is also divided into two vertically. Therefore, as shown in FIG. 4, the support hole 25 includes a lower open semicircular arc-shaped recess (first recess) 29 formed in the upper first divided body 27 and a lower second divided body 28. And a semicircular arc-shaped concave portion (second concave portion) 30 having an open top shape.
  • the first divided body 27 and the second divided body 28 have positioning pins 31 (see FIGS. 1 and 2) provided at appropriate positions so that the first concave portion 29 and the second concave portion 30 are properly aligned. ) Are positioned relative to each other.
  • the positioning pin 31 protrudes from one mating surface of the first and second divided bodies 27 and 28 and is inserted into a positioning hole (not shown) formed in the other mating surface. Therefore, the positioning pins 31 and the positioning holes constitute positioning means for positioning the first and second divided bodies 27 and 28.
  • bolt insertion holes 34 are formed in the vicinity of the intersections between the one side wall portion 23 and each support wall portion 24. Further, in the other side wall portion 23, a bolt insertion hole 34 is also formed at an intermediate position between the support wall portion 24 and the support wall portion 24 adjacent in the axial direction. A bolt insertion hole 34 is also formed in the vicinity of the intersection with the other side wall portion 23 in the support wall portion 24 arranged at the end portion (right end portion) on one side in the axial direction.
  • the first divided body 27 and the second divided body 28 include a bolt 36A inserted through each bolt insertion hole 34 and a nut member 36B having a female screw into which the bolt 36A is screwed. Are connected to each other by a connecting tool (connecting means) 36.
  • the bolts 36 ⁇ / b> A inserted into the respective bolt insertion holes 34 are screwed into female threads formed in the cylinder head 15, and the first and second divided bodies 27 and 28 are fastened to the cylinder head 15 together.
  • the nut member 36B is constituted by the cylinder head 15 itself.
  • the connector 36 may be configured to be fastened by a pin such as a press-fit pin or a ratchet pin.
  • Each bolt insertion hole 34 is formed of a material having higher rigidity than the support frame 13, for example, steel when the support frame 13 is formed of a light alloy such as an aluminum alloy or a magnesium alloy.
  • the cylindrical body 38 is fixed by press fitting.
  • the cylindrical body 38 has a length that extends over the entire length of the bolt insertion hole 34 and is larger in diameter than the head of the bolt 36 ⁇ / b> A and the washer 36 ⁇ / b> C, and is configured to receive a fastening force by the coupling tool 36. Yes.
  • the cylindrical body 38 may be fixed to the support frame 13 by casting together when the support frame 13 is molded.
  • each support frame 13 of the two camshaft devices 10 the side wall portion 23 disposed on the inner side of the engine 14 extends over both the first and second divided bodies 27 and 28.
  • An opening 40 is formed in the opening. The opening 40 can reduce the weight of the support frame 13.
  • each support frame 13 it is possible to form a similar opening 40 in the side wall 23 on the outside of the engine. However, since oil in the engine may leak from the opening 40, It is more preferable to form the opening 40 only in the side wall 23 on the engine inner side as in the embodiment. However, when a cover that covers the outside of the support frame 13 is provided separately, there is no problem even if the opening 40 is formed in the side wall 23 on the outside of the engine.
  • the first and second divided bodies 27 and 28 of the support frame 13 are formed by aluminum die casting, low pressure casting or the like.
  • the first and second divided bodies 27 and 28 after molding are formed with support holes 25 after processing of the mating surfaces and attachment of positioning pins 31 and the like.
  • the first and second divided bodies 27 and 28 are overlapped with each other while being positioned by the positioning pins 31, and are temporarily assembled by fixing them with a clamp or a connecting tool. To do.
  • a pilot hole is formed so as to pass through the plurality of support wall portions 24 of the temporarily assembled first and second divided bodies 27 and 28, and then a support hole 25 with a predetermined accuracy is formed by performing a reamer finish or the like. To do.
  • a plurality of first recesses 29 are formed integrally with the first divided body 27 of the support frame 13, and a plurality of second recesses 30 are formed integrally with the second divided body 28.
  • a plurality of support holes 25 can be formed simultaneously by connecting the first and second divided bodies 27 and 28 while matching the plurality of first recesses 29 and the second recesses 30.
  • the coaxiality of each support hole 25 can be increased.
  • the misalignment of the plurality of rolling bearings 12 fitted in the holes 25 can be reduced, and the rotational torque of the rolling bearing 12 can be reduced.
  • one bolt insertion hole 34 to which the coupling tool 36 is attached is one outside the support hole 25 in the radial direction with respect to each other support hole 25 except for the right end support hole 25.
  • the positions in the axial direction are overlapped with each other, the other positions are disposed at positions deviating from the radially outer side of the support hole 25 in the axial direction.
  • one of the plurality of bolt insertion holes 34 is used only for connection between the first divided body 27 and the second divided body 28, and the other is used for the first and second divided bodies 27. , 28 and the cylinder head 15 can be used.
  • each support frame 13 in each support frame 13, four bolt insertion holes 34 (particularly indicated by reference numeral 34 ⁇ / b> A) are dedicated to the connection between the first divided body 27 and the second divided body 28, and the like. These five bolt insertion holes 34 can be used for fastening the first and second divided bodies 27 and 28 and the cylinder head 15 together.
  • the tightening force of the connecting tool 36 attached to the bolt insertion hole 34 for fastening the first and second divided bodies 27 and 28 and the cylinder head 15 is already adjusted. It is necessary to prevent the support holes 25 of the first and second divided bodies 27 and 28 from being affected. For this reason, all the bolt fastening holes 34 for tightening are positioned in the axial direction away from the support hole 25, for example, in the side wall 23, between the support wall 24 and the support wall 24 adjacent to each other in the axial direction. It is preferable to provide it at a position.
  • FIG. 6 is a plan view showing the support frame 13 of the camshaft device 10 according to the second embodiment of the present invention
  • FIG. 7 is a sectional view taken along arrow VII-VII in FIG.
  • the other bolt insertion holes 34 except for the bolt insertion holes 34 formed in the support wall portion 24 at the right end of the support frame 13 are adjacent to the pair of side wall portions 23 in the axial direction. And the support wall portion 24.
  • the fastening force is It is alleviated by the deflection of the support frame 13 until it reaches the support hole 25 and is transmitted to the support hole 25.
  • one side wall portion 23 is formed with openings (thickening portions) 40 on both sides of the portion where the bolt insertion hole 34 is formed, and the bolt insertion hole 34 and the support wall portion 24.
  • the rigidity of the side wall 23 between the two is particularly lowered. Therefore, even if the coupling tool 36 is firmly tightened using the bolt insertion hole 34, the fastening force is more easily relaxed by the bending of the support frame 13 before reaching the support hole 25. Therefore, the outer ring of the rolling bearing 12 is not excessively tightened by the inner peripheral surface of the support hole 25, and an increase in rotational torque due to a decrease in the internal clearance of the rolling bearing 12 can be more reliably suppressed.
  • the bending of the side wall portion 23 allows a slight movement of the rolling bearing 12, absorbs misalignment between the plurality of rolling bearings 12, and reduces rotational torque.
  • the thinned portion 40 formed on one side wall portion 23 may be a recess that does not penetrate the side wall portion 23 instead of the opening portion that penetrates the side wall portion 23.
  • FIG. 8 is a perspective view of the camshaft device 10 according to the third embodiment of the present invention.
  • the camshaft device 10 of the present embodiment corresponds to a substantially integrated two support frames 13 in the first embodiment, and two camshafts 11 are rotatably supported by one support frame 13. Yes.
  • the support frame 13 includes a pair of side wall portions 23, an intermediate wall portion 41 disposed between the side wall portions 23, the one side wall portion 23 and the intermediate wall portion 41, and the other side wall portion. 23 and a plurality of support wall portions 24 respectively installed between the intermediate wall portion 41 and the intermediate wall portion 41.
  • a bolt insertion hole 35 into which a larger-diameter bolt (connector) can be inserted is formed at the intersection of the intermediate wall portion 41 and the support wall portion 24.
  • the first and second divided bodies 27 and 28 are formed using a smaller number of bolt insertion holes 34 and 35 than the bolt insertion holes 34 provided in the two support frames 13.
  • the bolt insertion hole 35 formed in the intermediate wall portion 41 has a large diameter, so that the connection strength can be sufficiently obtained even if the number of connection locations of the first and second divided bodies 27 and 28 is reduced. We are trying to secure it.
  • FIG. 9 is a perspective view of the camshaft device 10 according to the fourth embodiment of the present invention. Similar to the third embodiment, the camshaft device 10 of the present embodiment supports two camshafts 11 rotatably by a single support frame 13.
  • the basic structure of the support frame 13 of this embodiment is substantially the same as that of the support frame 13 of the third embodiment, but the division is different. That is, the support frame 13 is divided into three in the left-right direction by the first divided body 47 disposed in the center and the two second divided bodies 48 disposed on the left and right sides of the first divided body 47.
  • the first and second divided bodies 47 and 48 are connected by using bolt insertion holes 34 and 35 provided in.
  • each second divided body 48 is formed with a convex portion 48A that protrudes toward the first divided body 47, and a second concave portion that forms a half of the support hole 25 at the tip of the convex portion 48A. 50 is formed.
  • concave portions 47A are formed on both sides of the support wall portion 24 in the first divided body 47, and a first concave portion 49 constituting the other half of the support hole 25 is formed on the bottom portion of the concave portion 47A. Then, by inserting the convex portion 48A into the concave portion 47A, the first and second concave portions 49 and 50 are fitted, and the support hole 25 is formed.
  • FIG. 10 is an exploded perspective view of a camshaft device and a cylinder head according to a fifth embodiment of the present invention
  • FIG. 11 is a partial plan view of a support frame of the camshaft device.
  • This embodiment is different from the first embodiment in that an oil groove 51 for lubricating oil is formed on the mating surfaces of the first and second divided bodies 27 and 28 of the support frame 13, and other configurations are the first.
  • the oil groove 51 extends from one end portion in the longitudinal direction of the first and second divided bodies 27 and 28 along the side wall portion 23, and further branches toward the support holes 25 and the cam 18. Therefore, by using this oil groove 51, it is possible to guide the lubricating oil toward each rolling bearing 12, each cam 18, and the like. Therefore, it is not necessary to separately provide piping for guiding the lubricating oil in the support frame 13, and the support frame 13 and the surrounding structure can be simplified.
  • FIG. 12 is an exploded perspective view of a camshaft device and a cylinder head according to a sixth embodiment of the present invention.
  • the support wall part 24 in the 1st division body 27 is formed in the substantially X shape by planar view, and the other structure is the same as that of 1st Embodiment.
  • an opening 40 is formed in the side wall portion 23, and the rigidity of the support frame 13 is reduced by the opening 40.
  • the support wall portion 24 of the first divided body 27 has a substantially X shape in plan view, thereby increasing the rigidity of the first divided body 27 and forming the opening 40. 13 is compensated by the support wall 24.
  • FIG. 13 is an exploded perspective view of a camshaft device and a cylinder head according to a seventh embodiment of the present invention.
  • the present embodiment differs from the first embodiment in that a substantially X-shaped rib 55 is provided in a rectangular space between the support wall portion 24 and the side wall portion 23 in the first divided body 27.
  • Other configurations are the same as those of the first embodiment. Therefore, also in this embodiment, the rigidity of the 1st division body 27 is improved and there exists an effect similar to 6th Embodiment.
  • FIG. 14 is an exploded perspective view of a camshaft device and a cylinder head according to an eighth embodiment of the present invention.
  • the top plate 57 is provided on the upper surface of the first divided body 27, and the first space is that the rectangular space between the support wall portion 24 and the side wall portion 23 is closed by the top plate 57.
  • other points are the same as in the first embodiment. Therefore, also in this embodiment, the rigidity of the 1st division body 27 is improved and there exists an effect similar to 6th Embodiment.
  • the top plate 57 can function as a cylinder head cover.
  • the present invention is not limited to the above embodiments, and can be appropriately changed in design.
  • the DOHC engine provided with the two camshafts 11 is exemplified, but the present invention may be applied to an SOHC engine.
  • the camshaft device of the present invention includes a camshaft fitted with a cam, a plurality of rolling bearings attached to the camshaft at an axial interval, and mounted on an engine cylinder head, and the rolling bearing.
  • a support frame that rotatably supports the camshaft via the rolling bearing that is fitted in each support hole and has a plurality of support holes on the same axis.
  • the support frame is configured by connecting a plurality of divided bodies, In the plurality of divided bodies, a first divided body in which a plurality of first recesses constituting half of each of the support holes is integrally formed and a plurality of second recesses constituting the other half of each of the support holes are integrated. And the second divided body formed in the above.
  • a plurality of first recesses are integrally formed on the first divided body, and a plurality of second recesses are integrally formed on the second divided body. Therefore, when processing a plurality of support holes in the support frame, for example, the first divided body and the second divided body are fixed in a combined state, and a plurality of the first and second divided bodies are fixed. These support holes can be formed simultaneously. Moreover, even if the first and second divided bodies are separated after processing the support holes, the relative positions of the plurality of concave portions formed in each divided body are kept constant.
  • the plurality of support holes formed by connecting the first and second divided bodies have increased coaxiality and reduced variation in roundness, and a plurality of rolling holes fitted in the plurality of support holes. Misalignment between the bearings can be reduced. Therefore, the internal clearance of the rolling bearing can be properly maintained, and the rotational torque of the rolling bearing can be reduced.
  • the camshaft device includes positioning means for positioning the first divided body and the second divided body so that the first concave portion and the second concave portion are aligned with each other, and the first positioning member positioned by the positioning means.
  • a connecting means for connecting the first divided body and the second divided body can be provided. With such a configuration, it is possible to connect the first and second divided bodies by reliably matching the first and second recesses.
  • the plurality of connecting means are arranged at positions away from the support hole in the axial direction.
  • the connecting force of the first and second divided bodies by the connecting means is the support hole. It is relieved by the bending of the support frame until it is transmitted to Therefore, the outer peripheral surface of the rolling bearing is not excessively tightened by the inner peripheral surface of the support hole, and the inconvenience that the internal clearance of the rolling bearing is reduced and the rotational torque is increased does not occur.
  • positioning of a connection means it is more preferable to arrange
  • the connecting means preferably includes a bolt, and the support frame is preferably formed with a bolt insertion hole through which the bolt is inserted.
  • a cylindrical body that is higher in rigidity than the support frame and receives at least a part of the fastening force of the bolt is fixed in the bolt insertion hole.
  • engine crankcases, cylinder blocks, cylinder heads, and the like are often made of a light alloy such as an aluminum alloy or a magnesium alloy for weight reduction. It is desirable to form with a light alloy such as a magnesium alloy.
  • the support frame is provided between a pair of side wall portions disposed along the axis of the cam shaft with the cam shaft interposed therebetween, and is spanned between the pair of side wall portions. It is preferable that a plurality of support wall portions are arranged at intervals in the axial direction, and the support holes are formed in each of the support wall portions.
  • the side wall portion is provided with a connecting means for connecting the first and second divided bodies, and a wall removal portion for reducing the rigidity of the support frame between the connecting means and the support hole.
  • a connecting means for connecting the first and second divided bodies
  • a wall removal portion for reducing the rigidity of the support frame between the connecting means and the support hole.
  • the support frame is easily bent at this portion, so that the connection force of the first and second divided bodies by the connection means is alleviated, and the rolling bearing It is possible to prevent the outer peripheral surface of the rolling bearing from being excessively tightened by the inner peripheral surface of the support hole, thereby reducing the internal clearance of the rolling bearing and increasing the rotational torque.
  • reducing the rigidity of the support frame a slight movement of the rolling bearing can be allowed, and misalignment between a plurality of rolling bearings can be absorbed.
  • the support frame may be divided into upper and lower parts or may be divided into right and left parts.
  • the camshaft device can be easily connected by placing the camshaft on the lower divided body and overlapping the upper divided bodies and connecting the two divided bodies. Can be assembled.
  • the engine of the present invention is characterized in that the above-described camshaft device is connected to the upper surface of the cylinder case. This makes it possible to configure an engine that reduces the load required for rotation of the camshaft.
  • the manufacturing method of the present invention for manufacturing the camshaft device described above includes a step of temporarily assembling the first divided body and the second divided body in which the first and second recesses are not formed, Forming the plurality of support holes on the same axis in the assembled first divided body and the second divided body; and separating the first and second divided bodies; And repositioning and connecting the first and second divided bodies while fitting the rolling bearings attached to the camshaft into the formed first and second recesses.
  • Camshaft device 11 Camshaft 12: Rolling bearing 13: Support frame 14: Engine 15: Cylinder head 17: Shaft body 18: Cam 23: Side wall part 24: Support wall part 25: Support hole 27: 1st division body 28: 2nd division body 29: 1st recessed part 30: 2nd recessed part 31: Positioning pin (positioning means) 34: Bolt insertion hole 36: Connecting tool (connecting means) 36A: Bolt 36B: Nut member 38: Cylindrical body 40: Opening portion 41: Intermediate wall portion 47: First divided body 48: Second divided body

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

 カムシャフト装置(10)は、カム(18)を備えたカムシャフト(11)と、このカムシャフト(11)に対して軸方向に間隔をあけて取り付けられる複数の転がり軸受(12)と、エンジンのシリンダヘッド(15)に装着され、かつ転がり軸受(12)が嵌合する複数の支持孔(25)を同一軸線上に有するとともに各支持孔(25)に嵌合された転がり軸受(12)を介して前記カムシャフト(11)を回転自在に支持する支持フレーム(13)とを備える。支持フレーム(13)は、複数の分割体(27),(28)を連結することによって構成されており、複数の分割体(27),(28)は、各支持孔(25)の半分を構成する複数の第1凹部(29)が一体に形成された第1分割体(27)と、各支持孔(25)の他の半分を構成する複数の第2凹部(30)が一体に形成された第2分割体(28)とを含む。

Description

カムシャフト装置及びこれを備えたエンジン、並びにカムシャフト装置の製造方法
 本発明は、エンジンのシリンダヘッドに装着されるカムシャフト装置及びこれを備えたエンジン、並びにカムシャフト装置の製造方法に関するものである。
  自動車等に使用されるエンジンには、吸排気用のバルブを開閉動作させるためのカムシャフトが設けられている。例えばDOHCエンジンでは、エンジン内の上部に取り付けられた複数個の軸受を介してカムシャフトが回転自在に支持されている。
  また、カムシャフトを支持する軸受として、従来、滑り軸受(例えば特許文献1参照)や、深溝玉軸受やニードル軸受等の転がり軸受(例えば特許文献2参照)が用いられている。
特開2000-282811号公報 特開2006-226183号公報
  カムシャフトを支持する軸受は、エンジン内に設けられた支持孔に嵌合されている。この支持孔は、シリンダヘッドの上部に形成された上方開放状の半円弧形凹部と、シリンダヘッドにボルト固定されるキャップ部材に形成された下方開放状の半円弧形凹部とから二つ割り構造とされている。
  そして、シリンダヘッドに形成された複数の半円弧形凹部に対して複数のキャップ部材の半円弧形凹部をそれぞれ合致させ、各キャップ部材をシリンダヘッドにボルト固定することによって複数の支持孔が形成されている。
  しかし、複数のキャップ部材は、それぞれ個別にシリンダヘッドに取り付けられるので、複数の支持孔の間で真円度がばらついたり、同軸度が低下したりするという欠点がある。このような欠点は、キャップ部材やシリンダヘッドに対して支持孔の加工を行う際に、全てのキャップ部材をシリンダヘッドに組み付け、全ての支持孔を一体加工したとしても、解消することはできない。
  カムシャフトを支持する軸受として滑り軸受を用いる場合は、滑り軸受の外周面と支持孔の内周面との間に僅かな隙間が形成されるので、複数の支持孔の真円度にばらつきがあったり同軸度が低かったりしても、支持孔内で滑り軸受を回転させることが可能であるが、滑り軸受が円滑に回転できるように馴染むまでに長時間を要する。また、一般に、滑り軸受は常に支持孔内に接触して摺動しているので、転がり軸受に比べて回転トルクが大きく、騒音も発生しやすいという欠点もある。
  これに対して、転がり軸受は滑り軸受よりも回転抵抗が小さいので、カムシャフトを支持する軸受として用いれば容易に回転トルクを低減できると考えられる。しかし、実際には、転がり軸受は支持孔の内周面によって堅く締め付けられるので、複数の支持孔の同軸度が低いことによって転がり軸受の間のミスアライメントが大きくなると、転がり軸受の内部隙間を適正に保てなくなり、かえって回転トルクが増大する場合がある。
  本発明の目的の一つは、以上のような実情に鑑み、カムシャフトを回転自在に支持する転がり軸受の回転トルクを低減することが可能なカムシャフト装置及びこれを備えたエンジン、並びにカムシャフト装置の製造方法を提供することである。
  本発明の一態様に係るカムシャフト装置は、カムを嵌合したカムシャフトと、このカムシャフトに対して軸方向に間隔をあけて取り付けられる複数の転がり軸受と、エンジンのシリンダヘッドに装着され、かつ前記転がり軸受が嵌合する複数の支持孔を同一軸線上に有するとともに各支持孔に嵌合された前記転がり軸受を介して前記カムシャフトを回転自在に支持する支持フレームとを備え、
  前記支持フレームは、複数の分割体を連結することによって構成されており、
  前記複数の分割体は、前記各支持孔の半分を構成する複数の第1凹部が一体に形成された第1分割体と、各支持孔の他の半分を構成する複数の第2凹部が一体に形成された第2分割体とを含む。
  本発明の一態様に係るエンジンは、上述したカムシャフト装置をシリンダケースの上面部に連結してなる。
  上述したカムシャフト装置を製造するための本発明の一態様に係る製造方法は、第1,第2凹部が形成されていない第1分割体と第2分割体とを位置決めした状態で仮組みする工程と、仮組みされた第1分割体と第2分割体とに複数の前記支持孔を同一軸線上に形成する工程と、第1,第2分割体を分離した後、第1,第2分割体にそれぞれ形成された第1,第2凹部にカムシャフトに取り付けた転がり軸受を嵌合させながら、第1,第2分割体を再度位置決めして連結する工程と、を含む。
  本発明によれば、カムシャフトの回転トルクや振動を低減することができる。
本発明の第1の実施形態に係るカムシャフト装置の斜視図である。 同カムシャフト装置及びシリンダヘッドの分解斜視図である。 カムシャフト装置の支持フレームを示す平面図である。 図3のVI-VI矢視図である。 図3のV-V断面図 本発明の第2の実施形態に係るカムシャフト装置の支持フレームを示す平面図である。 図6のVII-VII矢視断面図である。 本発明の第3の実施形態に係るカムシャフト装置の斜視図である。 本発明の第4の実施形態に係るカムシャフト装置の斜視図である。 本発明の第5の実施形態に係るカムシャフト装置及びシリンダヘッドの分解斜視図である。 図10のカムシャフト装置の部分平面図である。 本発明の第6の実施形態に係るカムシャフト装置及びシリンダヘッドの分解斜視図である。 本発明の第7の実施形態に係るカムシャフト装置及びシリンダヘッドの分解斜視図である。 本発明の第8の実施形態に係るカムシャフト装置及びシリンダヘッドの分解斜視図である。
  以下、本発明の実施の形態を図面を参照して説明する。
  図1は、本発明のカムシャフト装置を示す斜視図、図2は、カムシャフト装置の分解斜視図である。
  カムシャフト装置10は、カムシャフト11と、このカムシャフト11を転がり軸受12を介して回転自在に支持する支持フレーム13とを備えている。図1及び図2の例では、2つのカムシャフト装置10が並べて配置されており、それぞれDOHC4サイクルエンジン14のシリンダヘッド15上に取り付けられる。
  図2に示すように、各カムシャフト装置10のカムシャフト11は、シャフト本体17と、軸方向に間隔をあけてシャフト本体17に設けられた複数のカム18とを備えている。本実施形態のカム18は、2個を1組として軸方向に4組設けられている。
  カムシャフト11の軸方向の一端には、歯付きプーリ19が取り付けられ、この歯付きプーリ19に図示しないクランクシャフトからの動力がタイミングベルトを介して伝達される。
  また、シャフト本体17には複数の転がり軸受12が取り付けられている。具体的に、転がり軸受12は、各組における2個のカム18の間と、歯付きプーリ19側のシャフト本体17の端部との合計5箇所にそれぞれ取り付けられている。この転がり軸受12は、例えば深溝玉軸受やニードル軸受等であり、環状の内外輪及び転動体を備えている。
  また、本実施形態の内輪及び外輪は、分割型(半割型)ではなく円環状の一体型のものが用いられている。このように内外輪として一体型のものを用いることで、分割型の内外輪のように転動体が分割面を通過することに起因して振動や騒音が発生するのを防止することができる。
  また、前述のカム18は、シャフト本体17と一体成形されるのではなく別部品として構成され、シャフト本体17の外周面に嵌合することによって取り付けられている。このようなカム18を使用することによって、一体型の内外輪を有する転がり軸受12であってもカム18とともにシャフト本体17に取り付けることができる。
  なお、転がり軸受12は、内輪を省略し、シャフト本体17自体を内輪として用いたものであってもよい。また、転がり軸受12は、カム18の各組の間に取り付けられていてもよい。
  図3は、カムシャフト装置10の支持フレーム13を示す平面図、図4は図3のVI-VI矢視図、図5は図3のV-V断面図である。支持フレーム13は、アルミ合金や鋳鉄により形成されている。そして、支持フレーム13は、カムシャフト11の軸線に沿って配置された一対の側壁部23と、一対の側壁部23の間に架設された複数の支持壁部24を備えており、平面視でラダー構造(ハシゴ構造)に形成されている。
  各支持壁部24には、転がり軸受12を嵌合させるための複数の支持孔25が同一軸線上に形成されている。本実施形態では、転がり軸受12と同数の5つの支持壁部24(支持孔25)が設けられている。
  また、支持フレーム13は、上下2分割構造とされている。具体的には、図2に示すように、上部側の第1分割体27と、下部側の第2分割体28とを互いに連結することによって支持フレーム13が構成されている。
  支持フレーム13の側壁部23及び支持壁部24はそれぞれ上下に2分割され、支持壁部24に形成された支持孔25も上下に2分割されている。したがって、支持孔25は、図4に示すように、上側の第1分割体27に形成された下部開放状の半円弧形凹部(第1凹部)29と、下側の第2分割体28に形成された上部開放状の半円弧形凹部(第2凹部)30とから構成されている。
  第1分割体27と第2分割体28とは、第1凹部29と第2凹部30とが適切に位置合わせされるように、適宜箇所に設けられた位置決めピン31(図1及び図2参照)によって互いに位置決めされている。なお、位置決めピン31は、第1,第2分割体27,28の一方の合わせ面に突設され、他方の合わせ面に形成された位置決め孔(図示略)に挿入される。したがって、これら位置決めピン31及び位置決め孔が第1,第2分割体27,28を位置決めする位置決め手段を構成している。
  図3に示すように、一方の側壁部23と各支持壁部24との交差部付近にはボルト挿通孔34が形成されている。また、他方の側壁部23において、軸方向に隣接する支持壁部24と支持壁部24との中間の位置にもボルト挿通孔34が形成されている。軸方向一方側の端部(右端部)に配置された支持壁部24には、他方の側壁部23との交差部付近にもボルト挿通孔34が形成されている。
  そして、第1分割体27と第2分割体28とは、図5に示すように、各ボルト挿通孔34に挿通されたボルト36Aと、このボルト36Aが螺合する雌ネジを有するナット部材36Bとからなる連結具(連結手段)36によって互いに連結されている。
  本実施形態では、各ボルト挿通孔34に挿入されたボルト36Aは、シリンダヘッド15に形成された雌ネジに螺合され、第1,第2分割体27,28がシリンダヘッド15に共締め固定されている。したがって、ナット部材36Bはシリンダヘッド15自体によって構成されている。
  なお、連結具36は、圧入ピンやラチェットピン等、ピンによって締結する構成であってもよい。
  各ボルト挿通孔34の内部には、支持フレーム13よりも高剛性の材質、例えば、支持フレーム13がアルミ合金やマグネシウム合金等の軽合金で形成されている場合には、鋼等により形成された筒状体38が圧入により固着されている。この筒状体38は、ボルト挿通孔34の全体に亘る長さでボルト36Aの頭部やワッシャ36Cよりも大径に形成され、連結具36による締結力を受けることができるように構成されている。
  したがって、第1,第2分割体27,28を強固に連結するべく連結具36を強固に締め付けたとしても、その締結力がボルト36Aの頭部から支持フレーム13に直接伝わり難く、支持フレーム13に歪みが生じるのを防止することができる。したがって、このような歪みが支持孔25の真円度や同軸度に悪影響を及ぼすこともほとんどない。
  なお、筒状体38は、支持フレーム13の成形時に一緒に鋳込むことによって支持フレーム13に固着してもよい。
  図1に示すように、2つのカムシャフト装置10の各支持フレーム13において、エンジン14の内部側に配置されている側壁部23には第1,第2分割体27,28の双方に跨るように開口部40が形成されている。この開口部40によって支持フレーム13の軽量化を図ることができる。
  なお、各支持フレーム13において、エンジン外部側の側壁部23にも同様の開口部40を形成することも可能であるが、エンジン内のオイルが開口部40から漏れる可能性があるため、本実施形態のように、エンジン内部側の側壁部23のみに開口部40を形成することがより好ましい。ただし、別途、支持フレーム13の外側を覆うカバーが備えられる場合には、エンジン外側の側壁部23に開口部40を形成しても支障はない。
  支持フレーム13の第1,第2分割体27,28は、アルミダイキャストや低圧鋳造等によって成形される。また、成形後の第1,第2分割体27,28には、合わせ面の加工や位置決めピン31の取り付け等が施されたのちに、支持孔25が形成される。
  支持フレーム13に支持孔25を形成するには、まず、第1,第2分割体27,28を、位置決めピン31によって位置決めしながら互いに重ね合わせ、クランプや連結具等によって固定することによって仮組みする。そして、仮組みされた第1,第2分割体27,28の複数の支持壁部24を貫通するように下孔をあけ、その後、リーマ仕上げ等を施すことによって所定精度の支持孔25を形成する。
  以上に説明したカムシャフト装置10において、支持フレーム13の第1分割体27には複数の第1凹部29が一体に形成され、第2分割体28には複数の第2凹部30が一体に形成されている。そのため、各分割体27,28において、複数の凹部29,30同士の相対位置は一定とされ、複数の凹部29,30の間で軸心のずれは生じない。そして、複数の第1凹部29と第2凹部30とを合致させながら、第1,第2分割体27,28を連結することによって複数の支持孔25を同時に形成することができる。したがって、従来のように、シリンダヘッド15に複数のキャップ部材を個別に取り付けて複数の支持孔25を個々に形成する場合に比べて、各支持孔25の同軸度を高めることができ、各支持孔25に嵌合された複数の転がり軸受12のミスアライメントを小さくし、転がり軸受12の回転トルクを低減することができる。
  また、支持フレーム13の複数の支持孔25は、第1,第2分割体27,28を仮組みした状態で同時に加工されるので、より同軸度を高め、真円度のばらつきも少なくすることができる。
  また、図3に示すように、連結具36が取り付けられるボルト挿通孔34は、右端の支持孔25を除く他の各支持孔25に対して、1つは支持孔25の径方向外方に配置されて軸方向に関する位置が重複しているが、他は支持孔25の径方向外方から軸方向に外れた位置に配置されている。このように支持孔25から軸方向に外れた位置にボルト挿通孔34が配置されていると、当該ボルト挿通孔34を用いて連結具36を強固に締め付けたとしても、その締結力は、支持孔25に到るまでに支持フレーム13の撓みによって若干緩和される。そのため、転がり軸受12の外輪が支持孔25の内周面によって過度に締め付けられることはほとんどなく、転がり軸受12の内部隙間の減少により回転トルクが増大することもない。
  なお、上記実施形態の変形例として、複数のボルト挿通孔34のうち、いずれかを第1分割体27と第2分割体28との連結のみに用い、他を第1,第2分割体27,28とシリンダヘッド15との連結のために用いることも可能である。
  例えば、図3に示すように、各支持フレーム13において、4つのボルト挿通孔34(特に符号34Aを付して示す)を第1分割体27と第2分割体28との連結専用とし、他の5つのボルト挿通孔34を第1,第2分割体27,28とシリンダヘッド15との共締め用とすることができる。
  このように構成した場合、第1,第2分割体27,28の間にカムシャフト11を組み込んだ状態で、ボルト挿通孔34Aを用いて連結具36により第1,第2分割体27,28を連結することによって、支持フレーム13とカムシャフト11とからなるカムシャフト装置10を単独で組み立てることが可能となる。そして、この単独で組み立てられたカムシャフト装置10において、カムシャフト11が円滑に回転するように第1,第2分割体27,28の連結具合(連結具36の締め付け具合等)を調整し、このカムシャフト装置10を、残りのボルト挿通孔34を用いて連結具36によりシリンダヘッド15に装着することが可能となる。
  なお、この変形例において、第1,第2分割体27,28とシリンダヘッド15との共締め用のボルト挿通孔34に取り付けた連結具36の締め付け力は、すでに連結具合が調整された第1,第2分割体27,28の支持孔25に影響を与えないようにすることが必要とされる。そのため、全ての共締め用のボルト挿通孔34を、当該支持孔25から軸方向に外れた位置、例えば、側壁部23における、軸方向に隣接する支持壁部24と支持壁部24との中間位置に設けることが好ましい。
  図6は、本発明の第2の実施形態に係るカムシャフト装置10の支持フレーム13を示す平面図、図7は図6のVII-VII矢視断面図である。本実施形態では、支持フレーム13の右端の支持壁部24に形成されたボルト挿通孔34を除く他のボルト挿通孔34が、一対の側壁部23に対して軸方向に隣接する支持壁部24と支持壁部24との中間位置に設けられている。したがって、当該他のボルト挿通孔34は支持孔25から軸方向に離れた位置に配置され、当該他のボルト挿通孔34を用いて連結具36を強固に締め付けたとしても、その締結力は、支持孔25に到るまでの支持フレーム13の撓みによって緩和されて支持孔25に伝わる。
  さらに、図7に示すように、一方の側壁部23には、ボルト挿通孔34が形成された部分の両側に開口部(除肉部)40が形成され、ボルト挿通孔34と支持壁部24との間の側壁部23の剛性が特に下げられている。そのため、ボルト挿通孔34を用いて連結具36を強固に締め付けたとしても、その締結力は、支持孔25に到るまでに支持フレーム13の撓みによってより緩和され易くなる。そのため、転がり軸受12の外輪が支持孔25の内周面によって過度に締め付けられることがなく、転がり軸受12の内部隙間の減少による回転トルクの増大をより確実に抑制することができる。また、側壁部23の撓みにより僅かな転がり軸受12の動きを許容することが可能となり、複数の転がり軸受12の間のミスアライメントを吸収し、回転トルクを低減することができる。なお、一方の側壁部23に形成された除肉部40は、当該側壁部23を貫通する開口部に代えて、当該側壁部23を貫通しない凹部としてもよい。
  図8は、本発明の第3の実施形態に係るカムシャフト装置10の斜視図である。本実施形態のカムシャフト装置10は、第1の実施形態における2つの支持フレーム13をほぼ一体化したものに相当し、2本のカムシャフト11を1つの支持フレーム13によって回転自在に支持している。具体的に、支持フレーム13は、一対の側壁部23と、両側壁部23の中間に配置された中間壁部41と、一方の側壁部23と中間壁部41との間、他方の側壁部23と中間壁部41との間にそれぞれ架設された複数の支持壁部24とを有している。また、中間壁部41と支持壁部24との交差部分には、より大径のボルト(連結具)を挿通可能なボルト挿通孔35が形成されている。したがって、本実施形態では、第1実施形態のように、2つの支持フレーム13に備わったボルト挿通孔34よりも少数のボルト挿通孔34,35を用いて第1,第2分割体27,28を連結することができるとともに、中間壁部41に形成されたボルト挿通孔35を大径とすることによって、第1,第2分割体27,28の連結箇所を減らしても連結強度を十分に確保できるようにしている。
  図9は、本発明の第4の実施形態に係るカムシャフト装置10の斜視図である。本実施形態のカムシャフト装置10は、第3の実施形態と同様に、2本のカムシャフト11を1つの支持フレーム13によって回転自在に支持している。また、本実施形態の支持フレーム13は、組立時の基本構造は第3の実施形態の支持フレーム13と略同様であるが、分割形態が異なっている。すなわち、支持フレーム13は、中央部に配置された第1分割体47と、この第1分割体47の左右両側に配置された2つの第2分割体48とによって左右方向に3分割され、適所に設けられたボルト挿通孔34,35を用いて第1,第2分割体47,48が連結されるようになっている。
  また、各第2分割体48における支持壁部24には第1分割体47側へ突出する凸部48Aが形成され、この凸部48Aの先端には支持孔25の半分を構成する第2凹部50が形成されている。また、第1分割体47における支持壁部24の両側には凹部47Aが形成され、この凹部47Aの底部には支持孔25の他の半分を構成する第1凹部49が形成されている。そして、この凹部47A内に凸部48Aを挿入することによって、第1,第2凹部49,50が適合され、支持孔25が形成されている。
  図10は、本発明の第5の実施形態に係るカムシャフト装置及びシリンダヘッドの分解斜視図、図11は、同カムシャフト装置の支持フレームの部分平面図である。本実施形態では、支持フレーム13の第1,第2分割体27,28の合わせ面に潤滑油の油溝51が形成されている点で第1の実施形態と異なり、その他の構成は第1の実施形態と同様である。
  この油溝51は、第1,第2分割体27,28の長手方向の一端部から側壁部23に沿って延び、さらに各支持孔25とカム18へ向けて分岐している。したがって、この油溝51を利用することによって各転がり軸受12や各カム18等へ向けて潤滑油を導くことが可能となっている。そのため、潤滑油を導くための配管等を別途支持フレーム13内に設ける必要が無くなり、支持フレーム13及びその周囲の構造の簡素化を図ることができる。
  図12は、本発明の第6の実施形態に係るカムシャフト装置及びシリンダヘッドの分解斜視図である。本実施形態では、第1分割体27における支持壁部24が平面視で略X字形状に形成されており、その他の構成は第1の実施形態と同様である。
  本実施形態では、第1の実施形態と同様に、側壁部23に開口部40が形成され、この開口部40によって支持フレーム13の剛性が低下している。しかし、本実施形態では、第1分割体27の支持壁部24を平面視で略X字形状とすることによって第1分割体27の剛性を高め、開口部40を形成することに伴う支持フレーム13の剛性の低下を支持壁部24によって補っている。
  このようにして第1分割体27の剛性を高めると、この第1分割体27を第2分割体28に連結するときの第1分割体27の歪みが小さくなり、各支持孔25の真円度や同軸度に与える影響を小さくすることができる。そのため、各支持孔25に嵌合される転がり軸受12の内部隙間の精度のばらつきも小さくなり、カムシャフトの曲げに配慮した小さい内部隙間の設定(例えば0~15μm程度)が可能となる。
  図13は、本発明の第7の実施形態に係るカムシャフト装置及びシリンダヘッドの分解斜視図である。本実施形態では、第1分割体27における支持壁部24と側壁部23との間の四角形状の空間に略X字状のリブ55が設けられている点で第1の実施形態と異なり、その他の構成は第1の実施形態と同様である。
  したがって、本実施形態においても第1分割体27の剛性が高められ、第6の実施形態と同様の作用効果を奏する。
  図14は、本発明の第8の実施形態に係るカムシャフト装置及びシリンダヘッドの分解斜視図である。本実施形態では、第1分割体27の上面に天板57が設けられ、支持壁部24と側壁部23との間の四角形状の空間が天板57によって閉塞されている点で第1の実施形態と異なり、その他の点は第1の実施形態と同様である。
  したがって、本実施形態においても第1分割体27の剛性が高められ、第6の実施形態と同様の作用効果を奏する。更に、天板57をシリンダヘッドカバーとして機能させることができる。
  本発明は、上記各実施形態に限定されることなく適宜設計変更可能である。例えば、上記実施形態では、2本のカムシャフト11を備えたDOHCエンジンについて例示したが、SOHCエンジンに本発明を適用してもよい。
  本発明のカムシャフト装置は、カムを嵌合したカムシャフトと、このカムシャフトに対して軸方向に間隔をあけて取り付けられる複数の転がり軸受と、エンジンのシリンダヘッドに装着され、かつ前記転がり軸受が嵌合する複数の支持孔を同一軸線上に有するとともに各支持孔に嵌合された前記転がり軸受を介して前記カムシャフトを回転自在に支持する支持フレームとを備え、
  前記支持フレームは、複数の分割体を連結することによって構成されており、
  前記複数の分割体は、前記各支持孔の半分を構成する複数の第1凹部が一体に形成された第1分割体と、各支持孔の他の半分を構成する複数の第2凹部が一体に形成された第2分割体とを含む。
  本発明のカムシャフト装置の支持フレームは、第1分割体に複数の第1凹部が一体に形成され、第2分割体に複数の第2凹部が一体に形成されている。そのため、支持フレームに対して複数の支持孔を加工する場合には、例えば、第1分割体と第2分割体とを組み合わせた状態で固定し、この第1,第2分割体に対して複数の支持孔を同時に形成することができる。また、支持孔を加工した後、第1,第2分割体を分離したとしても、各分割体に形成された複数の凹部同士の相対位置は一定に保たれる。そのため、第1,第2分割体を連結することにより形成される複数の支持孔は、同軸度が高められ、真円度のばらつきも小さくなり、複数の支持孔に嵌合された複数の転がり軸受の間のミスアライメントを小さくすることができる。したがって、転がり軸受の内部隙間を適正に維持することができ、転がり軸受の回転トルクを低減することが可能となる。
  上記カムシャフト装置は、前記第1凹部と前記第2凹部とが互いに合致するように前記第1分割体と前記第2分割体とを位置決めする位置決め手段と、この位置決め手段によって位置決めされた前記第1分割体と前記第2分割体とを連結する連結手段とを備えることができる。
  このような構成によって、第1,第2凹部を確実に合致させて第1,第2分割体を連結することができる。
  複数の前記連結手段の一部又は全部が、前記支持孔から軸方向に離れた位置に配置されていることが好ましい。
  このように、支持孔から軸方向に離れた位置に配置された連結手段によって第1,第2分割体を連結すると、当該連結手段による第1,第2分割体の連結力は、当該支持孔に伝わるまでに支持フレームの撓みにより緩和される。そのため、転がり軸受の外周面が支持孔の内周面によって過度に締め付けられることが少なくなり、転がり軸受の内部隙間が小さくなって回転トルクが増大してしまうという不都合が生じることもなくなる。
  なお、連結手段の配置は、軸方向に隣接する支持孔と支持孔との中間位置に配置するのがより好ましい。
  前記連結手段は、ボルトを含んでいることが好ましく、前記支持フレームには、前記ボルトが挿通するボルト挿通孔が形成されていることが好ましい。この場合、このボルト挿通孔内には、前記支持フレームよりも高剛性で、前記ボルトの締結力の少なくとも一部を受ける筒状体が固着されていることが好ましい。
  近年、エンジンのクランクケースやシリンダブロック、シリンダヘッド等は軽量化のためにアルミ合金やマグネシウム合金等の軽合金によって形成されている場合が多く、したがって、カムシャフト装置の支持フレームについてもアルミ合金やマグネシウム合金等の軽合金で形成することが望まれる。しかし、これらの軽合金は鋼等と比較して剛性が低いため、ボルトの締め付け力によって歪みが生じやすく、その歪みが支持孔周辺にまで及ぶと支持孔の真円度や同軸度等に悪影響を与える可能性がある。したがって、本発明のようにボルト挿通孔の内部に支持フレームよりも高剛性の筒状体を固着し、この筒状体によってボルトの締結力の一部又は全部を受け持つことによって支持フレームの歪みを可及的に抑制することができる。もっとも、エンジンのクランクケース等や支持フレームが軽合金以外の材質である場合にも、当然にこの発明を適用することが可能である。
  前記支持フレームは、前記カムシャフトを間に挟んだ状態で当該カムシャフトの軸線に沿って配置された一対の側壁部と、この一対の側壁部の間に架設されているとともに、前記カムシャフトの軸方向に間隔をあけて配置された複数の支持壁部とを有し、前記各支持壁部に、前記支持孔が形成されていることが好ましい。
  また、前記側壁部には、前記第1,第2分割体を連結するための連結手段が設けられ、前記連結手段と前記支持孔との間において前記支持フレームの剛性を低下させる除肉部が形成されていることが好ましい。このような除肉部を形成することによって支持フレームの軽量化を図ることができる。また、連結手段と支持孔との間の支持フレームの剛性を下げることによって、この部分において支持フレームが撓み易くなるので、連結手段による第1,第2分割体の連結力が緩和され、転がり軸受の外周面が支持孔の内周面によって過度に締め付けられることが少なくなり、転がり軸受の内部隙間が小さくなって回転トルクが増大してしまうのを防止することができる。また、支持フレームの剛性を下げることによって、僅かな転がり軸受の動きを許容することが可能となり、複数の転がり軸受の間のミスアライメントを吸収することができる。
  前記支持フレームは、上下に分割されていてもよいし、左右に分割されていてもよい。支持フレームが上下に分割されている場合、下側の分割体の上にカムシャフトを載せ、さらにその上から上側の分割体を重ね合わせて両分割体を連結することによって、容易にカムシャフト装置を組み立てることができる。
  本発明のエンジンは、上述したカムシャフト装置をシリンダケースの上面部に連結してなることを特徴とする。これによって、カムシャフトの回転に要する負荷を低減したエンジンを構成することができる。
  上述したカムシャフト装置を製造するための本発明の製造方法は、第1,第2凹部が形成されていない第1分割体と第2分割体とを位置決めした状態で仮組みする工程と、仮組みされた第1分割体と第2分割体とに複数の前記支持孔を同一軸線上に形成する工程と、第1,第2分割体を分離した後、第1,第2分割体にそれぞれ形成された第1,第2凹部にカムシャフトに取り付けた転がり軸受を嵌合させながら、第1,第2分割体を再度位置決めして連結する工程と、を含むことを特徴とする。
  このような方法によって、複数の支持孔の同軸度を高めるとともに、真円度のばらつきを少なくすることが可能となり、各支持孔に嵌合された複数の転がり軸受の間のミスアライメントを小さくすることができる。
10:カムシャフト装置 11:カムシャフト 12:転がり軸受
13:支持フレーム 14:エンジン 15:シリンダヘッド 
17:シャフト本体 18:カム 23:側壁部 24:支持壁部
25:支持孔 27:第1分割体 28:第2分割体 29:第1凹部
30:第2凹部 31:位置決めピン(位置決め手段)
34:ボルト挿通孔 36:連結具(連結手段) 36A:ボルト
36B:ナット部材 38:筒状体 40:開口部 41:中間壁部
47:第1分割体 48:第2分割体

Claims (10)

  1.   カムを嵌合したカムシャフトと、このカムシャフトに対して軸方向に間隔をあけて取り付けられる複数の転がり軸受と、エンジンのシリンダヘッドに装着され、かつ前記転がり軸受が嵌合する複数の支持孔を同一軸線上に有するとともに各支持孔に嵌合された前記転がり軸受を介して前記カムシャフトを回転自在に支持する支持フレームとを備え、
      前記支持フレームは、複数の分割体を連結することによって構成されており、
      前記複数の分割体は、前記各支持孔の半分を構成する複数の第1凹部が一体に形成された第1分割体と、各支持孔の他の半分を構成する複数の第2凹部が一体に形成された第2分割体とを含む、カムシャフト装置。
  2.   前記第1凹部と前記第2凹部とが互いに合致するように前記第1分割体と前記第2分割体とを位置決めする位置決め手段と、この位置決め手段によって位置決めされた前記第1分割体と前記第2分割体とを連結する複数の連結手段とを備えている請求項1に記載のカムシャフト装置。
  3.   複数の連結手段の一部又は全部が、前記支持孔から軸方向に離れた位置に配置されている請求項2に記載のカムシャフト装置。
  4.   前記連結手段がボルトを含んでおり、
      前記支持フレームに、前記ボルトが挿通するボルト挿通孔が形成されており、
      このボルト挿通孔内には、前記支持フレームよりも高剛性で、前記ボルトの締結力の少なくとも一部を受ける筒状体が固着されている請求項2に記載のカムシャフト装置。
  5.   前記支持フレームは、前記カムシャフトを間に挟んだ状態で当該カムシャフトの軸線に沿って配置された一対の側壁部と、この一対の側壁部の間に架設されているとともに、前記カムシャフトの軸方向に間隔をあけて配置された複数の支持壁部とを有し、
      前記各支持壁部に、前記支持孔が形成されている請求項1に記載のカムシャフト装置。
  6.   前記側壁部には、前記第1,第2分割体を連結するための連結手段が設けられ、
      前記連結手段と前記支持孔との間において前記支持フレームの剛性を低下させる除肉部が形成されている請求項5に記載のカムシャフト装置。
  7.   前記支持フレームが上下に分割されている請求項1に記載のカムシャフト装置。
  8.   前記支持フレームが左右に分割されている請求項1に記載のカムシャフト装置。
  9.   請求項1に記載のカムシャフト装置を、シリンダケースの上面部に連結してなるエンジン。
  10.   請求項1に記載のカムシャフト装置の製造方法であって、
      第1,第2凹部がそれぞれ形成されていない第1分割体と第2分割体とを位置決めした状態で仮組みする工程と、
      仮組みした第1分割体と第2分割体とに複数の支持孔を同一軸線上に形成する工程と、
      第1,第2分割体を分離した後、当該第1,第2分割体にそれぞれ形成された第1,第2凹部にカムシャフトに取り付けた転がり軸受を嵌合させながら、前記第1,第2分割体を再度位置決めして連結する工程と、を含むカムシャフト装置の製造方法。
PCT/JP2010/058439 2009-06-18 2010-05-19 カムシャフト装置及びこれを備えたエンジン、並びにカムシャフト装置の製造方法 WO2010146959A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/322,493 US20120073533A1 (en) 2009-06-18 2010-05-19 Camshaft device, engine with same, and method for manufacturing camshaft device
CN2010800266908A CN102459825A (zh) 2009-06-18 2010-05-19 凸轮轴装置及其制造方法、和具备该凸轮轴装置的发动机
EP10789334A EP2444600A4 (en) 2009-06-18 2010-05-19 CAMSHAFT DEVICE, ENGINE COMPRISING THE SAME, AND METHOD FOR MANUFACTURING A CAMSHAFT DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009145416A JP2011001878A (ja) 2009-06-18 2009-06-18 カムシャフト装置及びこれを備えたエンジン、並びにカムシャフト装置の製造方法
JP2009-145416 2009-06-18

Publications (1)

Publication Number Publication Date
WO2010146959A1 true WO2010146959A1 (ja) 2010-12-23

Family

ID=43356280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058439 WO2010146959A1 (ja) 2009-06-18 2010-05-19 カムシャフト装置及びこれを備えたエンジン、並びにカムシャフト装置の製造方法

Country Status (5)

Country Link
US (1) US20120073533A1 (ja)
EP (1) EP2444600A4 (ja)
JP (1) JP2011001878A (ja)
CN (1) CN102459825A (ja)
WO (1) WO2010146959A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3686403A1 (en) * 2019-01-24 2020-07-29 Toyota Jidosha Kabushiki Kaisha Internal combustion engine

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102008680B1 (ko) * 2013-12-20 2019-08-08 현대자동차 주식회사 캠샤프트-인-캠샤프트 조립용 지그 장치
DE102014101088B4 (de) * 2014-01-29 2015-12-17 Thyssenkrupp Presta Teccenter Ag Verfahren zum Zusammenbau eines Kraftfahrzeugmoduls
CN103949926B (zh) * 2014-05-07 2017-02-01 广西玉柴机器股份有限公司 凸轮轴孔的加工定位方法
JP2016008559A (ja) * 2014-06-25 2016-01-18 トヨタ自動車株式会社 カムシャフトの軸受け構造
JP6335841B2 (ja) * 2015-05-20 2018-05-30 株式会社オティックス カムシャフト支持部材の製造方法
CN105059912A (zh) * 2015-07-31 2015-11-18 重庆市博平液压机械有限公司 工件定量传输装置
CN105059820A (zh) * 2015-07-31 2015-11-18 重庆市博平液压机械有限公司 工件传输装置
US9822671B2 (en) * 2016-03-02 2017-11-21 Ford Global Technologies, Llc Composite hybrid cam carrier
DE102016112994A1 (de) * 2016-07-14 2018-01-18 Thyssenkrupp Ag Montagehilfe, Nockenwellenmodul und Verfahren zur Fixierung der Drehposition von drehbar gelagerten Wellen
JP6865078B2 (ja) 2017-03-22 2021-04-28 本田技研工業株式会社 内燃機関のシリンダヘッド
DE102017118862A1 (de) * 2017-08-18 2019-02-21 Man Truck & Bus Ag Vorrichtung zum drehbaren Lagern einer Nockenwelle
CN109356741B (zh) * 2018-11-27 2020-01-03 义乌吉利发动机有限公司 一种汽车发动机的气缸盖

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282811A (ja) 1999-03-26 2000-10-10 Toyota Motor Corp 可変バルブタイミング機構付きカムシャフトの支持構造
JP2004285867A (ja) * 2003-03-20 2004-10-14 Nissan Motor Co Ltd 内燃機関及びその一体型カムブラケット
JP2006504894A (ja) * 2002-10-29 2006-02-09 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト カムシャフトベアリングフレームを備えた、内燃機関のシリンダヘッド
JP2006226183A (ja) 2005-02-17 2006-08-31 Jtekt Corp カムシャフト装置とその組立方法
JP2008260101A (ja) * 2007-04-13 2008-10-30 Mazda Motor Corp エンジン部品の組み付け方法およびその装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3641129C1 (de) * 1986-12-02 1987-07-30 Daimler Benz Ag Vorrichtung zur Lagerung von zwei Nockenwellen im Zylinderkopf einer mehrzylindrigen Reihenbrennkraftmaschine
JPH06330805A (ja) * 1993-05-26 1994-11-29 Suzuki Motor Corp シリンダの締結構造
DE69414557T2 (de) * 1994-06-15 1999-04-01 Yamaha Motor Co Ltd Zylinderkopfanordnung für eine Mehrventil-Brennkraftmaschine mit obenliegender Nockenwelle
JP4550516B2 (ja) * 2004-08-05 2010-09-22 ヤマハ発動機株式会社 コンロッドの製造方法およびコンロッド
DE102005022415A1 (de) * 2005-05-14 2006-11-23 Bayerische Motoren Werke Ag Zylinderkopf für eine Brennkraftmaschine
JP4365373B2 (ja) * 2006-01-19 2009-11-18 トヨタ自動車株式会社 内燃機関のカムシャフト支持構造
JP2008019842A (ja) * 2006-07-14 2008-01-31 Toyota Motor Corp 内燃機関の燃料ポンプ支持構造及びその支持構造に使用されるポンプ支持ブラケット
EP2060753B1 (en) * 2006-09-04 2012-01-25 NTN Corporation Roller bearing, camshaft supporting structure, and internal combustion engine
JP5576283B2 (ja) * 2007-10-03 2014-08-20 コーヨー ベアリングス ユーエスエイ、エルエルシー ローラ軸受アセンブリ、及びローラ軸受取付け配置機構
JP2010209796A (ja) * 2009-03-10 2010-09-24 Toyota Motor Corp カムシャフト支持構造

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282811A (ja) 1999-03-26 2000-10-10 Toyota Motor Corp 可変バルブタイミング機構付きカムシャフトの支持構造
JP2006504894A (ja) * 2002-10-29 2006-02-09 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト カムシャフトベアリングフレームを備えた、内燃機関のシリンダヘッド
JP2004285867A (ja) * 2003-03-20 2004-10-14 Nissan Motor Co Ltd 内燃機関及びその一体型カムブラケット
JP2006226183A (ja) 2005-02-17 2006-08-31 Jtekt Corp カムシャフト装置とその組立方法
JP2008260101A (ja) * 2007-04-13 2008-10-30 Mazda Motor Corp エンジン部品の組み付け方法およびその装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3686403A1 (en) * 2019-01-24 2020-07-29 Toyota Jidosha Kabushiki Kaisha Internal combustion engine

Also Published As

Publication number Publication date
CN102459825A (zh) 2012-05-16
JP2011001878A (ja) 2011-01-06
EP2444600A1 (en) 2012-04-25
EP2444600A4 (en) 2012-12-05
US20120073533A1 (en) 2012-03-29

Similar Documents

Publication Publication Date Title
WO2010146959A1 (ja) カムシャフト装置及びこれを備えたエンジン、並びにカムシャフト装置の製造方法
US7775186B2 (en) Supporting structure for a camshaft, as well as methods for mounting and manufacturing a camshaft
EP1936130B1 (en) A supporting structure and a supporting member for a camshaft
EP2314849A1 (en) Method and device for mounting cam angle sensor for internal combustion engine
JP2011153569A (ja) 過給機のタービン軸支持用軸受の位置決め構造
US20090320784A1 (en) Cylinder head
US7114481B2 (en) Stabilized bearing structure for supporting a crankshaft in an internal combustion engine, and engine including same
EP2881568B1 (en) Engine
JP2015055324A (ja) 内燃機関のバランサ装置とこのバランサ装置の組付方法
US7975381B2 (en) Valve operating camshaft system for internal combustion engine
JP5471901B2 (ja) 潤滑油供給構造
JP4181146B2 (ja) エンジンのテンショナ装置取付構造
JP2006138226A (ja) 内燃機関
JP4631720B2 (ja) スプロケット構造
JP2008232079A (ja) 内燃機関のシリンダブロック及びその製造方法
JP3290624B2 (ja) 並列2気筒エンジン
JP3876136B2 (ja) エンジンの伝動装置
US9650990B2 (en) Seal retention assembly and a seal
JP2010156211A (ja) カムシャフト装置の取付構造
EP3892832B1 (en) Camshaft cover, camshaft assembly, double-cylinder engine and all-terrain vehicle
JP2007192102A (ja) 内燃機関のカムシャフト支持構造の製造方法および内燃機関のカムシャフト支持構造
KR20090077701A (ko) 오일팬
EP1826389B1 (en) Internal Combustion Engine
KR100287372B1 (ko) 크랭크 샤프트용 베어링 캡의 볼트체결구조
JP2019019840A (ja) 内燃エンジン

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080026690.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789334

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13322493

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010789334

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 9916/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE