WO2010145809A1 - Procédé permettant de faire fonctionner un spectromètre pour l'analyse des gaz, et spectromètre correspondant - Google Patents

Procédé permettant de faire fonctionner un spectromètre pour l'analyse des gaz, et spectromètre correspondant Download PDF

Info

Publication number
WO2010145809A1
WO2010145809A1 PCT/EP2010/003604 EP2010003604W WO2010145809A1 WO 2010145809 A1 WO2010145809 A1 WO 2010145809A1 EP 2010003604 W EP2010003604 W EP 2010003604W WO 2010145809 A1 WO2010145809 A1 WO 2010145809A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
measuring
gas
spectrometer
cuvette
Prior art date
Application number
PCT/EP2010/003604
Other languages
German (de)
English (en)
Inventor
Carsten Rathke
Stefan Bleil
Dominik Högenauer
Original Assignee
Abb Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Ag filed Critical Abb Ag
Publication of WO2010145809A1 publication Critical patent/WO2010145809A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0031General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N2021/3129Determining multicomponents by multiwavelength light
    • G01N2021/3133Determining multicomponents by multiwavelength light with selection of wavelengths before the sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3155Measuring in two spectral ranges, e.g. UV and visible
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/317Special constructive features
    • G01N2021/3174Filter wheel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • G01N2021/396Type of laser source
    • G01N2021/399Diode laser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • G01N21/3518Devices using gas filter correlation techniques; Devices using gas pressure modulation techniques

Definitions

  • the present invention relates to methods for operating a spectrometer for gas analysis, and spectrometer itself, according to the preamble of claims 1 and 15.
  • optical methods are often and reliably used in which light from a radiation source is passed through a cuvette through which a gas mixture flows with the sample gas. Along this transmission path certain specific gas component dependent absorptions are effected. These in turn are detected with a detector, so that it can be deduced from the degree of absorption of specific wavelengths on the specific sample gas and the concentration of the respective sample gas component.
  • TDLAS laser absorption spectroscopy
  • the spectroscopy device For certain trace measurements in sample gases, the spectroscopy device must be sensitive, but there is also a requirement to measure different gas components. Switching from one gas component to another is laborious, especially because of the respective respective or respectively new calibration. For this reason, it is necessary either to measure several gas components at the same time or to be able to switch between them very quickly.
  • the core of the method according to the invention is that two or more different or identical optical spectrometry methods are operated simultaneously or alternately, such that they jointly act on at least one optical or optoelectronic component.
  • TDLAS gas analyzers e.g. the sensitivity for the gases NO and NO2 is very low. Detection limits for NO are typically 1000 ppb at 1 m optical path length, for NO2 340 ppb at 1 m optical path length. SO2 is even completely undetectable in the spectral range of laser diodes (NIR up to 3000 nm). Other molecules, e.g. In contrast, NH3, HCl and H2O are particularly sensitive to measurement using this measurement method.
  • UV-VIS-GFC and -IFC photometry offers significantly lower detection limits for NO and NO2, namely about 20 ppb at 1 m optical path length. Equally sensitive is SO2 measurable.
  • NH3 on the other hand, can only be measured to a limited extent due to large cross-sensitivity problems in the UV range. HCl and H2O show no absorption in the UV-VIS and are therefore not measurable there.
  • the measuring methods use at least one optical or optoelectronic component such as light source, lens, mirror, beam splitter, measuring cuvette, interference filter, gas filter and detector individually or in combination.
  • optical or optoelectronic component such as light source, lens, mirror, beam splitter, measuring cuvette, interference filter, gas filter and detector individually or in combination.
  • the two or more measurement methods using a common measuring cell arrangement have a laser light source and a corresponding laser light detector on the one hand, and a UV light source and a UV light detector on the other hand. In this way even two very different measuring methods can be used simultaneously. Furthermore, it is configured that the two or more measuring methods work with a laser light source and a corresponding laser light detector on the one hand, and an infrared light source and an infrared light detector on the other hand.
  • the two or more measuring methods with a laser light source and a corresponding laser light detector on the one hand, and a quantum cascade laser and a QCL detector on the other hand work.
  • At least one or more detectors for receiving reference signals of the light sources are arranged.
  • the calibration cuvettes are arranged distributed on the Kalibrationsrad such that the respective effective for the UV light beam path and the laser light beam path cuvettes are each arranged diametrically opposite one another.
  • At least one of the two beam paths is operated in a folded arrangement, such that a corresponding reflector is provided on the side opposite the radiation source.
  • both radiation paths are operated in a folded arrangement, such that the detectors for both beam paths are placed on the same side with respect to the measuring cuvette as the radiation sources. This leads to a considerable compactness.
  • An advantageous embodiment is that the two or more beam paths through the measuring cuvette in such a way that the radiation sources and the detector or the detectors are arranged on different sides.
  • the gist of the invention is that two or more optical spectrometers are combined with a common measuring cuvette through which measurement gas flows such that two or more radiation sources and one or more detectors are arranged next to each other and two or more optical absorption paths through which a common cuvette or cuvette arrangement through which the sample gas to be analyzed flows.
  • the two or more spectrometers are arranged in a continuous measuring device and are provided with a common electronic evaluation device which evaluates the measured values of the spectrometers. It is furthermore advantageous that a common calibration wheel is provided for both or several spectrometers, in which calibration cuvettes are integrated for both the beam path of one spectrometer and for the beam path of the other spectrometer.
  • Figure 1 multi-component gas analyzer, direct optical path with separation of radiation sources and receivers.
  • Figure 2 Alternative multi-component gas analyzer with folded optical path and compact arrangement of radiation sources and receivers.
  • Figure 3 Alternative multi-component gas analyzer with direct optical path and compact arrangement of radiation sources and receivers.
  • Figure 4 multi-component gas analyzer, with combined short and long optical path
  • the TDLAS and the UV-VIS GFC and IFC photometry offer different advantages, it is proposed according to the invention to combine both measurement methods. Due to the small size of the laser and detector modules of the TDLAS analyzer and the lack of moving parts, this analyzer can be structurally well connected to the photometer, which is mechanically more complicated due to the moving filter wheels.
  • a further special feature is the common use of the "calibration wheel" with built-in gas-filled calibration cells by the TDLAS and the UV-VIS-GFC and -I FC photometer.
  • the adjustment cells are used in the photometer for readjusting the sensitivity and in the TDLAS Readjustment of the emission wavelength of the diode laser eg over the operating temperature of the diode.
  • Alternative embodiments of this invention could arise from the following variants:
  • FIG. 1 shows a multicomponent gas analyzer according to the invention with a simple optical path.
  • a UV radiation source 2 is arranged next to a laser light source, such that the beam paths, as it were, pass through the measurement path.
  • the output light beam of the UV radiation source 2 impinges on a beam splitter 5 which allows a partial beam to pass therethrough, and deflects the other partial beam to form a reference detector 6.
  • the exiting component beam passes through the measuring cuvette 1, through which measuring gas is passed.
  • a gas component-specific and concentration-dependent absorption of the UV light takes place.
  • the UV light beam strikes a detector 8. This then determines the so-called gas-specific absorption.
  • a rotatable Kalibrierrad 7 is arranged with a plurality of calibration cuvettes.
  • Beam splitter 5 is a filter wheel 4 rotatably arranged with a plurality of filters.
  • Parallel to the UV light source 2 is a laser light source 3, whose light beam enters the measuring cuvette 1, as it were. Behind the cuvette, a corresponding detector 9 is arranged for the TDL signal.
  • FIG. 2 shows a folded beam path, which is realized on one side of the measuring cuvette with the arrangement of a retroreflector 10. Steel sources 2 and 14, and the combined UV and NIR detector 13 and are placed in combination on one side of the assembly. The folding is produced by the said arrangement of a deflection mirror (retro-mirror) 10 for both beam paths.
  • FIG. 3 shows a simple beam path in which radiation sources 2 and 14 and detectors 8 and 12 can be spatially separated or also combined.
  • the measuring cuvette 1 is placed so that it is provided at both ends with deflecting mirrors 11, so that the Strahlungeuzen and the detectors are placed again on one side of the arrangement.
  • FIG. 4 shows a simple beam path in combination with an increase in the optical path length in the same measuring volume. This is achieved by multiple reflection. Radiation sources and detectors are spatially separable.
  • the UV beam passes through the measuring cell 1 in a straight line, while the radiation of the NIR radiation source is deflected four times until it is coupled out via a further deflection mirror on the detector.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

L'invention concerne un procédé permettant de faire fonctionner un spectromètre pour l'analyse des gaz, ainsi que le spectromètre correspondant. Dans le but d'avoir une mesure simultanée et rapide de traces de plusieurs composants gazeux dans un échantillon gazeux, l'invention est caractérisée en ce qu'on effectue en même temps ou alternativement deux ou plusieurs procédés de spectrométrie optique, différents ou identiques, de telle façon que ceux-ci s'appliquent simultanément sur au moins un composant optique ou optoélectronique.
PCT/EP2010/003604 2009-06-17 2010-06-16 Procédé permettant de faire fonctionner un spectromètre pour l'analyse des gaz, et spectromètre correspondant WO2010145809A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009025147.2 2009-06-17
DE200910025147 DE102009025147B3 (de) 2009-06-17 2009-06-17 Verfahren zum Betrieb eines Spektrometers zur Gasanalyse, sowie Spektrometer selbst

Publications (1)

Publication Number Publication Date
WO2010145809A1 true WO2010145809A1 (fr) 2010-12-23

Family

ID=42782132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/003604 WO2010145809A1 (fr) 2009-06-17 2010-06-16 Procédé permettant de faire fonctionner un spectromètre pour l'analyse des gaz, et spectromètre correspondant

Country Status (2)

Country Link
DE (1) DE102009025147B3 (fr)
WO (1) WO2010145809A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621063A (zh) * 2012-03-05 2012-08-01 哈尔滨工业大学 基于多孔材料气体池的小型氧气测量装置
CN104237126A (zh) * 2014-09-09 2014-12-24 中国科学院电工研究所 一种采用轴向多层滤光片盘结构的光声光谱检测装置
US9448215B2 (en) 2010-12-23 2016-09-20 Abb Ag Optical gas analyzer device having means for calibrating the frequency spectrum
EP3561487B1 (fr) * 2018-04-25 2023-01-18 ABB Schweiz AG Dispositif de mesure destiné à l'analyse d'une composition d'un gaz de combustion pourvu d'une chambre filtrante disposée devant un détecteur

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012000038A1 (de) 2012-01-03 2013-07-04 Humboldt-Universität Zu Berlin Lasereinrichtung
DE102014000651B3 (de) * 2014-01-17 2015-05-13 Gottfried Wilhelm Leibniz Universität Hannover Vorrichtung zum Bestimmen einer Konzentration eines chemischen Stoffes
EP2944944B1 (fr) * 2014-05-12 2021-10-20 General Electric Company Détecteur de gaz et procédé de détection
DE102015221708A1 (de) * 2015-11-05 2017-05-11 Robert Bosch Gmbh Abgassensor und Verfahren zum Betreiben eines Abgassensors für ein Fahrzeug
EP3321658B1 (fr) * 2016-11-09 2018-09-26 Sick Ag Appareil de mesure à deux canaux
EP3163291B1 (fr) * 2016-12-02 2018-10-24 Sick Ag Dispositif de mesure pour déterminer les concentrations de plusieurs composants gazeux
DE102018102059B4 (de) 2018-01-30 2020-10-22 Gottfried Wilhelm Leibniz Universität Hannover Verfahren und Vorrichtung zum Bestimmen einer Konzentration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0349839A2 (fr) * 1988-07-07 1990-01-10 Bodenseewerk Perkin-Elmer Gmbh Photomètre multicomposant
US6396056B1 (en) * 1999-07-08 2002-05-28 Air Instruments And Measurements, Inc. Gas detectors and gas analyzers utilizing spectral absorption
WO2003019160A2 (fr) * 2001-08-21 2003-03-06 Spx Corporation Structure a chemin optique pour detection d'emissions dans un chemin ouvert
DE10205525A1 (de) * 2002-04-04 2004-04-08 Gunther Prof. Dr.-Ing. Krieg Verfahren und Vorrichtung zur Reinheitskontrolle von Kohlendioxid für Anwendungen in der Getränkeindustrie

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798464A (en) * 1985-02-21 1989-01-17 The Perkin-Elmer Corporation Scanning array spectrophotometer
DE4115425C1 (fr) * 1991-05-10 1992-08-27 Hartmann & Braun Ag, 6000 Frankfurt, De
DE102006056867B4 (de) * 2006-12-01 2008-10-16 Deutsche Institute für Textil- und Faserforschung Denkendorf (DITF) Institut für Textilchemie und Chemiefasern (ITCF) Verfahren zur Durchführung von Abwasseruntersuchungen mittels eines Sensors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0349839A2 (fr) * 1988-07-07 1990-01-10 Bodenseewerk Perkin-Elmer Gmbh Photomètre multicomposant
US6396056B1 (en) * 1999-07-08 2002-05-28 Air Instruments And Measurements, Inc. Gas detectors and gas analyzers utilizing spectral absorption
WO2003019160A2 (fr) * 2001-08-21 2003-03-06 Spx Corporation Structure a chemin optique pour detection d'emissions dans un chemin ouvert
DE10205525A1 (de) * 2002-04-04 2004-04-08 Gunther Prof. Dr.-Ing. Krieg Verfahren und Vorrichtung zur Reinheitskontrolle von Kohlendioxid für Anwendungen in der Getränkeindustrie

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PAGANINI E ET AL: "Instrument for long-path spectral extinction measurements in air: application to sizing of airborne particles", APPLIED OPTICS, OPTICAL SOCIETY OF AMERICA, US LNKD- DOI:10.1364/AO.40.004261, vol. 40, no. 24, 20 August 2001 (2001-08-20), pages 4261 - 4274, XP002226218, ISSN: 0003-6935 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9448215B2 (en) 2010-12-23 2016-09-20 Abb Ag Optical gas analyzer device having means for calibrating the frequency spectrum
CN102621063A (zh) * 2012-03-05 2012-08-01 哈尔滨工业大学 基于多孔材料气体池的小型氧气测量装置
CN102621063B (zh) * 2012-03-05 2013-11-13 哈尔滨工业大学 基于多孔材料气体池的小型氧气测量装置
CN104237126A (zh) * 2014-09-09 2014-12-24 中国科学院电工研究所 一种采用轴向多层滤光片盘结构的光声光谱检测装置
EP3561487B1 (fr) * 2018-04-25 2023-01-18 ABB Schweiz AG Dispositif de mesure destiné à l'analyse d'une composition d'un gaz de combustion pourvu d'une chambre filtrante disposée devant un détecteur
US11796456B2 (en) 2018-04-25 2023-10-24 Abb Schweiz Ag Measuring device for analyzing the composition of a fuel gas, having a filter chamber arranged upstream of a detector

Also Published As

Publication number Publication date
DE102009025147B3 (de) 2010-12-09

Similar Documents

Publication Publication Date Title
DE102009025147B3 (de) Verfahren zum Betrieb eines Spektrometers zur Gasanalyse, sowie Spektrometer selbst
DE102005031857B3 (de) Optisches Analysegerät
EP3077793B1 (fr) Dispositif d'analyse (photomètre) à guides de lumière en série
EP0145877B1 (fr) Photomètre pour l'analyse en continu d'un milieu (gaz ou liquide)
WO2006002740A1 (fr) Analyseur de gaz a infrarouge non dispersif
DE102010056137B4 (de) Optische Gasanalysatoreinrichtung mit Mitteln zum Kalibrieren des Frequenzspektrums
EP3321658A1 (fr) Appareil de mesure à deux canaux
EP2726830B1 (fr) Chromatographe en phase gazeuse avec spectromètre d'absorption et méthode d'analyse d'un mélange gazeux par chromatographie en phase gazeuse
DE19732470C2 (de) Nichtdispersiver Infrarot-Gasanalysator
EP3270045B1 (fr) Systeme de mesure de concentrations de gaz
DE4232371C2 (de) Analysengerät zur Bestimmung von Gasen oder Flüssigkeiten
EP2132551A1 (fr) Détecteur photoacoustique comportant deux trajectoires de faisceau pour la lumière d'excitation
WO2008014937A1 (fr) Cellule de mesure optique
EP3598103B1 (fr) Analyseur de gaz et procédé d'analyse de gaz
EP1847827A1 (fr) Analyseur de gaz à infrarouge non dispersif
EP0087077A2 (fr) Dispositif pour la mesure optique de gaz
DE102010050626B4 (de) Gasanalysatoreinrichtung mit einer Herriotzelle, sowie Verfahren zum Betrieb derselben
DE102010023453B3 (de) Gasanalysatoreinrichtung mit optisch verbesserter Messküvette
DE3736673C2 (fr)
DE102010030549B4 (de) Nichtdispersiver Gasanalysator
DE4437188A1 (de) Analysengerät zur Konzentrationsbestimmung
DE19848120A1 (de) Einrichtung zur Messung der Strahlungsabsorption von Gasen
DE102021210443B4 (de) Tauchsonde mit variabler Pfadlänge
WO2004008112A1 (fr) Spectrometre d'absorption a haute resolution et procede de mesure correspondant
DE19652513A1 (de) Küvette, Transferoptik und Spektroskopievorrichtung für die Absorptionsspektroskopie von Gasen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10725048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10725048

Country of ref document: EP

Kind code of ref document: A1