WO2010145809A1 - Methods for operating a spectrometer for gas analysis, and said spectrometer - Google Patents

Methods for operating a spectrometer for gas analysis, and said spectrometer Download PDF

Info

Publication number
WO2010145809A1
WO2010145809A1 PCT/EP2010/003604 EP2010003604W WO2010145809A1 WO 2010145809 A1 WO2010145809 A1 WO 2010145809A1 EP 2010003604 W EP2010003604 W EP 2010003604W WO 2010145809 A1 WO2010145809 A1 WO 2010145809A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
measuring
gas
spectrometer
cuvette
Prior art date
Application number
PCT/EP2010/003604
Other languages
German (de)
French (fr)
Inventor
Carsten Rathke
Stefan Bleil
Dominik Högenauer
Original Assignee
Abb Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Ag filed Critical Abb Ag
Publication of WO2010145809A1 publication Critical patent/WO2010145809A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0031General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N2021/3129Determining multicomponents by multiwavelength light
    • G01N2021/3133Determining multicomponents by multiwavelength light with selection of wavelengths before the sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3155Measuring in two spectral ranges, e.g. UV and visible
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/317Special constructive features
    • G01N2021/3174Filter wheel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • G01N2021/396Type of laser source
    • G01N2021/399Diode laser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • G01N21/3518Devices using gas filter correlation techniques; Devices using gas pressure modulation techniques

Definitions

  • the present invention relates to methods for operating a spectrometer for gas analysis, and spectrometer itself, according to the preamble of claims 1 and 15.
  • optical methods are often and reliably used in which light from a radiation source is passed through a cuvette through which a gas mixture flows with the sample gas. Along this transmission path certain specific gas component dependent absorptions are effected. These in turn are detected with a detector, so that it can be deduced from the degree of absorption of specific wavelengths on the specific sample gas and the concentration of the respective sample gas component.
  • TDLAS laser absorption spectroscopy
  • the spectroscopy device For certain trace measurements in sample gases, the spectroscopy device must be sensitive, but there is also a requirement to measure different gas components. Switching from one gas component to another is laborious, especially because of the respective respective or respectively new calibration. For this reason, it is necessary either to measure several gas components at the same time or to be able to switch between them very quickly.
  • the core of the method according to the invention is that two or more different or identical optical spectrometry methods are operated simultaneously or alternately, such that they jointly act on at least one optical or optoelectronic component.
  • TDLAS gas analyzers e.g. the sensitivity for the gases NO and NO2 is very low. Detection limits for NO are typically 1000 ppb at 1 m optical path length, for NO2 340 ppb at 1 m optical path length. SO2 is even completely undetectable in the spectral range of laser diodes (NIR up to 3000 nm). Other molecules, e.g. In contrast, NH3, HCl and H2O are particularly sensitive to measurement using this measurement method.
  • UV-VIS-GFC and -IFC photometry offers significantly lower detection limits for NO and NO2, namely about 20 ppb at 1 m optical path length. Equally sensitive is SO2 measurable.
  • NH3 on the other hand, can only be measured to a limited extent due to large cross-sensitivity problems in the UV range. HCl and H2O show no absorption in the UV-VIS and are therefore not measurable there.
  • the measuring methods use at least one optical or optoelectronic component such as light source, lens, mirror, beam splitter, measuring cuvette, interference filter, gas filter and detector individually or in combination.
  • optical or optoelectronic component such as light source, lens, mirror, beam splitter, measuring cuvette, interference filter, gas filter and detector individually or in combination.
  • the two or more measurement methods using a common measuring cell arrangement have a laser light source and a corresponding laser light detector on the one hand, and a UV light source and a UV light detector on the other hand. In this way even two very different measuring methods can be used simultaneously. Furthermore, it is configured that the two or more measuring methods work with a laser light source and a corresponding laser light detector on the one hand, and an infrared light source and an infrared light detector on the other hand.
  • the two or more measuring methods with a laser light source and a corresponding laser light detector on the one hand, and a quantum cascade laser and a QCL detector on the other hand work.
  • At least one or more detectors for receiving reference signals of the light sources are arranged.
  • the calibration cuvettes are arranged distributed on the Kalibrationsrad such that the respective effective for the UV light beam path and the laser light beam path cuvettes are each arranged diametrically opposite one another.
  • At least one of the two beam paths is operated in a folded arrangement, such that a corresponding reflector is provided on the side opposite the radiation source.
  • both radiation paths are operated in a folded arrangement, such that the detectors for both beam paths are placed on the same side with respect to the measuring cuvette as the radiation sources. This leads to a considerable compactness.
  • An advantageous embodiment is that the two or more beam paths through the measuring cuvette in such a way that the radiation sources and the detector or the detectors are arranged on different sides.
  • the gist of the invention is that two or more optical spectrometers are combined with a common measuring cuvette through which measurement gas flows such that two or more radiation sources and one or more detectors are arranged next to each other and two or more optical absorption paths through which a common cuvette or cuvette arrangement through which the sample gas to be analyzed flows.
  • the two or more spectrometers are arranged in a continuous measuring device and are provided with a common electronic evaluation device which evaluates the measured values of the spectrometers. It is furthermore advantageous that a common calibration wheel is provided for both or several spectrometers, in which calibration cuvettes are integrated for both the beam path of one spectrometer and for the beam path of the other spectrometer.
  • Figure 1 multi-component gas analyzer, direct optical path with separation of radiation sources and receivers.
  • Figure 2 Alternative multi-component gas analyzer with folded optical path and compact arrangement of radiation sources and receivers.
  • Figure 3 Alternative multi-component gas analyzer with direct optical path and compact arrangement of radiation sources and receivers.
  • Figure 4 multi-component gas analyzer, with combined short and long optical path
  • the TDLAS and the UV-VIS GFC and IFC photometry offer different advantages, it is proposed according to the invention to combine both measurement methods. Due to the small size of the laser and detector modules of the TDLAS analyzer and the lack of moving parts, this analyzer can be structurally well connected to the photometer, which is mechanically more complicated due to the moving filter wheels.
  • a further special feature is the common use of the "calibration wheel" with built-in gas-filled calibration cells by the TDLAS and the UV-VIS-GFC and -I FC photometer.
  • the adjustment cells are used in the photometer for readjusting the sensitivity and in the TDLAS Readjustment of the emission wavelength of the diode laser eg over the operating temperature of the diode.
  • Alternative embodiments of this invention could arise from the following variants:
  • FIG. 1 shows a multicomponent gas analyzer according to the invention with a simple optical path.
  • a UV radiation source 2 is arranged next to a laser light source, such that the beam paths, as it were, pass through the measurement path.
  • the output light beam of the UV radiation source 2 impinges on a beam splitter 5 which allows a partial beam to pass therethrough, and deflects the other partial beam to form a reference detector 6.
  • the exiting component beam passes through the measuring cuvette 1, through which measuring gas is passed.
  • a gas component-specific and concentration-dependent absorption of the UV light takes place.
  • the UV light beam strikes a detector 8. This then determines the so-called gas-specific absorption.
  • a rotatable Kalibrierrad 7 is arranged with a plurality of calibration cuvettes.
  • Beam splitter 5 is a filter wheel 4 rotatably arranged with a plurality of filters.
  • Parallel to the UV light source 2 is a laser light source 3, whose light beam enters the measuring cuvette 1, as it were. Behind the cuvette, a corresponding detector 9 is arranged for the TDL signal.
  • FIG. 2 shows a folded beam path, which is realized on one side of the measuring cuvette with the arrangement of a retroreflector 10. Steel sources 2 and 14, and the combined UV and NIR detector 13 and are placed in combination on one side of the assembly. The folding is produced by the said arrangement of a deflection mirror (retro-mirror) 10 for both beam paths.
  • FIG. 3 shows a simple beam path in which radiation sources 2 and 14 and detectors 8 and 12 can be spatially separated or also combined.
  • the measuring cuvette 1 is placed so that it is provided at both ends with deflecting mirrors 11, so that the Strahlungeuzen and the detectors are placed again on one side of the arrangement.
  • FIG. 4 shows a simple beam path in combination with an increase in the optical path length in the same measuring volume. This is achieved by multiple reflection. Radiation sources and detectors are spatially separable.
  • the UV beam passes through the measuring cell 1 in a straight line, while the radiation of the NIR radiation source is deflected four times until it is coupled out via a further deflection mirror on the detector.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The present invention relates to a method for operating a gas analysis spectrometer, and to the spectrometer itself. In order to enable the simultaneous and rapid trace measurement of multiple gas components in the sample gas, the invention proposes that at least two or a plurality of different or identical optical spectrometry methods be carried out simultaneously or alternately such that these methods act jointly on at least one optical or optoelectronic component.

Description

Verfahren zum Betrieb eines Spektrometers zur Gasanalyse, sowie Spektrometer selbst Method for operating a spectrometer for gas analysis, and spectrometer itself
Die vorliegende Erfindung betrifft Verfahren zum Betrieb eines Spektrometers zur Gasanalyse, sowie Spektrometer selbst, gemäß Oberbegriff der Patentansprüche 1 und 15.The present invention relates to methods for operating a spectrometer for gas analysis, and spectrometer itself, according to the preamble of claims 1 and 15.
Zur Gasanalyse werden vielfach und zuverlässig optische Verfahren eingesetzt, bei denen Licht einer Strahlungsquelle durch eine mit einem Gasgemisch mit Messgas durchströmten Küvette durchgeleitet wird. Entlang dieser Durchstrahlungsstrecke werden bestimmte spezifische gaskomponentenabhängige Absorptionen bewirkt. Diese wiederum werden mit einem Deteketor erfasst, so dass aus dem Maß der Absortion bestimmter Wellenlängen auf das spezifische Messgas und die Konzentration der jeweiligen Messgaskomponente geschlossen werden kann.For gas analysis optical methods are often and reliably used in which light from a radiation source is passed through a cuvette through which a gas mixture flows with the sample gas. Along this transmission path certain specific gas component dependent absorptions are effected. These in turn are detected with a detector, so that it can be deduced from the degree of absorption of specific wavelengths on the specific sample gas and the concentration of the respective sample gas component.
Bekannte Verfahren hierzu sind die non-dispersive-ultraviolet-spectroscopy, kurzNDUV genannt, non-dispersive-infrared-spectroscopy, kurz NDIR genannt, sowie bspw auch die Laserabsorptionsspektroskopie (TDLAS = tunable diode laser absorption spectroscopy) . Darüber hinaus gibt es weitere Verfahren.Known methods for this purpose are the non-dispersive ultraviolet spectroscopy, or NDUV for short, non-dispersive-infrared-spectroscopy, or NDIR for short, and, for example, laser absorption spectroscopy (TDLAS = tunable diode laser absorption spectroscopy). In addition, there are other procedures.
Für bestimmte Spurenmessungen in Messgasen muss die Spektroskopieeinrichtung sensitiv sein, aber es besteht auch die Forderung, unterschiedliche Gaskomponenten zu messen. Ein Umschalten von einer Gaskomponente auf eine andere ist aufwändig, insbesondere wegen der entsprechenden jeweiligen bzw jeweils neuen Kalibrierung. Aus diesem Grund ist es notwendig entweder mehrere Gaskomponenten gleichzeitig zu messen oder sehr schnell zwischen diesen umschalten zu können.For certain trace measurements in sample gases, the spectroscopy device must be sensitive, but there is also a requirement to measure different gas components. Switching from one gas component to another is laborious, especially because of the respective respective or respectively new calibration. For this reason, it is necessary either to measure several gas components at the same time or to be able to switch between them very quickly.
Es ist daher die Aufgabe der vorliegenden Erfindung, ein Verfahren sowie eine Einrichtung dahingehend zu verbessern, dass eine gleichzeitige, schnelle Spurenmessung mehrerer Gaskomponenten im Probengas erfolgen kann.It is therefore the object of the present invention to improve a method and a device such that a simultaneous, rapid trace measurement of a plurality of gas components in the sample gas can take place.
Die gestellte Aufgabe ist im Hinblick auf ein Verfahren der gattungsgemäßen Art erfindungsgemäß durch die kennzeichnenden Merkmale des Anspruches 1 gelöst.The stated object is achieved with regard to a method of the generic type according to the invention by the characterizing features of claim 1.
Weitere vorteilhafte Ausgestaltungen sind in den abhängigen Ansprüchen 2 bis 14 angegeben.Further advantageous embodiments are specified in the dependent claims 2 to 14.
Im Hinblick auf eine Einrichtung der gattungsgemäßen Art ist die gestellte Aufgabe erfindungsgemäß durch die kennzeichnenden Merkmale des Anspruches 15 gelöst.With regard to a device of the generic type, the object is achieved by the characterizing features of claim 15.
Vorteilhafte Ausgestaltungen der Einrichtung sind in den übrigen Ansprüchen angegeben.Advantageous embodiments of the device are specified in the remaining claims.
Kern der verfahrensgemäßen Erfindung ist es, dass zwei oder mehrere unterschiedliche oder gleiche optische Spektrometrieverfahren zeitgleich oder wechselweise betrieben werden, derart, dass diese mindestens ein optisches oder optoelektronisches Bauteil gemeinsam beaufschlagen.The core of the method according to the invention is that two or more different or identical optical spectrometry methods are operated simultaneously or alternately, such that they jointly act on at least one optical or optoelectronic component.
Hiermit ist nun die gleichzeitige, schnelle Spurenmessung mehrerer Gaskomponenten, etwa HCI+SO2+H2O oder NO+NO2+NH3 möglich. Die nachfolgend noch beschriebenen, vorzugsweise kombinierten Verfahren erfüllen jedes für sich die gestellten Anforderungen an hohe Sensitivität, Selektivität, Stabilität und Messgeschwindigkeit, für bis zu zwei Gaskomponenten aus den genannten Dreiergruppen, jedoch nicht für alle drei Gaskomponenten. Der Grund hierfür liegt in der geringen Absorptionsstärke bestimmter Gasmoleküle in dem Spektralbereich der von der jeweiligen Lichtquelle (z.B. UV-VIS-Lampe bzw. NIR-Laserdiode) abgegebenen elektromagnetischen Strahlung. Um diese Gasmoleküle detektieren zu können, ist es erforderlich extrem lange Wege mit Licht zu durchstrahlen. Dieses gelingt nur durch die Integration von optischen Langwegzellen in den Gasanalysator, z.B. vom Typ „White", „Herriott" oder „Integrated Cavity Output Spectroscopy (ICOS)", was entsprechend aufwendig und kostspielig ist. Andere Gasmoleküle sind wegen fehlender Absorptionsübergänge in dem zur Verfügung stehenden Spektralbereich überhaupt nicht detektierbar.This now allows the simultaneous, rapid trace measurement of several gas components, such as HCI + SO2 + H2O or NO + NO2 + NH3. The below-described, preferably combined, methods individually meet the requirements for high sensitivity, selectivity, stability and measuring speed required for up to two gas components from the aforementioned groups of three, but not for all three gas components. The reason for this lies in the low absorption strength of certain gas molecules in the spectral range of the electromagnetic radiation emitted by the respective light source (eg UV-VIS lamp or NIR laser diode). In order to be able to detect these gas molecules, it is necessary to irradiate extremely long paths with light. This succeeds only by the integration of long-range optical cells in the gas analyzer, eg of the type "White", "Herriott" or "Integrated Cavity Output Spectroscopy (ICOS)", which is correspondingly complicated and costly.Other gas molecules are due to lack of absorption transitions in the available spectral range not detectable at all.
Bei TDLAS-Gasanalysatoren ist z.B. die Empfindlichkeit für die Gase NO und NO2 sehr gering. Nachweisgrenzen liegen für NO typischerweise bei 1000 ppb bei 1 m optischer Weglänge, für NO2 bei 340 ppb bei 1 m optischer Weglänge. SO2 ist im Spektralbereich von Laserdioden (NIR bis max. 3000 nm) sogar gar nicht nachweisbar. Andere Moleküle, wie z.B. NH3, HCl und H2O sind mit diesem Messverfahren dagegen besonders empfindlich messbar.In TDLAS gas analyzers, e.g. the sensitivity for the gases NO and NO2 is very low. Detection limits for NO are typically 1000 ppb at 1 m optical path length, for NO2 340 ppb at 1 m optical path length. SO2 is even completely undetectable in the spectral range of laser diodes (NIR up to 3000 nm). Other molecules, e.g. In contrast, NH3, HCl and H2O are particularly sensitive to measurement using this measurement method.
Demgegenüber bietet die UV-VIS-GFC und -IFC-Fotometrie deutlich niedrigere Nachweisgrenzen für NO und NO2, nämlich ca. 20 ppb bei 1 m optischer Weglänge. Ebenso empfindlich ist SO2 messbar. NH3 ist dagegen wegen großer Querempfindlichkeitsprobleme im UV-Bereich nur eingeschränkt messbar. HCl und H2O zeigen im UV-VIS keine Absorptionen und sind daher dort nicht messbar.In contrast, the UV-VIS-GFC and -IFC photometry offers significantly lower detection limits for NO and NO2, namely about 20 ppb at 1 m optical path length. Equally sensitive is SO2 measurable. NH3, on the other hand, can only be measured to a limited extent due to large cross-sensitivity problems in the UV range. HCl and H2O show no absorption in the UV-VIS and are therefore not measurable there.
Somit ist die erfindungsgemäße verfahrensmäßige und einrichtungsmäßige Kombination optimal.Thus, the procedural and institutional combination according to the invention is optimal.
Hierbei ist vorteilhaft ausgestaltet, dass die Messverfahren mindestens ein optisches oder optoelektronisches Bauteil wie Lichtquelle, Linse, Spiegel, Strahlenteiler, Messküvette, Interferenzfilter, Gasfilter und Detektor einzeln oder in Kombination verwenden.In this case, it is advantageously configured that the measuring methods use at least one optical or optoelectronic component such as light source, lens, mirror, beam splitter, measuring cuvette, interference filter, gas filter and detector individually or in combination.
In weiterer vorteilhafter Ausgestaltung ist angegeben, dass die beiden oder mehrere mit einer gemeinsamen Messküvettenanordnung arbeitenden Messverfahren mit einer Laserlichtquelle und einem entsprechenden Laserlichtdetektor einerseits, und einer UV-Lichtquelle und einem UV-Lichtdetektor anderseits arbeiten. Auf diese Weise können sogar zwei sehr verschiedene Messmethoden gleichzeitig eingesetzt werden. Weiterhin ist ausgestaltet, dass die beiden oder mehrere Messverfahren mit einer Laserlichtquelle und einem entsprechenden Laserlichtdetektor einerseits, und einer Infrarot-Lichtquelle und einem Infrarot-Lichtdetektor andererseits arbeiten.In a further advantageous embodiment, it is stated that the two or more measurement methods using a common measuring cell arrangement have a laser light source and a corresponding laser light detector on the one hand, and a UV light source and a UV light detector on the other hand. In this way even two very different measuring methods can be used simultaneously. Furthermore, it is configured that the two or more measuring methods work with a laser light source and a corresponding laser light detector on the one hand, and an infrared light source and an infrared light detector on the other hand.
Auch kann vorgesehen werden, dass die beiden oder mehrere Messverfahren mit einer Laserlichtquelle und einem entsprechenden Laserlichtdetektor einerseits, und einen Quantenkaskadenlaser und einem QCL-Detektor anderseits arbeiten.It can also be provided that the two or more measuring methods with a laser light source and a corresponding laser light detector on the one hand, and a quantum cascade laser and a QCL detector on the other hand work.
In weiterer vorteilhafter Ausgestaltung ist angegeben, dass zumindest die Kalibration beider oder mehrerer Licht-/Signalstrecken über ein gemeinsames drehbares, mit verschiedenen Kalibrationsküvetten versehenes Kalibrationsrad erfolgt. So können die Kalibrierküvetten zweier völlig verschiedener Messaufbauten sogar in einem gemeinsamen Kalibrations- oder Küvettenrad angeordnet werden. Damit ist die Summe der benötigten Teile für die erfindungsgemäße Messanordnung kleiner als die Summe der benötigten Teile der beiden Messanordnungen. D.h. in erfindungsgemäßer Weise nutzen die parallel arrangierten Messanordnungen dieselbe Messküvette und dasselbe Kalibrationsrad. Dies ist neben der messtechnischen Funktionalität ein erheblicher konstruktiver Vorteil.In a further advantageous embodiment, it is stated that at least the calibration of both or more light / signal paths takes place via a common rotatable, provided with different Kalibrationsküvetten Kalibrationsrad. Thus, the calibration cuvettes of two completely different measurement setups can even be arranged in a common calibration or cuvette wheel. Thus, the sum of the parts required for the measuring arrangement according to the invention is smaller than the sum of the required parts of the two measuring arrangements. That In accordance with the invention, the parallel arranged measuring arrangements use the same measuring cuvette and the same calibration wheel. This is in addition to the metrological functionality a significant constructive advantage.
Weiterhin ist vorgeschlagen, dass in den Messverfahren mindestens ein oder mehrere Detektoren zur Aufnahme von Referenzsignalen der Lichtquellen angeordnet sind.Furthermore, it is proposed that in the measuring method at least one or more detectors for receiving reference signals of the light sources are arranged.
In weiterer vorteilhafter Ausgestaltung ist daher angegeben, dass die Kalibrationsküvetten auf dem Kalibrationsrad derart verteilt angeordnet werden, dass die jeweiligen für den UV-Licht-Strahlengang und den Laserlicht-Strahlengang wirksame Küvetten jeweils diametral gegenüberliegend angeordnet sind.In a further advantageous embodiment, it is therefore specified that the calibration cuvettes are arranged distributed on the Kalibrationsrad such that the respective effective for the UV light beam path and the laser light beam path cuvettes are each arranged diametrically opposite one another.
Ferner ist weiter ausgestaltet, dass die Auswertung beider Signale in einer gemeinsamen Auswerteeinrichtung für jeweils unterschiedliche Gaskomponenten erfolgt. Somit ist für zwei mehr unabhängige Messmethoden auch nur eine Auswerteinrichtung vorzusehen.Furthermore, it is further configured that the evaluation of both signals takes place in a common evaluation device for respectively different gas components. Thus, for two more independent measuring methods, only one evaluation device is to be provided.
Alternativ kann aber auch vorgesehen werden, dass die Auswertung beider oder mehrerer Signale in einer gemeinsamen Auswerteeinrichtung für jeweils dieselbe Gaskomponente oder dieselben Gaskomponenten erfolgt. So kann dieselbe Gaskomponente mit zwei unabhängigen Methoden gemessen werden.Alternatively, however, it can also be provided that the evaluation of both or a plurality of signals in a common evaluation for each same gas component or the same gas components takes place. So the same gas component can be measured with two independent methods.
In weiterer vorteilhafter Ausgestaltung ist angegeben, dass zumindest einer der beiden Strahlengänge in gefalteter Anordnung betrieben wird, derart, dass an der der Strahlungsquelle gegenüberliegenden Seite ein entsprechender Reflektor vorgesehen ist. So können effektive Signalwege durch das Messgas erhöht werden um einen optimalen Wirkungsquerschnitt für die Absorption zu erhalten. Dadurch wird die Messgenauigkeit deutlich erhöht.In a further advantageous embodiment, it is stated that at least one of the two beam paths is operated in a folded arrangement, such that a corresponding reflector is provided on the side opposite the radiation source. Thus, effective signal paths can be increased by the sample gas in order to obtain an optimal absorption cross section. As a result, the measurement accuracy is significantly increased.
In weiterer vorteilhafter Ausgestaltung ist angegeben, dass beide Strahlungsgänge in gefalteter Anordnung betrieben werden, derart, dass die Detektoren für beide Strahlengänge auf derselben Seite in Bezug auf die Messküvette platziert sind, wie die Strahlungsquellen. Dies führt zu einer erheblichen Kompaktheit.In a further advantageous embodiment, it is stated that both radiation paths are operated in a folded arrangement, such that the detectors for both beam paths are placed on the same side with respect to the measuring cuvette as the radiation sources. This leads to a considerable compactness.
Eine vorteilhafte Ausgestaltung besteht darin, dass die beiden oder mehrere Strahlengänge die Messküvette in der Art durchlaufen, dass die Strahlenquellen und der Detektor oder die Detektoren an unterscheidlichen Seiten angeordnet sind.An advantageous embodiment is that the two or more beam paths through the measuring cuvette in such a way that the radiation sources and the detector or the detectors are arranged on different sides.
Im Hinblick auf ein Spektrometer zur Gasanalyse besteht der Kern der Erfindung darin, dass zwei oder mehr optische Spektrometer mit einer gemeinsamen von Messgas durchströmten Messküvette kombiniert sind, derart dass zwei oder mehr Strahlungsquellen und ein oder mehrere Detektoren jeweils nebeneinander angeordnet sind und dass zwei oder mehrere optische Absorptionstrecken durch die eine gemeinsame, mit dem zu analysierenen Messgas durchströmte Küvette oder Küvettenanordnung verlaufen.With regard to a spectrometer for gas analysis, the gist of the invention is that two or more optical spectrometers are combined with a common measuring cuvette through which measurement gas flows such that two or more radiation sources and one or more detectors are arranged next to each other and two or more optical absorption paths through which a common cuvette or cuvette arrangement through which the sample gas to be analyzed flows.
Hierzu ist vorteilhaft ausgestaltet, dass die beiden oder mehere Spektrometer in einer zusammenhängenden Messeinrichtung angeordnet sind und mit einer gemeinsamen elektronischen Auswerteeinrichtung versehen sind, die die Messwerte der Spektrometer auswertet. Weiterhin vorteilhaft ist es, dass für beide oder mehrere Spektrometer ein gemeinsames Kalibrationsrad vorgesehen ist, in welchem Kalibrierküvetten für sowohl den Strahlengang des einen Spektrometers, als auch für den Strahlengang des anderen Spektrometers integriert sind.For this purpose, it is advantageously configured that the two or more spectrometers are arranged in a continuous measuring device and are provided with a common electronic evaluation device which evaluates the measured values of the spectrometers. It is furthermore advantageous that a common calibration wheel is provided for both or several spectrometers, in which calibration cuvettes are integrated for both the beam path of one spectrometer and for the beam path of the other spectrometer.
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und nachfolgend näher erläutert.An embodiment of the invention is illustrated in the drawing and explained in more detail below.
Es zeigt:It shows:
Figur 1 : Multikomponenten-Gasanalysator, direkter optischer Weg mit Trennung von Strahlungsquellen und Empfängern.Figure 1: multi-component gas analyzer, direct optical path with separation of radiation sources and receivers.
Figur 2: Alternative Multikomponenten-Gasanalysator mit gefaltetem optischem Weg und kompakter Anordnung von Strahlungsquellen und Empfängern.Figure 2: Alternative multi-component gas analyzer with folded optical path and compact arrangement of radiation sources and receivers.
Figur 3: Alternative Multikomponenten-Gasanalysator mit direktem optischen Weg und kompakter Anordnung von Strahlungsquellen und Empfängern. Figur 4: Multikomponenten-Gasanalysator, mit kombiniertem kurzen und langem optischen WegFigure 3: Alternative multi-component gas analyzer with direct optical path and compact arrangement of radiation sources and receivers. Figure 4: multi-component gas analyzer, with combined short and long optical path
Da die TDLAS und die UV-VIS-GFC- und -IFC-Fotometrie unterschiedliche Vorteile bieten, ist hier erfindungsgemäß vorgeschlagen beide Messverfahren zu kombinieren. Aufgrund der geringen Größe der Laser- und Detektormodule des TDLAS-Analysators und dem Fehlen beweglicher Teile lässt sich dieser Analysator gut baulich mit dem durch die beweglichen Filterräder mechanisch aufwendigeren Fotometer verbinden.Since the TDLAS and the UV-VIS GFC and IFC photometry offer different advantages, it is proposed according to the invention to combine both measurement methods. Due to the small size of the laser and detector modules of the TDLAS analyzer and the lack of moving parts, this analyzer can be structurally well connected to the photometer, which is mechanically more complicated due to the moving filter wheels.
Als weitere Besonderheit ist hier auch die gemeinsame Nutzung des „Kalibrierrads" mit eingebauten gasgefüllten Justierzellen durch den TDLAS und das UV-VIS-GFC- und - I FC-Fotometer zu nennen. Die Justierzellen dienen beim Fotometer zur Nachjustierung der Empfindlichkeit und beim TDLAS zur Nachjustierung der Emissionswellenlänge des Diodenlasers z.B. über die Betriebstemperatur der Diode. Alternative Ausgestaltungen dieser Erfindung könnten durch folgende Varianten entstehen:A further special feature is the common use of the "calibration wheel" with built-in gas-filled calibration cells by the TDLAS and the UV-VIS-GFC and -I FC photometer.The adjustment cells are used in the photometer for readjusting the sensitivity and in the TDLAS Readjustment of the emission wavelength of the diode laser eg over the operating temperature of the diode. Alternative embodiments of this invention could arise from the following variants:
• Einsatz eines Quantenkaskadenlasers an der Stelle des Diodenlasers in dem Laseranalysator und/oderUse of a quantum cascade laser at the location of the diode laser in the laser analyzer and / or
• Nutzung des IR-Spektralbereichs an der Stelle des UV-VIS-Spektralbereichs im G FC-/I FC-Fotometer.• Use of the IR spectral range at the UV-VIS spectral range location in the G FC / I FC photometer.
Figur 1 zeigt einen erfindungsgemäßen Multikomponenten-Gasanalysator mit einem einfachen optischen Weg. Dabei ist eine UV-Strahlungsquelle 2 neben einer Laserlichtquelle angeordnet, derart, dass die Strahlengänge gleichsam die Messstrecke durchlaufen. Der Ausgangslichtstrahl der UV-Strahlungsquelle 2 trifft auf einen Strahlteiler 5 der einen Teilstrahl hindurch lässt, und den anderen Teilstrahl ablenkt zu einem Referenz-Detektor 6. Der austretende Teilstrahl durchstrahlt die Messküvette 1 , durch die Messgas hindurch geleitet wird. Entlang der Strecke durch die Messküvette 1 findet eine gaskomponenten-spezifische und konzentrationsabhängige Absorption des UV-Lichtes statt. Nachfolgend trifft der UV- Lichtstrahl auf einen Detektor 8. Dieser ermittelt sodann die sogenannte gasspezifische Absorption. Zwischen Messküvette 1 und Detektor 8 ist ein drehbares Kalibrierrad 7 mit einer Mehrzahl von Kalibrierküvetten angeordnet. Zwischen UV-Lichtquelle 2 undFIG. 1 shows a multicomponent gas analyzer according to the invention with a simple optical path. In this case, a UV radiation source 2 is arranged next to a laser light source, such that the beam paths, as it were, pass through the measurement path. The output light beam of the UV radiation source 2 impinges on a beam splitter 5 which allows a partial beam to pass therethrough, and deflects the other partial beam to form a reference detector 6. The exiting component beam passes through the measuring cuvette 1, through which measuring gas is passed. Along the route through the measuring cuvette 1, a gas component-specific and concentration-dependent absorption of the UV light takes place. Subsequently, the UV light beam strikes a detector 8. This then determines the so-called gas-specific absorption. Between measuring cuvette 1 and detector 8, a rotatable Kalibrierrad 7 is arranged with a plurality of calibration cuvettes. Between UV light source 2 and
Strahlenteiler 5 ist ein Filterrad 4 mit einer Mehrzahl von Filtern drehbar angeordnet. Parallel zur UV-Lichtquelle 2 befindet sich eine Laserlichtquelle 3, deren Lichtstrahl gleichsam in die Messküvette 1 eintritt. Hinter der Küvette ist für das TDL-Signal ein entsprechender Detektor 9 angeordnet.Beam splitter 5 is a filter wheel 4 rotatably arranged with a plurality of filters. Parallel to the UV light source 2 is a laser light source 3, whose light beam enters the measuring cuvette 1, as it were. Behind the cuvette, a corresponding detector 9 is arranged for the TDL signal.
Der Lichtstrahl vor Eintritt in den Detektor 9 ist in Bezug auf die Lage des Kalibrierrades 7 so ausgerichtet, dass sich das Kalibrierrad auch im optischen Weg des Laserlichtstrahls liegt. Auf diese Weise kann das Kalibrierrad gemeinsam sowohl für den UV-Lichtkanal als auch den Laserlichtkanal gemeinsam genutzt werden. Die Verteilung von Laserlicht-Kalibrierküvetten und UV-Licht-Kalibrierküvetten ist dabei so gewählt, dass sinnreiche Kombinationen von Kalibrierküvettenpositionen sowohl für den einen als auch für den anderen Strahlengang erreicht werden. Figur 2 zeigt einen gefalteten Strahlengang, der auf einer Seite der Messküvette mit der Anordnung eines Retroreflektors 10 realisiert wird. Stahlenquellen 2 und 14, und der kombinierte UV- und NIR-Detektor 13 und sind kombiniert auf einer Seite der Anordnung plaziert. Die Faltung entsteht durch die besagte Anordnung eines Umlenkspiegels (Retrospiegels) 10 für beide Strahlengänge.The light beam before entering the detector 9 is aligned with respect to the position of the Kalibrierrades 7 so that the Kalibrierrad also lies in the optical path of the laser light beam. In this way, the Kalibrierrad can be shared in common for both the UV light channel and the laser light channel. The distribution of laser light calibration cuvettes and UV light calibration cuvettes is chosen so that ingenious combinations of calibration cuvette positions are achieved for both the one and the other beam path. FIG. 2 shows a folded beam path, which is realized on one side of the measuring cuvette with the arrangement of a retroreflector 10. Steel sources 2 and 14, and the combined UV and NIR detector 13 and are placed in combination on one side of the assembly. The folding is produced by the said arrangement of a deflection mirror (retro-mirror) 10 for both beam paths.
Figur 3 zeigt einen einfachen Strahlengang bei dem Strahlenquellen 2 und 14 und Detektoren 8 und 12 räumlich voneinander trennbar oder auch kombinierbar sind. Dabei ist die Messküvette 1 so platziert, dass sie an beiden Enden mit Umlenkspiegeln 11 versehen ist, so dass die Strahlungequellen und die Detektoren wieder auf einer Seite der Anordnung platziert sind.FIG. 3 shows a simple beam path in which radiation sources 2 and 14 and detectors 8 and 12 can be spatially separated or also combined. Here, the measuring cuvette 1 is placed so that it is provided at both ends with deflecting mirrors 11, so that the Strahlungequellen and the detectors are placed again on one side of the arrangement.
Figur 4 zeigt einen einfachen Strahlengang in Kombination mit einer Vergrößerung der optischen Weglänge in gleichem Messvolumen. Dies wird durch Mehrfachreflexion erreicht. Strahlenquellen und Detektoren sind räumlich voneinander trennbar.FIG. 4 shows a simple beam path in combination with an increase in the optical path length in the same measuring volume. This is achieved by multiple reflection. Radiation sources and detectors are spatially separable.
Dabei durchläuft der UV-Strahl die Messküvette 1 geradlinig, während die Strahlung der NIR Strahlungsquelle viermal umgelenkt wird, bis sie sie über einen weiteren Umlenkspiegel ausgekoppelt wird auf den Detektor. The UV beam passes through the measuring cell 1 in a straight line, while the radiation of the NIR radiation source is deflected four times until it is coupled out via a further deflection mirror on the detector.
Bezugszeichen:Reference numerals:
1 Messküvette1 measuring cuvette
2 UV-Strahlungsquelle2 UV radiation source
3 Laserlichtquelle3 laser light source
4 Filterrad4 filter wheel
5 Strahlenteiler5 beam splitters
6 Referenzdetektor6 reference detector
7 Kalibrierrad7 calibration wheel
8 UVJDetektor8 UV detector
9 Laserlichtdetektor9 laser light detector
10 Retroreflektor10 retroreflectors
11 Umlenkspiegel11 deflecting mirror
12 NIR Detektor12 NIR detector
13 Kombinierter UV- und NIR -Detektor13 Combined UV and NIR detector
14 NIR Strahlungsquelle 14 NIR radiation source

Claims

Patentansprüche claims
1. Verfahren zum Betrieb eines Spektrometers zur Gasanalyse, mit Strahlungsquelle, Detektor, sowie Filterrad und Kalibrationsküvettenrad, bei welchem zwischen Strahlungsquelle und Detektor die vom Messgas durchströmte Absorptionstrecke innerhalb einer Messküvette verläuft, dadurch gekennzeichnet, dass zwei oder mehrere unterschiedliche oder gleiche optische Spektrometrieverfahren zeitgleich oder wechselweise betrieben werden, derart, dass diese mindestens ein optisches oder optoelektronisches Bauteil gemeinsam beaufschlagen.1. A method for operating a spectrometer for gas analysis, with radiation source, detector, and filter wheel and Kalibrationsküvettenrad, wherein between the radiation source and detector, the flowed through by the measurement gas absorption path within a cuvette, characterized in that two or more different or the same optical spectrometry simultaneously or be operated alternately, such that they act on at least one optical or optoelectronic device together.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Messverfahren mindestens ein optisches oder optoelektronisches Bauteil wie Lichtquelle, Linse, Spiegel, Strahlenteiler, Messküvette, Interferenzfilter, Gasfilter und Detektor einzeln oder in Kombination verwenden.2. The method according to claim 1, characterized in that the measuring methods use at least one optical or optoelectronic component such as light source, lens, mirror, beam splitter, measuring cuvette, interference filter, gas filter and detector individually or in combination.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die beiden oder mehrere Messverfahren mit einer Laserlichtquelle und einem entsprechenden Laserlichtdetektor einerseits, und einer UV- Lichtquelle und einem UV-Lichtdetektor anderseits arbeiten.3. The method according to claim 1, characterized in that the two or more measuring methods with a laser light source and a corresponding laser light detector on the one hand, and a UV light source and a UV light detector on the other hand work.
4. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die beiden oder mehrere Messverfahren mit einer Laserlichtquelle und einem entsprechenden Laserlichtdetektor einerseits, und einer Infrarot-4. The method according to claim 1, characterized in that the two or more measuring methods with a laser light source and a corresponding laser light detector on the one hand, and an infrared
Lichtquelle und einem Infrarot-Lichtdetektor andererseits arbeiten. Light source and an infrared light detector on the other hand work.
5. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die beiden oder mehrere Messverfahren mit einer Laserlichtquelle und einem entsprechenden Laserlichtdetektor einerseits, und einen Quantenkaskadenlaser und einem QCL-Detektor anderseits arbeiten.5. The method according to claim 1, characterized in that the two or more measuring methods with a laser light source and a corresponding laser light detector on the one hand, and a quantum cascade laser and a QCL detector on the other hand work.
6. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zumindest die Kalibration beider LichWSignalstrecken über ein gemeinsames drehbares, mit verschiedenen Kalibrationsküvetten versehenes Kalibrationsrad erfolgt.6. The method of claim 1 or 2, characterized in that at least the calibration of both LichWSignalstrecken via a common rotatable, provided with different calibration cuvettes calibration wheel.
7. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass in den Messverfahren mindestens ein oder mehrere Detektoren zur7. The method according to claim 2, characterized in that in the measuring method at least one or more detectors for
Aufnahme von Referenzsignalen der Lichtquellen angeordnet sind.Recording of reference signals of the light sources are arranged.
8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Kalibrationsküvetten auf dem Kalibrationsrad derart verteilt angeordnet werden, dass diese für die jeweiligen Spektrometrieverfahren gleichsam verwendet werden.8. The method according to claim 6, characterized in that the calibration cuvettes are arranged distributed on the Kalibrationsrad such that they are used as it were for the respective Spektrometrieverfahren.
9. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Auswertung beider oder mehrerer Signale in einer gemeinsamen Auswerteeinrichtung für jeweils unterschiedliche Gaskomponenten erfolgt. 9. The method according to any one of the preceding claims 1 to 8, characterized in that the evaluation of two or more signals takes place in a common evaluation device for each different gas components.
10. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 8, dadurch gekennzeichnet, dass Auswertung beider oder mehrerer Signale in einer gemeinsamen Auswerteeinrichtung für jeweils dieselbe Gaskomponente oder dieselben Gaskomponenten erfolgt.10. The method according to any one of the preceding claims 1 to 8, characterized in that evaluation of two or more signals in a common evaluation device for each same gas component or the same gas components takes place.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die beiden oder mehrere Strahlengänge die Messküvette in der Art durchlaufen, dass die Strahlenquellen und der Detektor oder die Detektoren an unterscheidlichen Seiten angeordnet sind.11. The method according to any one of the preceding claims, characterized in that the two or more beam paths through the cuvette in such a way that the radiation sources and the detector or the detectors are arranged on different sides.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindestens einer der beiden Strahlengänge in gefalteter Anordnung betrieben wird, derart, dass auf der der Strahlungsquelle gegenüberliegenden Seite ein entsprechender Reflektor vorgesehen ist.12. The method according to any one of the preceding claims, characterized in that at least one of the two beam paths is operated in a folded arrangement, such that on the opposite side of the radiation source, a corresponding reflector is provided.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass beide oder mehere Strahlengänge in gefalteter Anordnung betrieben werden, derart, dass die Detektoren und die Strahlungsquellen für beide oder mehrere Strahlengänge auf derselben Seite der Messküvette platziert sind.13. The method according to any one of the preceding claims, characterized in that both or more beam paths are operated in a folded arrangement, such that the detectors and the radiation sources for both or more beam paths are placed on the same side of the measuring cuvette.
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest einer der beiden Strahlengänge in Mehrfachreflexion betrieben wird, zur Verlängerung der optischen aktiven Weglänge für die Absorption. 14. The method according to any one of the preceding claims, characterized in that at least one of the two beam paths is operated in multiple reflection, to extend the optical active path length for the absorption.
15. Spektrometer zur Gasanalyse, mit Strahlungsquelle, Detektor, sowie Filterrad und Kalibrationsküvettenrad, bei welchem zwischen Strahlungsquelle und Detektor die vom Messgas durchströmte Absorptionsstrecke innerhalb einer Messküvette verläuft, dadurch gekennzeichnet, dass zwei oder mehrere optische Spektrometer mit einer gemeinsamen von Messgas durchströmten Messküvette kombiniert sind, derart dass zwei oder mehrere Strahlungsquellen und zwei oder mehrere Detektoren jeweils nebeneinander angeordnet sind und gleichsam die Absorptionsstrecke mit dem zu analysierenden Messgas durchströmte Küvette oder15. Spectrometer for gas analysis, with radiation source, detector, and filter wheel and calibration cuvette, in which between radiation source and detector, the flowed through by the measuring gas absorption path within a cuvette, characterized in that two or more optical spectrometers are combined with a common measuring catechmy flowed through by measuring gas in such a way that two or more radiation sources and two or more detectors are each arranged next to each other and, as it were, the absorption path with the cuvette through which the sample gas to be analyzed flows or
Küvettenanordnung durchlaufen.Go through the cuvette assembly.
16. Spektrometer nach Anspruch 10, dadurch gekennzeichnet, dass die beiden oder mehrere Spektrometer in einer zusammenhängenden16. A spectrometer according to claim 10, characterized in that the two or more spectrometers in a contiguous
Messeinrichtung angeordnet sind und mit einer gemeinsamen elektronischen Auswerteeinrichtung versehen sind, die die Messwerte beider oder mehrerer Spektrometer auswertet.Measuring device are arranged and provided with a common electronic evaluation device that evaluates the measured values of two or more spectrometers.
17. Spektrometer nach Anspruch 10 oder 11 , dadurch gekennzeichnet, dass für beide oder mehrere Spektrometer ein gemeinsames Kalibrationsrad vorgesehen ist, in welchem Kalibrierküvetten für sowohl den Strahlengang des einen Spektrometers, als auch für den Strahlengang des anderen oder der anderen Spektrometer integriert sind. 17. A spectrometer according to claim 10 or 11, characterized in that for both or more spectrometers a common Kalibrationsrad is provided, in which Kalibrierküvetten are integrated for both the beam path of the one spectrometer, as well as for the beam path of the other or the other spectrometer.
PCT/EP2010/003604 2009-06-17 2010-06-16 Methods for operating a spectrometer for gas analysis, and said spectrometer WO2010145809A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200910025147 DE102009025147B3 (en) 2009-06-17 2009-06-17 Method for operating a spectrometer for gas analysis, and spectrometer itself
DE102009025147.2 2009-06-17

Publications (1)

Publication Number Publication Date
WO2010145809A1 true WO2010145809A1 (en) 2010-12-23

Family

ID=42782132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/003604 WO2010145809A1 (en) 2009-06-17 2010-06-16 Methods for operating a spectrometer for gas analysis, and said spectrometer

Country Status (2)

Country Link
DE (1) DE102009025147B3 (en)
WO (1) WO2010145809A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621063A (en) * 2012-03-05 2012-08-01 哈尔滨工业大学 Small-size oxygen measuring device based on porous material gas cell
CN104237126A (en) * 2014-09-09 2014-12-24 中国科学院电工研究所 Photoacoustic spectrometry detection device adopting axial multilayer filter plate structure
US9448215B2 (en) 2010-12-23 2016-09-20 Abb Ag Optical gas analyzer device having means for calibrating the frequency spectrum
EP3561487B1 (en) * 2018-04-25 2023-01-18 ABB Schweiz AG Measuring device for analysis of a composition of a combustible gas with a filter chamber arranged in front of a detector

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012000038A1 (en) 2012-01-03 2013-07-04 Humboldt-Universität Zu Berlin laser device
DE102014000651B3 (en) 2014-01-17 2015-05-13 Gottfried Wilhelm Leibniz Universität Hannover Device for determining a concentration of a chemical substance
EP2944944B1 (en) * 2014-05-12 2021-10-20 General Electric Company Gas detector and method of detection
DE102015221708A1 (en) * 2015-11-05 2017-05-11 Robert Bosch Gmbh Exhaust gas sensor and method for operating an exhaust gas sensor for a vehicle
EP3321658B1 (en) * 2016-11-09 2018-09-26 Sick Ag Two-channel measuring device
EP3163291B1 (en) * 2016-12-02 2018-10-24 Sick Ag Measuring instrument for the determination of concentrations of several gas components
DE102018102059B4 (en) 2018-01-30 2020-10-22 Gottfried Wilhelm Leibniz Universität Hannover Method and device for determining a concentration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0349839A2 (en) * 1988-07-07 1990-01-10 Bodenseewerk Perkin-Elmer Gmbh Multicomponent photometer
US6396056B1 (en) * 1999-07-08 2002-05-28 Air Instruments And Measurements, Inc. Gas detectors and gas analyzers utilizing spectral absorption
WO2003019160A2 (en) * 2001-08-21 2003-03-06 Spx Corporation Open path emission sensing system
DE10205525A1 (en) * 2002-04-04 2004-04-08 Gunther Prof. Dr.-Ing. Krieg System to monitor the purity of carbon dioxide, for the production of beverages/foodstuffs, uses a simultaneous ultraviolet and infrared measurement for pollutant detection and the concentration

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798464A (en) * 1985-02-21 1989-01-17 The Perkin-Elmer Corporation Scanning array spectrophotometer
DE4115425C1 (en) * 1991-05-10 1992-08-27 Hartmann & Braun Ag, 6000 Frankfurt, De
DE102006056867B4 (en) * 2006-12-01 2008-10-16 Deutsche Institute für Textil- und Faserforschung Denkendorf (DITF) Institut für Textilchemie und Chemiefasern (ITCF) Method for carrying out wastewater analyzes by means of a sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0349839A2 (en) * 1988-07-07 1990-01-10 Bodenseewerk Perkin-Elmer Gmbh Multicomponent photometer
US6396056B1 (en) * 1999-07-08 2002-05-28 Air Instruments And Measurements, Inc. Gas detectors and gas analyzers utilizing spectral absorption
WO2003019160A2 (en) * 2001-08-21 2003-03-06 Spx Corporation Open path emission sensing system
DE10205525A1 (en) * 2002-04-04 2004-04-08 Gunther Prof. Dr.-Ing. Krieg System to monitor the purity of carbon dioxide, for the production of beverages/foodstuffs, uses a simultaneous ultraviolet and infrared measurement for pollutant detection and the concentration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PAGANINI E ET AL: "Instrument for long-path spectral extinction measurements in air: application to sizing of airborne particles", APPLIED OPTICS, OPTICAL SOCIETY OF AMERICA, US LNKD- DOI:10.1364/AO.40.004261, vol. 40, no. 24, 20 August 2001 (2001-08-20), pages 4261 - 4274, XP002226218, ISSN: 0003-6935 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9448215B2 (en) 2010-12-23 2016-09-20 Abb Ag Optical gas analyzer device having means for calibrating the frequency spectrum
CN102621063A (en) * 2012-03-05 2012-08-01 哈尔滨工业大学 Small-size oxygen measuring device based on porous material gas cell
CN102621063B (en) * 2012-03-05 2013-11-13 哈尔滨工业大学 Small-size oxygen measuring device based on porous material gas cell
CN104237126A (en) * 2014-09-09 2014-12-24 中国科学院电工研究所 Photoacoustic spectrometry detection device adopting axial multilayer filter plate structure
EP3561487B1 (en) * 2018-04-25 2023-01-18 ABB Schweiz AG Measuring device for analysis of a composition of a combustible gas with a filter chamber arranged in front of a detector
US11796456B2 (en) 2018-04-25 2023-10-24 Abb Schweiz Ag Measuring device for analyzing the composition of a fuel gas, having a filter chamber arranged upstream of a detector

Also Published As

Publication number Publication date
DE102009025147B3 (en) 2010-12-09

Similar Documents

Publication Publication Date Title
DE102009025147B3 (en) Method for operating a spectrometer for gas analysis, and spectrometer itself
DE102005031857B3 (en) Absorption optical analysis unit having first and second radiation sources, a gas tight housing, absorption space and reflectors for creating measurement and reference beams
EP3077793B1 (en) Analysis device (photometer) having a serial light guide
EP0145877B1 (en) Photometer for continuous analysis of a medium (gas or liquid)
WO2006002740A1 (en) Non-dispersive infrared gas analyzer
DE102010056137B4 (en) Optical gas analyzer device with means for calibrating the frequency spectrum
EP3270045B1 (en) Assembly for the measurement of gas concentrations
EP3321658A1 (en) Two-channel measuring device
EP2726830B1 (en) Gas chromatograph with absorption spectrometer and method for analyzing a gas mixture per gas chromatography
DE4232371C2 (en) Analyzer for the determination of gases or liquids
EP2132551A1 (en) Photoacoustic detector with two beam paths for excitation light
WO2008014937A1 (en) Optical measuring cell
EP3598103B1 (en) Gas analyser and method of gas analysis
DE19732470A1 (en) Non-dispersive infrared gas analyser
EP1847827A1 (en) Non-dispersive infrared gas analyser
EP0087077A2 (en) Measuring device for optical gas analysis
DE102010050626B4 (en) Gas analyzer device with a Herriotzelle, and method for operating the same
DE102010023453B3 (en) Gas analyzer for measuring e.g. nitrogen oxide, concentration based on e.g. UV resonance absorption spectroscopy measurement principle, has light-proof measuring tube arranged at inner wall side of highly reflective transparent glass tubes
DE3736673C2 (en)
DE102010030549B4 (en) Non-dispersive gas analyzer
DE4437188A1 (en) Infrared type gas concentration analyser with twin-beam measurement
DE19848120A1 (en) Gas radiation absorption measuring device e.g. for gas mixture analysis, uses absorption cell with entry and exit windows provided by semi-transparent mirrors
DE102021210443B4 (en) Submersible probe with variable path length
WO2004008112A1 (en) High-resolution absorption spectrometer and corresponding measuring method
DE102015107942A1 (en) Spectrometer and gas analyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10725048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10725048

Country of ref document: EP

Kind code of ref document: A1