WO2010143773A1 - 탑정증기 잠열을 회수하는 증류시스템 및 그 증류방법 - Google Patents

탑정증기 잠열을 회수하는 증류시스템 및 그 증류방법 Download PDF

Info

Publication number
WO2010143773A1
WO2010143773A1 PCT/KR2009/003699 KR2009003699W WO2010143773A1 WO 2010143773 A1 WO2010143773 A1 WO 2010143773A1 KR 2009003699 W KR2009003699 W KR 2009003699W WO 2010143773 A1 WO2010143773 A1 WO 2010143773A1
Authority
WO
WIPO (PCT)
Prior art keywords
condensate
steam
distillation
column
boiling point
Prior art date
Application number
PCT/KR2009/003699
Other languages
English (en)
French (fr)
Inventor
이주선
Original Assignee
Lee Joo Sun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lee Joo Sun filed Critical Lee Joo Sun
Publication of WO2010143773A1 publication Critical patent/WO2010143773A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/007Energy recuperation; Heat pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/28Evaporating with vapour compression
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to a distillation system for evaporating and separating a mixture of two or more components by a difference in boiling point, and more particularly, so that the latent heat of condensation of overhead vapor discharged from the upper portion of the distillation system can be used. It relates to a system structure and a distillation method thereof.
  • a distillation system is for evaporating separation of a mixture of two or more components present in a feedstock by boiling point difference.
  • the low volatile component is evaporated to form a tower steam, and at the bottom of the distillation system, a high volatile component is separated into the form of a top low condensate.
  • the low boiling point material and the high boiling point material may each be a single component or a mixture of two or more components, respectively.
  • Such a distillation system essentially includes an evaporator that separates materials according to the boiling point difference, and as a typical example of the evaporator, a distillation column, a rectification column, a stripping column, and a stripping Stripping vessels and the like.
  • a rectifying tower is used to extract the low boiling point material as the target product, and a stripping tower or stripping tank is used to extract the high boiling point material as the target product.
  • the stripping column is mainly used to extract high viscosity materials of low viscosity and the stripping tank is used to extract high viscosity materials of high viscosity.
  • the distillation column is broadly used as a concept that includes both the rectification tower or the stripping column, but in consultation, the high boiling point material condensing unit and the low boiling point rectifying unit are provided to extract both the low boiling point material and the high boiling point material. It may also be used to mean the evaporator in the case of.
  • FIG. 1 is a schematic view showing an example of a conventional distillation system having a distillation column as an evaporator.
  • the distillation system includes a distillation tower (A) in which the feedstock (1) is separated into a high boiling point material and a low boiling point material, a condenser (B; condenser) on which the tower steam (2) of the low boiling point material is condensed, and a condensate of a high boiling point material. It comprises a reboiler (C; reboiler) for re-evaporating a part of (5).
  • A distillation tower
  • B condenser
  • C reboiler
  • the feedstock (1) mixed with the low boiling point material and the high boiling point material flows in temperature / component equilibrium at each stage inside the distillation column (A), and the lower boiling point is concentrated in the evaporation vapor phase where the lower boiling point material is concentrated. phase), the lower the distillation column (A) toward the lower the concentrated liquid phase (liquid phase) rich in high boiling point material.
  • Top steam (2) from the top of the distillation column (A) is liquefied in the condenser (B) to become a condensate, the condensate is pumped by a pump (P) after passing through the drum (B '), a part of the condensate (3) is refluxed to the distillation column (A) by the flow rate for the mono-equilibrium at the top of the distillation column (A) and the remainder (4) is discharged to the outside to become a distillate.
  • the condenser B the latent heat of condensation of the top steam 2 is removed by circulating cooling water.
  • the bottom condensate (5) of the lower portion of the distillation column (A) from which the low boiling point material is removed is discharged from the distillation column and pumped by the pump (P), and then a part of the condensate (6) is reboiler (C).
  • the condensate 7 is discharged as a residual liquid.
  • a heating steam (8) which is an external heat source supplied from the outside, and becomes steam, which is vaporized in a single equilibrium at the bottom of the distillation column (A) and a distillation column. It is supplied to the bottom of the distillation column to supply heat for the.
  • uncondensed condensate (9) in the condensate (6) is joined to the first discharge condensate (5) of the distillation column.
  • the present invention has been proposed to improve the above problems in the prior art, by providing a distillation system that can use the latent heat of the top steam discharged from the distillation column to achieve a significant reduction in the consumption steam and cooling water consumption of the system There is this.
  • the present invention provides a distillation system for separating a mixture of two or more components present in a feedstock into a low boiling point material and a high boiling point material by a difference in boiling point, wherein the low boiling point material is evaporated to a top steam at the top.
  • the high bottom boiling point condensate which is discharged, includes a distillation column condensed at the bottom, and a reboiler for re-evaporating the bottom condensate discharged from the bottom of the distillation column, wherein the reboiler uses latent heat energy of the top steam from the distillation column. Can be heated.
  • the adiabatic compressor for adiabatic compression of the column steam to increase the temperature of the column steam discharged from the distillation column is further included, the adiabatic compressor is It may be a multi-stage adiabatic compressor that is connected in series in multiple stages to be adiabatic compression up to the temperature for the operation of the reboiler.
  • the distillation system for the purpose of additionally supplying the evaporative steam to the adiabatic compressor during normal operation, and for supplying the minimum amount of inhalation evaporative vapor required for the operation of the adiabatic compressor during the initial operation without the generation of tower steam.
  • An evaporator that satisfies two purposes may be further included, and the distillation system may further include a condensate tank in which compressed steam condensed in the reboiler is collected after being heated up in the adiabatic compressor.
  • the distillation system may further include a condenser cooler for reducing the temperature of the condensate collected in the condensate tank to reflux to the distillation column.
  • the distillation system further comprises a reservoir for storing the remaining condensate cooled in the condensation cooler, the condensate stored in the reservoir may be supplied to the evaporator may be used as the evaporation steam.
  • the low boiling point material is evaporated to the top steam 12 from the top.
  • the high-boiling point bottom condensate (15) is discharged, the distillation column (A) condensed in the lower portion, the reboiler (C) to re-evaporate the bottom condensate (15) discharged from the bottom of the distillation column (A), and
  • the multi-stage adiabatic compressor (D) which is provided in plurality in order to compress the column top steam (12) in the upper part of the distillation column (A), is compressed and heated in the adiabatic compressor (D) and condensed in the reboiler (C)
  • the latent heat required for re-evaporation in the evaporator may be provided to supply live steam from the outside to use as heat of condensation.
  • the feedstock in the distillation column high boiling point material Separating the tower low condensate and the tower boiling steam of the low boiling point material, compressing the column steam to an adiabatic compressor to a heat transfer temperature necessary for evaporation, and supplying the compressed steam compressed by the adiabatic compressor to the reboiler;
  • the condensate condensed in the reboiler may be collected in a condensate tank, and a portion of the condensate collected in the condensate tank reflux to the reboiler, and the remaining condensate may be stored in a reservoir.
  • the step of supplying the evaporation steam from the evaporator for supplying the evaporation latent heat during the settlement operation and the supply of the minimum evaporation steam required for the initial operation to the top column steam supplied to the adiabatic compressor, the condensate collected in the condensate tank condensate cooler Cooling via may be further included.
  • the evaporation vapor supplied from the evaporator to the adiabatic compressor may be a result of re-evaporating the tower low condensate stored in the storage after cooling to a predetermined temperature by a condensation liquid cooler.
  • FIG. 1 is a schematic diagram of a distillation system according to a conventional embodiment.
  • Figure 2 is a schematic diagram of the present invention distillation system.
  • distillation column C reboiler
  • the feedstock 11 is supplied and the distillation tower (A) is separated into a high boiling point material and a low boiling point material, and the top low condensate (15) of the high boiling point material Re-boiler (C) to be reheated after being pumped by this pump (P) and a plurality of in series to adiabaticly compress the tower steam (12) of low boiling point material to the heat transfer temperature required for evaporation of the reboiler (C)
  • a storage tank in which a connected adiabatic compressor (D), an evaporator (E) for additionally supplying the evaporative vapor (20) to the adiabatic compressor (D), and a distillate (19) for supplying the evaporator (E) are stored.
  • the condensate tank (F) to collect the compressed steam condensed in the reboiler (C), and the condensate for lowering the temperature of the condensate (23) discharged by the pump (P) from the condensate tank (F) It is comprised by the cooler G.
  • the adiabatic compressor (D) is preferably installed by selecting a multi-stage turbo fan of less than 7,000rpm rotational speed, so that smooth operation can be performed even when the amount of vaporization of steam during operation is changed.
  • the feedstock 11 in which the low boiling point material and the high boiling point material are mixed flows in temperature / component equilibrium at each stage inside the distillation column A, and the evaporation vapor phase in which the low boiling point material is enriched toward the upper portion of the distillation column A is increased.
  • the vapor phase the higher boiling point material becomes a rich liquid phase toward the lower side of the distillation column A.
  • the column top vapor 12 which is a low boiling point material evaporated from the top of the distillation column A, is subjected to adiabatic compression up to the heat transfer temperature required for evaporation of the reboiler C in the multistage adiabatic compressor (D).
  • the tower steam (12) is adiabatic compression is made in the process of sequentially passing through the adiabatic compressor (D), which is connected in series three, the compressed steam 22 is heated up by compression in the adiabatic compressor (D) in this way Is supplied to the reboiler (C).
  • the condensate condensed in the reboiler (C) is collected in the condensate tank (F), the condensate 23 discharged from the tank by the pump (P) is sent to the condensate cooler (G).
  • the condensate 23 collected in the condensate tank (F) can be used as the reflux (13) because it has the same composition as the column top steam 12, but to pass through the condensate cooler (G) to further lower the temperature, In this way, after passing through the condensate cooler (G), a part is used as a reflux liquid 13 to reflux to the distillation column (A) and the rest is stored in the storage tank (H) as a distillate (14).
  • the condensate 16 supplied to the reboiler (C) is evaporated in the reboiler (C) to supply the vapor to the column bottom of the distillation column (A).
  • the distillate 19 of the storage tank H is a compressed steam condensate 23 having the same composition as the column top steam 12, it is re-evaporated in a separate evaporator E to compensate for the insufficient load of the reboiler. It is mixed with (12) and sent to the adiabatic compressor (D) suction end.
  • the evaporator (E) must be designed with the ability to fulfill these two purposes because the minimum amount of evaporated vapor to be supplied to operate the adiabatic compressor (D) during initial operation without generating the top steam (12) is greater than the supplemental evaporated vapor amount.
  • the latent heat required for re-evaporation will use the heat of condensation of the live steam 18.
  • the system of the present invention improves energy efficiency by recovering and recycling the latent condensation of the top steam 12 as the latent evaporative heat of the reboiler, and compensates for the insufficient heat by additionally supplying the insufficient portion of the latent condensation to the evaporator. Will be.
  • Table 1 below compares the utility economics of the conventional distillation column and the distillation column by the system of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

본 발명은 탑정증기 잠열을 회수하는 증류시스템 및 그 증류방법에 관한 것으로서, 공급원료(11) 중에 존재하는 2성분계 이상의 혼합물질을 비점차에 의하여 저비점물질과 고비점물질로 분리하는 증류시스템에 있어서, 상기 저비점물질이 증발되어 상부에서 탑정증기(12)로 배출되며, 상기 고비점물질인 탑저응축액(15)은 하부에서 응축되는 증류탑(A)과; 상기 증류탑(A) 하부에서 배출되는 탑저응축액(15)을 재증발시키는 재비기(C)와; 상기 증류탑(A) 상부의 탑정증기(12)를 필요 온도까지 압축시키도록 다수개로 구비되어진 단열압축기(D)와; 상기 단열압축기(D)에서 압축 승온된 후 재비기(C)에서 압축증기가 응축되어 모아지는 응축액탱크(F)와; 상기 응축액탱크(F)에 모아진 응축액(23)의 온도를 낮추어 증류탑(A)으로 환류시키기 위한 응축액냉각기(G)와; 상기 응축액냉각기(G)에서 냉각되어진 잔여 응축액(14)이 저장되어지는 저장조(H)와; 상기 저장조(H)에 저장되어져 있는 응축액(19)을 증발증기로 재증발시켜 다단 단열압축기(D)로 정상 운전시에 추가로 필요한 증발증기와 초기 가동시에 필요한 최소 증발증기량을 공급하기 위한 2가지 목적을 충족시키는 증발기(E);를 포함하는 구성을 이룸을 특징으로 한다.

Description

탑정증기 잠열을 회수하는 증류시스템 및 그 증류방법
본 발명은 2 성분계 이상의 혼합물질을 비점차에 의하여 증발 분리하는 증류시스템에 관한 것으로서, 더욱 상세하게는 증류시스템의 상부에서 배출되는 상부증기 즉, 탑정증기(overhead vapor)의 응축 잠열이 사용될 수 있도록 하는 시스템 구조 및 그 증류방법에 관한 것이다.
일반적으로 증류시스템은, 공급원료 중에 존재하는 2 성분계 이상의 혼합물질을 비점차에 의하여 증발 분리하기 위한 것이다. 증류시스템의 상부에서 저비점물질(low volatile component)은 증발되어 탑정증기 형태로, 증류시스템의 하부에는 고비점물질(high volatile component)이 탑저응축액의 형태로 분리된다. 저비점물질과 고비점물질은 각각 단일 성분일 수도 있고, 각각 2성분 이상의 혼합물일 수도 있다.
이러한 증류시스템은 비점차에 따라 물질을 분리하는 증발분리기를 필수적으로 포함하고 있으며, 상기 증발분리기의 전형적인 예로서, 증류탑(distillation column), 정류탑(rectification column), 탈거탑(stripping column), 탈거조(stripping vessel) 등이 있다.
저비점 물질을 추출하여 목표로 하는 대상제품으로 할 경우에는 정류탑이 사용되고, 고비점물질을 추출하여 목표로 하는 대상제품으로 할 경우에는 탈거탑 또는 탈거조가 사용된다. 탈거탑은 주로 저점도의 고비점물질을 추출할때, 탈거조는 고점도의 고비점물질을 추출할 때 사용된다.
한편, 증류탑은 광의로는 정류탑 또는 탈거탑까지 모두 포함하는 개념으로 사용되기도 하지만, 협의로는 고비점 물질 응축부와 저비점물질 정류부를 모두 구비하여 저비점물질과 고비점물질을 모두 추출하여 대상제품으로 하는 경우의 증발분리기를 의미하는 경우로 사용되기도 한다.
도 1은, 증발분리기로서 증류탑을 구비한 종래의 증류시스템의 일례를 나타낸 개략도이다.
상기 증류시스템은, 공급원료(1)가 고비점물질과 저비점물질로 분리되는 증류탑(A)과, 저비점물질의 탑정증기(2)가 응축되는 응축기(B;condensor)와, 고비점 물질의 응축액(5)의 일부를 재증발시키는 재비기(C;reboiler)를 포함하여 구성된다.
저비점물질과 고비점물질이 혼합된 공급원료(1)는 증류탑(A) 내부의 각 단에서 온도/성분 평형을 이루며 흐르게 되며, 증류탑(A) 상부로 갈수록 저비점물질이 농후한 증발증기상(vapor phase)으로, 증류탑(A) 하부측으로 갈수록 고비점물질이 농후한 응축액상(liquid phase)이 된다.
증류탑(A)의 최상단으로 부터 나온 탑정증기(2)는 응축기(B)에서 액화되어 응축액이 되며, 상기 응축액은 드럼(B')을 거친 후 펌프(P)에 의하여 펌핑되어, 그 응축액의 일부(3)는 증류탑(A) 최상단의 단평형을 위한 유량만큼 증류탑(A)으로 환류되고 나머지(4)는 외부로 배출되어 증류액이 된다. 또한, 응축기(B)에서 탑정증기(2)의 응축 잠열은 순환 냉각수에 의하여 제거된다.
그리고, 저비점물질이 탈거된 증류탑(A) 하부의 탑저응축액(5)은 증류탑으로 부터 배출되어 펌프(P)에 의하여 펌핑된 후, 상기 응축액의 일부(6)는 재비기(C)로, 나머지 응축액(7)은 잔류액으로 배출된다. 재비기(C)에서 상기 일부의 응축액(6)은 외부로 부터 공급되는 외부열원인 가열증기(8)에 의하여 가열되어 증기가 되며 이 증기는 증류탑(A) 최하단의 단 평형 및 증류탑에서의 증발을 위한 열을 공급하기 위하여 증류탑 하단으로 공급된다. 또한 상기 응축액(6) 중 미증발된 응축액(9)은 증류탑의 최초 배출 응축액(5)에 합류된다.
그러나, 이러한 종래 증류시스템은 증류탑(A)을 운전하기 위하여 스팀 또는 열매체유 같은 화석연료를 소비하는 열원과 탑정증기(2)를 응축시키기 위하여 상당량의 냉각수(9)를 사용해야 하는 문제점이 있었다.
본 발명은 상기한 종래 기술에서의 문제점을 개선하기 위해 제안된 것으로서, 증류탑에서 배출되는 탑정증기의 잠열을 사용할 수 있는 증류시스템을 제공함으로서 시스템의 소모스팀과 냉각수 사용량을 크게 절감시킬 수 있도록 하는데 목적이 있다.
상기 목적을 이루기 위한 본 발명 시스템은, 공급원료 중에 존재하는 2성분계 이상의 혼합물질을 비점차에 의하여 저비점물질과 고비점물질로 분리하는 증류시스템에 있어서, 상기 저비점물질이 증발되어 상부에서 탑정증기로 배출되며, 상기 고비점물질인 탑저응축액은 하부에서 응축되는 증류탑과, 상기 증류탑 하부에서 배출된 탑저응축액을 재증발시키는 재비기를 포함하되, 상기 재비기는 상기 증류탑에서 배출되는 탑정증기의 잠열 에너지를 사용하여 가열될 수 있다.
본 발명에서, 상기 탑정증기의 잠열 에너지를 회수하기 위하여, 상기 증류탑에서 배출되는 상기 탑정증기의 온도를 높이기 위해 상기 탑정증기를 단열 압축시키는 단열압축기가 더 포함되되, 상기 단열압축기는 상기 탑정증기가 상기 재비기의 작동을 위한 온도까지 단열압축이 될 수 있도록 다수가 다단으로 직렬 연결되는 다단 단열압축기일 수 있다.
본 발명에서, 상기 증류시스템에는 정상 운전시 상기 단열압축기로 증발증기를 추가로 공급하기 위한 목적과, 탑정증기의 발생이 없는 초기 가동시, 상기 단열압축기 가동에 필요한 최소의 흡입 증발증기량를 공급하기 위한 2가지 목적을 충족하는 증발기가 더 포함될 수 있으며, 상기 증류시스템에는 상기 단열압축기에서 압축 승온된 후 상기 재비기에서 응축된 압축증기가 수집되는 응축액탱크가 더 포함될 수 있다.
본 발명에서, 상기 증류시스템에는 상기 응축액탱크에 수집된 응축액의 온도를 낮추어 상기 증류탑으로 환류시키기 위한 응축냉각기가 더 포함될 수 있다.
또한, 상기 증류시스템에는 상기 응축냉각기에서 냉각된 잔여 응축액이 저장되는 저장조를 더 포함하되, 상기 저장조에 저장된 응축액이 상기 증발기로 공급되어 증발증기로 사용될 수 있다.
본 발명에서, 공급원료(11) 중에 존재하는 2성분계 이상의 혼합물질을 비점차에 의하여 저비점물질과 고비점물질로 분리하는 증류시스템에 있어서, 상기 저비점물질이 증발되어 상부에서 탑정증기(12)로 배출되며, 상기 고비점물질인 탑저응축액(15)은 하부에서 응축되는 증류탑(A)과, 상기 증류탑(A) 하부에서 배출된 탑저응축액(15)을 재증발시키는 재비기(C)와, 상기 증류탑(A) 상부의 탑정증기(12)를 일정 온도까지 압축시키도록 다수개로 구비되어진 다단 단열압축기(D)와, 상기 단열압축기(D)에서 압축 승온된 후 재비기(C)에서 응축된 압축증기가 모아지는 응축액탱크(F)와, 상기 응축액탱크(F)에 모아진 응축액(23)의 온도를 낮추어 증류탑(A)으로 환류시키기 위한 응축액냉각기(G)와;상기 응축액냉각기(G)에서 냉각되어진 잔여 응축액(14)이 저장되어지는 저장조(H)와, 상기 저장조(H)에 저장되어져 있는 응축액(19)을 증발증기로 재증발시켜 다단 단열압축기(D)로 정상 운전시 필요한 추가 증발증기량과 초기 가동시 필요한 최소 증발증기량을 공급하기 위한 2가지 목적을 충족하는 증발기(E)를 포함하여 탑정증기 잠열을 회수할 수 있다.
또한, 상기 증발기에서 재증발에 필요한 잠열은 외부에서 생증기를 공급하여 응축열로 사용하도록 구비될 수 있다.
본 발명의 다른 실시예에 따르면, 공급원료 중에 존재하는 2성분계 이상의 혼합물질을 비점차에 의하여 저비점물질과 고비점물질로 분리하는 증류시스템의 증류방법에 있어서, 상기 공급원료를 증류탑에서 고비점물질의 탑저응축액과 저비점물질의 탑정증기로 분리하는 단계와, 상기 탑정증기를 증발에 필요한 열전달 온도까지 단열압축기로 압축하는 단계와, 상기 단열압축기에서 압축되어진 압축증기를 재비기로 공급하는 단계와, 상기 재비기에서 응축된 응축액이 응축액탱크에 모여지는 단계와, 상기 응축액탱크에 모인 응축액을 일부를 상기 재비기로 환류시키고, 나머지 응축액은 저장조에 저장하는 단계를 포함할 수 있다.
또한, 상기 단열압축기로 공급되는 탑정증기에 정산 운전시의 증발 잠열량 보충과 초기 가동시 필요한 최소 증발증기량 공급을 위해 증발기로 부터 증발증기를 공급하는 단계와, 상기 응축액탱크에 모인 응축액을 응축액냉각기를 경유시켜 냉각시키는 단계가 더 포함될 수 있다.
본 발명에서, 상기 증발기에서 단열압축기로 공급되는 증발증기는, 응축액냉각기에 의해 일정 온도로 냉각 후 상기 저장조에 저장되어진 탑저응축액을 재증발 시킨 것일 수 있다.
이러한 본 발명의 증류시스템은, 탑정증발증기를 기존 응축기에서 응축시키지 않고 다단의 단열압축기에서 재비기의 증발에 필요한 열전달 온도까지 단열압축이 실시되어짐으로서, 공급원료를 분리시키기 위한 과정에서 소모스팀과 냉각수 사용량을 절감시키는 효과를 나타낸다.
특히, 탑정증기의 잠열량이 재비기에 필요한 가열온도를 얻기 위하여 2대 이상의 단열압축기를 직렬로 연결 구비하였으며, 이와 함께 압축기의 흡입단에 증발기로 부터 정상 운전시 필요한 추가 증발증기량과 초기 가동시 필요한 최소 증발증기량이 공급되어질 수 있도록 함으로서 증류시스템의 정상 운전시와 초기 가동시에도 재비기에서의 증발이 안정적으로 이루어질 수 있게 된다.
도 1은 종래 실시예에 따른 증류시스템 개략도.
도 2는 본 발명 증류시스템 개략도.
<도면의 주요 부분에 대한 부호의 설명>
A : 증류탑 C : 재비기
D : 단열압축기 E : 증발기
F : 응축액탱크 G : 응축액냉각기
H : 저장조
이하, 본 발명의 구체적인 실시 예를 첨부 도면을 참조하여 상세히 살펴보기로 한다.
먼저, 본 실시 예에 따른 증류시스템 구성을 도 2를 통해 살펴보면, 공급원료(11)가 공급되어지며 고비점물질과 저비점물질로 분리되는 증류탑(A)과, 고비점 물질의 탑저응축액(15)이 펌프(P)에 의해 펌핑된 후 재가열되어지는 재비기(C)와, 저비점물질의 탑정증기(12)를 재비기(C)의 증발에 필요한 열전달 온도까지 단열압축시키도록 다수가 다단으로 직렬연결된 단열압축기(D)와, 상기 단열압축기(D)로 증발증기(20)를 추가 공급하기 위한 증발기(E)와, 상기 증발기(E)로 공급하기 위한 증류액(19)이 보관되어지는 저장조(H)와, 상기 재비기(C)에서 응축된 압축증기 모아지는 응축액탱크(F)와, 상기 응축액탱크(F)에서 펌프(P)에 의해 배출된 응축액(23)의 온도를 낮추기 위한 응축액냉각기(G)로 구성되어져 있다.
본 발명에서의 단열압축기(D)는 회전수 7,000rpm 미만의 다단 터보팬을 선택하여 장착함으로서, 운전시의 증발증기량 변화에도 원활한 운전이 가능하도록 함이 바람직하다.
이와 같은 구성을 이루는 본 발명 증류 시스템의 동작에 따른 작용효과를 살펴보기로 한다.
먼저, 저비점물질과 고비점물질이 혼합된 공급원료(11)는 증류탑(A) 내부의 각 단에서 온도/성분 평형을 이루며 흐르게 되며, 증류탑(A) 상부로 갈수록 저비점물질이 농후한 증발증기상(vapor phase)으로, 증류탑(A) 하부측으로 갈수록 고비점물질이 농후한 응축액상(liquid phase)이 된다.
이때, 증류탑(A)의 최상단으로 부터 증발되어 나온 저비점 물질인 탑정증기(12)는 다단의 단열압축기(D)에서 재비기(C)의 증발에 필요한 열전달 온도까지 단열압축이 이루어지게 된다.
즉, 탑정증기(12)는 3개가 직렬로 연결되어진 단열압축기(D)를 순차적으로 경유하는 과정에서 단열압축이 이루어지게 되고, 이와 같이 단열압축기(D)에서 압축으로 승온된 압축증기(22)는 재비기(C)로 공급되어지게 된다.
그리고 재비기(C) 에서 응축되어진 응축액이 응축액탱크(F)에 모아지게 되며, 펌프(P)에 의해 탱크로 부터 배출이 이루어진 응축액(23)은 응축액냉각기(G)로 보내지게 된다.
즉, 응축액탱크(F)에 모인 응축액(23)은 탑정증기(12)와 동일한 조성을 이루고 있기 때문에 환류액(13)으로 사용할 수 있으나, 온도를 더욱 낮추기 위하여 응축액냉각기(G)를 경유시키는 것으로서, 이와 같이 응축액냉각기(G) 경유 후 일부는 증류탑(A)으로 환류시키는 환류액(13)으로 사용되고 나머지는 증류액(14)으로 하여 저장조(H)에 저장되어지게 된다.
한편, 탑저에서 단 평형을 이룬 고비점물질인 탑저응축액(15) 중 일부 응축액(16)은 증발을 위해 재비기(C)로 공급되어짐과 함께, 나머지 재비기(C)로 공급되지 않은 고비점 물질의 잔량은 탈거액(17)으로 별도 저장된다.
그리고, 상기 재비기(C)로 공급되어진 응축액(16)은 재비기(C)에서 증발되어 그 증기를 증류탑(A)의 탑저로 공급하게 된다.
저장조(H)의 증류액(19)은 탑정증기(12)와 조성이 같은 압축증기 응축액(23)이므로, 이를 별도의 증발기(E) 에서 재증발시켜 재비기의 부족한 부하를 보충하기 위하여 탑정증기(12)와 혼합하여 단열압축기(D) 흡입단으로 보내게 된다. 탑정증기(12) 발생이 없는 초기 가동시에 단열압축기(D)를 가동하기 위하여 공급할 최소 증발증기량이 보충 증발증기량보다 크기 때문에 증발기(E)는 이 2가지 목적을 충족시키는 능력으로 설계되어야 한다.
이때, 재증발에 필요한 잠열은 생증기(18)의 응축열을 사용하게 된다.
따라서, 본 발명의 시스템은 탑정증기(12)의 응축잠열을 재비기의 증발잠열로 회수 재활용함으로 에너지 효율을 향상시킴과 함께, 응축잠열의 부족한 부분을 증발기로 추가 공급하여 부족한 열량을 보상시킬 수 있게 되는 것이다.
하기 [표 1]은 종래 증류탑과 본 발명 시스템에 의한 증류탑에서의 유틸리티 경제성을 비교한 것이다.
표 1
Figure PCTKR2009003699-appb-T000001
상기 실험결과, 탑정증기(12)의 잠열을 재활용하지 않을 경우, 재비기(C) 전열량 13,706 Mj/h 는 125℃(응축잠열=2,188 kj/kg) 증기 6,264 kg/h에 해당하며, 종래 시스템에서의 응축기(B) 전열량 11,850 Mj/h는 32℃→40℃ 냉각수 사용량 350 ㎥/h 에 해당됨을 확인할 수 있었다.
따라서, 경제성 측면에서 본 발명의 시스템으로 인한 장비 신뢰성이 극대화 되어지게 됨을 알 수 있다.
그리고, 상기에서 본 발명의 특정한 실시 예가 설명 및 도시되었지만 본 발명의 증류시스템 구조가 당업자에 의해 다양하게 변형되어 실시될 수 있음은 자명한 일이다.
그러나, 이와 같은 변형된 실시예들은 본 발명의 기술적 사상이나 범위로부터 개별적으로 이해되어져서는 안되며, 이와 같은 변형된 실시 예들은 본 발명의 첨부된 특허청구범위 내에 포함된다 해야 할 것이다.

Claims (12)

  1. 공급원료 중에 존재하는 2성분계 이상의 혼합물질을 비점차에 의하여 저비점물질과 고비점물질로 분리하는 증류시스템에 있어서,
    상기 저비점물질이 증발되어 상부에서 탑정증기로 배출되며, 상기 고비점물질인 탑저응축액은 하부에서 응축되는 증류탑과;
    상기 증류탑 하부에서 배출된 탑저응축액의 재가열을 위해 유입되어지는 재비기를 포함하되,
    상기 재비기는 상기 증류탑에서 배출되는 탑정증기의 잠열 에너지를 회수하여 가열되는 것을 특징으로 하는, 증류시스템.
  2. 제 1 항에 있어서, 상기 탑정증기의 잠열 에너지를 회수하기 위하여, 상기 증류탑에서 배출되는 상기 탑정증기의 온도를 높이기 위해 상기 탑정증기를 단열 압축시키는 단열압축기가 더 포함되는 것을 특징으로 하는, 증류시스템.
  3. 제 2 항에 있어서, 상기 단열압축기는 상기 탑정증기가 상기 재비기의 작동을 위한 온도까지 단열압축이 될 수 있도록 다수가 다단으로 직렬 연결되는 다단 단열압축기인 것을 특징으로 하는, 증류시스템.
  4. 제 3 항에 있어서, 상기 증류시스템에는 상기 단열압축기로 정상 운전시 필요한 증발증기를 추가로 공급하기 위한 목적과 초기 가동시 필요한 최소 증발증기 량을 공급할 수 있는 2가지 목적을 충족하는 증발기가 더 포함되는 것을 특징으로 하는, 증류시스템.
  5. 제 4 항에 있어서, 상기 증류시스템에는 상기 단열압축기에서 압축 승온된 후 상기 재비기에서 응축된 압축증기가 수집되는 응축액탱크가 더 포함되는 것을 특징으로 하는, 증류시스템.
  6. 제 5 항에 있어서, 상기 증류시스템에는 상기 응축액탱크에 수집된 응축액의 온도를 낮추어 상기 증류탑으로 환류시키기 위한 응축액냉각기가 더 포함되는 것을 특징으로 하는, 증류시스템.
  7. 제 6 항에 있어서, 상기 증류시스템에는 상기 응축냉각기에서 냉각된 일부 응축액이 저장되는 저장조를 더 포함하되, 상기 저장조에 저장된 응축액이 상기 증발기로 공급되어 증발증기로 사용되는 것을 특징으로 하는, 증류시스템.
  8. 공급원료(11) 중에 존재하는 2성분계 이상의 혼합물질을 비점차에 의하여 저비점물질과 고비점물질로 분리하는 증류시스템에 있어서,
    상기 저비점물질이 증발되어 상부에서 탑정증기(12)로 배출되며, 상기 고비점물질인 탑저응축액(15)은 하부에서 응축되는 증류탑(A)과;
    상기 증류탑(A) 하부에서 배출된 탑저응축액(15)의 재가열을 위해 유입되어지는 재비기(C)와;
    상기 증류탑(A) 상부의 탑정증기(12)를 일정 온도까지 압축시키도록 다수개로 구비되어진 다단 단열압축기(D)와;
    상기 단열압축기(D)에서 압축 승온된 후 재비기(C)에서 응축된 압축증기가 모아지는 응축액탱크(F)와;
    상기 응축액탱크(F)에 모아진 응축액(23)의 온도를 낮추어 증류탑(A)으로 환류시키기 위한 응축액냉각기(G)와;
    상기 응축액냉각기(G)에서 냉각되어진 일부 응축액(14)이 저장되어지는 저장조(H)와;
    상기 저장조(H)에 저장되어져 있는 응축액(19)을 증발증기로 재증발시켜 다단 단열압축기(D)로 정상 운전시 필요한 증발증기를 추가로 공급하기 위한 목적과 초기 가동시 필요한 최소 증발증기 량을 공급할 수 있는 2가지 목적을 충족하는 증발기(E);를 포함하여 탑정증기 잠열을 회수하는 것을 특징으로 하는, 증류시스템.
  9. 제 4 항 내지 제 8 항 중 어느 한 항에 있어서,
    상기 증발기에서 재증발에 필요한 잠열은 외부에서 생증기를 공급하여 응축열을 사용하도록 구비된 것을 특징으로 하는, 증류시스템.
  10. 공급원료 중에 존재하는 2성분계 이상의 혼합물질을 비점차에 의하여 저비점물질과 고비점물질로 분리하는 증류시스템의 증류방법에 있어서,
    상기 공급원료를 증류탑에서 고비점물질의 탑저응축액과 저비점물질의 탑정증기로 분리하는 단계와;
    상기 탑정증기를 증발에 필요한 열전달 온도까지 단열압축기로 압축하는 단계와;
    상기 단열압축기에서 압축되어진 압축증기를 재비기로 공급하는 단계와;
    상기 재비기에서 응축된 응축액이 응축액탱크에 모여지는 단계와;
    상기 응축액탱크에 모인 응축액을 일부를 상기 재비기로 환류시키고, 나머지 응축액은 저장조에 저장하는 단계;
    를 포함하는 것을 특징으로 하는 탑정증기 잠열을 회수하는 증류시스템의 증류방법.
  11. 제 10 항에 있어서, 상기 단열압축기로 정상 운전시 필요한 증발증기를 추가로 공급하기 위한 목적과 초기 가동시 필요한 최소 증발증기 량을 공급할 수 있는 2가지 목적을 충족하는 증발기로 부터 증발증기를 공급하는 단계와, 상기 응축액탱크에 모인 응축액을 응축액냉각기를 경유시켜 냉각시키는 단계가 더 포함되는 것을 특징으로 하는, 탑정증기 잠열을 회수하는 증류시스템의 증류방법.
  12. 제 11 항에 있어서,
    상기 증발기에서 단열압축기로 공급되는 증발증기는, 응축액냉각기에 의해 일정 온도로 냉각 후 상기 저장조에 저장되어진 탑저응축액을 재증발 시킨 것임을 특징으로 하는 탑정증기 잠열을 회수하는 증류시스템의 증류방법.
PCT/KR2009/003699 2009-06-11 2009-07-07 탑정증기 잠열을 회수하는 증류시스템 및 그 증류방법 WO2010143773A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20090051931 2009-06-11
KR10-2009-0051931 2009-06-11

Publications (1)

Publication Number Publication Date
WO2010143773A1 true WO2010143773A1 (ko) 2010-12-16

Family

ID=43309017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/003699 WO2010143773A1 (ko) 2009-06-11 2009-07-07 탑정증기 잠열을 회수하는 증류시스템 및 그 증류방법

Country Status (1)

Country Link
WO (1) WO2010143773A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106237643A (zh) * 2016-10-08 2016-12-21 中国科学院理化技术研究所 一种mvr热泵精馏系统
KR20170095068A (ko) * 2016-02-12 2017-08-22 에스케이이노베이션 주식회사 히드록시프로피온산을 이용한 아크릴산의 제조방법
CN108273282A (zh) * 2018-02-28 2018-07-13 重庆云天化天聚新材料有限公司 三聚甲醛合成蒸馏塔汽相低位热回收系统及其回收方法
CN113088421A (zh) * 2021-03-30 2021-07-09 四川宜宾江源化工机械制造有限责任公司 一种降低白酒中邪味物质的方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900008691B1 (ko) * 1984-04-26 1990-11-27 신니쯔 데쯔가가꾸 가부시끼가이샤 스틸렌류의 증류방법
JPH08233457A (ja) * 1995-01-20 1996-09-13 Air Prod And Chem Inc 流体混合物の分離方法
KR100811971B1 (ko) * 2007-10-01 2008-03-10 이주선 증류시스템 및 그 증류방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900008691B1 (ko) * 1984-04-26 1990-11-27 신니쯔 데쯔가가꾸 가부시끼가이샤 스틸렌류의 증류방법
JPH08233457A (ja) * 1995-01-20 1996-09-13 Air Prod And Chem Inc 流体混合物の分離方法
KR100811971B1 (ko) * 2007-10-01 2008-03-10 이주선 증류시스템 및 그 증류방법

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170095068A (ko) * 2016-02-12 2017-08-22 에스케이이노베이션 주식회사 히드록시프로피온산을 이용한 아크릴산의 제조방법
KR101870503B1 (ko) * 2016-02-12 2018-06-22 에스케이이노베이션 주식회사 히드록시프로피온산을 이용한 아크릴산의 제조방법
CN106237643A (zh) * 2016-10-08 2016-12-21 中国科学院理化技术研究所 一种mvr热泵精馏系统
CN106237643B (zh) * 2016-10-08 2018-06-26 中国科学院理化技术研究所 一种mvr热泵精馏系统
CN108273282A (zh) * 2018-02-28 2018-07-13 重庆云天化天聚新材料有限公司 三聚甲醛合成蒸馏塔汽相低位热回收系统及其回收方法
CN108273282B (zh) * 2018-02-28 2023-11-10 重庆云天化天聚新材料有限公司 三聚甲醛合成蒸馏塔汽相低位热回收系统及其回收方法
CN113088421A (zh) * 2021-03-30 2021-07-09 四川宜宾江源化工机械制造有限责任公司 一种降低白酒中邪味物质的方法及装置

Similar Documents

Publication Publication Date Title
EP3983104B1 (en) Process for distilling a crude composition in a rectification plant including an indirect heat pump
US2838135A (en) Process for the recovery of heat from hot gases
BRPI0718474A2 (pt) Instalação para a destilação de bebidas alcoólicas, em particular, uísque.
RU2500450C2 (ru) Усовершенствованный тепловой насос для высокочистого кубового продукта
JP2009082916A (ja) 蒸留システム及びその蒸留方法
US3796640A (en) Vapor compression distillation
CN101801488A (zh) 用于含水乙醇的脱水的低能量萃取蒸馏方法
WO2010143773A1 (ko) 탑정증기 잠열을 회수하는 증류시스템 및 그 증류방법
CN104105531A (zh) 采用热量回收的蒸馏甲醇的方法和成套设备
WO2016148404A1 (ko) 폐열을 이용하는 증류 시스템
NO166672B (no) Fremgangsmaate for separering av nitrogen fra et raastoff under trykk inneholdende naturgass og nitrogen.
JP2020001009A (ja) 蒸留装置
JP7468587B2 (ja) 混合物の分離方法及び装置
US4484983A (en) Distillation and vapor treatment process
US4131538A (en) Method of separating a predetermined fraction from petroleum oil using multistage evaporators
RU2100403C1 (ru) Способ фракционирования нефти и установка для его осуществления
US4484984A (en) Distillation with condensation process
WO2020084803A1 (ja) 溶剤回収システム
US4484986A (en) Process for distillation and condensation
US20190003343A1 (en) Process and apparatus for using a waste heat stream in an aromatics complex
TWI834895B (zh) 在包含間接式熱泵之精餾設備中分餾粗製組成物之方法及精餾設備
MX2014006737A (es) Metodo y aparato de separacion de aire.
JPS63234089A (ja) コ−ルタ−ルの蒸留方法
CN114276269A (zh) 一种纤维生产中废水的资源化处理方法
JPH04250801A (ja) 蒸留方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/05/2012)

122 Ep: pct application non-entry in european phase

Ref document number: 09845867

Country of ref document: EP

Kind code of ref document: A1