WO2010142831A1 - Aparato para la inspección radiométrica de un elemento combustible - Google Patents

Aparato para la inspección radiométrica de un elemento combustible Download PDF

Info

Publication number
WO2010142831A1
WO2010142831A1 PCT/ES2010/070382 ES2010070382W WO2010142831A1 WO 2010142831 A1 WO2010142831 A1 WO 2010142831A1 ES 2010070382 W ES2010070382 W ES 2010070382W WO 2010142831 A1 WO2010142831 A1 WO 2010142831A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel element
opening
radiation detector
fuel
roller
Prior art date
Application number
PCT/ES2010/070382
Other languages
English (en)
French (fr)
Inventor
José María RODERO RODERO
Pedro Alvarez Gonzalez
Original Assignee
Enusa Industrias Avanzadas, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enusa Industrias Avanzadas, S.A. filed Critical Enusa Industrias Avanzadas, S.A.
Priority to EP10785782.3A priority Critical patent/EP2442313B1/en
Priority to SI201031648T priority patent/SI2442313T1/en
Priority to ES10785782.3T priority patent/ES2659351T3/es
Publication of WO2010142831A1 publication Critical patent/WO2010142831A1/es

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/06Devices or arrangements for monitoring or testing fuel or fuel elements outside the reactor core, e.g. for burn-up, for contamination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention encompasses in the field of inspection equipment for irradiated fuel elements used in nuclear reactors.
  • fuel elements are used that comprise a plurality of nuclear fuel rods, organized in the form of a matrix, in rows and columns. These bars include fuel pellets ("pellets"), for example, of uranium (U), in the form of uranium oxide (UO 2 ), normally enriched in 235 U.
  • pellets for example, of uranium (U), in the form of uranium oxide (UO 2 ), normally enriched in 235 U.
  • combustible elements there are systems to measure these types of combustible elements.
  • gamma radiation detectors based on germanium crystals that are used to measure the gamma radiation emitted by the combustible elements after their use in the nuclear reactor.
  • These types of measurements which may include a spectrometry, can be used to check the degree of burning of the elements, an important step prior to the storage of the elements.
  • these measurements may be necessary to check the behavior of the product (that is, to verify that it has burned as planned) and to verify that it has burned to the expected limit, something important for the subsequent treatment of the element fuel.
  • what is known as a scan of the fuel elements is performed, using a gamma radiation detector and, sometimes, also a fission chamber detector or neutron detector.
  • a conventional way to perform this type of scanning is based on moving the fuel element vertically, using a crane, so that the fuel element makes a vertical movement with respect to gamma or neutron radiation detectors, which record the radiation during said movement or they perform their measurement at fixed heights of the element.
  • Another conventional way of carrying out this type of measurement is based on moving a gamma and / or neutron radiation detector head along an element.
  • Fixed fuel for example, located in a temporary storage pool.
  • it can be difficult to ensure that the position of the fuel element with respect to the detector is sufficiently controlled. For example, it can be difficult to ensure that the distance between the radiation detector and the fuel element is exactly correct.
  • the invention relates to an apparatus for the radiometric inspection of a fuel element of the type comprising a plurality of bars with nuclear fuel.
  • the apparatus comprises at least one radiation detector, which can be a gamma radiation detector and / or a neutron detector.
  • the apparatus further comprises a frame comprising an opening configured for the fuel element to move through said opening (for example, by the action of a crane or the like) in a direction substantially parallel to the axes Longitudinal bars with nuclear fuel.
  • the radiation detector is located in said frame in a position that allows detecting radiation of the fuel element when said fuel element travels through said opening.
  • the apparatus comprises positioning means located in correspondence with said opening and configured to maintain at least one surface of the fuel element at a predetermined distance from the radiation detector when the fuel element travels through said opening.
  • a correct positioning of the radiation detector with respect to the fuel element can be guaranteed during the measurement or scanning of the fuel element, in particular, during its relative displacement with respect to the frame, in the direction of the longitudinal axes of the bars.
  • This correct positioning can serve to allow measurements with acceptable quality and reliability to be achieved, even using, for example, a small gamma radiation detector that operates at the water temperature of the pool, that is, without the need for a expensive cooling system.
  • the displacement of the fuel element through the opening can be achieved by moving the frame and keeping the fuel element fixed, or by displacing the fuel element by keeping the frame fixed, or by moving both elements, so that a relative movement occurs between the two elements.
  • the apparatus can comprise one or more gamma collimators for detectors of small size at room temperature designed for axial profilometry and, in addition, neutron collimator (s) of axial profilometry and high efficiency.
  • a measurement chain can be incorporated that incorporates a specific gamma isotope identification software (Ru-106, Eu-154, Cs-134 and Cs-137) and a burn determination software per unit length.
  • the positioning means may comprise at least a first support guide mounted on said frame and configured to be in contact with said surface of the fuel element so that said surface of the fuel element rests on said first support guide when the fuel element is moves through said opening.
  • the support guide serves to define exactly the position between the fuel element and the gamma or neutron radiation detector.
  • the positioning means may also comprise at least a first pushing element configured to push the fuel element towards the first support guide. In this way, it can be ensured that the fuel element is in contact with the support guide and, therefore, at the desired distance from the radiation detector, during scanning.
  • the opening can have four sides (which can correspond to the sides of the fuel element), the first support guide being located in correspondence with a first of said sides and said first thrust element being located in correspondence with a second of said sides, said second of said sides being opposite to said first of said sides.
  • the first support guide may comprise at least one roller configured to rotate driven by said fuel element when said fuel element travels through said opening. In this way, friction between the first support guide and the fuel element during the movement of the fuel element relative to the apparatus is reduced.
  • the apparatus may comprise a second support guide located in correspondence with a third of said sides, and a second thrust element located in correspondence with a quarter of said sides. This ensures the correct positioning of the fuel element with respect to the sides of the opening, something that can be especially advantageous when scanning two or more sides simultaneously, for example, using at least two radiation detectors gamma -one associated to each side- or at least one gamma radiation detector and at least one fission chamber or detector, arranged in correspondence with different sides of the opening.
  • the support guide may comprise a first roller
  • the second support guide may comprise a second roller
  • the first thrust element may be configured to push the fuel element against said first roller
  • the second thrust element may be configured to push the fuel element towards said second roller, when said fuel element moves through said opening.
  • This can facilitate a good positioning of the fuel element with respect to one or more detectors located in correspondence with the opening and a correct positioning of the fuel element can be achieved in the plane of the opening.
  • the apparatus may comprise at least one pushing element configured to push the fuel element towards one side of said opening, the pushing element comprising at least one roller, said roller being associated with a detector for axial coding of the movement of the fuel element with respect to the radiation detector
  • the device can comprising at least two pushing elements configured to push the fuel element towards respective sides of said opening, each pushing element comprising at least one roller, each of said rollers being associated with a detector for axial coding of the movement of the fuel element with respect to the radiation detector
  • two detectors for axial coding two sets of data indicative of the axial position of the fuel element can be obtained, which makes it possible to determine said position more reliably, for example, in the event that one of the rollers fails (for example , due to bad contact with the fuel element) or detectors.
  • a roller of a guiding element may be associated with a detector for axial coding of the movement of the fuel element with respect to the radiation detector.
  • the apparatus may comprise coupling means configured to couple the frame in a rack for combustible elements in a storage pool for combustible elements. In this way, the frame can be coupled to the rack in the pool and then move the fuel element with respect to the frame -through its opening- using, for example, the crane that is conventionally used to manipulate the fuel elements in the pool.
  • the apparatus may comprise means for modifying the distance between the radiation detector (or the detectors, if there are several) and the opening, so that the distance between the radiation detector and the surface of the fuel element that travels by said opening.
  • means for modifying the distance can comprise rails or similar to the length of which the radiation detector can move in a controlled, motorized or not way.
  • the means may comprise a plurality of fixation points - for example, constituted by holes or the like - in which the radiation detector (s) (eg, gamma and / or neutron radiation) can be fixed, selectively, depending on the dimensions of the fuel element on which the measurements should be made.
  • the radiation detector eg, gamma and / or neutron radiation
  • the radiation detector may be provided with a set of interchangeable collimators. In this way, by selecting the collimator (s) that are used at any time, the window of measurement of the total radiation that reaches the sensitive radiation detection element can be adjusted. In this way, it is possible to operate with a more suitable sensitive sensing element and achieve a higher detection quality by making said detector work in its optimum operating range.
  • the radiation detector may be a gamma radiation detector and may comprise an air collimator. Said air collimator allows to see, by the detector and through the window of the collimator, the fuel element with a smaller amount of elements of low Z (water) between the gamma radiation detector itself and the fuel element.
  • the air collimator establishes an air chamber that allows the radiation to be measured to reach the gamma radiation detector, but allowing the rest of the parts of the equipment to be protected by a water barrier that attenuates the gamma radiation. That is, water is used as shielding for the sensitive part of the equipment, thus achieving better "signal / compton" ratios and ultimately greater efficiency.
  • the air collimator may have a horizontal section (assuming a configuration in which the fuel element is located with its vertical longitudinal axis) in the form of an isosceles trapezoid. In this way, the detection of the radiation to be detected can be optimized, with a good "signal / compton" ratio and with a determined solid observation angle.
  • the air collimator can be detachably coupled to a gamma radiation detector housing. That is, it can be an air collimator that can be replaced by another of other dimensions. In this way, the apparatus can easily be optimized for different types of combustible elements, for example, 15x15 or 17x17.
  • the positioning means may comprise a first pushing element configured to push the fuel element in a first direction and a second pushing element configured to push the fuel element in a second direction, which forms an angle of 90 degrees with regarding said first address.
  • a first pushing element configured to push the fuel element in a first direction
  • a second pushing element configured to push the fuel element in a second direction, which forms an angle of 90 degrees with regarding said first address.
  • Figures 1 and 2 show perspective views of the apparatus according to an embodiment of the invention.
  • Figures 3 and 4 show two vertical sections of said embodiment of the invention.
  • Figures 5 and 6 show a horizontal and vertical section, respectively, of a gamma radiation detector that can be used in some embodiments of the invention.
  • Figure 7 is a vertical cross section of a fission chamber as a neutron detector useful for some possible embodiments of the invention.
  • Figure 8 is a perspective view of a possible embodiment of a thrust element with detector for axial coding.
  • Figures 1 -4 reflect different views of an apparatus according to a possible embodiment of the invention, based on a frame 1 or similar provided with an opening 2 ( Figures 3 and 4) through which the fuel element 100 can slide vertically, following its longitudinal or axial axis.
  • the relative movement between the frame and the fuel element, in the longitudinal direction of the fuel element can be performed, for example, with a crane, for example, with the crane that is conventionally used to manipulate the fuel element in a pool of a nuclear power plant . That is, it is possible to get this movement without having specific devices for it. It is also possible to move the frame 1, for example, with a crane or with another device.
  • a gamma radiation detector 3 and, in correspondence with another side of the opening (in this case, a side adjacent to the first), a camera is mounted in correspondence with one side of the opening 2 fission or neutron detector 4. It is possible to install more detectors in correspondence with them and / or other sides of the opening, for example, two gamma radiation detectors on both sides of the opening, and two neutron detectors on other sides of The opening.
  • the positioning means are located to establish adequate distances between the surfaces of the fuel element 100 and the detectors 2 and 3.
  • a first roller 51 acts as a support guide on which the corresponding surface of the The fuel element is supported when the fuel element moves through said opening, and the pushing element 61 pushes on the opposite surface of the fuel element to ensure that the fuel element maintains contact with the roller 51 during the vertical movement of the fuel element , thus guaranteeing that the distance between the surface of the fuel element 100 and the gamma radiation detector 3 remains constant during scanning.
  • the pushing element 62 pushes the fuel element towards another roller 52, thus guaranteeing a correct distance between the corresponding surface of the fuel element and the fission detector 4.
  • there are two other guide rollers 53 and 54 so that there is a guide roller (51-54) located in correspondence with each of the sides of the opening. The rollers can be positioned so as to ensure that the fuel element cannot impact the edges of the opening 2, thus reducing the risk of accidents that could damage the fuel element.
  • Figure 8 reflects an example of how the thrust elements can be made.
  • the thrust element comprises a roller
  • 61 a mounted on a support 61 b coupled to another support 61 d that is fixed on the frame 1;
  • the connection between the supports 61 b and 61 d is established by means of shafts or rods 61 c that are fixed on the support 61 d so that they can slide through said support 61 d.
  • Springs 61 e are located around the stems 61c and exert a pressure that makes the two supports 61 b and 61 d tend to separate, so that the roller 61 a puts pressure on the fuel element when the device is in use.
  • FIG 8 it can also be seen how, associated with the pushing element, there is a detector 61 1 or “encoder” that produces an electrical output signal indicative of the movement of the roller and which serves for the axial coding of the movement of the fuel element with respect to of the gamma radiation detector, that is, to associate the measures taken with the gamma radiation detector to a certain axial position of the fuel element 100.
  • a detector 61 1 or "encoder” that produces an electrical output signal indicative of the movement of the roller and which serves for the axial coding of the movement of the fuel element with respect to of the gamma radiation detector, that is, to associate the measures taken with the gamma radiation detector to a certain axial position of the fuel element 100.
  • Figure 1 schematically illustrates a plurality of holes 8 which serve so that the gamma radiation detector 3 and the neutron detector 4 can be placed in optimal positions, at an optimal distance from the fuel element.
  • the gamma radiation detector and / or the neutron detector can be placed on rails, or associated with other means to vary the position of the detectors with respect to the fuel element 100.
  • FIG. 1-4 it can be seen how the frame 1, in its lower part, is provided with a structure 7 configured to allow the frame to be coupled in a rack for combustible elements in a storage pool of combustible elements.
  • the air collimator (a device that basically defines an air chamber) is coupled to the housing of the detector 3 so that it can be replaced by another air collimator, of other dimensions, to adapt the apparatus to a fuel element of other dimensions .
  • the air collimator has a substantially flat configuration in the vertical direction, and an isosceles trapezoidal configuration in the horizontal plane.
  • Figures 5 and 6 schematically show the structure of a gamma radiation detector 3 that may be suitable for the invention, and which It comprises, in addition to the air collimator 31, a tungsten filter 32, a sealed chamber 33, a cadmium layer 34 (with a thickness of approximately 1 mm), which establishes a chamber within which a tungsten collimator is housed 35 and a tungsten shield 36.
  • a gamma radiation detector 3 that may be suitable for the invention, and which It comprises, in addition to the air collimator 31, a tungsten filter 32, a sealed chamber 33, a cadmium layer 34 (with a thickness of approximately 1 mm), which establishes a chamber within which a tungsten collimator is housed 35 and a tungsten shield 36.
  • the gamma radiation detector element within the shield 36 and behind the tungsten collimator 35 is the gamma radiation detector element
  • Figure 7 reflects a possible embodiment of the neutron detector located within a polyethylene structure 42 and protected by cadmium layers 43, so that neutrons from a certain direction are preferably detected.
  • the invention is not limited to the specific embodiments that have been described but also covers, for example, the variants that can be made by the average expert in the field (for example, in terms of the choice of materials, dimensions , components, configuration, etc.), within what follows from the claims.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Measurement Of Radiation (AREA)

Abstract

El aparato para Ia inspección radiométrica de un elemento combustible (100) comprendiendo un bastidor (1 ) con una abertura (2) configurada para que el elemento combustible se desplace por dicha abertura, y con medios de posicionamiento (51, 61 ) situados en correspondencia con dicha abertura y configurados para mantener al menos una superficie del elemento combustible a una distancia predeterminada de un detector de radiación cuando el elemento combustible se desplaza a través de dicha abertura.

Description

APARATO PARA LA INSPECCIÓN RADIOM ÉTRICA DE UN ELEMENTO
COMBUSTIBLE
CAMPO TÉCNICO DE LA INVENCIÓN La invención se engloba en el campo de los equipos de inspección de los elementos combustibles irradiados utilizados en los reactores nucleares.
ANTECEDENTES DE LA INVENCIÓN
En los reactores nucleares, se utilizan elementos combustibles que comprenden una pluralidad de barras de combustible nuclear, organizadas en forma de matriz, en filas y columnas. Estas barras incluyen pastillas ("pellets") de combustible, por ejemplo, de uranio (U), en forma de óxido de uranio (UO2), normalmente enriquecido en 235U.
Existen sistemas para realizar mediciones sobre este tipo de elementos combustibles. Por ejemplo, existen detectores de radiación gamma basados en cristales de germanio que se usan para medir Ia radiación gamma emitida por los elementos combustibles después del uso de los mismos en el reactor nuclear. Este tipo de mediciones, que pueden incluir una espectrometría, pueden servir para comprobar el grado de quemado de los elementos, un paso importante previo al almacenamiento de los elementos. Por ejemplo, estas mediciones pueden ser necesarios para comprobar el comportamiento del producto (es decir, para comprobar que se ha quemado tal y como estaba previsto) y para comprobar que se ha quemado hasta el límite previsto, algo importante para el tratamiento posterior del elemento combustible. Por estos motivos y por otros, se realiza Io que se conoce como un escaneado de los elementos combustibles, usando un detector de radiación gamma y, a veces, también un detector de cámara de fisión o detector de neutrones.
Una forma convencional de realizar este tipo de escaneado se basa en desplazar el elemento combustible en sentido vertical, utilizando una grúa, de manera que el elemento combustible realice un movimiento vertical con respecto a los detectores de radiación gamma o neutrónica, los cuales registran Ia radiación durante dicho movimiento o bien realizan su medición a alturas fijas del elemento. Otra manera convencional de realizar este tipo de mediciones se basa en desplazar una cabeza detectora de radiación gamma y/o neutrónica a Io largo de un elemento combustible fijo, por ejemplo, situado en una piscina de almacenamiento temporal. Ahora bien, en ambos casos existe el problema de que puede ser difícil garantizar que Ia posición del elemento combustible con respecto al detector esté suficientemente controlada. Por ejemplo, puede ser difícil garantizar que Ia distancia entre el detector de radiación y el elemento combustible sea exactamente Ia correcta.
Por otra parte, muchos de los sistemas conocidos que se basan en cristales de germanio son grandes y requieren refrigeración con nitrógeno líquido, algo que hace que el conjunto y su operación sean complejos y costosos. Adicionalmente, en al menos algunos de los sistemas conocidos, puede ser difícil controlar con suficiente precisión Ia posición del detector en el eje axial del elemento combustible, de forma asociada a los datos aportados por el detector al sistema de proceso de Ia información.
DESCRIPCIÓN DE LA INVENCIÓN
La invención se refiere a un aparato para Ia inspección radiométrica de un elemento combustible del tipo de los que comprenden una pluralidad de barras con combustible nuclear. El aparato comprende al menos un detector de radiación, que puede ser un detector de radiación gamma y/o un detector de neutrones. De acuerdo con Ia invención, el aparato comprende, además, un bastidor que comprende una abertura configurada para que el elemento combustible se desplace por dicha abertura (por ejemplo, por Ia acción de una grúa o similar) en una dirección sustancialmente paralela a los ejes longitudinales de las barras con combustible nuclear. El detector de radiación está situado en dicho bastidor en una posición que permite detectar radiación del elemento combustible cuando dicho elemento combustible se desplaza a través de dicha abertura. Además, el aparato comprende medios de posicionamiento situados en correspondencia con dicha abertura y configurados para mantener al menos una superficie del elemento combustible a una distancia predeterminada del detector de radiación cuando el elemento combustible se desplaza a través de dicha abertura.
De esta manera se puede garantizar un correcto posicionamiento del detector de radiación con respecto al elemento combustible durante Ia medida o escaneado del elemento combustible, en particular, durante su desplazamiento relativo con respecto al bastidor, en Ia dirección de los ejes longitudinales de las barras. Este correcto posicionamiento puede servir para permitir que se consigan medidas con una calidad y fiabilidad aceptables, incluso usando, por ejemplo, un detector de radiación gamma de pequeño tamaño que funcione a Ia temperatura del agua de Ia piscina, es decir, sin necesidad de un costoso sistema de refrigeración. El desplazamiento del elemento combustible por Ia abertura se puede conseguir desplazando el bastidor y manteniendo el elemento combustible fijo, o desplazando el elemento combustible manteniendo el bastidor fijo, o desplazando ambos elementos, de manera que se produzca un movimiento relativo entre los dos elementos. El aparato puede comprender uno o más colimadores gamma para detectores de pequeño tamaño a Ia temperatura ambiente concebidos para Ia perfilometria axial y, además, colimador(es) de neutrones de perfilometría axial y alta eficiencia. Se puede incorporar una cadena de medida que incorpore un software específico de identificación de los isótopos gamma (Ru-106, Eu-154, Cs- 134 y Cs-137) y un software de determinación de quemado por unidad de longitud.
Los medios de posicionamiento pueden comprender al menos una primera guía de apoyo montada en dicho bastidor y configurada para estar en contacto con dicha superficie del elemento combustible de manera que dicha superficie del elemento combustible se apoye en dicha primera guía de apoyo cuando el elemento combustible se desplaza a través de dicha abertura. De esta manera, Ia guía de apoyo sirve para definir de forma exacta Ia posición entre el elemento combustible y el detector de radiación gamma o neutrónica.
Los medios de posicionamiento pueden además comprender al menos un primer elemento de empuje configurado para empujar el elemento combustible hacia Ia primera guía de apoyo. De esta manera, se puede garantizar que el elemento combustible quede en contacto con Ia guía de apoyo y, por Io tanto, a Ia distancia deseada del detector de radiación, durante el escaneado.
La abertura puede tener cuatro lados (que pueden corresponderse con los lados del elemento combustible), estando Ia primera guía de apoyo situada en correspondencia con un primero de dichos lados y estando dicho primer elemento de empuje situado en correspondencia con un segundo de dichos lados, estando dicho segundo de dichos lados opuesto a dicho primero de dichos lados. De esta manera, se consigue un sistema fácilmente implementable y que garantiza el correcto posicionamiento del elemento combustible con respecto al detector de radiación durante el escaneado.
La primera guía de apoyo puede comprende al menos un rodillo configurado para girar impulsado por dicho elemento combustible cuando dicho elemento combustible se desplaza a través de dicha abertura. De esta manera, se reduce Ia fricción entre Ia primera guía de apoyo y el elemento combustible durante el movimiento del elemento combustible relativo al aparato.
Además, el aparato puede comprender una segunda guía de apoyo situada en correspondencia con un tercero de dichos lados, y un segundo elemento de empuje situado en correspondencia con un cuarto de dichos lados. De esta manera se garantiza el correcto posicionamiento del elemento combustible con respecto a los lados de Ia abertura, algo que puede ser especialmente ventajoso cuando se realiza el escaneado de dos o más lados de forma simultánea, por ejemplo, usando al menos dos detectores de radiación gamma -uno asociado a cada lado- o al menos un detector de radiación gamma y al menos un detector o cámara de fisión, dispuestos en correspondencia con diferentes lados de Ia abertura.
La guía de apoyo puede comprender un primer rodillo, Ia segunda guía de apoyo puede comprender un segundo rodillo, el primer elemento de empuje puede estar configurado para empujar el elemento combustible contra dicho primer rodillo y el segundo elemento de empuje puede estar configurado para empujar el elemento combustible hacia dicho segundo rodillo, cuando dicho elemento combustible se desplaza a través de dicha abertura. Esto puede facilitar un bueno posicionamiento del elemento combustible con respecto a uno o más detectores situados en correspondencia con Ia abertura y se puede conseguir un posicionamiento correcto del elemento combustible en al plano de Ia abertura. En adición a los elementos de empuje puede haber, por ejemplo, cuatro rodillos de guiado, una en correspondencia con cada lado de Ia abertura, para mejor controlar el movimiento del elemento combustible y proteger tanto el elemento combustible como los dispositivos de medida. El aparato puede comprender al menos un elemento de empuje configurado para empujar el elemento combustible hacia un lado de dicha abertura, comprendiendo el elemento de empuje al menos un rodillo, estando dicho rodillo asociado a un detector para codificación axial del movimiento del elemento combustible respecto del detector de radiación. Por ejemplo, el aparato puede comprender al menos dos elementos de empuje configurados para empujar el elemento combustible hacia respectivos lados de dicha abertura, comprendiendo cada elemento de empuje al menos un rodillo, estando cada uno de dichos rodillos asociado a un detector para codificación axial del movimiento del elemento combustible respecto del detector de radiación. Con dos detectores para Ia codificación axial se puede obtener dos juegos de datos indicativos de Ia posición axial del elemento combustible, algo que permite determinar dicha posición de forma más fiable, por ejemplo, en el caso de que falle alguno de los rodillos (por ejemplo, por culpa de un mal contacto con el elemento combustible) o detectores. Complementaria o alternativamente, un rodillo de un elemento de guiado puede estar asociado a un detector para codificación axial del movimiento del elemento combustible respecto del detector de radiación. Esto puede ser una alternativa o complemento al uso de los elementos de empuje para Ia codificación axial. El aparato puede comprender medios de acoplamiento configurados para acoplar el bastidor en un rack para elementos combustibles en una piscina de almacenamiento de elementos combustibles. De esta manera, se puede acoplar el bastidor en el rack en Ia piscina y luego desplazar el elemento combustible con respecto al bastidor -a través de su abertura- usando, por ejemplo, Ia grúa que convencionalmente se usa para manipular los elementos combustibles en Ia piscina.
El aparato puede comprender medios para modificar Ia distancia entre el detector de radiación (o los detectores, si hay varios) y Ia abertura, de manera que se pueda modificar Ia distancia entre el detector de radiación y Ia superficie del elemento combustible que se desplace por dicha abertura. De esta forma es posible optimizar Ia inspección para elementos combustibles con diferentes anchuras como es el caso de los elementos combustibles para reactores de agua a presión (PWR) 15x15 o 17x17, y aplicar el aparato también a elementos combustibles para reactores de agua en ebullición (BWR). Estos medios para modificar Ia distancia pueden comprender raíles o similar a Io largo de los cuales el detector de radiación puede desplazarse de forma controlada, motorizada o no. Alternativamente, los medios pueden comprender una pluralidad de puntos de fijación -por ejemplo, constituidos por orificios o similar- en los que el o los detectores de radiación (por ejemplo, radiación gamma y/o neutrónica) pueden fijarse, selectivamente, en función de las dimensiones del elemento combustible sobre el que deben realizarse las mediciones.
El detector de radiación puede estar dotado de un conjunto de colimadores intercambiables. De esta manera, seleccionando el o los colimadores que se usan en cada momento, se puede ajustar Ia ventana de medida de Ia radiación total que llega al elemento sensible de detección de radiación. De esta manera, se puede operar con un elemento sensible de detección más adecuado y conseguir una calidad de detección mayor haciendo que dicho detector trabaje en su rango operativo óptimo. El detector de radiación puede ser un detector de radiación gamma y puede comprender un colimador de aire. Dicho colimador de aire permite ver, por parte del detector y a través de Ia ventana del colimador, el elemento combustible con una cantidad menor de elementos de bajo Z (agua) entre el detector de radiación gamma propiamente dicho y el elemento combustible. El colimador de aire establece una cámara de aire que permite que Ia radiación que se desea medir llegue al detector de radiación gamma, pero dejando que el resto de las partes del equipo estén protegidas por una barrera de agua que atenúa Ia radiación gamma. Es decir, el agua es utilizada como blindaje para Ia parte sensible del equipo, consiguiéndose de este modo mejores relaciones "señal/compton" y en definitiva una mayor eficiencia.
El colimador de aire puede tener una sección horizontal (asumiendo una configuración en el que el elemento combustible está situado con su eje longitudinal vertical) en forma de trapezoide isósceles. De esta forma se puede optimizar Ia detección de Ia radiación que se desea detectar, con una buena relación "señal/compton" y con un ángulo sólido de observación determinado.
El colimador de aire puede estar acoplado de forma desmontable a una carcasa del detector de radiación gamma. Es decir, se puede tratar de un colimador de aire que puede ser reemplazado por otro de otras dimensiones. De esta manera, el aparato puede fácilmente optimizarse para diferentes tipos de elementos combustibles, por ejemplo, 15x15 o 17x17.
Los medios de posicionamiento pueden comprender un primer elemento de empuje configurado para empujar el elemento combustible en una primera dirección y un segundo elemento de empuje configurado para empujar el elemento combustible en una segunda dirección, que forma un ángulo de 90 grados con respecto a dicha primera dirección. De esta manera, se puede garantizar el posicionamiento del elemento combustible en Ia abertura y su distancia con respecto a dos detectores situados en correspondencia con sendos lados de Ia abertura, por ejemplo, un detector de radiación gamma y un detector de radiación neutrónica.
DESCRIPCIÓN DE LAS FIGURAS
Para complementar Ia descripción y con objeto de ayudar a una mejor comprensión de las características de Ia invención, de acuerdo con un ejemplo preferente de realización práctica de Ia misma, se acompaña como parte integrante de Ia descripción, un juego de figuras en el que con carácter ilustrativo y no limitativo, se ha representado Io siguiente:
Las figuras 1 y 2 muestran sendas vistas en perspectiva del aparato según una realización de Ia invención. Las figuras 3 y 4 muestran sendas secciones verticales de dicha realización de Ia invención.
Las figuras 5 y 6 muestran una sección horizontal y vertical, respectivamente, de un detector de radiación gamma que puede usarse en algunas realizaciones de Ia invención. La figura 7 es una sección transversal vertical de una cámara de fisión como detector de neutrones útil para algunas posibles realizaciones de Ia invención.
La figura 8 es una vista en perspectiva de una posible realización de un elemento de empuje con detector para codificación axial.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
Las figuras 1 -4 reflejan diferentes vistas de un aparato según una posible realización de Ia invención, basado en un bastidor 1 o similar dotado de una abertura 2 (figuras 3 y 4) a través de Ia cual puede deslizarse verticalmente el elemento combustible 100, siguiendo su eje longitudinal o axial. El movimiento relativo entre bastidor y elemento combustible, en el sentido longitudinal del elemento combustible, se puede, por ejemplo, realizar con una grúa, por ejemplo, con Ia grúa que convencionalmente se usa para manipular el elemento combustible en una piscina de una central nuclear. Es decir, es posible conseguir este movimiento sin contar con dispositivos específicos para ello. También es posible mover el bastidor 1 , por ejemplo, con una grúa o con otro dispositivo.
Sobre Ia plataforma o bastidor 1 está montado, en correspondencia con un lado de Ia abertura 2, un detector de radiación gamma 3 y, en correspondencia con otro lado de Ia abertura (en este caso, un lado adyacente al primero), una cámara de fisión o detector de neutrones 4. Es posible instalar más detectores en correspondencia con los mismos y/o otros lados de Ia abertura, por ejemplo, dos detectores de radiación gamma en sendos lados de Ia abertura, y dos detectores de neutrones en otros lados de Ia abertura. En las figuras 1 -4 se pueden observar como los medios de posicionamiento están situados para establecer distancias adecuadas entre las superficies del elemento combustible 100 y los detectores 2 y 3. Un primer rodillo 51 hace de guía de apoyo sobre Ia que Ia superficie correspondiente del elemento combustible se apoya cuando el elemento combustible se desplaza a través de dicha abertura, y el elemento de empuje 61 empuja sobre Ia superficie opuesta del elemento combustible para asegurar que el elemento combustible mantenga el contacto con el rodillo 51 durante el movimiento vertical del elemento combustible, garantizando de esta manera que Ia distancia entre Ia superficie del elemento combustible 100 y el detector de radiación gamma 3 se mantenga constante durante el escaneado. Por otra parte, el elemento de empuje 62 empuja el elemento combustible hacia otro rodillo 52, garantizando de esta manera una correcta distancia entre Ia superficie correspondiente del elemento combustible y el detector de fisión 4. Por otra parte, tal y como se puede ver, existen otros dos rodillos de guiado 53 y 54, de manera que hay un rodillo de guiado (51 -54) situado en correspondencia con cada uno de los lados de Ia abertura. Los rodillos pueden estar situados de manera que garanticen que el elemento combustible no puede impactar contra los bordes de Ia abertura 2, reduciéndose así el riesgo de accidentes que pudieran dañar al elemento combustible.
La figura 8 refleja un ejemplo de cómo pueden estar realizados los elementos de empuje. En este caso, el elemento de empuje comprende un rodillo
61 a montado en un soporte 61 b acoplado a otro soporte 61 d que está fijado en el bastidor 1 ; Ia unión entre los soportes 61 b y 61 d se establece mediante unos ejes o vastagos 61 c que están fijados en el soporte 61 d de manera que puedan deslizarse por dicho soporte 61 d. Los resortes 61 e están situados alrededor de los vastagos 61c y ejercen una presión que hace que los dos soportes 61 b y 61 d tienden a separarse, de manera que el rodillo 61 a ejerza una presión sobre el elemento combustible cuando el dispositivo está en uso.
En Ia figura 8 se puede también observar como, asociado al elemento de empuje, hay un detector 61 1 o "encoder" que produce una señal de salida eléctrica indicativa del movimiento del rodillo y que sirve para Ia codificación axial del movimiento del elemento combustible respecto del detector de radiación gamma, es decir, para asociar las medidas tomadas con el detector de radiación gamma a una determinada posición axial del elemento combustible 100. Existen muchos dispositivos convencionales para esta finalidad por Io que no es necesario describir el detector 61 1 o su funcionamiento con más detalle.
En Ia figura 1 se ilustra esquemáticamente una pluralidad de orificios 8 que sirven para que el detector de radiación gamma 3 y el detector de neutrones 4 se puedan situar en posiciones óptimas, a una distancia óptima del elemento combustible. Alternativamente, el detector de radiación gamma y/o el detector de neutrones se pueden situar sobre raíles, o asociarse a otros medios para variar Ia posición de los detectores con respecto al elemento combustible 100.
En las figuras 1 -4 se puede observar como el bastidor 1 , en su parte inferior, está dotado de una estructura 7 configurada para permitir que el bastidor pueda acoplarse en un rack para elementos combustible en una piscina de almacenamiento de elementos combustibles.
En las figuras 1 , 3, 5 y 6 se puede observar como el detector de radiación gamma se ha completado con un colimador de aire 31 , algo que permite reducir Ia cantidad de agua que se halla entre el elemento sensor de radiación gamma 37 y el elemento combustible 100, independientemente de Ia distancia entre
Ia carcasa 33 del detector de radiación gamma y el elemento combustible. El colimador de aire (un dispositivo que básicamente delimita una cámara de aire) está acoplado a Ia carcasa del detector 3 de manera que pueda ser reemplazado por otro colimador de aire, de otras dimensiones, para adaptar el aparato a un elemento combustible de otras dimensiones. Como se puede observar en, por ejemplo, las figuras 5 y 6, el colimador de aire tiene una configuración sustancialmente plana en el sentido vertical, y una configuración trapezoidal isósceles en el plano horizontal.
En las figuras 5 y 6 se refleja esquemáticamente Ia estructura de un detector de radiación gamma 3 que puede ser adecuado para Ia invención, y que comprende, en adición al colimador de aire 31 , un filtro de tungsteno 32, una cámara estanca 33, una capa de cadmio 34 (con un grosor de aproximadamente 1 mm), que establece una cámara dentro de Ia cual se aloja un colimador de tungsteno 35 y un escudo de tungsteno 36. Dentro del escudo 36 y detrás del colimador de tungsteno 35 se encuentra el elemento detector de radiación gamma
37 propiamente dicho. También se puede observar un protector del cable 38 (para proteger el cable del elemento detector 37 de radiación difusa) y Ia salida 39 del cable. Ahora bien, otros tipos de detectores de radiación gamma pueden usarse con Ia invención, dentro del concepto básico de Ia invención. La figura 7 refleja una posible realización del detector de neutrones situado dentro de una estructura de polietileno 42 y protegido por capas de cadmio 43, de manera que preferentemente se detectan neutrones provenientes de una dirección determinada.
En este texto, Ia palabra "comprende" y sus variantes (como "comprendiendo", etc.) no deben interpretarse de forma excluyente, es decir, no excluyen Ia posibilidad de que Io descrito incluya otros elementos, pasos etc.
Por otra parte, Ia invención no está limitada a las realizaciones concretas que se han descrito sino abarca también, por ejemplo, las variantes que pueden ser realizadas por el experto medio en Ia materia (por ejemplo, en cuanto a Ia elección de materiales, dimensiones, componentes, configuración, etc.), dentro de Io que se desprende de las reivindicaciones.

Claims

REIVINDICACIONES
1.- Aparato para Ia inspección radiométrica de un elemento combustible (100) que comprende una pluralidad de barras con combustible nuclear, comprendiendo el aparato al menos un detector de radiación (3), caracterizado porque adicionalmente comprende: un bastidor (1 ) que comprende una abertura (2) configurada para que el elemento combustible se desplace por dicha abertura en una dirección sustancialmente paralela a los ejes longitudinales de las barras con combustible nuclear, estando el detector de radiación (3) situado en dicho bastidor en una posición que permite detectar radiación del elemento combustible cuando dicho elemento combustible se desplaza a través de dicha abertura; medios de posicionamiento (51 , 61 ) situados en correspondencia con dicha abertura y configurados para mantener una superficie del elemento combustible a una distancia predeterminada del detector de radiación cuando el elemento combustible se desplaza a través de dicha abertura.
2.- Aparato según Ia reivindicación 1 , caracterizado porque dichos medios de posicionamiento comprenden al menos una primera guía de apoyo (51 ) montada en dicho bastidor y configurada para estar en contacto con dicha superficie del elemento combustible de manera que dicha superficie del elemento combustible se apoye en dicha primera guía (51 ) de apoyo cuando el elemento combustible se desplaza a través de dicha abertura.
3.- Aparato según Ia reivindicación 2, caracterizado porque dichos medios de posicionamiento comprenden además al menos un primer elemento de empuje (61 ) configurado para empujar el elemento combustible hacia Ia primera guía de apoyo (51 ).
4.- Aparato según Ia reivindicación 3, caracterizado porque Ia abertura tiene cuatro lados, estando Ia primera guía de apoyo (51 ) situada en correspondencia con un primero de dichos lados y estando dicho primer elemento de empuje (61 ) situado en correspondencia con un segundo de dichos lados, estando dicho segundo de dichos lados opuesto a dicho primero de dichos lados.
5.- Aparato según cualquiera de las reivindicaciones 3 y 4, caracterizado porque dicha primera guía de apoyo (51 ) comprende al menos un rodillo configurado para girar impulsado por dicho elemento combustible cuando dicho elemento combustible se desplaza a través de dicha abertura.
6.- Aparato según Ia reivindicación 4, caracterizado porque comprende una segunda guía de apoyo (52) situada en correspondencia con un tercero de dichos lados, y un segundo elemento de empuje (62) situado en correspondencia con un cuarto de dichos lados.
7.- Aparato según Ia reivindicación 6, caracterizado porque dicha primera guía de apoyo (51 ) comprende un primer rodillo y porque dicha segunda guía de apoyo (52) comprende un segundo rodillo, y porque dicho primer elemento de empuje (61 ) está configurado para empujar el elemento combustible contra dicho primer rodillo y porque dicho segundo elemento de empuje (62) está configurado para empujar el elemento combustible hacia dicho segundo rodillo, cuando dicho elemento combustible se desplaza a través de dicha abertura.
8.- Aparato según Ia reivindicación 1 , caracterizado porque comprende al menos un elemento de empuje (61 ) configurado para empujar el elemento combustible hacia un lado de dicha abertura, comprendiendo el elemento de empuje (61 ) al menos un rodillo, estando dicho rodillo asociado a un detector (61 1 ) para codificación axial del movimiento del elemento combustible respecto del detector de radiación.
9.- Aparato según Ia reivindicación 8, caracterizado porque comprende al menos dos elementos de empuje (61 , 62) configurados para empujar el elemento combustible hacia respectivos lados de dicha abertura, comprendiendo cada elemento de empuje (61 , 62) al menos un rodillo, estando cada uno de dichos rodillos asociado a un detector (61 1 , 612) para codificación axial del movimiento del elemento combustible respecto del detector de radiación.
10.- Aparato según Ia reivindicación 5, caracterizado porque dicho, al menos un, rodillo está asociado a un detector para codificación axial del movimiento del elemento combustible respecto del detector de radiación.
1 1.- Aparato según cualquiera de las reivindicaciones anteriores, caracterizado porque comprende medios de acoplamiento (7) configurados para acoplar el bastidor (1 ) a un rack para elementos combustibles en una piscina de almacenamiento temporal de elementos combustibles.
12.- Aparato según cualquiera de las reivindicaciones anteriores, caracterizado porque comprende medios (8) para modificar Ia distancia entre el detector de radiación y Ia abertura, de manera que se pueda modificar Ia distancia entre el detector de radiación y Ia superficie del elemento combustible que se desplace por dicha abertura.
13.- Aparato según cualquiera de las reivindicaciones anteriores, caracterizado porque el detector de radiación es un detector de radiación gamma (3) que está dotado de un conjunto de colimadores (35) intercambiables.
14.- Aparato según cualquiera de las reivindicaciones anteriores, caracterizado porque el detector de radiación es un detector de radiación gamma que comprende un colimador de aire (31 ).
15.- Aparato según Ia reivindicación 14, caracterizado porque el colimador de aire
(31 ) tiene una sección horizontal en forma de trapezoide isósceles.
16.- Aparato según Ia reivindicación 15 ó 16, caracterizado porque el colimador de aire está acoplado de forma desmontable a una carcasa del detector de radiación.
17.- Aparato según Ia reivindicación 1 , caracterizado porque los medios de posicionamiento comprenden un primer elemento de empuje (61 ) configurado para empujar el elemento combustible en una primera dirección y un segundo elemento de empuje (62) configurado para empujar el elemento combustible en una segunda dirección, que forma un ángulo de 90 grados con respecto a dicha primera dirección.
PCT/ES2010/070382 2009-06-08 2010-06-08 Aparato para la inspección radiométrica de un elemento combustible WO2010142831A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10785782.3A EP2442313B1 (en) 2009-06-08 2010-06-08 Apparatus for the radiometric inspection of fuel elements
SI201031648T SI2442313T1 (en) 2009-06-08 2010-06-08 Device for radiometric inspection of fuel elements
ES10785782.3T ES2659351T3 (es) 2009-06-08 2010-06-08 Aparato para la inspección radiométrica de elementos combustibles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200930278 2009-06-08
ES200930278A ES2350997B1 (es) 2009-06-08 2009-06-08 Aparato para la inspeccion radiometrica de un elemento combustible

Publications (1)

Publication Number Publication Date
WO2010142831A1 true WO2010142831A1 (es) 2010-12-16

Family

ID=43308460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070382 WO2010142831A1 (es) 2009-06-08 2010-06-08 Aparato para la inspección radiométrica de un elemento combustible

Country Status (5)

Country Link
EP (1) EP2442313B1 (es)
ES (2) ES2350997B1 (es)
HU (1) HUE036605T2 (es)
SI (1) SI2442313T1 (es)
WO (1) WO2010142831A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2523756A1 (es) * 2013-05-28 2014-12-01 Tecnatom, S. A. Sistema y método de inspección de varilla de combustible

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164152A (ja) * 1985-01-16 1986-07-24 Nippon Atom Ind Group Co Ltd 検査装置
US4637912A (en) * 1982-05-27 1987-01-20 Brown Boveri Reaktor Gmbh Apparatus for inspecting fuel assemblies, particularly for detecting defective fuel rods from complete fuel assemblies of water-cooled nuclear reactors
ES2078586T3 (es) * 1991-06-05 1995-12-16 Siemens Power Corp Metodo y aparato para ensayo ultrasonico de barras de combustible nuclear empleando una guia de alineacion.
ES2209740T3 (es) * 1999-09-24 2004-07-01 Framatome Anp Gmbh Procedimiento y dispositivo para la inspeccion de elemento de combustion del reactor nuclear.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2739180B1 (fr) * 1995-09-27 1998-09-04 Framatome Sa Procede et dispositif de mesure d'au moins une longeur caracteristique sur un crayon de combustible dispose a la peripherie d'un assemblage de combustible nucleaire
AU2002361919A1 (en) * 2002-12-24 2004-07-22 Belgonucleaire S.A. Method and apparatus for carrying out a mox fuel rod quality control
FR2880179B1 (fr) * 2004-12-28 2007-02-23 Framatome Anp Sas Procede et dispositif de determination du taux de combustion d'un assemblage de combustible du coeur d'un reacteur nucleaire et utilisation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4637912A (en) * 1982-05-27 1987-01-20 Brown Boveri Reaktor Gmbh Apparatus for inspecting fuel assemblies, particularly for detecting defective fuel rods from complete fuel assemblies of water-cooled nuclear reactors
JPS61164152A (ja) * 1985-01-16 1986-07-24 Nippon Atom Ind Group Co Ltd 検査装置
ES2078586T3 (es) * 1991-06-05 1995-12-16 Siemens Power Corp Metodo y aparato para ensayo ultrasonico de barras de combustible nuclear empleando una guia de alineacion.
ES2209740T3 (es) * 1999-09-24 2004-07-01 Framatome Anp Gmbh Procedimiento y dispositivo para la inspeccion de elemento de combustion del reactor nuclear.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2523756A1 (es) * 2013-05-28 2014-12-01 Tecnatom, S. A. Sistema y método de inspección de varilla de combustible

Also Published As

Publication number Publication date
EP2442313A1 (en) 2012-04-18
EP2442313A4 (en) 2015-04-08
ES2659351T3 (es) 2018-03-14
SI2442313T1 (en) 2018-04-30
HUE036605T2 (hu) 2018-07-30
EP2442313B1 (en) 2017-12-06
ES2350997A1 (es) 2011-01-28
ES2350997B1 (es) 2011-11-23

Similar Documents

Publication Publication Date Title
CN104067112B (zh) 扫描方法和扫描设备
Mayorov et al. Gamma emission tomography for the inspection of spent nuclear fuel
ES2430860T3 (es) Dispositivo de caracterización radiológica protegido contra fuentes parásitas de radiación ionizante
ES2659351T3 (es) Aparato para la inspección radiométrica de elementos combustibles
EP3674752B1 (en) Detector system and radiation imaging device
JP2006512567A (ja) Mox燃料棒を品質管理するための方法および装置
Choi et al. Optimization of single-photon emission computed tomography system for fast verification of spent fuel assembly: a Monte Carlo study
ES2665460T3 (es) Escáner para el análisis de una barra de combustible nuclear
ES2937833T3 (es) Dispositivo de medición de radiaciones alfa y/o beta que provienen de una superficie sólida
US6035010A (en) Monitor for measuring both the gamma spectrum and neutrons emitted by an object, such as spent nuclear fuel
JP3544065B2 (ja) 簡易型燃焼度モニタ
Ansari et al. Burnup studies of spent fuels of varying types and enrichment
JPH10332873A (ja) 使用済燃料集合体の放射線測定方法および測定装置
White et al. SPECT reconstruction and analysis for the inspection of spent nuclear fuel
US6895065B1 (en) Method and apparatus for identifying nuclear fuels
JP5957174B2 (ja) 使用済み燃料の放射線計測装置
JP6137635B2 (ja) 破損・溶融燃料含有物質中の核物質量の計測装置及び計測方法
KR102395140B1 (ko) 방사선 측정 장치 및 그의 측정 방법
ES2962525T3 (es) Dispositivo de medición de la contaminación radiactiva interna de un individuo
KR20230099538A (ko) 방사선 검출 장치, 이를 포함하는 방사선 검출 시스템, 방사선 검출 방법 및 핵 연료봉 검사 장치
RU108202U1 (ru) Устройство определения выгорания ядерного топлива
JP2014112070A (ja) 放射線遮蔽体
Tikkinen et al. Technical exercise and demonstration of the spent fuel attribute tester at the TVO NPS in Finland
Park et al. Application of nondestructive testing technique for safeguards inspection
Zecevic et al. 29 Framatome's multiple examination device and on-site removable fuel rods examination stand

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10785782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010785782

Country of ref document: EP