WO2010140566A1 - Polyurethane polymer solution and method for manufacturing the same - Google Patents

Polyurethane polymer solution and method for manufacturing the same Download PDF

Info

Publication number
WO2010140566A1
WO2010140566A1 PCT/JP2010/059202 JP2010059202W WO2010140566A1 WO 2010140566 A1 WO2010140566 A1 WO 2010140566A1 JP 2010059202 W JP2010059202 W JP 2010059202W WO 2010140566 A1 WO2010140566 A1 WO 2010140566A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane polymer
polymer solution
formula
repeating unit
polycarbonate polyol
Prior art date
Application number
PCT/JP2010/059202
Other languages
French (fr)
Japanese (ja)
Inventor
昌彦 渡部
学 高橋
真弥 滝川
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to JP2011518438A priority Critical patent/JP5751169B2/en
Publication of WO2010140566A1 publication Critical patent/WO2010140566A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters

Definitions

  • the present invention relates to a polyurethane polymer solution and a method for producing the same.
  • the polycarbonate polyol is useful as a raw material for producing a polyurethane polymer by reacting with a polyisocyanate compound, as well as a polyester polyol and a polyether polyol, and a raw material for engineer plastics, adhesives, paints and the like.
  • the polyester polyol has an ester bond
  • the polyurethane polymer produced using the polyester polyol has a disadvantage that it is inferior in hydrolysis resistance.
  • a polyether polyol has an ether bond
  • a polyurethane polymer produced using the polyether polyol has a disadvantage that it is inferior in weather resistance and heat resistance.
  • the polycarbonate polyol having a repeating unit represented by — [O—R—O (CO)] — does not have the above-described drawbacks
  • the polyurethane polymer produced using this polycarbonate polyol has the advantage that it is excellent in hydrolysis resistance, weather resistance, heat resistance and the like and is easy to produce industrially.
  • Patent Document 1 discloses a polyurethane coating agent made from a polycarbonate polyol using an aliphatic polyol as a raw material, and the polyurethane resin used in this coating agent exhibits good adhesion to a plastic film, and after coating the film. It is described that it is excellent in blocking resistance after winding, wear resistance when used as a building material, solvent resistance, weather resistance and the like.
  • the present invention provides a polyurethane polymer solution excellent in dispersibility in an organic solvent, and having a coating film obtained by applying, drying, and baking as required, and a method for producing the same. Let it be an issue.
  • the present inventors have found that the above problem can be solved by using a polyurethane polymer obtained using a polycarbonate polyol containing a specific repeating unit. That is, the present invention provides the following [1] and [2].
  • [1] A polyurethane polymer obtained by reacting at least a repeating unit represented by the following formula (1) and having a hydroxyl group at both ends and a polyisocyanate compound (c) and an organic solvent: Containing polyurethane polymer solution.
  • Z 1 and Z 2 each independently represent a divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms which may have a substituent.
  • a polyurethane polymer is produced by reacting a polycarbonate polyol (a) containing at least a repeating unit represented by the formula (1) and having hydroxyl groups at both ends with a polyisocyanate compound (c) in an organic solvent.
  • the polyurethane polymer solution of the present invention is excellent in dispersibility in an organic solvent, and particularly excellent in the strength of a coating film obtained by coating and drying, and has hydrolysis resistance, durability, heat resistance, and abrasion resistance. It has sex. According to the production method of the present invention, a polyurethane polymer solution having the above characteristics can be produced efficiently.
  • the polyurethane polymer solution of the present invention is characterized by being synthesized from a polycarbonate polyol (a) containing at least a repeating unit represented by the above formula (1) as a raw material.
  • the polyurethane polymer solution of the present invention contains a polyurethane polymer comprising a polycarbonate polyol unit (a) and a polyisocyanate unit (c), and the polycarbonate polyol unit (a) is represented by at least the formula (1). Containing repeating units.
  • the polyurethane polymer is a polyurethane prepolymer obtained by reacting the polycarbonate polyol (a) containing the repeating unit represented by the above formula (1) with the polyisocyanate compound (c).
  • a polyurethane polymer obtained by reacting the agent (B) may also be used.
  • a polycarbonate polyol (a) having at least a repeating unit represented by the following formula (1) and having both ends being hydroxyl groups is used.
  • the polycarbonate polyol (a) (i) a polycarbonate polyol (a-1) having a repeating unit represented by the following formula (1) as a main component and both ends being hydroxyl groups, and (ii) the following formula (
  • Preferable examples include polycarbonate polyol (a-2) having a repeating unit represented by 1) and a repeating unit represented by the following formula (3) and having both ends being hydroxyl groups.
  • the polycarbonate polyol (a-1) and the polycarbonate polyol (a-2) are collectively referred to as “polycarbonate polyol (a)” or “component (a)”.
  • Z 1 and Z 2 each independently represent a divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms which may have a substituent.
  • Z 1 and Z 2 are each independently a divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms which may have a substituent.
  • R 3 represents a substituent.
  • the polycarbonate polyol (a) preferably has the following physical properties. Based on JIS K 1557, the Hazen unit color number (APHA) defined in JIS K 0071-1 is preferably 200 or less, more preferably 100 or less, still more preferably 70 or less, and particularly preferably 1 to 60.
  • the hydroxyl value is preferably 35 to 600 mgKOH / g, more preferably 50 to 400 mgKOH / g, still more preferably 100 to 150 mgKOH / g, and particularly preferably 110 to 130 mgKOH / g.
  • the acid value is preferably 1 mgKOH / g or less, more preferably 0.1 mgKOH / g or less, and still more preferably 0.01 to 0.05 mgKOH / g.
  • the melting point is preferably ⁇ 100 to + 250 ° C., more preferably ⁇ 80 to + 200 ° C., still more preferably ⁇ 20 to + 170 ° C., and particularly preferably 0 to 160 ° C.
  • the glass transition point is preferably ⁇ 80 to + 50 ° C., more preferably ⁇ 60 to + 20 ° C., and further preferably ⁇ 55 to ⁇ 20 ° C.
  • the viscosity is preferably 0.01 to 10 Pa ⁇ s (75 ° C.), more preferably 0.05 to 5 Pa ⁇ s (75 ° C.), and still more preferably 0.1 to 1.5 Pa ⁇ s (75 ° C.). .
  • the methods for measuring the Hazen unit color number (APHA), hydroxyl value, acid value, melting point, glass transition point, and viscosity are as described in the Examples.
  • the polycarbonate polyol (a-1) is a polyol having a repeating unit represented by the formula (1) and having hydroxyl groups at both ends.
  • Z 1 and Z 2 in formula (1) are divalent aliphatic hydrocarbon groups having 1 to 10 carbon atoms which may have a substituent, but the substituent does not participate in the urethanization reaction.
  • a group is preferable, and the carbon chain may contain a hetero atom or an ester bond, and may contain an alicyclic structure, an ether bond, or the like.
  • divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms which may have a substituent include a methylene group, an ethylene group, a trimethylene group, a propane-1,2-diyl group, and a tetramethylene group.
  • a linear or branched alkanediyl group having 1 to 4 carbon atoms is preferable.
  • the bonding position of Z 1 and Z 2 with respect to the benzene ring is preferably 1,4-bond (para form) or 1,3-bond (meta form), and more preferably 1,4-bond (para form).
  • Particularly preferred polycarbonate polyol (a-1) is a polyol having a repeating unit represented by the following formula (2) and having both ends being hydroxyl groups.
  • the number, content, number average molecular weight and the like of the repeating unit represented by the formula (1) or (2) of the polycarbonate polyol (a-1) are from the viewpoint of mechanical performance, hydrolysis resistance, heat resistance, and weather resistance. From the viewpoint of applicability in various fields, it is as follows.
  • the number of repeating units represented by the formula (1) or (2) is preferably 1 to 18, more preferably 2 to 13.
  • the content of the repeating unit represented by the formula (1) or (2) is preferably 80 to 100 mol%, more preferably 90 to 100 mol% in the polycarbonate polyol (a-1).
  • the number average molecular weight of the polycarbonate polyol (a-1) is preferably 200 to 3,000, more preferably 300 to 2,000, and still more preferably 400 to 1,000.
  • the measuring method of a number average molecular weight is as describing in an Example.
  • the polycarbonate polyol (a-1) can be produced by reacting an aromatic diol compound with carbonate ester, phosgene or the like by a known method such as a carbonate method or a phosgene method. Of these, the carbonate method is preferred.
  • a carbonate method the following manufacturing method A is mentioned preferably, for example.
  • an aromatic dihydroxyl compound (a-1-1) and a carbonate ester (a-1-2) are transesterified in the presence or absence of a catalyst.
  • polycarbonate polyol (a′-1) is obtained by reaction.
  • production method A a reaction example in which 1,4-benzenedimethanol is used as the aromatic dihydroxyl compound (a-1-1) is shown, but the same can be done when other aromatic dihydroxyl compounds are used. Can do.
  • R 1 and R 2 each independently represent a hydrocarbon group which may have a substituent.
  • the hydrocarbon group is preferably a hydrocarbon group having 1 to 6 carbon atoms.
  • n represents the number of repeating units, preferably 1 to 18, more preferably 2 to 13.
  • alcohols (R 1 OH, R 2 OH, etc.) derived from the carbonate ester (a-1-2) are by-produced during the transesterification reaction. It is preferable to proceed.
  • an alkylene carbonate such as ethylene carbonate can be used instead of the carbonate ester (a-1-2), but in this case, glycols derived from the alkylene carbonate are by-produced. It is preferable to proceed the reaction while extracting this by distillation or the like.
  • the details of the aromatic dihydroxyl compound (a-1-1), the carbonate ester (a-1-2), and the transesterification will be described later.
  • the polycarbonate polyol (a-2) is a polycarbonate polyol copolymer having a repeating unit represented by the following formula (1) and a repeating unit represented by the following formula (3), and both terminals are hydroxyl groups.
  • a polycarbonate diol copolymer is preferred.
  • R 3 represents an optionally substituted divalent hydrocarbon group having 3 to 20 carbon atoms, and the substituent is preferably a group that does not participate in the urethanization reaction,
  • the carbon chain may contain a hetero atom or an ester bond, and may contain an alicyclic structure, an ether bond, or the like.
  • R 3 examples include trimethylene group, propane-1,2-diyl group, tetramethylene group, butane-1,3-diyl group, pentamethylene group, hexamethylene group, 3-methylpentane-1,5- Examples include diyl group, octamethylene group, decamethylene group, dodecamethylene group, tetradecamethylene group, hexadecamethylene group, octadecamethylene group, cyclohexane group, and 1,4-cyclohexanedimethano group. Of these, a linear or branched alkanediyl group having 3 to 14 carbon atoms, preferably 3 to 6 carbon atoms is preferable.
  • the molar ratio of [(repeating unit represented by formula (1)) / (repeating unit represented by formula (3))] is preferably 1/9 to 9/1. 1/5 to 5/1 is more preferable, and 1/3 to 3/1 is still more preferable.
  • the ratio of the repeating unit represented by the formula (1) is high, the viscosity of the polycarbonate polyol (a-2) increases, and therefore, the handling of the polycarbonate polyol (a-2) during the urethanization reaction tends to be difficult.
  • the ratio of the repeating unit represented by formula (1) is low, the hardness of the coating film obtained using the polyurethane polymer solution of the present invention tends to be low.
  • the number, content, number average molecular weight and the like of the repeating unit represented by the formulas (1) and (3) of the polycarbonate polyol (a-2) are from the viewpoint of mechanical performance, hydrolysis resistance, heat resistance, and weather resistance. From the viewpoint of applicability in various fields, it is as follows.
  • the repeating unit represented by the formula (1) and the repeating unit represented by the formula (3) may be block copolymerized or randomly copolymerized.
  • the number of repeating units represented by the formula (1) is preferably 1 to 20, more preferably 2 to 15, and the content of the repeating units is preferably in the polycarbonate polyol (a-2). It is 10 to 90 mol%, more preferably 25 to 75 mol%.
  • the number of the repeating unit represented by the formula (3) is preferably 1 to 30, more preferably 2 to 20, and the content of the repeating unit is preferably in the polycarbonate polyol (a-2). It is 10 to 90 mol%, more preferably 25 to 75 mol%.
  • the number average molecular weight of the polycarbonate polyol (a-2) is preferably 200 to 3,000, more preferably 300 to 2,000, and still more preferably 900 to 1,500.
  • the measuring method of a number average molecular weight is as describing in an Example.
  • Examples of the method for producing the polycarbonate polyol (a-2) include a method of reacting an aromatic polyol compound, a dihydroxyl compound, carbonate ester, phosgene and the like by a known method such as a carbonate ester method and a phosgene method. Of these, the carbonate method is preferred.
  • the following manufacturing method B is mentioned preferably, for example.
  • an aromatic dihydroxyl compound (a-1-1), a carbonate (a-1-2), and a dihydroxyl compound (a-1-3) In this method, a polycarbonate polyol (a′-2) is obtained by an ester exchange reaction in the presence or absence of a catalyst.
  • reaction formula of the following production method B there is a structural unit derived from the aromatic dihydroxyl compound (a-1-1) at both ends as polycarbonate polyol (a′-2) in order to express the reaction formula simply. Only the case is described. However, the terminal is not limited to the structural unit derived from the aromatic dihydroxyl compound (a-1-1).
  • R 1 and R 2 each independently represent a hydrocarbon group which may have a substituent, and preferably has 1 to 6 carbon atoms.
  • R 3 represents a divalent hydrocarbon group having 3 to 20 carbon atoms which may have a substituent as described above.
  • p represents the number of repeating units, and is preferably 1 to 20, more preferably 2 to 15.
  • q represents the number of repeating units, and is preferably 1 to 30, more preferably 2 to 20.
  • alcohols (R 1 OH, R 2 OH, etc.) derived from the carbonate ester (a-1-2) are by-produced during the transesterification reaction. It is preferable to proceed.
  • an alkylene carbonate such as ethylene carbonate can be used instead of the carbonate ester (a-1-2).
  • glycols derived from the alkylene carbonate are by-produced. It is preferable to proceed the reaction while extracting this by distillation or the like.
  • Aromatic dihydroxyl compound (a-1-1) The aromatic dihydroxyl compound (a-1-1) that can be used in the production methods A and B is represented by the following formula (4).
  • aromatic dihydroxyl compounds (a-1-1) include 1,4-benzenedimethanol, 1,4-benzenediethanol, 1,4-benzenedipropanol, 1,4-benzenedibutanol, , 3-benzenedimethanol, 1,3-benzenediethanol, 1,3-benzenedipropanol, 1,3-benzenedibutanol, 4- (4-hydroxymethylphenyl) butanol, 3- [4- (2-hydroxy And compounds having a linear or branched divalent aliphatic hydrocarbon group having 1 to 4 carbon atoms, such as ethyl) phenyl] propanol.
  • the carbonic acid ester (a-1-2) that can be used in the production methods A and B is not particularly limited, but it is desirable to appropriately select one that can efficiently extract by-product alcohols derived from the carbonic acid ester.
  • Examples thereof include dialkyl carbonate, diaryl carbonate, and alkylene carbonate.
  • the dialkyl carbonate is preferably a dialkyl carbonate having an alkyl group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms. Specific examples include dimethyl carbonate and diethyl carbonate.
  • Examples of the diaryl carbonate include diphenyl carbonate.
  • the alkylene carbonate is preferably an alkylene carbonate having an alkanediyl group having 2 to 4 carbon atoms, and specific examples thereof include ethylene carbonate, propylene carbonate, butylene carbonate and the like. Among these, from the viewpoint of easy extraction of by-product alcohols, dialkyl carbonates having an alkyl group having 1 to 4 carbon atoms are preferred, dimethyl carbonate or diethyl carbonate is particularly preferred, and dimethyl carbonate is most preferred.
  • the dihydroxyl compound (a-1-3) that can be used in the production method B is not particularly limited.
  • an alkanediol having 3 to 20 carbon atoms when R 3 is a divalent aliphatic hydrocarbon group having 3 to 20 carbon atoms
  • a branched carbon chain of the alkylene group portion of the alkanediol examples include those in which the carbon chain of the alkylene group portion of the alkanediol contains an alicyclic structure or an ether bond.
  • alkanediol having 3 to 20 carbon atoms, preferably 3 to 14 carbon atoms examples include 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7 -Pentanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol and the like.
  • Examples of the compound having a branched carbon chain of the alkylene group include 1,3-butanediol, 3-methylpentane-1,5-diol, 2-ethylhexane-1,6-diol, neopentyl glycol, 2 -Methyl-1,8-octanediol and the like.
  • Examples of the compound in which the carbon chain of the alkylene group part includes an alicyclic structure include 1,3-cyclohexanediol, 1,4-cyclohexanediol, 2,2′-bis (4-hydroxycyclohexyl) propane, 1,4- And cyclohexanedimethanol.
  • Examples of the compound in which the carbon chain of the alkylene group part includes an ether bond include diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, dipropylene glycol, polypropylene glycol, and polytetramethylene glycol.
  • the dihydroxyl compound (a-1-3) may be carbon such as 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, etc.
  • Diols having an alicyclic structure having 5 to 8 carbon atoms such as alkanediol having 4 to 8 carbon atoms, particularly 4 to 6 carbon atoms, 1,4-cyclohexanedimethanol are more preferable.
  • Examples of the catalyst that can be used in the reaction in the production methods A and B include a catalyst (transesterification catalyst) used in a normal transesterification reaction.
  • a catalyst transesterification catalyst
  • alkali metal compounds include alkali metal hydroxides (lithium hydroxide, sodium hydroxide, potassium hydroxide, etc.), alkali metal carbonates (lithium carbonate, sodium carbonate, potassium carbonate, etc.), and alkali metal carboxylates.
  • Alkaline earth metal compounds include alkaline earth metal water. Examples thereof include oxides (magnesium hydroxide and the like), alkaline earth metal alkoxides (magnesium methoxide and the like), and the like.
  • Examples of the aluminum compound include aluminum alkoxide (aluminum ethoxide, aluminum isopropoxide, aluminum sec-butoxide, etc.), aluminum compounds such as aluminum acetylacetonate, and the like.
  • Examples of zinc compounds include zinc carboxylates (such as zinc acetate) and zinc acetylacetonate.
  • Examples of manganese compounds include manganese carboxylates (such as manganese acetate) and manganese acetylacetonate.
  • Examples of nickel compounds include nickel carboxylates (such as nickel acetate) and nickel acetylacetonate.
  • Examples of antimony compounds include antimony carboxylates (such as antimony acetate) and antimony alkoxides.
  • zirconium compounds include zirconium alkoxides (zirconium propoxide, zirconium butoxide, etc.), zirconium acetylacetonate, and the like.
  • Titanium compounds include titanium alkoxide (titanium tetraethoxide, titanium tetrapropoxide, titanium tetrabutoxide, tetracyclohexyl titanate, tetrabenzyl titanate, etc.), titanium acylate (tributoxy titanium stearate, isopropoxy systemate, etc.), titanium Chelates (diisopropoxytitanium bisacetylacetonate, dihydroxy bislactotitanium, etc.) and the like.
  • the organic tin compound include dibutyltin oxide, dibutyltin diacetate, and dibutyltin dilaurate.
  • Each carboxylate preferably has 2 to 30 carbon atoms, more preferably 2 to 18 carbon atoms, and each alkoxide preferably has 1 to 30 carbon atoms in the alkoxy group. 18 is more preferable.
  • a titanium compound and an organotin compound are preferable, a titanium compound is more preferable, and a titanium alkoxide is still more preferable.
  • titanium alkoxides titanium tetraethoxide, titanium tetrapropoxide, and titanium tetrabutoxide are more preferable, and titanium tetrabutoxide is particularly preferable.
  • the above aromatic dihydroxyl compound (a-1-1), carbonate ester (a-1-2), dihydroxyl compound (a-1-3), and catalyst may be used alone or in combination of two or more. Can be used in combination.
  • additives can be added to the polyurethane polymer solution of the present invention as necessary.
  • the additive include various resin components, resin particles, inorganic particles, fillers, pigments, dyes, light stabilizers, antioxidants, ultraviolet absorbers, antistatic agents, and the like. be able to.
  • the reaction can be performed in an atmosphere of air, carbon dioxide gas, or an inert gas (nitrogen, argon, helium, or the like) or in an air stream, but is preferably performed in an inert gas atmosphere or an air stream.
  • the amount used in the case of using a catalyst is, in terms of reactivity, in the case of production method A, the aromatic dihydroxyl compound (a-1-1) and the carbonate ester (a-1-2) at the start of the reaction.
  • aromatic dihydroxyl compound (a-1-1), carbonic acid ester (a-1-2) and dihydroxyl compound (a-1-3) at the start of the reaction ) Based on the mass of the catalyst, preferably 1 to 20,000 ppm, more preferably 10 to 5,000 ppm, and even more preferably 100 to 4,000 ppm.
  • a high molecular weight polycarbonate polyol obtained by reacting a dihydroxyl compound (a-1-3) with a carbonate ester (a-1-2), and an aromatic dihydroxyl compound such as 1,4-benzenedimethanol
  • the polycarbonate polyol (a-2) can also be obtained by subjecting (a-1-1) to a transesterification reaction in the presence or absence of a catalyst.
  • a polycarbonate polyol having a high molecular weight obtained by reacting an aromatic dihydroxyl compound (a-1-1) such as 1,4-benzenedimethanol with a carbonate ester (a-1-2), and a dihydroxyl compound
  • a polycarbonate polyol (a-2) can also be obtained by subjecting (a-1-3) to a transesterification reaction in the presence or absence.
  • the average molecular weights of the polycarbonate polyols (a-1) and (a-2) used in the present invention are the aromatic dihydroxyl compound (a-1-1), carbonate (a-1-2), and dihydroxy used. It can be prepared by changing the reaction molar ratio of the compound (a-1-3).
  • the aromatic dihydroxyl compound (a-1-1) and dihydroxy compound (a-1-3) are distilled and the average molecular weight is larger than the target average molecular weight, aromatic dihydroxyl compound (a-1-1) and / or dihydroxyl
  • the compound (a-1-3) can be added and further subjected to a transesterification to obtain a polycarbonate polyol (a-1) or (a-2) having a target average molecular weight.
  • the constituent molar ratio of the repeating unit of the polycarbonate polyol (a-2) of the present invention is a change in the molar ratio of the aromatic dihydroxyl compound (a-1-1) and the dihydroxyl compound (a-1-3). Etc. can be prepared.
  • polyol (b) other than component (a) for example, a high molecular weight diol or a low molecular weight diol can be further used.
  • the high molecular weight diol that can be used is not particularly limited, and examples thereof include polycarbonate diol, polyester diol, polyether diol, acrylic diol, and polyether polyester polyol having an ether bond and an ester bond.
  • the polycarbonate diol include polytetramethylene carbonate diol and polyhexamethylene carbonate diol.
  • polyester diol examples include polyethylene adipate diol, polybutylene adipate diol, polyethylene butylene adipate diol, polyhexamethylene isophthalate adipate diol, polyethylene succinate diol, polybutylene succinate diol, polyethylene sebacate diol, polybutylene sebacate And diol, poly- ⁇ -caprolactone diol, poly (3-methyl-1,5-pentylene adipate) diol, polycondensate of 1,6-hexanediol and dimer acid, and the like.
  • polyether diol examples include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, ethylene oxide and propylene oxide, ethylene oxide and butylene oxide random copolymers, and block copolymers.
  • the low molecular weight diol that can be used is not particularly limited, and examples thereof include ethylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,9 -Aliphatic diols having 2 to 9 carbon atoms such as nonanediol, 2-methyl-1,8-octanediol, diethylene glycol, triethylene glycol, tetraethylene glycol; 1,4-cyclohexanedimethanol, 1,3-cyclohexanedi Methanol, 1,4-cyclohexanediol, 1,4-bis (hydroxyethy
  • the total number of hydroxyl equivalents of the polycarbonate polyol (a) and the polyol (b) is preferably 70 to 270. If the number of hydroxyl equivalents is less than 70, it may be difficult to produce a polyurethane polymer solution substantially. If it exceeds 270, the hardness of the coating film obtained by applying the obtained polyurethane polymer solution is low. It may become too much.
  • the number of hydroxyl equivalents is preferably 130 to 270, more preferably 160 to 265, and particularly preferably 180 to 260, from the viewpoint of the hardness of the coating film obtained by applying the polyurethane polymer solution obtained. The number of hydroxyl equivalents can be calculated by the following formula.
  • Number of hydroxyl equivalents of each polyol molecular weight of each polyol / number of OH groups of each polyol
  • Total number of hydroxyl equivalents M / total number of moles of polyol
  • M is the number of hydroxyl equivalents of [polycarbonate polyol (a). X number of moles of polycarbonate polyol (a)] + [number of hydroxyl equivalents of polyol (b) x number of moles of polyol (b))].
  • the polyisocyanate compound (c) used in the present invention is not particularly limited. Specific examples thereof include 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 2,4-tolylene diisocyanate (TDI), 2,6-tolylene diisocyanate, 4,4′-diphenylenemethane diisocyanate (MDI).
  • Aromatic polyisocyanate compounds such as natodiphenylmethane, 1,5-naphthylene diisocyanate, 4,4 ′, 4 ′′ -triphenylmethane triisocyanate, m-isocyanatophenylsulfonyl isocyanate, p-isocyanatophenylsulfonyl isocyanate; ethylene diisocyanate , Tet Ramethylene diisocyanate, hexamethylene diisocyanate (HDI), dodecane methylene diisocyanate, 1,6,11-undecane triisocyanate, 2,2,4-trimethylhexamethylene diisocyanate,
  • the number of isocyanate groups per molecule of the polyisocyanate compound is usually 2, but a polyisocyanate compound having 3 or more isocyanate groups such as triphenylmethane triisocyanate is also within the range where the resulting polyurethane polymer does not gel. Can be used.
  • a polyisocyanate compound having 3 or more isocyanate groups such as triphenylmethane triisocyanate is also within the range where the resulting polyurethane polymer does not gel.
  • 4,4′-diphenylenemethane diisocyanate (MDI), isophorone diisocyanate (IPDI), 4,4′-dicyclohexylmethane diisocyanate (hydrogenated) from the viewpoint of controlling reactivity and imparting elastic modulus. MDI) is preferred.
  • a polyisocyanate compound (c) can be used individually by 1 type or in combination of 2 or more types.
  • a chain extender (B) having reactivity with the isocyanate group of the polyurethane prepolymer (A) can be used.
  • chain extenders include ethylenediamine, 1,4-tetramethylenediamine, 2-methyl-1,5-pentanediamine, 1,4-butanediamine, 1,6-hexamethylenediamine, 1,4-hexamethylene.
  • Amine compounds such as diamine, 3-aminomethyl-3,5,5-trimethylcyclohexylamine, 1,3-bis (aminomethyl) cyclohexane, xylylenediamine, piperazine, 2,5-dimethylpiperazine, diethylenetriamine, triethylenetetramine
  • Diol compounds such as ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, polyalkylene glycols typified by polyethylene glycol, water, etc., among which primary diamine compounds are preferred.
  • a chain extender (B) can be used individually by 1 type or in combination of 2 or more types. By using a chain extender, it becomes easy to improve the molecular weight of the polyurethane polymer, and the hardness of the coating film obtained using the polyurethane polymer solution tends to increase.
  • the polyurethane polymer used in the present invention can be obtained by any of the following methods.
  • Iv A method of reacting the polycarbonate polyol (a), the polyol (b), the polyisocyanate compound (c), and the chain extender (B).
  • the reaction temperature between the polyol component and the polyisocyanate compound (c) is preferably 40 to 150 ° C., more preferably 60 to 120 ° C.
  • the reaction temperature between the polyol (a) and the chain extender (B) is usually It is 0 to 80 ° C, preferably 0 to 60 ° C. Details of the reaction conditions and the like will be described in the section of [Method for producing polyurethane polymer solution] described later.
  • the organic solvent is not particularly limited as long as each component can be dissolved.
  • aliphatic hydrocarbons such as n-hexane, n-heptane and n-octane
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • halogenated hydrocarbons such as chloroform and carbon tetrachloride
  • dibutyl ether Ethers such as tetrahydrofuran and 1,4-dioxane
  • ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone
  • esters such as ethyl acetate, n-propyl acetate and n-butyl acetate
  • amides such as N, N-dimethylacetamide And the like.
  • the blending method of each component, the luster pigment, the color pigment, the organic solvent, various additives, and the resin addition method are not particularly limited and can be performed by various methods, and the mixing order and the addition order are various. Can be done in order.
  • the proportion of the polyurethane polymer in the polyurethane polymer solution is preferably 5 to 60% by mass, more preferably 20 to 50% by mass.
  • Step (1) Polyurethane obtained by reacting a polycarbonate polyol (a) having at least a repeating unit represented by the following formula (1) and having both ends being hydroxyl groups and a polyisocyanate compound (c) in an organic solvent. Step of obtaining prepolymer (A)
  • Step (2) A step of obtaining a polyurethane polymer solution by reacting a polyurethane prepolymer (A) with a chain extender (B) having reactivity with an isocyanate group of the polyurethane prepolymer (A) in an organic solvent.
  • the step (1) includes at least a repeating unit represented by the formula (1), a polycarbonate polyol (a) having both ends of a hydroxyl group, a polyisocyanate compound (c), and, if necessary, a polyol ( In this step, b) is reacted to obtain a polyurethane prepolymer (A).
  • Step (1) can be carried out in the presence or absence of a catalyst.
  • the catalyst examples include salts of metals and organic acids or inorganic acids such as tin catalysts (trimethyltin laurate, dibutyltin dilaurate, etc.) and lead catalysts (lead octylate, etc.), organometallic derivatives, amine catalysts (triethylamine). N-ethylmorpholine, triethylenediamine, etc.), diazabicycloundecene catalysts and the like.
  • tin catalysts trimethyltin laurate, dibutyltin dilaurate, etc.
  • lead catalysts lead catalysts (lead octylate, etc.), organometallic derivatives, amine catalysts (triethylamine). N-ethylmorpholine, triethylenediamine, etc.), diazabicycloundecene catalysts and the like.
  • dibutyltin dilaurate is preferable from the viewpoint of reactivity.
  • Step (1) examples include acetone, methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran, dioxane, dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, N-ethylpyrrolidone, and ethyl acetate.
  • N-methylpyrrolidone and N-ethylpyrrolidone are preferable because they function as a film-forming aid when forming a coating film of the obtained polyurethane polymer solution.
  • Step (1) may be performed in an inert gas atmosphere or in an air atmosphere.
  • the reaction temperature is preferably 40 to 150 ° C, more preferably 60 to 120 ° C.
  • reaction temperature is less than 40 ° C., the raw material may not be dissolved, or the resulting urethane prepolymer (A) may have a high viscosity and cannot be sufficiently stirred. If the reaction temperature exceeds 150 ° C., side reactions may occur. May occur.
  • the ratio of each component in the step (1) is as follows when the total amount of the polycarbonate polyol (a) and the polyol (b) is 100 parts by mass.
  • the proportion of the polycarbonate polyol (a) is preferably 60 to 95 parts by mass, more preferably 65 to 90 parts by mass, and still more preferably 75 to 90 parts by mass. If this ratio is less than 60 parts by mass, the hardness of the coating film obtained by applying the resulting polyurethane polymer solution tends to be low, and if it exceeds 95 parts by mass, the coating film may become too hard.
  • the proportion of the polyol (b) is preferably 0 to 30 parts by mass, more preferably 0 to 10 parts by mass, and still more preferably 0 to 5 parts by mass.
  • the ratio of the number of moles of isocyanate groups in the polyisocyanate compound (c) to the number of moles of all hydroxyl groups in the polyol component comprising the polycarbonate polyol (a) and polyol (b) is preferably 0.8 to 2.0. If the number of moles of hydroxyl groups in the polyol component is too large, the molecular weight becomes too small, and the resulting coating film may not be sufficiently stretched. If the number of moles of hydroxyl groups in the polyol component is too small, a large amount of the unreacted polyisocyanate compound (c) remains in the reaction system and may react with the chain extender or react with water.
  • the coating film obtained by applying the polyurethane polymer solution of the present invention may be uneven.
  • the reaction between the polyol component consisting of the polycarbonate polyol (a) and the polyol (b) and the polyisocyanate compound (c) is performed in any order between the components (a) and (b) ( You may make it react with c) component and may make it react with (c) component, after mixing 2 or more types of components previously.
  • Examples of the organic solvent include those described above.
  • a method of adding a urethane prepolymer or a urethane prepolymer solution while stirring an organic solvent with a homomixer or a homogenizer and (ii) an organic solvent while stirring the urethane prepolymer with a homomixer or a homogenizer And the like.
  • Step (2) is a step of obtaining a polyurethane polymer solution by reacting a polyurethane prepolymer (A) in an organic solvent with a chain extender (B) having reactivity with an isocyanate group of the polyurethane prepolymer (A). It is.
  • the reaction temperature in step (2) is usually 0 to 80 ° C., preferably 0 to 60 ° C.
  • the reaction may be performed slowly under cooling, or in some cases, the reaction may be promoted under heating conditions of 60 ° C. or lower.
  • the addition amount of the chain extender (B) is preferably equal to or less than the equivalent of the isocyanate group that is the starting point of chain extension in the urethane prepolymer to be obtained, and is preferably 0.7 to 0.99 equivalent of the isocyanate group. More preferred.
  • the chain extender (B) is added in excess of the equivalent of isocyanate groups, the molecular weight of the chain-extended urethane polymer may decrease, and the coating film obtained by applying the obtained polyurethane polymer solution The strength may decrease.
  • the polyurethane polymer solution obtained by the production method of the present invention is particularly excellent in the strength of a coating film obtained by coating and drying, and has hydrolysis resistance, durability, heat resistance, and abrasion resistance. .
  • the polyurethane polymer solution of the present invention can be preferably applied to uses such as coating agents, paints, primers, urethane films, synthetic leather / artificial leather, glass fiber sizing agents and the like.
  • a color pigment or extender can be used.
  • the color pigment include organic pigments such as azo lake pigments, phthalocyanine pigments, indigo pigments, perinone pigments, perylene pigments, quinophthalone pigments, dioxazine pigments, quinacridone pigments, yellow lead, yellow iron oxide, Examples thereof include inorganic pigments such as bengara and titanium dioxide.
  • extender pigments include kaolin and talc.
  • a plasticizer examples include dibutyl phthalate and dioctyl phthalate.
  • the stabilizer examples include an antioxidant and an ultraviolet absorber.
  • the inorganic filler examples include calcium carbonate, titanium oxide, calcium oxide, calcium oxide, talc, clay, aluminum sulfate, vinyl chloride paste resin, and the like. These can be used singly or in combination of one or more, and those subjected to surface treatment can also be used as appropriate.
  • Measurement of Hazen unit color number (APHA): Based on JIS K 1557, the Hazen unit color number was measured in accordance with JIS K 0071-1 as follows. (Preparation of standard solution) A solution in which 1.245 g of potassium chloroplatinate, 1.000 g of cobalt chloride hexahydrate, 500 ml of water and 100 ml of hydrochloric acid are placed in a 1 L measuring flask and completely dissolved and then water is added up to the marked line is prepared. This solution is APHA standard solution no. No. 500 and various standard solutions are No. Prepare a 500 standard solution by diluting with water. For example, APHA standard solution No. 100 is No. 100.
  • the composition of the distillate was adjusted to be the azeotropic composition of methanol and dimethyl carbonate or in the vicinity thereof. Thereafter, the pressure was gradually reduced to 100 mmHg, and a transesterification reaction was further carried out at 195 ° C. for 4 hours while distilling off a mixture of methanol and dimethyl carbonate with stirring. After completion of the reaction (after completion of distillation of methanol and dimethyl carbonate), the reaction solution was cooled to room temperature to obtain 280 g of polycarbonate diol (A).
  • the obtained polycarbonate diol (A) has a number average molecular weight of 950, a hydroxyl value of 118 mgKOH / g, an acid value of 0.02 mgKOH / g, a water content of 32 ppm, a melting point of 33 ° C., and a glass transition point of ⁇ 50.9 ° C.
  • the viscosity was 0.6 Pa ⁇ s (75 ° C.) and the Hazen unit color number was 40.
  • Production Example 2 [Production of polycarbonate diol (B)] 170.2 g (1.89 mol) of dimethyl carbonate, 109.9 g (0.80 mol) of 1,4-benzenedimethanol, 94.0 g (0.80 mol) of 1,6-hexanediol, and 0.02 g of titanium tetrabutoxide Except that it was charged, 230 g of polycarbonate diol copolymer was obtained in the same manner as in Production Example 1.
  • polycarbonate diol (B) To the obtained polycarbonate diol copolymer, 2.78 g (0.021 mol) of 1,4-benzenedimethanol and 2.38 g (0.020 mol) of 1,6-hexanediol were further added, and 200 mmHg, 180 ° C. The ester exchange reaction was carried out to obtain 235 g of polycarbonate diol (B).
  • the obtained polycarbonate diol (B) has a number average molecular weight of 999, a hydroxyl value of 112 mgKOH / g, an acid value of 0.02 mgKOH / g, a water content of 26 ppm, a melting point of 120 ° C., and a glass transition point of ⁇ 38.3 ° C.
  • the Hazen unit color number was 50.
  • Example 1 (1) Production of polyurethane polymer solution (I) Into a glass separable flask having an internal volume of 300 ml equipped with a stirrer and a thermometer, 30.46 g of polycarbonate diol (A) obtained in Production Example 1 and 1,4- 5.55 g of butanediol and 235.23 g of dimethylacetamide were added, and the mixture was stirred at a bath temperature of 85 ° C. (internal temperature: 75 to 85 ° C.). After 30 minutes, 24.03 g of 4,4′-diphenylmethane diisocyanate was added and stirred at the same temperature.
  • Example 2 A polyurethane polymer solution (II) was produced in the same manner as in Example 1 except that the polycarbonate diol (A) was changed to the polycarbonate diol (B). Further, in the same manner as in Example 1, a polyurethane film (II) was produced from the polyurethane polymer solution (II). The hardness of the obtained polyurethane film (II) was 317 seconds in terms of amplitude decay time.
  • Comparative Example 1 (1) Production of polyurethane polymer solution (III) A 1-liter glass separable flask equipped with a stirrer and a thermometer was placed in an ETERNACOLL (registered trademark) “UH-100” (1, 6) manufactured by Ube Industries, Ltd. -Polycarbonate diol produced using hexanediol and carbonate ester as raw materials, molar mass: 1000 g / mol, hydroxyl value: 112.2 mg KOH / g) 30.30 g, 1,4-butanediol 5.50 g, dimethylacetamide 235.30 g And stirred at a bath temperature of 85 ° C. (inner temperature 75 ° C. to 85 ° C.).
  • the polyurethane polymer solution of the present invention is excellent in the strength of a coating film obtained by coating and drying. In addition, it has hydrolysis resistance, durability, heat resistance, and abrasion resistance, and is particularly excellent in hardness, so that it is useful as a raw material for coating agents, paint compositions and the like. Moreover, according to the manufacturing method of this invention, the polyurethane polymer solution which has the said characteristic can be manufactured efficiently.

Abstract

Disclosed is a polyurethane polymer solution containing a polyurethane polymer and an organic solvent, and a method for manufacturing the same. The polyurethane polymer is obtained by reacting at least a polyisocyanate compound (c) and a polycarbonate polyol (a) that contains a repeating unit represented by general formula (1) and has hydroxyl groups at both terminals. (In the formula, Z1 and Z2 independently represent an optionally-substituted bivalent aliphatic hydrocarbon group having 1 to 10 carbon atoms.)

Description

ポリウレタンポリマー溶液及びその製造方法Polyurethane polymer solution and method for producing the same
 本発明は、ポリウレタンポリマー溶液及びその製造方法に関する。 The present invention relates to a polyurethane polymer solution and a method for producing the same.
 ポリカーボネートポリオールは、ポリエステルポリオールやポリエーテルポリオールと同様に、ポリイソシアネート化合物と反応させて、ポリウレタンポリマーを製造する際の原料や、エンジニアプラスチック、接着剤、塗料等の原料として有用である。
 ここで、ポリエステルポリオールはエステル結合を有するため、これを用いて製造されたポリウレタンポリマーは耐加水分解性に劣るという欠点がある。また、ポリエーテルポリオールはエーテル結合を有するため、これを用いて製造されたポリウレタンポリマーは耐候性、耐熱性に劣るという欠点がある。
 これに対して、-〔O-R-O(CO)〕-(式中、Rは二価の炭化水素基を示す)で表される繰り返し単位を有するポリカーボネートポリオールは、上記の欠点がなく、このポリカーボネートポリオールを用いて製造されるポリウレタンポリマーは、耐加水分解性、耐候性、耐熱性等に優れ、工業的にも製造が容易であるという利点を有している。
The polycarbonate polyol is useful as a raw material for producing a polyurethane polymer by reacting with a polyisocyanate compound, as well as a polyester polyol and a polyether polyol, and a raw material for engineer plastics, adhesives, paints and the like.
Here, since the polyester polyol has an ester bond, the polyurethane polymer produced using the polyester polyol has a disadvantage that it is inferior in hydrolysis resistance. Moreover, since a polyether polyol has an ether bond, a polyurethane polymer produced using the polyether polyol has a disadvantage that it is inferior in weather resistance and heat resistance.
On the other hand, the polycarbonate polyol having a repeating unit represented by — [O—R—O (CO)] — (wherein R represents a divalent hydrocarbon group) does not have the above-described drawbacks, The polyurethane polymer produced using this polycarbonate polyol has the advantage that it is excellent in hydrolysis resistance, weather resistance, heat resistance and the like and is easy to produce industrially.
 例えば特許文献1には、脂肪族ポリオールを用いたポリカーボネートポリオールを原料としたポリウレタンコーティング剤が開示され、このコーティング剤に用いられるポリウレタン系樹脂は、プラスチックフィルムに良好な密着性を示し、フィルム塗布後の巻き取り後の耐ブロッキング性、建装材として用いたときの耐摩耗性、耐溶剤性、耐候性等に優れていると記載されている。 For example, Patent Document 1 discloses a polyurethane coating agent made from a polycarbonate polyol using an aliphatic polyol as a raw material, and the polyurethane resin used in this coating agent exhibits good adhesion to a plastic film, and after coating the film. It is described that it is excellent in blocking resistance after winding, wear resistance when used as a building material, solvent resistance, weather resistance and the like.
特開2001-123112号公報JP 2001-123112 A
 しかしながら、特許文献1に記載されたポリウレタンを用いた場合、得られる塗膜の硬度は、例えば航空機・自動車等の外板、住宅の外壁面及び床材等の塗料分野やコーティング剤の分野において充分ではないという問題がある。
 本発明は、有機溶剤中への分散性に優れ、かつ、塗布、乾燥し、必要により焼き付けして得られる塗膜の硬度が優れたものになるポリウレタンポリマー溶液及びその製造方法を提供することを課題とする。
However, when the polyurethane described in Patent Document 1 is used, the hardness of the obtained coating film is sufficient in the field of paints and coating agents such as outer panels of aircraft and automobiles, outer wall surfaces and flooring of houses, and the like. There is a problem that is not.
The present invention provides a polyurethane polymer solution excellent in dispersibility in an organic solvent, and having a coating film obtained by applying, drying, and baking as required, and a method for producing the same. Let it be an issue.
 本発明者らは、特定の繰り返し単位を含有するポリカーボネートポリオールを用いて得られたポリウレタンポリマーを用いることにより、上記課題を解決しうることを見出した。
 すなわち、本発明は、次の[1]及び[2]を提供するものである。
[1]少なくとも下記式(1)で表される繰り返し単位を含有し、両末端が水酸基であるポリカーボネートポリオール(a)とポリイソシアネート化合物(c)とを反応させて得られるポリウレタンポリマーと有機溶剤とを含有するポリウレタンポリマー溶液。
The present inventors have found that the above problem can be solved by using a polyurethane polymer obtained using a polycarbonate polyol containing a specific repeating unit.
That is, the present invention provides the following [1] and [2].
[1] A polyurethane polymer obtained by reacting at least a repeating unit represented by the following formula (1) and having a hydroxyl group at both ends and a polyisocyanate compound (c) and an organic solvent: Containing polyurethane polymer solution.
Figure JPOXMLDOC01-appb-C000006
(式中、Z1及びZ2は、それぞれ独立に、置換基を有していてもよい炭素数1~10の二価の脂肪族炭化水素基を示す。)
Figure JPOXMLDOC01-appb-C000006
(In the formula, Z 1 and Z 2 each independently represent a divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms which may have a substituent.)
[2]少なくとも前記式(1)で表される繰り返し単位を含有し、両末端が水酸基であるポリカーボネートポリオール(a)と、ポリイソシアネート化合物(c)とを有機溶剤中で反応させてポリウレタンポリマーを得る工程を含む、前記[1]のポリウレタンポリマー溶液の製造方法。 [2] A polyurethane polymer is produced by reacting a polycarbonate polyol (a) containing at least a repeating unit represented by the formula (1) and having hydroxyl groups at both ends with a polyisocyanate compound (c) in an organic solvent. The process for producing a polyurethane polymer solution according to the above [1], comprising a step of obtaining.
 本発明のポリウレタンポリマー溶液は、有機溶剤中への分散性に優れ、かつ、塗布、乾燥して得られる塗膜の強度に特に優れており、耐加水分解性、耐久性、耐熱性、耐摩耗性を有している。
 本発明の製造方法によれば、上記特性を有するポリウレタンポリマー溶液を効率的に製造することができる。
The polyurethane polymer solution of the present invention is excellent in dispersibility in an organic solvent, and particularly excellent in the strength of a coating film obtained by coating and drying, and has hydrolysis resistance, durability, heat resistance, and abrasion resistance. It has sex.
According to the production method of the present invention, a polyurethane polymer solution having the above characteristics can be produced efficiently.
〔ポリウレタンポリマー溶液〕
 本発明のポリウレタンポリマー溶液は、少なくとも上記式(1)で表される繰り返し単位を含有するポリカーボネートポリオール(a)を原料として合成されていることを特徴とする。
 本発明のポリウレタンポリマー溶液は、ポリカーボネートポリオール単位(a)とポリイソシアネート単位(c)とを含有してなるポリウレタンポリマーを含有し、前記ポリカーボネートポリオール単位(a)が少なくとも前記式(1)で表される繰り返し単位を含有する。ポリウレタンポリマーは、前記式(1)で表される繰り返し単位を含有するポリカーボネートポリオール(a)とポリイソシアネート化合物(c)とを反応させて得られるポリウレタンプレポリマーであり、場合によっては、さらに鎖延長剤(B)を反応させて得られるポリウレタンポリマーでもよい。
 以下、本発明のポリウレタンポリマー溶液に用いられる各成分について説明する。
[Polyurethane polymer solution]
The polyurethane polymer solution of the present invention is characterized by being synthesized from a polycarbonate polyol (a) containing at least a repeating unit represented by the above formula (1) as a raw material.
The polyurethane polymer solution of the present invention contains a polyurethane polymer comprising a polycarbonate polyol unit (a) and a polyisocyanate unit (c), and the polycarbonate polyol unit (a) is represented by at least the formula (1). Containing repeating units. The polyurethane polymer is a polyurethane prepolymer obtained by reacting the polycarbonate polyol (a) containing the repeating unit represented by the above formula (1) with the polyisocyanate compound (c). A polyurethane polymer obtained by reacting the agent (B) may also be used.
Hereinafter, each component used for the polyurethane polymer solution of the present invention will be described.
<ポリカーボネートポリオール(a)>
 本発明においては、少なくとも下記式(1)で表される繰り返し単位を有し、両末端が水酸基であるポリカーボネートポリオール(a)が用いられる。
 ポリカーボネートポリオール(a)としては、(i)下記式(1)で表される繰り返し単位を主成分として有し、両末端が水酸基であるポリカーボネートポリオール(a-1)、及び(ii)下記式(1)で表される繰り返し単位と下記式(3)で表される繰り返し単位とを有し、両末端が水酸基であるポリカーボネートポリオール(a-2)が好ましく挙げられる。
 本明細書においては、ポリカーボネートポリオール(a-1)及びポリカーボネートポリオール(a-2)を総称して、「ポリカーボネートポリオール(a)」又は「(a)成分」ともいう。
<Polycarbonate polyol (a)>
In the present invention, a polycarbonate polyol (a) having at least a repeating unit represented by the following formula (1) and having both ends being hydroxyl groups is used.
As the polycarbonate polyol (a), (i) a polycarbonate polyol (a-1) having a repeating unit represented by the following formula (1) as a main component and both ends being hydroxyl groups, and (ii) the following formula ( Preferable examples include polycarbonate polyol (a-2) having a repeating unit represented by 1) and a repeating unit represented by the following formula (3) and having both ends being hydroxyl groups.
In this specification, the polycarbonate polyol (a-1) and the polycarbonate polyol (a-2) are collectively referred to as “polycarbonate polyol (a)” or “component (a)”.
Figure JPOXMLDOC01-appb-C000007
(式中、Z1及びZ2は、それぞれ独立に、置換基を有していてもよい炭素数1~10の二価の脂肪族炭化水素基を示す。)
Figure JPOXMLDOC01-appb-C000007
(In the formula, Z 1 and Z 2 each independently represent a divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms which may have a substituent.)
Figure JPOXMLDOC01-appb-C000008
(式中、Z1及びZ2は、前記と同じく、それぞれ独立に置換基を有していてもよい炭素数1~10の二価の脂肪族炭化水素基を示す。R3は、置換基を有していてもよい炭素数3~20の二価の炭化水素基を示す。)
Figure JPOXMLDOC01-appb-C000008
(In the formula, Z 1 and Z 2 are each independently a divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms which may have a substituent. R 3 represents a substituent. A divalent hydrocarbon group having 3 to 20 carbon atoms which may have
 ポリカーボネートポリオール(a)は以下の物性を有することが好ましい。
 JIS K 1557に基づき、JIS K 0071-1に規定されるハーゼン単位色数(APHA)は、好ましくは200以下、より好ましくは100以下、更に好ましくは70以下、特に好ましくは1~60である。
 水酸基価は、好ましくは35~600mgKOH/g、より好ましくは50~400mgKOH/g、更に好ましくは100~150mgKOH/g、特に好ましくは110~130mgKOH/gである。
 酸価は、好ましくは1mgKOH/g以下、より好ましくは0.1mgKOH/g以下、更に好ましくは0.01~0.05mgKOH/gである。
 融点は、好ましくは-100~+250℃、より好ましくは-80~+200℃、更に好ましくは-20~+170℃、特に好ましくは0~160℃である。
 ガラス転移点は、好ましくは-80~+50℃、より好ましくは-60~+20℃であり、更に好ましくは-55~-20℃である。
 粘度は、好ましくは0.01~10Pa・s(75℃)、より好ましくは0.05~5Pa・s(75℃)、更に好ましくは0.1~1.5Pa・s(75℃)である。
 ハーゼン単位色数(APHA)、水酸基価、酸価、融点、ガラス転移点及び粘度の測定方法は、実施例に記載の通りである。
The polycarbonate polyol (a) preferably has the following physical properties.
Based on JIS K 1557, the Hazen unit color number (APHA) defined in JIS K 0071-1 is preferably 200 or less, more preferably 100 or less, still more preferably 70 or less, and particularly preferably 1 to 60.
The hydroxyl value is preferably 35 to 600 mgKOH / g, more preferably 50 to 400 mgKOH / g, still more preferably 100 to 150 mgKOH / g, and particularly preferably 110 to 130 mgKOH / g.
The acid value is preferably 1 mgKOH / g or less, more preferably 0.1 mgKOH / g or less, and still more preferably 0.01 to 0.05 mgKOH / g.
The melting point is preferably −100 to + 250 ° C., more preferably −80 to + 200 ° C., still more preferably −20 to + 170 ° C., and particularly preferably 0 to 160 ° C.
The glass transition point is preferably −80 to + 50 ° C., more preferably −60 to + 20 ° C., and further preferably −55 to −20 ° C.
The viscosity is preferably 0.01 to 10 Pa · s (75 ° C.), more preferably 0.05 to 5 Pa · s (75 ° C.), and still more preferably 0.1 to 1.5 Pa · s (75 ° C.). .
The methods for measuring the Hazen unit color number (APHA), hydroxyl value, acid value, melting point, glass transition point, and viscosity are as described in the Examples.
(ポリカーボネートポリオール(a-1))
 ポリカーボネートポリオール(a-1)は式(1)で表される繰り返し単位を有し、両末端が水酸基のポリオールである。
 式(1)におけるZ1及びZ2は、置換基を有していてもよい炭素数1~10の二価の脂肪族炭化水素基であるが、置換基としては、ウレタン化反応に関与しない基が好ましく、その炭素鎖中にヘテロ原子又はエステル結合を含有していてもよく、脂環式構造、エーテル結合等を含んでいてもよい。
 置換基を有していてもよい炭素数1~10の二価の脂肪族炭化水素基の具体例としては、メチレン基、エチレン基、トリメチレン基、プロパン-1,2-ジイル基、テトラメチレン基、ブタン-1,3-ジイル基、テトラメチレン基、ブタン-1,3-ジイル基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、デカメチレン基、1-オクタメチレン基等が挙げられる。これらの中では、炭素数1~4の直鎖又は分岐鎖のアルカンジイル基が好ましい。
 また、ベンゼン環に対するZ1及びZ2の結合位置は、1,4-結合(パラ体)又は1,3-結合(メタ体)が好ましく、1,4-結合(パラ体)がより好ましい。
 特に好適なポリカーボネートポリオール(a-1)は、下記式(2)で表される繰り返し単位を有し、両末端が水酸基であるポリオールである。
(Polycarbonate polyol (a-1))
The polycarbonate polyol (a-1) is a polyol having a repeating unit represented by the formula (1) and having hydroxyl groups at both ends.
Z 1 and Z 2 in formula (1) are divalent aliphatic hydrocarbon groups having 1 to 10 carbon atoms which may have a substituent, but the substituent does not participate in the urethanization reaction. A group is preferable, and the carbon chain may contain a hetero atom or an ester bond, and may contain an alicyclic structure, an ether bond, or the like.
Specific examples of the divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms which may have a substituent include a methylene group, an ethylene group, a trimethylene group, a propane-1,2-diyl group, and a tetramethylene group. , Butane-1,3-diyl group, tetramethylene group, butane-1,3-diyl group, pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group, decamethylene group, 1-octamethylene group, etc. It is done. Of these, a linear or branched alkanediyl group having 1 to 4 carbon atoms is preferable.
Further, the bonding position of Z 1 and Z 2 with respect to the benzene ring is preferably 1,4-bond (para form) or 1,3-bond (meta form), and more preferably 1,4-bond (para form).
Particularly preferred polycarbonate polyol (a-1) is a polyol having a repeating unit represented by the following formula (2) and having both ends being hydroxyl groups.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 ポリカーボネートポリオール(a-1)の式(1)又は(2)で表される繰り返し単位の数、含有量、数平均分子量等は、力学的性能、耐加水分解性、耐熱性、耐候性の観点と、各種分野における適用性の観点から、以下のとおりである。
 式(1)又は(2)で表される繰り返し単位の数は、好ましくは1~18であり、より好ましくは2~13である。
 式(1)又は(2)で表される繰り返し単位の含有量は、ポリカーボネートポリオール(a-1)中、好ましくは80~100モル%、より好ましくは90~100モル%である。
 また、ポリカーボネートポリオール(a-1)の数平均分子量は、好ましくは200~3,000、より好ましくは300~2,000、更に好ましくは400~1,000である。該数平均分子量が高すぎると、融点が高くなり、取り扱いが困難となる場合がある。また、数平均分子量が低すぎるとカーボネート結合の数が減り、ポリカーボネートポリオール(a-1)としての性質を発現しにくい場合がある。なお、数平均分子量の測定方法は、実施例に記載の通りである。
The number, content, number average molecular weight and the like of the repeating unit represented by the formula (1) or (2) of the polycarbonate polyol (a-1) are from the viewpoint of mechanical performance, hydrolysis resistance, heat resistance, and weather resistance. From the viewpoint of applicability in various fields, it is as follows.
The number of repeating units represented by the formula (1) or (2) is preferably 1 to 18, more preferably 2 to 13.
The content of the repeating unit represented by the formula (1) or (2) is preferably 80 to 100 mol%, more preferably 90 to 100 mol% in the polycarbonate polyol (a-1).
The number average molecular weight of the polycarbonate polyol (a-1) is preferably 200 to 3,000, more preferably 300 to 2,000, and still more preferably 400 to 1,000. If the number average molecular weight is too high, the melting point becomes high and handling may be difficult. On the other hand, if the number average molecular weight is too low, the number of carbonate bonds decreases, and the properties as polycarbonate polyol (a-1) may be difficult to express. In addition, the measuring method of a number average molecular weight is as describing in an Example.
 ポリカーボネートポリオール(a-1)は、炭酸エステル法やホスゲン法等の公知の方法により、芳香族ジオール化合物と炭酸エステルやホスゲン等とを反応させることにより製造することができる。これらの中では、炭酸エステル法が好ましい。
 炭酸エステル法としては、例えば、次の製法Aが好ましく挙げられる。
 製法Aは、下記の反応式で示されるように、芳香族ジヒドロキシル化合物(a-1-1)と炭酸エステル(a-1-2)とを、触媒の存在下又は不存在下でエステル交換反応させて、ポリカーボネートポリオール(a’-1)を得る方法である。
 なお、製法Aにおいては、芳香族ジヒドロキシル化合物(a-1-1)として1,4-ベンゼンジメタノールを用いる反応例を示すが、他の芳香族ジヒドロキシル化合物を用いる場合も同様に行うことができる。
The polycarbonate polyol (a-1) can be produced by reacting an aromatic diol compound with carbonate ester, phosgene or the like by a known method such as a carbonate method or a phosgene method. Of these, the carbonate method is preferred.
As a carbonate method, the following manufacturing method A is mentioned preferably, for example.
In the production method A, as shown in the following reaction formula, an aromatic dihydroxyl compound (a-1-1) and a carbonate ester (a-1-2) are transesterified in the presence or absence of a catalyst. In this method, polycarbonate polyol (a′-1) is obtained by reaction.
In production method A, a reaction example in which 1,4-benzenedimethanol is used as the aromatic dihydroxyl compound (a-1-1) is shown, but the same can be done when other aromatic dihydroxyl compounds are used. Can do.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 製法Aに係る上記式中、R1及びR2は、それぞれ独立に、置換基を有していてもよい炭化水素基を示す。前記炭化水素基は、炭素数1~6の炭化水素基であることが好ましい。nは繰り返し単位数を示し、好ましくは1~18、より好ましくは2~13である。
 上記製法Aにおいては、エステル交換反応時に、炭酸エステル(a-1-2)に由来するアルコール類(R1OH、R2OH等)が副生するので、これを蒸留等により抜き出しながら反応を進めることが好ましい。また、上記製法Aにおいて、炭酸エステル(a-1-2)の代わりに、炭酸エチレン等の炭酸アルキレンを用いることもできるが、この場合は、炭酸アルキレンに由来するグリコール類が副生するので、これを蒸留等により抜き出しながら反応を進めることが好ましい。
 なお、芳香族ジヒドロキシル化合物(a-1-1)、炭酸エステル(a-1-2)、及びエステル交換反応の詳細については後述する。
In the above formula relating to production method A, R 1 and R 2 each independently represent a hydrocarbon group which may have a substituent. The hydrocarbon group is preferably a hydrocarbon group having 1 to 6 carbon atoms. n represents the number of repeating units, preferably 1 to 18, more preferably 2 to 13.
In the above production method A, alcohols (R 1 OH, R 2 OH, etc.) derived from the carbonate ester (a-1-2) are by-produced during the transesterification reaction. It is preferable to proceed. In the production method A, an alkylene carbonate such as ethylene carbonate can be used instead of the carbonate ester (a-1-2), but in this case, glycols derived from the alkylene carbonate are by-produced. It is preferable to proceed the reaction while extracting this by distillation or the like.
The details of the aromatic dihydroxyl compound (a-1-1), the carbonate ester (a-1-2), and the transesterification will be described later.
(ポリカーボネートポリオール(a-2))
 ポリカーボネートポリオール(a-2)は、下記式(1)で表される繰り返し単位と下記式(3)で表される繰り返し単位を有し、両末端が水酸基であるポリカーボネートポリオール共重合体であり、ポリカーボネートジオール共重合体であることが好ましい。
(Polycarbonate polyol (a-2))
The polycarbonate polyol (a-2) is a polycarbonate polyol copolymer having a repeating unit represented by the following formula (1) and a repeating unit represented by the following formula (3), and both terminals are hydroxyl groups. A polycarbonate diol copolymer is preferred.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(1)中、Z1及びZ2は前記と同じである。
 式(3)中、R3は、置換基を有していてもよい炭素数3~20の二価の炭化水素基を示すが、置換基としては、ウレタン化反応に関与しない基が好ましく、その炭素鎖中にヘテロ原子又はエステル結合を含有していてもよく、脂環式構造、エーテル結合等を含んでいてもよい。
 R3の具体例としては、トリメチレン基、プロパン-1,2-ジイル基、テトラメチレン基、ブタン-1,3-ジイル基、ペンタメチレン基、ヘキサメチレン基、3-メチルペンタン-1,5-ジイル基、オクタメチレン基、デカメチレン基、ドデカメチレン基、テトラデカメチレン基、ヘキサデカメチレン基、オクタデカメチレン基、シクロヘキサン基、1,4-シクロヘキサンジメタノ基等が挙げられる。これらの中では、炭素数3~14、好ましくは炭素数3~6の直鎖又は分岐鎖のアルカンジイル基が好ましい。
 ポリカーボネートポリオール(a-2)において、[(式(1)で表される繰り返し単位)/(式(3)で表される繰り返し単位)]のモル比は1/9~9/1が好ましく、1/5~5/1がより好ましく、1/3~3/1が更に好ましい。式(1)で表される繰り返し単位の割合が高いと、ポリカーボネートポリオール(a-2)の粘度が高くなるため、ウレタン化反応時のポリカーボネートポリオール(a-2)の取り扱いが難しくなる傾向がある。式(1)で表される繰り返し単位の割合が低いと、本発明のポリウレタンポリマー溶液を用いて得られる塗膜の硬度が低くなる傾向がある。
In formula (1), Z 1 and Z 2 are the same as described above.
In formula (3), R 3 represents an optionally substituted divalent hydrocarbon group having 3 to 20 carbon atoms, and the substituent is preferably a group that does not participate in the urethanization reaction, The carbon chain may contain a hetero atom or an ester bond, and may contain an alicyclic structure, an ether bond, or the like.
Specific examples of R 3 include trimethylene group, propane-1,2-diyl group, tetramethylene group, butane-1,3-diyl group, pentamethylene group, hexamethylene group, 3-methylpentane-1,5- Examples include diyl group, octamethylene group, decamethylene group, dodecamethylene group, tetradecamethylene group, hexadecamethylene group, octadecamethylene group, cyclohexane group, and 1,4-cyclohexanedimethano group. Of these, a linear or branched alkanediyl group having 3 to 14 carbon atoms, preferably 3 to 6 carbon atoms is preferable.
In the polycarbonate polyol (a-2), the molar ratio of [(repeating unit represented by formula (1)) / (repeating unit represented by formula (3))] is preferably 1/9 to 9/1. 1/5 to 5/1 is more preferable, and 1/3 to 3/1 is still more preferable. When the ratio of the repeating unit represented by the formula (1) is high, the viscosity of the polycarbonate polyol (a-2) increases, and therefore, the handling of the polycarbonate polyol (a-2) during the urethanization reaction tends to be difficult. . When the ratio of the repeating unit represented by formula (1) is low, the hardness of the coating film obtained using the polyurethane polymer solution of the present invention tends to be low.
 ポリカーボネートポリオール(a-2)の式(1)及び(3)で表される繰り返し単位の数、含有量、数平均分子量等は、力学的性能、耐加水分解性、耐熱性、耐候性の観点と、各種分野における適用性の観点から、以下のとおりである。
 式(1)で表される繰り返し単位と、式(3)で表される繰り返し単位とは、ブロック共重合されていてもよいし、ランダム共重合されていてもよい。
 式(1)で表される繰り返し単位の数は、好ましくは1~20であり、より好ましくは2~15であり、該繰り返し単位の含有量は、ポリカーボネートポリオール(a-2)中、好ましくは10~90モル%、より好ましくは25~75モル%である。
 式(3)で表される繰り返し単位の数は、好ましくは1~30であり、より好ましくは2~20であり、該繰り返し単位の含有量は、ポリカーボネートポリオール(a-2)中、好ましくは10~90モル%、より好ましくは25~75モル%である。
 ポリカーボネートポリオール(a-2)の数平均分子量は、好ましくは200~3,000、より好ましくは300~2,000、更に好ましくは900~1,500である。なお、数平均分子量の測定方法は、実施例に記載の通りである。
The number, content, number average molecular weight and the like of the repeating unit represented by the formulas (1) and (3) of the polycarbonate polyol (a-2) are from the viewpoint of mechanical performance, hydrolysis resistance, heat resistance, and weather resistance. From the viewpoint of applicability in various fields, it is as follows.
The repeating unit represented by the formula (1) and the repeating unit represented by the formula (3) may be block copolymerized or randomly copolymerized.
The number of repeating units represented by the formula (1) is preferably 1 to 20, more preferably 2 to 15, and the content of the repeating units is preferably in the polycarbonate polyol (a-2). It is 10 to 90 mol%, more preferably 25 to 75 mol%.
The number of the repeating unit represented by the formula (3) is preferably 1 to 30, more preferably 2 to 20, and the content of the repeating unit is preferably in the polycarbonate polyol (a-2). It is 10 to 90 mol%, more preferably 25 to 75 mol%.
The number average molecular weight of the polycarbonate polyol (a-2) is preferably 200 to 3,000, more preferably 300 to 2,000, and still more preferably 900 to 1,500. In addition, the measuring method of a number average molecular weight is as describing in an Example.
 ポリカーボネートポリオール(a-2)の製造法としては、炭酸エステル法やホスゲン法等の公知の方法により、芳香族ポリオール化合物とジヒドロキシル化合物と炭酸エステルやホスゲン等とを反応させる方法等が挙げられる。これらの中では、炭酸エステル法が好ましい。
 炭酸エステル法としては、例えば、次の製法Bが好ましく挙げられる。
 製法Bは、下記の反応式で示されるように、芳香族ジヒドロキシル化合物(a-1-1)と炭酸エステル(a-1-2)とジヒドロキシル化合物(a-1-3)とを、触媒の存在下又は不存在下で、エステル交換反応させてポリカーボネートポリオール(a’-2)を得る方法である。
Examples of the method for producing the polycarbonate polyol (a-2) include a method of reacting an aromatic polyol compound, a dihydroxyl compound, carbonate ester, phosgene and the like by a known method such as a carbonate ester method and a phosgene method. Of these, the carbonate method is preferred.
As a carbonate method, the following manufacturing method B is mentioned preferably, for example.
In the production method B, as shown in the following reaction formula, an aromatic dihydroxyl compound (a-1-1), a carbonate (a-1-2), and a dihydroxyl compound (a-1-3) In this method, a polycarbonate polyol (a′-2) is obtained by an ester exchange reaction in the presence or absence of a catalyst.
 なお、製法Bにおいては、芳香族ジヒドロキシル化合物として1,4-ベンゼンジメタノールを用いる反応例を示すが、他の芳香族ジヒドロキシル化合物を用いる場合も同様に行うことができる。
 また、下記製法Bの反応式において、反応式を簡便に表記するため、ポリカーボネートポリオール(a’-2)として、両末端に芳香族ジヒドロキシル化合物(a-1-1)由来の構成単位が存在する場合のみを記載している。しかし、該末端は芳香族ジヒドロキシル化合物(a-1-1)由来の構成単位に限定されない。
In the production method B, a reaction example using 1,4-benzenedimethanol as the aromatic dihydroxyl compound is shown, but the same can be performed when other aromatic dihydroxyl compound is used.
In addition, in the reaction formula of the following production method B, there is a structural unit derived from the aromatic dihydroxyl compound (a-1-1) at both ends as polycarbonate polyol (a′-2) in order to express the reaction formula simply. Only the case is described. However, the terminal is not limited to the structural unit derived from the aromatic dihydroxyl compound (a-1-1).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 製法Bに係る上記式中、R1、R2は、前記のとおり、それぞれ独立に、置換基を有してもよい炭化水素基を示し、炭素数1~6であることが好ましい。R3は、前記のとおり、置換基を有していてもよい炭素数3~20の二価の炭化水素基を示す。pは、繰り返し単位数を示し、好ましくは1~20、より好ましくは2~15である。qは、繰り返し単位数を示し、好ましくは1~30、より好ましくは2~20である。
 上記製法Bにおいては、エステル交換反応時に、炭酸エステル(a-1-2)に由来するアルコール類(R1OH、R2OH等)が副生するので、これを蒸留等により抜き出しながら反応を進めることが好ましい。また、上記製法Bにおいて、炭酸エステル(a-1-2)の代わりに、炭酸エチレン等の炭酸アルキレンを用いることもできるが、この場合は、炭酸アルキレンに由来するグリコール類が副生するので、これを蒸留等により抜き出しながら反応を進めることが好ましい。
In the above formula relating to production method B, R 1 and R 2 each independently represent a hydrocarbon group which may have a substituent, and preferably has 1 to 6 carbon atoms. R 3 represents a divalent hydrocarbon group having 3 to 20 carbon atoms which may have a substituent as described above. p represents the number of repeating units, and is preferably 1 to 20, more preferably 2 to 15. q represents the number of repeating units, and is preferably 1 to 30, more preferably 2 to 20.
In the above production method B, alcohols (R 1 OH, R 2 OH, etc.) derived from the carbonate ester (a-1-2) are by-produced during the transesterification reaction. It is preferable to proceed. In the above production method B, an alkylene carbonate such as ethylene carbonate can be used instead of the carbonate ester (a-1-2). In this case, glycols derived from the alkylene carbonate are by-produced. It is preferable to proceed the reaction while extracting this by distillation or the like.
(芳香族ジヒドロキシル化合物(a-1-1))
 前記製法A及びBにおいて使用できる芳香族ジヒドロキシル化合物(a-1-1)は、下記式(4)で表される。
(Aromatic dihydroxyl compound (a-1-1))
The aromatic dihydroxyl compound (a-1-1) that can be used in the production methods A and B is represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式中、Z1及びZ2は、それぞれ独立に、置換基を有していてもよい炭素数1~10の二価の脂肪族炭化水素基を示し、その具体例、好適例は前記のとおりであり、炭素数1~4の直鎖又は分岐鎖の二価の脂肪族炭化水素基が好ましい。
 また、Z1及びZ2は、1,4-結合(パラ体)又は1,3-結合(メタ体)が好ましく、1,4-結合(パラ体)がより好ましい。
 特に好適な芳香族ジヒドロキシル化合物(a-1-1)としては、1,4-ベンゼンジメタノール、1,4-ベンゼンジエタノール、1,4-ベンゼンジプロパノール、1,4-ベンゼンジブタノール、1,3-ベンゼンジメタノール、1,3-ベンゼンジエタノール、1,3-ベンゼンジプロパノール、1,3-ベンゼンジブタノール、4-(4-ヒドロキシメチルフェニル)ブタノール、3-[4-(2-ヒドロキシエチル)フェニル]プロパノール等の炭素数1~4の直鎖又は分岐鎖の二価の脂肪族炭化水素基を有する化合物が挙げられる。
In the formula, Z 1 and Z 2 each independently represent a divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms which may have a substituent, and specific examples and preferred examples thereof are as described above. And a linear or branched divalent aliphatic hydrocarbon group having 1 to 4 carbon atoms is preferred.
Z 1 and Z 2 are preferably 1,4-bond (para-form) or 1,3-bond (meta-form), and more preferably 1,4-bond (para-form).
Particularly preferred aromatic dihydroxyl compounds (a-1-1) include 1,4-benzenedimethanol, 1,4-benzenediethanol, 1,4-benzenedipropanol, 1,4-benzenedibutanol, , 3-benzenedimethanol, 1,3-benzenediethanol, 1,3-benzenedipropanol, 1,3-benzenedibutanol, 4- (4-hydroxymethylphenyl) butanol, 3- [4- (2-hydroxy And compounds having a linear or branched divalent aliphatic hydrocarbon group having 1 to 4 carbon atoms, such as ethyl) phenyl] propanol.
(炭酸エステル(a-1-2))
 前記製法A及びBにおいて使用できる炭酸エステル(a-1-2)は特に制限されないが、炭酸エステルに由来する副生アルコール類を効率よく抜き出すことができるものを適宜選択することが望ましい。例えば、炭酸ジアルキル、炭酸ジアリール、炭酸アルキレン等が挙げられる。
 炭酸ジアルキルとしては、炭素数1~6、好ましくは炭素数1~4のアルキル基を有する炭酸ジアルキルが好ましく、具体的には、炭酸ジメチル、炭酸ジエチル等が挙げられる。
 炭酸ジアリールとしては、炭酸ジフェニル等が挙げられる。
 炭酸アルキレンとしては、炭素数2~4のアルカンジイル基を有する炭酸アルキレンが好ましく、具体的には、炭酸エチレン、炭酸プロピレン、炭酸ブチレン等が挙げられる。これらの中では、副生アルコール類の抜き出しやすさの観点から、炭素数1~4のアルキル基を有する炭酸ジアルキルが好ましく、炭酸ジメチル又は炭酸ジエチルが特に好ましく、炭酸ジメチルが最も好ましい。
(Carbonate ester (a-1-2))
The carbonic acid ester (a-1-2) that can be used in the production methods A and B is not particularly limited, but it is desirable to appropriately select one that can efficiently extract by-product alcohols derived from the carbonic acid ester. Examples thereof include dialkyl carbonate, diaryl carbonate, and alkylene carbonate.
The dialkyl carbonate is preferably a dialkyl carbonate having an alkyl group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms. Specific examples include dimethyl carbonate and diethyl carbonate.
Examples of the diaryl carbonate include diphenyl carbonate.
The alkylene carbonate is preferably an alkylene carbonate having an alkanediyl group having 2 to 4 carbon atoms, and specific examples thereof include ethylene carbonate, propylene carbonate, butylene carbonate and the like. Among these, from the viewpoint of easy extraction of by-product alcohols, dialkyl carbonates having an alkyl group having 1 to 4 carbon atoms are preferred, dimethyl carbonate or diethyl carbonate is particularly preferred, and dimethyl carbonate is most preferred.
(ジヒドロキシル化合物(a-1-3))
 前記製法Bにおいて使用できるジヒドロキシル化合物(a-1-3)は特に制限されない。例えば、炭素数3~20のアルカンジオール(R3が炭素数3~20の二価の脂肪族炭化水素基である場合)、前記アルカンジオールのアルキレン基部分の炭素鎖が分岐しているもの、前記アルカンジオールのアルキレン基部分の炭素鎖が脂環式構造やエーテル結合を含むもの等が挙げられる。
 炭素数3~20、好ましくは炭素数3~14のアルカンジオールとしては、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ペンタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオール等が挙げられる。
 前記アルキレン基部分の炭素鎖が分岐している化合物としては、1,3-ブタンジオール、3-メチルペンタン-1,5-ジオール、2-エチルヘキサン-1,6-ジオール、ネオペンチルグリコール、2-メチル-1,8-オクタンジオール等が挙げられる。
(Dihydroxyl compound (a-1-3))
The dihydroxyl compound (a-1-3) that can be used in the production method B is not particularly limited. For example, an alkanediol having 3 to 20 carbon atoms (when R 3 is a divalent aliphatic hydrocarbon group having 3 to 20 carbon atoms), a branched carbon chain of the alkylene group portion of the alkanediol, Examples include those in which the carbon chain of the alkylene group portion of the alkanediol contains an alicyclic structure or an ether bond.
Examples of the alkanediol having 3 to 20 carbon atoms, preferably 3 to 14 carbon atoms include 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7 -Pentanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol and the like.
Examples of the compound having a branched carbon chain of the alkylene group include 1,3-butanediol, 3-methylpentane-1,5-diol, 2-ethylhexane-1,6-diol, neopentyl glycol, 2 -Methyl-1,8-octanediol and the like.
 前記アルキレン基部分の炭素鎖が脂環式構造を含む化合物としては、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、2,2’-ビス(4-ヒドロキシシクロヘキシル)プロパン、1,4-シクロヘキサンジメタノール等が挙げられる。
 前記アルキレン基部分の炭素鎖がエーテル結合を含む化合物としては、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等が挙げられる。
 上記の中でも、取扱い性及び入手のしやすさから、ジヒドロキシル化合物(a-1-3)としては、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール等の炭素数4~8、特に炭素数4~6のアルカンジオール、1,4-シクロヘキサンジメタノール等の炭素数5~8の脂環式構造を含むジオールがより好ましい。
Examples of the compound in which the carbon chain of the alkylene group part includes an alicyclic structure include 1,3-cyclohexanediol, 1,4-cyclohexanediol, 2,2′-bis (4-hydroxycyclohexyl) propane, 1,4- And cyclohexanedimethanol.
Examples of the compound in which the carbon chain of the alkylene group part includes an ether bond include diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, dipropylene glycol, polypropylene glycol, and polytetramethylene glycol.
Among the above, from the viewpoint of easy handling and availability, the dihydroxyl compound (a-1-3) may be carbon such as 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, etc. Diols having an alicyclic structure having 5 to 8 carbon atoms such as alkanediol having 4 to 8 carbon atoms, particularly 4 to 6 carbon atoms, 1,4-cyclohexanedimethanol are more preferable.
(触媒)
 前記製法A及びBにおける反応で使用できる触媒としては、通常のエステル交換反応で使用される触媒(エステル交換触媒)が挙げられる。例えば、アルカリ金属化合物、アルカリ土類金属化合物、アルミニウム化合物、亜鉛化合物、マンガン化合物、ニッケル化合物、アンチモン化合物、ジルコニウム化合物、チタン化合物、有機スズ化合物が好ましく挙げられる。
 アルカリ金属化合物としては、アルカリ金属の水酸化物(水酸化リチウム、水酸化ナトリウム、水酸化カリウム等)、アルカリ金属の炭酸塩(炭酸リチウム、炭酸ナトリウム、炭酸カリウム等)、アルカリ金属のカルボン酸塩(酢酸リチウム、酢酸ナトリウム、酢酸カリウム等)、アルカリ金属アルコキシド(リチウムメトキシド、ネトリウムメトキシド、カリウムt-ブトキシド等)等が挙げられ、アルカリ土類金属化合物としては、アルカリ土類金属の水酸化物(水酸化マグネシウム等)、アルカリ土類金属アルコキシド(マグネシウムメトキシド等)等が挙げられる。
(catalyst)
Examples of the catalyst that can be used in the reaction in the production methods A and B include a catalyst (transesterification catalyst) used in a normal transesterification reaction. For example, preferred are alkali metal compounds, alkaline earth metal compounds, aluminum compounds, zinc compounds, manganese compounds, nickel compounds, antimony compounds, zirconium compounds, titanium compounds, and organic tin compounds.
Examples of alkali metal compounds include alkali metal hydroxides (lithium hydroxide, sodium hydroxide, potassium hydroxide, etc.), alkali metal carbonates (lithium carbonate, sodium carbonate, potassium carbonate, etc.), and alkali metal carboxylates. (Lithium acetate, sodium acetate, potassium acetate, etc.), alkali metal alkoxides (lithium methoxide, netrium methoxide, potassium t-butoxide, etc.) and the like. Alkaline earth metal compounds include alkaline earth metal water. Examples thereof include oxides (magnesium hydroxide and the like), alkaline earth metal alkoxides (magnesium methoxide and the like), and the like.
 アルミニウム化合物としては、アルミニウムアルコキシド(アルミニウムエトキシド、アルミニウムイソプロポキシド、アルミニウムsec-ブトキシド等)、アルミニウムアセチルアセトナート等のアルミニウム化合物等が挙げられる。
 亜鉛化合物としては、亜鉛のカルボン酸塩(酢酸亜鉛等)、亜鉛アセチルアセトナート等が挙げられ、マンガン化合物としては、マンガンのカルボン酸塩(酢酸マンガン等)、マンガンアセチルアセトナート等が挙げられ、ニッケル化合物としては、ニッケルのカルボン酸塩(酢酸ニッケル等)、ニッケルアセチルアセトナート等が挙げられる。
 アンチモン化合物としては、アンチモンのカルボン酸塩(酢酸アンチモン等)、アンチモンアルコキシド等が挙げられ、ジルコニウム化合物としては、ジルコニウムアルコキシド(ジルコニウムプロポキシド、ジルコニウムブトキシド等)、ジルコニウムアセチルアセトナート等が挙げられる。
Examples of the aluminum compound include aluminum alkoxide (aluminum ethoxide, aluminum isopropoxide, aluminum sec-butoxide, etc.), aluminum compounds such as aluminum acetylacetonate, and the like.
Examples of zinc compounds include zinc carboxylates (such as zinc acetate) and zinc acetylacetonate. Examples of manganese compounds include manganese carboxylates (such as manganese acetate) and manganese acetylacetonate. Examples of nickel compounds include nickel carboxylates (such as nickel acetate) and nickel acetylacetonate.
Examples of antimony compounds include antimony carboxylates (such as antimony acetate) and antimony alkoxides. Examples of zirconium compounds include zirconium alkoxides (zirconium propoxide, zirconium butoxide, etc.), zirconium acetylacetonate, and the like.
 チタン化合物としては、チタンアルコキシド(チタンテトラエトキシド、チタンテトラプロポキシド、チタンテトラブトキシド、テトラシクロヘキシルチタネート、テトラベンジルチタネート等)、チタンアシレート(トリブトキシチタンステアレート、イソプロポキシステアレート等)、チタンキレート(ジイソプロポキシチタンビスアセチルアセトネート、ジヒドロキシ・ビスラクタトチタン等)等が挙げられる。
 有機スズ化合物としては、ジブチルチンオキシド、ジブチルチンジアセテート、ジブチルチンジラウレート等が挙げられる。
 なお、各カルボン酸塩は、炭素数2~30のものが好ましく、炭素数2~18のものがより好ましく、各アルコキシドは、アルコキシ基の炭素数1~30のものが好ましく、炭素数2~18のものがより好ましい。
 上記の触媒の中では、チタン化合物、有機スズ化合物が好ましく、チタン化合物がより好ましく、チタンアルコキシドが更に好ましい。チタンアルコキシドの中では、チタンテトラエトキシド、チタンテトラプロポキシド、チタンテトラブトキシドがより好ましく、チタンテトラブトキシドが特に好ましい。
 なお、上記の芳香族ジヒドロキシル化合物(a-1-1)、炭酸エステル(a-1-2)、ジヒドロキシル化合物(a-1-3)、及び触媒は、1種単独で又は2種以上を組み合わせて用いることができる。
Titanium compounds include titanium alkoxide (titanium tetraethoxide, titanium tetrapropoxide, titanium tetrabutoxide, tetracyclohexyl titanate, tetrabenzyl titanate, etc.), titanium acylate (tributoxy titanium stearate, isopropoxy systemate, etc.), titanium Chelates (diisopropoxytitanium bisacetylacetonate, dihydroxy bislactotitanium, etc.) and the like.
Examples of the organic tin compound include dibutyltin oxide, dibutyltin diacetate, and dibutyltin dilaurate.
Each carboxylate preferably has 2 to 30 carbon atoms, more preferably 2 to 18 carbon atoms, and each alkoxide preferably has 1 to 30 carbon atoms in the alkoxy group. 18 is more preferable.
In said catalyst, a titanium compound and an organotin compound are preferable, a titanium compound is more preferable, and a titanium alkoxide is still more preferable. Among the titanium alkoxides, titanium tetraethoxide, titanium tetrapropoxide, and titanium tetrabutoxide are more preferable, and titanium tetrabutoxide is particularly preferable.
The above aromatic dihydroxyl compound (a-1-1), carbonate ester (a-1-2), dihydroxyl compound (a-1-3), and catalyst may be used alone or in combination of two or more. Can be used in combination.
 (添加剤)
 本発明のポリウレタンポリマー溶液には、必要に応じて、各種添加剤を添加することもできる。
 前記添加剤としては、各種樹脂成分、樹脂粒子、無機粒子、充填剤、顔料、染料、光安定剤、酸化防止剤、紫外線吸収剤、帯電防止剤などが挙げられ、これらは任意のものを用いることができる。
(Additive)
Various additives can be added to the polyurethane polymer solution of the present invention as necessary.
Examples of the additive include various resin components, resin particles, inorganic particles, fillers, pigments, dyes, light stabilizers, antioxidants, ultraviolet absorbers, antistatic agents, and the like. be able to.
(エステル交換反応)
 前記製法A及びBにおけるエステル交換反応は、触媒の存在下又は不存在下で行うことができるが、反応効率の観点から、触媒の存在下で行うことが好ましい。
 エステル交換反応における反応温度及び反応圧力は、用いる炭酸エステル(a-1-2)とジヒドロキシル化合物(a-1-3)の種類によって異なるが、製法Aの場合は1,4-ベンゼンジメタノール等の芳香族ジヒドロキシル化合物(a-1-1)、製法Bの場合は芳香族ジヒドロキシル化合物(a-1-1)及びジヒドロキシル化合物(a-1-3)が実質的に留出しない条件とすることが好ましい。反応温度は90~230℃であることが好ましく、反応圧力は常圧から30~500mmHgの減圧とすることが好ましい。なお反応は、空気、炭酸ガス、又は不活性ガス(窒素、アルゴン、ヘリウム等)の雰囲気下又は気流中で行うことができるが、不活性ガス雰囲気下又は気流中で行うことが好ましい。
 さらに触媒を用いる場合の使用量は、反応性の観点から、製法Aの場合は、反応開始時における芳香族ジヒドロキシル化合物(a-1-1)と炭酸エステル(a-1-2)との合計仕込み量に対して、製法Bの場合は、反応開始時における芳香族ジヒドロキシル化合物(a-1-1)、炭酸エステル(a-1-2)及び、ジヒドロキシル化合物(a-1-3)の合計仕込み量に対して、触媒の質量基準で1~20,000ppmが好ましく、10~5,000ppmがより好ましく、100~4,000ppmが更に好ましい。
(Transesterification reaction)
The transesterification reaction in the production methods A and B can be performed in the presence or absence of a catalyst, but is preferably performed in the presence of a catalyst from the viewpoint of reaction efficiency.
The reaction temperature and reaction pressure in the transesterification reaction vary depending on the types of carbonic acid ester (a-1-2) and dihydroxyl compound (a-1-3) to be used. In the case of production method A, 1,4-benzenedimethanol In the case of production method B, the aromatic dihydroxyl compound (a-1-1) and the dihydroxyl compound (a-1-3) are not substantially distilled. It is preferable to use conditions. The reaction temperature is preferably 90 to 230 ° C., and the reaction pressure is preferably reduced from normal pressure to 30 to 500 mmHg. The reaction can be performed in an atmosphere of air, carbon dioxide gas, or an inert gas (nitrogen, argon, helium, or the like) or in an air stream, but is preferably performed in an inert gas atmosphere or an air stream.
Furthermore, the amount used in the case of using a catalyst is, in terms of reactivity, in the case of production method A, the aromatic dihydroxyl compound (a-1-1) and the carbonate ester (a-1-2) at the start of the reaction. In the case of production method B with respect to the total charged amount, aromatic dihydroxyl compound (a-1-1), carbonic acid ester (a-1-2) and dihydroxyl compound (a-1-3) at the start of the reaction ) Based on the mass of the catalyst, preferably 1 to 20,000 ppm, more preferably 10 to 5,000 ppm, and even more preferably 100 to 4,000 ppm.
 また、ジヒドロキシル化合物(a-1-3)と炭酸エステル(a-1-2)とを反応させて得られる高分子量のポリカーボネートポリオールと、1,4-ベンゼンジメタノール等の芳香族ジヒドロキシル化合物(a-1-1)とを触媒の存在下又は不存在下でエステル交換反応させて、ポリカーボネートポリオール(a-2)を得ることもできる。
 さらに、1,4-ベンゼンジメタノール等の芳香族ジヒドロキシル化合物(a-1-1)と炭酸エステル(a-1-2)とを反応させて得られる高分子量のポリカーボネートポリオールと、ジヒドロキシル化合物(a-1-3)とを存在下又は不存在下でエステル交換反応させて、ポリカーボネートポリオール(a-2)を得ることもできる。
Further, a high molecular weight polycarbonate polyol obtained by reacting a dihydroxyl compound (a-1-3) with a carbonate ester (a-1-2), and an aromatic dihydroxyl compound such as 1,4-benzenedimethanol The polycarbonate polyol (a-2) can also be obtained by subjecting (a-1-1) to a transesterification reaction in the presence or absence of a catalyst.
Further, a polycarbonate polyol having a high molecular weight obtained by reacting an aromatic dihydroxyl compound (a-1-1) such as 1,4-benzenedimethanol with a carbonate ester (a-1-2), and a dihydroxyl compound A polycarbonate polyol (a-2) can also be obtained by subjecting (a-1-3) to a transesterification reaction in the presence or absence.
 本発明に用いられるポリカーボネートポリオール(a-1)及び(a-2)の平均分子量は、使用する芳香族ジヒドロキシル化合物(a-1-1)、炭酸エステル(a-1-2)、及びジヒドロキシル化合物(a-1-3)の反応モル比の変更等によって調製することができる。
 なお、生成したポリカーボネートポリオール(a-1)又は(a-2)の平均分子量が目的とする平均分子量よりも小さい場合は、更に減圧下で、芳香族ジヒドロキシル化合物(a-1-1)及び/又はジヒドロキシ化合物(a-1-3)を留出させ、逆に該平均分子量が目的とする平均分子量よりも大きい場合は、芳香族ジヒドロキシル化合物(a-1-1)及び/又はジヒドロキシル化合物(a-1-3)を添加して更にエステル交換反応させて、目的とする平均分子量のポリカーボネートポリオール(a-1)又は(a-2)を得ることができる。
 また、本発明のポリカーボネートポリオール(a-2)の繰り返し単位の構成モル比率は、芳香族ジヒドロキシル化合物(a-1-1)とジヒドロキシル化合物(a-1-3)とのモル比の変更等によって調製することができる。
The average molecular weights of the polycarbonate polyols (a-1) and (a-2) used in the present invention are the aromatic dihydroxyl compound (a-1-1), carbonate (a-1-2), and dihydroxy used. It can be prepared by changing the reaction molar ratio of the compound (a-1-3).
When the average molecular weight of the produced polycarbonate polyol (a-1) or (a-2) is smaller than the target average molecular weight, the aromatic dihydroxyl compound (a-1-1) and When dihydroxy compound (a-1-3) is distilled and the average molecular weight is larger than the target average molecular weight, aromatic dihydroxyl compound (a-1-1) and / or dihydroxyl The compound (a-1-3) can be added and further subjected to a transesterification to obtain a polycarbonate polyol (a-1) or (a-2) having a target average molecular weight.
In addition, the constituent molar ratio of the repeating unit of the polycarbonate polyol (a-2) of the present invention is a change in the molar ratio of the aromatic dihydroxyl compound (a-1-1) and the dihydroxyl compound (a-1-3). Etc. can be prepared.
<(a)成分以外のポリオール(b)>
 本発明においては、(a)成分以外のポリオール(b)(以下、単に「ポリオール(b)」ともいう)として、例えば、高分子量ジオールや低分子量ジオールを更に用いることができる。
 用いることのできる高分子量ジオールに特に制限はなく、例えば、ポリカーボネートジオール、ポリエステルジオール、ポリエーテルジオール、アクリルジオール、エーテル結合とエステル結合とを有するポリエーテルポリエステルポリオール等が挙げられる。
 ポリカーボネートジオールとしては、例えば、ポリテトラメチレンカーボネートジオール、ポリへキサメチレンカーボネートジオール等が挙げられる。
 ポリエステルジオールとしては、例えば、ポリエチレンアジペートジオール、ポリブチレンアジペートジオール、ポリエチレンブチレンアジペートジオール、ポリへキサメチレンイソフタレートアジペートジオール、ポリエチレンサクシネートジオール、ポリブチレンサクシネートジオール、ポリエチレンセバケートジオール、ポリブチレンセバケートジオール、ポリ-ε-カプロラクトンジオール、ポリ(3-メチル-1,5-ペンチレンアジペート)ジオール、1,6-へキサンジオールとダイマー酸の重縮合物等が挙げられる。
 ポリエーテルジオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、エチレンオキシドとプロピレンオキシド、エチレンオキシドとブチレンオキシドとのランダム共重合体やブロック共重合体等が挙げられる。
<Polyol (b) other than component (a)>
In the present invention, as the polyol (b) other than the component (a) (hereinafter also simply referred to as “polyol (b)”), for example, a high molecular weight diol or a low molecular weight diol can be further used.
The high molecular weight diol that can be used is not particularly limited, and examples thereof include polycarbonate diol, polyester diol, polyether diol, acrylic diol, and polyether polyester polyol having an ether bond and an ester bond.
Examples of the polycarbonate diol include polytetramethylene carbonate diol and polyhexamethylene carbonate diol.
Examples of the polyester diol include polyethylene adipate diol, polybutylene adipate diol, polyethylene butylene adipate diol, polyhexamethylene isophthalate adipate diol, polyethylene succinate diol, polybutylene succinate diol, polyethylene sebacate diol, polybutylene sebacate And diol, poly-ε-caprolactone diol, poly (3-methyl-1,5-pentylene adipate) diol, polycondensate of 1,6-hexanediol and dimer acid, and the like.
Examples of the polyether diol include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, ethylene oxide and propylene oxide, ethylene oxide and butylene oxide random copolymers, and block copolymers.
 用いることのできる低分子量ジオールにも特に制限はなく、例えば、エチレングリコール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール等の炭素数2~9の脂肪族ジオール;1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジオール、1,4-ビス(ヒドロキシエチル)シクロヘキサン、2,7-ノルボルナンジオール、テトラヒドロフランジメタノール、2,5-ビス(ヒドロキシメチル)-1,4-ジオキサン等の炭素数6~12の脂環式構造を有するジオール、トリメチロールプロパン、ペンタエリスリトール、ソルビトール等の低分子量多価アルコール等が挙げられる。
 前記ポリオール(b)は、1種単独で又は2種以上を組み合わせて用いることができる。
The low molecular weight diol that can be used is not particularly limited, and examples thereof include ethylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,9 -Aliphatic diols having 2 to 9 carbon atoms such as nonanediol, 2-methyl-1,8-octanediol, diethylene glycol, triethylene glycol, tetraethylene glycol; 1,4-cyclohexanedimethanol, 1,3-cyclohexanedi Methanol, 1,4-cyclohexanediol, 1,4-bis (hydroxyethyl) cyclohex Diols having 6-12 carbon atoms, such as 2,7-norbornanediol, tetrahydrofuran dimethanol, 2,5-bis (hydroxymethyl) -1,4-dioxane, trimethylolpropane, pentaerythritol And low molecular weight polyhydric alcohols such as sorbitol.
The said polyol (b) can be used individually by 1 type or in combination of 2 or more types.
 本発明においては、ポリカーボネートポリオール(a)、ポリオール(b)の合計の水酸基当量数が70~270であることが好ましい。該水酸基当量数が70未満であると、実質的にポリウレタンポリマー溶液を製造することが難しくなる場合があり、270を超えると得られたポリウレタンポリマー溶液を塗布して得た塗膜の硬度が低くなりすぎる場合がある。
 該水酸基当量数としては、得られるポリウレタンポリマー溶液を塗布して得た塗膜の硬度の観点から、好ましくは130~270、より好ましくは160~265、特に好ましくは180~260である。
 前記水酸基当量数は、以下の式で算出することができる。
  各ポリオールの水酸基当量数=各ポリオールの分子量/各ポリオールのOH基の数
  合計の水酸基当量数=M/ポリオールの合計モル数
 上記式において、Mは、[〔ポリカーボネートポリオール(a)の水酸基当量数×ポリカーボネートポリオール(a)のモル数〕+〔ポリオール(b)の水酸基当量数×ポリオール(b)のモル数)〕]を示す。
In the present invention, the total number of hydroxyl equivalents of the polycarbonate polyol (a) and the polyol (b) is preferably 70 to 270. If the number of hydroxyl equivalents is less than 70, it may be difficult to produce a polyurethane polymer solution substantially. If it exceeds 270, the hardness of the coating film obtained by applying the obtained polyurethane polymer solution is low. It may become too much.
The number of hydroxyl equivalents is preferably 130 to 270, more preferably 160 to 265, and particularly preferably 180 to 260, from the viewpoint of the hardness of the coating film obtained by applying the polyurethane polymer solution obtained.
The number of hydroxyl equivalents can be calculated by the following formula.
Number of hydroxyl equivalents of each polyol = molecular weight of each polyol / number of OH groups of each polyol Total number of hydroxyl equivalents = M / total number of moles of polyol In the above formula, M is the number of hydroxyl equivalents of [polycarbonate polyol (a). X number of moles of polycarbonate polyol (a)] + [number of hydroxyl equivalents of polyol (b) x number of moles of polyol (b))].
<ポリイソシアネート化合物(c)>
 本発明で用いられるポリイソシアネート化合物(c)は特に制限されない。その具体例としては、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート(TDI)、2,6-トリレンジイソシアネート、4,4’-ジフェニレンメタンジイソシアネート(MDI)、2,4-ジフェニルメタンジイソシアネート、4,4’-ジイソシアネトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトジフェニルメタン、1,5-ナフチレンジイソシアネート、4,4’,4”-トリフェニルメタントリイソシアネート、m-イソシアナトフェニルスルホニルイソシアネート、p-イソシアナトフェニルスルホニルイソシアネート等の芳香族ポリイソシアネート化合物;エチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、ドデカメチレンジイソシアネート、1,6,11-ウンデカントリイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2,6-ジイソシアナトメチルカプロエート、ビス(2-イソシアナトエチル)フマレート、ビス(2-イソシアナトエチル)カーボネート、2-イソシアナトエチル-2,6-ジイソシアナトヘキサノエート等の脂肪族ポリイソシアネート化合物;イソホロンジイソシアネート(IPDI)、4,4’-ジシクロヘキシルメタンジイソシアネート(水素添加MDI)、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート(水素添加TDI)、ビス(2-イソシアナトエチル)-4-ジクロヘキセン-1,2-ジカルボキシレート、2,5-ノルボルナンジイソシアネート、2,6-ノルボルナンジイソシアネーネート等の脂環式ポリシアネート化合物等が挙げられる。
 前記ポリイソシアネート化合物の1分子当たりのイソシアネート基は通常2個であるが、得られるポリウレタンポリマーがゲル化をしない範囲で、トリフェニルメタントリイソシアネートのようなイソシアネート基を3個以上有するポリイソシアネート化合物も使用することができる。
 これらの化合物の中では、反応性の制御と弾性率付与等の観点から、4,4’-ジフェニレンメタンジイソシアネート(MDI)、イソホロンジイソシアネート(IPDI)、4,4’-ジシクロヘキシルメタンジイソシアネート(水素添加MDI)が好ましい。
 ポリイソシアネート化合物(c)は、1種単独で又は2種以上を組み合わせて用いることができる。
<Polyisocyanate compound (c)>
The polyisocyanate compound (c) used in the present invention is not particularly limited. Specific examples thereof include 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 2,4-tolylene diisocyanate (TDI), 2,6-tolylene diisocyanate, 4,4′-diphenylenemethane diisocyanate (MDI). ), 2,4-diphenylmethane diisocyanate, 4,4′-diisocyanatobiphenyl, 3,3′-dimethyl-4,4′-diisocyanatobiphenyl, 3,3′-dimethyl-4,4′-diisocyanate Aromatic polyisocyanate compounds such as natodiphenylmethane, 1,5-naphthylene diisocyanate, 4,4 ′, 4 ″ -triphenylmethane triisocyanate, m-isocyanatophenylsulfonyl isocyanate, p-isocyanatophenylsulfonyl isocyanate; ethylene diisocyanate , Tet Ramethylene diisocyanate, hexamethylene diisocyanate (HDI), dodecane methylene diisocyanate, 1,6,11-undecane triisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2,6-diisocyanatomethylcaproate, Aliphatic polyisocyanate compounds such as bis (2-isocyanatoethyl) fumarate, bis (2-isocyanatoethyl) carbonate, 2-isocyanatoethyl-2,6-diisocyanatohexanoate; isophorone diisocyanate (IPDI), 4,4'-dicyclohexylmethane diisocyanate (hydrogenated MDI), cyclohexylene diisocyanate, methylcyclohexylene diisocyanate (hydrogenated TDI), bis (2-isocyana Toyl) -4-dichlorohexene-1,2-dicarboxylate, 2,5-norbornane diisocyanate, 2,6-norbornane diisocyanate, and the like.
The number of isocyanate groups per molecule of the polyisocyanate compound is usually 2, but a polyisocyanate compound having 3 or more isocyanate groups such as triphenylmethane triisocyanate is also within the range where the resulting polyurethane polymer does not gel. Can be used.
Among these compounds, 4,4′-diphenylenemethane diisocyanate (MDI), isophorone diisocyanate (IPDI), 4,4′-dicyclohexylmethane diisocyanate (hydrogenated) from the viewpoint of controlling reactivity and imparting elastic modulus. MDI) is preferred.
A polyisocyanate compound (c) can be used individually by 1 type or in combination of 2 or more types.
<鎖延長剤(B)>
 本発明においては、ポリウレタンプレポリマー(A)のイソシアネート基と反応性を有する鎖延長剤(B)を用いることができる。鎖延長剤としては、例えば、エチレンジアミン、1,4-テトラメチレンジアミン、2-メチル-1,5-ペンタンジアミン、1,4-ブタンジアミン、1,6-ヘキサメチレンジアミン、1,4-ヘキサメチレンジアミン、3-アミノメチル-3,5,5-トリメチルシクロヘキシルアミン、1,3-ビス(アミノメチル)シクロヘキサン、キシリレンジアミン、ピペラジン、2,5-ジメチルピペラジン、ジエチレントリアミン、トリエチレンテトラミン等のアミン化合物、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール等のジオール化合物、ポリエチレングリコールに代表されるポリアルキレングリコール類、水等が挙げられるが、中でも1級ジアミン化合物が好ましい。
 鎖延長剤(B)は1種単独で又は2種以上を組み合わせて用いることができる。
 鎖延長剤を用いることにより、ポリウレタンポリマーの分子量を向上させやすくなり、ポリウレタンポリマー溶液を用いて得られる塗膜の硬度も高くなる傾向がある。
<Chain extender (B)>
In the present invention, a chain extender (B) having reactivity with the isocyanate group of the polyurethane prepolymer (A) can be used. Examples of chain extenders include ethylenediamine, 1,4-tetramethylenediamine, 2-methyl-1,5-pentanediamine, 1,4-butanediamine, 1,6-hexamethylenediamine, 1,4-hexamethylene. Amine compounds such as diamine, 3-aminomethyl-3,5,5-trimethylcyclohexylamine, 1,3-bis (aminomethyl) cyclohexane, xylylenediamine, piperazine, 2,5-dimethylpiperazine, diethylenetriamine, triethylenetetramine Diol compounds such as ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, polyalkylene glycols typified by polyethylene glycol, water, etc., among which primary diamine compounds are preferred. .
A chain extender (B) can be used individually by 1 type or in combination of 2 or more types.
By using a chain extender, it becomes easy to improve the molecular weight of the polyurethane polymer, and the hardness of the coating film obtained using the polyurethane polymer solution tends to increase.
〔ポリウレタンポリマー〕
 本発明で用いられるポリウレタンポリマーは、下記のいずれかの方法によって得ることができる。
(i)ポリカーボネートポリオール(a)とポリイソシアネート化合物(c)とを反応させる方法。
(ii)ポリカーボネートポリオール(a)とポリオール(b)とポリイソシアネート化合物(c)とを反応させる方法。
(iii)ポリカーボネートポリオール(a)とポリイソシアネート化合物(c)と鎖延長剤(B)とを反応させる方法。
(iv)ポリカーボネートポリオール(a)とポリオール(b)とポリイソシアネート化合物(c)と鎖延長剤(B)とを反応させる方法。
 ポリオール成分とポリイソシアネート化合物(c)との反応温度は、好ましくは40~150℃、より好ましくは60~120℃であり、ポリオール(a)と鎖延長剤(B)との反応温度は、通常0~80℃、好ましくは0~60℃である。
 反応条件等の詳細については、後述する〔ポリウレタンポリマー溶液の製造方法〕の欄で説明する。
[Polyurethane polymer]
The polyurethane polymer used in the present invention can be obtained by any of the following methods.
(I) A method of reacting the polycarbonate polyol (a) and the polyisocyanate compound (c).
(Ii) A method of reacting the polycarbonate polyol (a), the polyol (b) and the polyisocyanate compound (c).
(Iii) A method of reacting the polycarbonate polyol (a), the polyisocyanate compound (c) and the chain extender (B).
(Iv) A method of reacting the polycarbonate polyol (a), the polyol (b), the polyisocyanate compound (c), and the chain extender (B).
The reaction temperature between the polyol component and the polyisocyanate compound (c) is preferably 40 to 150 ° C., more preferably 60 to 120 ° C. The reaction temperature between the polyol (a) and the chain extender (B) is usually It is 0 to 80 ° C, preferably 0 to 60 ° C.
Details of the reaction conditions and the like will be described in the section of [Method for producing polyurethane polymer solution] described later.
 有機溶剤としては、各成分を溶解することができるものであれば、特に限定されるものではない。例えば、n-ヘキサン、n-ヘプタン、n-オクタン等の脂肪族炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、クロロホルム、四塩化炭素等のハロゲン化炭化水素類、ジブチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル等のエステル類、N,N-ジメチルアセトアミド等のアミド類等が挙げられる。これらの溶剤は1種用いてもよいし、2種以上を組み合わせて用いてもよい。各成分の配合方法、光輝顔料、着色顔料、有機溶剤、及び各種添加剤、樹脂の添加方法は、特に制限されるものではなく、種々の方法により行うことができ、混合順序及び添加順序も種々の順序で行うことができる。
 ポリウレタンポリマー溶液中のポリウレタンポリマーの割合は、好ましくは5~60質量%、より好ましくは20~50質量%である。
The organic solvent is not particularly limited as long as each component can be dissolved. For example, aliphatic hydrocarbons such as n-hexane, n-heptane and n-octane, aromatic hydrocarbons such as benzene, toluene and xylene, halogenated hydrocarbons such as chloroform and carbon tetrachloride, dibutyl ether, Ethers such as tetrahydrofuran and 1,4-dioxane, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, esters such as ethyl acetate, n-propyl acetate and n-butyl acetate, amides such as N, N-dimethylacetamide And the like. These solvents may be used alone or in combination of two or more. The blending method of each component, the luster pigment, the color pigment, the organic solvent, various additives, and the resin addition method are not particularly limited and can be performed by various methods, and the mixing order and the addition order are various. Can be done in order.
The proportion of the polyurethane polymer in the polyurethane polymer solution is preferably 5 to 60% by mass, more preferably 20 to 50% by mass.
〔ポリウレタンポリマー溶液の製造方法〕
 本発明のポリウレタンポリマー溶液の製造方法は、特に限定されないが、下記工程(1)と、さらに必要に応じて工程(2)を含む方法によれば、効率的に製造することができる。
 工程(1):少なくとも下記式(1)で表される繰り返し単位を有し、両末端が水酸基であるポリカーボネートポリオール(a)と、ポリイソシアネート化合物(c)とを有機溶剤中で反応させてポリウレタンプレポリマー(A)を得る工程
[Method for producing polyurethane polymer solution]
Although the manufacturing method of the polyurethane polymer solution of this invention is not specifically limited, According to the method of including the following process (1) and the process (2) as needed, it can manufacture efficiently.
Step (1): Polyurethane obtained by reacting a polycarbonate polyol (a) having at least a repeating unit represented by the following formula (1) and having both ends being hydroxyl groups and a polyisocyanate compound (c) in an organic solvent. Step of obtaining prepolymer (A)
Figure JPOXMLDOC01-appb-C000014
(式中、Z1及びZ2は、前記のとおりである。)
Figure JPOXMLDOC01-appb-C000014
(In the formula, Z 1 and Z 2 are as defined above.)
 工程(2):有機溶剤中で、ポリウレタンプレポリマー(A)と、該ポリウレタンプレポリマー(A)のイソシアネート基と反応性を有する鎖延長剤(B)とを反応させてポリウレタンポリマー溶液を得る工程
 以下、本発明の製造方法における各工程について説明する。
Step (2): A step of obtaining a polyurethane polymer solution by reacting a polyurethane prepolymer (A) with a chain extender (B) having reactivity with an isocyanate group of the polyurethane prepolymer (A) in an organic solvent. Hereafter, each process in the manufacturing method of this invention is demonstrated.
<工程(1)>
 工程(1)は、少なくとも前記式(1)で表される繰り返し単位を有し、両末端が水酸基であるポリカーボネートポリオール(a)と、ポリイソシアネート化合物(c)と、必要に応じて更にポリオール(b)とを反応させてポリウレタンプレポリマー(A)を得る工程である。
 工程(1)は触媒の存在下又は不存在下で行うことができる。触媒としては、例えば、錫系触媒(トリメチル錫ラウレート、ジブチル錫ジラウレート等)や鉛系触媒(オクチル酸鉛等)等の金属と有機酸又は無機酸の塩、有機金属誘導体、アミン系触媒(トリエチルアミン、N-エチルモルホリン、トリエチレンジアミン等)、ジアザビシクロウンデセン系触媒等が挙げられる。これらの中では、反応性の観点から、ジブチル錫ジラウレートが好ましい。
 工程(1)の反応は、無溶剤下でも有機溶剤存在下でも行うことができる。有機溶剤としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、テトラヒドロフラン、ジオキサン、ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドン、N-エチルピロリドン、酢酸エチル等が挙げられる。N-メチルピロリドン、N-エチルピロリドンは、得られたポリウレタンポリマー溶液の塗膜を作成する際に造膜助剤として働くため好ましい。
 工程(1)は、不活性ガス雰囲気下で行ってもよいし、大気雰囲気下で行ってもよい。
 反応温度は、好ましくは40~150℃、よりが好ましくは60~120℃である。反応温度が40℃未満だと原料が溶解しなかったり、得られたウレタンプレポリマー(A)の粘度が高くて充分に撹拌できない場合があり、反応温度が150℃を超えると副反応が起こる等の不具合が発生する場合がある。
<Step (1)>
The step (1) includes at least a repeating unit represented by the formula (1), a polycarbonate polyol (a) having both ends of a hydroxyl group, a polyisocyanate compound (c), and, if necessary, a polyol ( In this step, b) is reacted to obtain a polyurethane prepolymer (A).
Step (1) can be carried out in the presence or absence of a catalyst. Examples of the catalyst include salts of metals and organic acids or inorganic acids such as tin catalysts (trimethyltin laurate, dibutyltin dilaurate, etc.) and lead catalysts (lead octylate, etc.), organometallic derivatives, amine catalysts (triethylamine). N-ethylmorpholine, triethylenediamine, etc.), diazabicycloundecene catalysts and the like. Among these, dibutyltin dilaurate is preferable from the viewpoint of reactivity.
The reaction in the step (1) can be performed in the absence of a solvent or in the presence of an organic solvent. Examples of the organic solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran, dioxane, dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, N-ethylpyrrolidone, and ethyl acetate. N-methylpyrrolidone and N-ethylpyrrolidone are preferable because they function as a film-forming aid when forming a coating film of the obtained polyurethane polymer solution.
Step (1) may be performed in an inert gas atmosphere or in an air atmosphere.
The reaction temperature is preferably 40 to 150 ° C, more preferably 60 to 120 ° C. If the reaction temperature is less than 40 ° C., the raw material may not be dissolved, or the resulting urethane prepolymer (A) may have a high viscosity and cannot be sufficiently stirred. If the reaction temperature exceeds 150 ° C., side reactions may occur. May occur.
 工程(1)における各成分の割合は、ポリカーボネートポリオール(a)とポリオール(b)との全量を100質量部とした場合に、以下のとおりである。
 ポリカーボネートポリオール(a)の割合は、好ましくは60~95質量部、より好ましくは65~90質量部、更に好ましくは75~90質量部である。この割合が60質量部未満だと、得られるポリウレタンポリマー溶液を塗布して得た塗膜の硬度が低くなる傾向があり、95質量部を超えると塗膜が硬くなりすぎる場合がある。
 ポリオール(b)の割合は、好ましくは0~30質量部、より好ましくは0~10質量部、更に好ましくは0~5質量部である。ポリオール(b)の割合が30質量部を超えると、全ポリオール成分中の前記ポリカーボネートポリオール(a)の割合が少なくなりすぎるため、塗膜の硬度が低くなったり、ポリウレタンポリマーの溶解性が悪くなる場合がある。
The ratio of each component in the step (1) is as follows when the total amount of the polycarbonate polyol (a) and the polyol (b) is 100 parts by mass.
The proportion of the polycarbonate polyol (a) is preferably 60 to 95 parts by mass, more preferably 65 to 90 parts by mass, and still more preferably 75 to 90 parts by mass. If this ratio is less than 60 parts by mass, the hardness of the coating film obtained by applying the resulting polyurethane polymer solution tends to be low, and if it exceeds 95 parts by mass, the coating film may become too hard.
The proportion of the polyol (b) is preferably 0 to 30 parts by mass, more preferably 0 to 10 parts by mass, and still more preferably 0 to 5 parts by mass. When the proportion of the polyol (b) exceeds 30 parts by mass, the proportion of the polycarbonate polyol (a) in all the polyol components becomes too small, so that the hardness of the coating film is lowered or the solubility of the polyurethane polymer is deteriorated. There is a case.
 ポリカーボネートポリオール(a)及びポリオール(b)からなるポリオール成分の全水酸基のモル数に対する、ポリイソシアネート化合物(c)のイソシアネート基のモル数の比は、好ましくは0.8~2.0である。
 前記ポリオール成分の水酸基のモル数が多すぎると、分子量が小さくなりすぎるため、得られる塗膜の伸びが十分に得られない場合がある。また、前記ポリオール成分の水酸基のモル数が少なすぎると、未反応の前記ポリイソシアネート化合物(c)が多量に反応系内に残り、前記鎖延長剤と反応してしまったり、水と反応して分子伸長を起こすため、本発明のポリウレタンポリマー溶液を塗布して得られる塗膜にブツが生じる場合がある。
 ウレタンプレポリマー(A)を得る場合において、ポリカーボネートポリオール(a)及びポリオール(b)からなるポリオール成分とポリイソシアネート化合物(c)との反応は、(a)成分、(b)成分を順不同で(c)成分と反応させてもよく、2種以上の成分を予め混合した後(c)成分と反応させてもよい。
The ratio of the number of moles of isocyanate groups in the polyisocyanate compound (c) to the number of moles of all hydroxyl groups in the polyol component comprising the polycarbonate polyol (a) and polyol (b) is preferably 0.8 to 2.0.
If the number of moles of hydroxyl groups in the polyol component is too large, the molecular weight becomes too small, and the resulting coating film may not be sufficiently stretched. If the number of moles of hydroxyl groups in the polyol component is too small, a large amount of the unreacted polyisocyanate compound (c) remains in the reaction system and may react with the chain extender or react with water. In order to cause molecular elongation, the coating film obtained by applying the polyurethane polymer solution of the present invention may be uneven.
In the case of obtaining the urethane prepolymer (A), the reaction between the polyol component consisting of the polycarbonate polyol (a) and the polyol (b) and the polyisocyanate compound (c) is performed in any order between the components (a) and (b) ( You may make it react with c) component and may make it react with (c) component, after mixing 2 or more types of components previously.
 有機溶剤としては前記のものが挙げられる。
 ポリウレタンプレポリマー(A)を有機溶剤中に分散させる方法に特に制限はない。例えば、(i)有機溶剤をホモミキサーやホモジナイザー等によって撹拌しながら、ウレタンプレポリマー又はウレタンプレポリマー溶液を添加する方法、(ii)ウレタンプレポリマーをホモミキサーやホモジナイザー等によって撹拌しながら、有機溶剤を添加する方法等が挙げられる。
Examples of the organic solvent include those described above.
There is no restriction | limiting in particular in the method to disperse | distribute a polyurethane prepolymer (A) in the organic solvent. For example, (i) a method of adding a urethane prepolymer or a urethane prepolymer solution while stirring an organic solvent with a homomixer or a homogenizer, and (ii) an organic solvent while stirring the urethane prepolymer with a homomixer or a homogenizer And the like.
<工程(2)>
 工程(2)は、有機溶剤中のポリウレタンプレポリマー(A)と、該ポリウレタンプレポリマー(A)のイソシアネート基と反応性を有する鎖延長剤(B)とを反応させてポリウレタンポリマー溶液を得る工程である。
 工程(2)の反応温度は、通常0~80℃、好ましくは0~60℃である。反応は冷却下でゆっくりと行ってもよく、また場合によっては60℃以下の加熱条件下で反応を促進して行ってもよい。
 鎖延長剤(B)の添加量は、得られるウレタンプレポリマー中の鎖延長の起点となるイソシアネート基の当量以下であることが好ましく、イソシアネート基の0.7~0.99当量であることがより好ましい。イソシアネート基の当量を超えて鎖延長剤(B)を添加した場合には、鎖延長されたウレタンポリマーの分子量が低下する場合があり、得られたポリウレタンポリマー溶液を塗布して得た塗膜の強度が低下する場合がある。
 本発明の製造方法により得られたポリウレタンポリマー溶液は、塗布、乾燥して得られる塗膜の強度に特に優れており、耐加水分解性、耐久性、耐熱性、耐摩耗性を有している。
<Step (2)>
Step (2) is a step of obtaining a polyurethane polymer solution by reacting a polyurethane prepolymer (A) in an organic solvent with a chain extender (B) having reactivity with an isocyanate group of the polyurethane prepolymer (A). It is.
The reaction temperature in step (2) is usually 0 to 80 ° C., preferably 0 to 60 ° C. The reaction may be performed slowly under cooling, or in some cases, the reaction may be promoted under heating conditions of 60 ° C. or lower.
The addition amount of the chain extender (B) is preferably equal to or less than the equivalent of the isocyanate group that is the starting point of chain extension in the urethane prepolymer to be obtained, and is preferably 0.7 to 0.99 equivalent of the isocyanate group. More preferred. When the chain extender (B) is added in excess of the equivalent of isocyanate groups, the molecular weight of the chain-extended urethane polymer may decrease, and the coating film obtained by applying the obtained polyurethane polymer solution The strength may decrease.
The polyurethane polymer solution obtained by the production method of the present invention is particularly excellent in the strength of a coating film obtained by coating and drying, and has hydrolysis resistance, durability, heat resistance, and abrasion resistance. .
 本発明のポリウレタンポリマー溶液は、コーティング剤、塗料、プライマー、ウレタンフィルム、合成皮革・人工皮革、ガラス繊維収束剤等の用途に好ましく適用することができる。
 例えば塗料に用いる場合、着色顔料や体質顔料を用いることができる。着色顔料としては、例えば、アゾレーキ系顔料、フタロシアニン顔料、インジゴ系顔料、ペリノン系顔料、ペリレン系顔料、キノフタロン系顔料、ジオキサジン系顔料、キナクリドン系顔料などの有機系顔料、黄鉛、黄色酸化鉄、ベンガラ、二酸化チタンなどの無機系顔料などを挙げることができる。体質顔料としては、カオリン、タルクなどが挙げられる。
 また、添加剤として、その他に任意に可塑剤や安定剤、無機充填剤または触媒などを含んでいてもよい。可塑剤として、例えばジブチルフタレート、ジオクチルフタレート等が挙げられる。安定剤としては、例えば酸化防止剤、紫外線吸収剤などがあげられる。無機充填剤としては、例えば、炭酸カルシウム、酸化チタン、酸化カルシウム、酸化カルシウム、タルク、クレー、硫酸アルミニウム、塩化ビニルペーストレジン等が挙げられる。これら単独又は1種以上を使用することができ、表面処理したものも適宜使用できる。
The polyurethane polymer solution of the present invention can be preferably applied to uses such as coating agents, paints, primers, urethane films, synthetic leather / artificial leather, glass fiber sizing agents and the like.
For example, when used in paint, a color pigment or extender can be used. Examples of the color pigment include organic pigments such as azo lake pigments, phthalocyanine pigments, indigo pigments, perinone pigments, perylene pigments, quinophthalone pigments, dioxazine pigments, quinacridone pigments, yellow lead, yellow iron oxide, Examples thereof include inorganic pigments such as bengara and titanium dioxide. Examples of extender pigments include kaolin and talc.
In addition, as an additive, a plasticizer, a stabilizer, an inorganic filler, a catalyst, or the like may optionally be included. Examples of the plasticizer include dibutyl phthalate and dioctyl phthalate. Examples of the stabilizer include an antioxidant and an ultraviolet absorber. Examples of the inorganic filler include calcium carbonate, titanium oxide, calcium oxide, calcium oxide, talc, clay, aluminum sulfate, vinyl chloride paste resin, and the like. These can be used singly or in combination of one or more, and those subjected to surface treatment can also be used as appropriate.
 次に、実施例及び比較例を挙げて、本発明を更に詳細に説明する。
 なお、ポリカーボネートポリオールの物性の測定、及びポリウレタンフィルムの硬度の測定は、以下の方法により行った。
(1)数平均分子量
 ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算での数平均分子量を測定した。
(2)水酸基価:JIS K 1557のB法に準拠して測定した。
(3)酸価:JIS K 1557の指示薬滴定法に準拠して測定した。
(4)水分:カールフィッシャー水分計を使用した電量滴定法で測定した。
(5)融点、ガラス転移温度:示差走査熱量分析法(測定温度範囲:-100~200℃)により測定した
(6)粘度:E型粘度計を用いて75℃で測定した。
Next, the present invention will be described in more detail with reference to examples and comparative examples.
In addition, the measurement of the physical property of polycarbonate polyol and the measurement of the hardness of a polyurethane film were performed with the following method.
(1) Number average molecular weight The number average molecular weight in terms of polystyrene was measured by gel permeation chromatography (GPC).
(2) Hydroxyl value: Measured in accordance with method B of JIS K 1557.
(3) Acid value: Measured according to the indicator titration method of JIS K 1557.
(4) Moisture: Measured by a coulometric titration method using a Karl Fischer moisture meter.
(5) Melting point, glass transition temperature: measured by differential scanning calorimetry (measurement temperature range: −100 to 200 ° C.) (6) Viscosity: measured at 75 ° C. using an E-type viscometer.
(7)ハーゼン単位色数(APHA)の測定:JIS K 1557に基づき、JIS K 0071-1に準拠して下記のようにハーゼン単位色数を測定した。
(標準液の調製)
 塩化白金酸カリウム1.245g、塩化コバルト・6水塩1.000g、水500m1及び塩酸100mlを1Lのメスフラスコに入れ、完全に溶解したのち、水を標線まで加えた溶液を準備する。この溶液はAPHA標準液No.500に相当し、各種標準液はこのNo.500標準液を水で希釈して調製する。例えばAPHA標準液No.100は、No.500標準液20.0mlを水80.0mlで希釈して調製する。
(測定方法)
 無色透明で底の肉厚が等しく内径約23mmの同質同径の共栓付平底ガラス管で、液量が約100mlになるように底部から同じ高さのところに標線を刻んだ比色管に、泡の入らないように注意して標線までサンプルを入れる。ついで白色板上に適当なAPHA標準液と並べて上方から見て比較し、試料に最も近似した濃度の標準液を求め、その標準液No.をハーゼン単位色数とする。
(7) Measurement of Hazen unit color number (APHA): Based on JIS K 1557, the Hazen unit color number was measured in accordance with JIS K 0071-1 as follows.
(Preparation of standard solution)
A solution in which 1.245 g of potassium chloroplatinate, 1.000 g of cobalt chloride hexahydrate, 500 ml of water and 100 ml of hydrochloric acid are placed in a 1 L measuring flask and completely dissolved and then water is added up to the marked line is prepared. This solution is APHA standard solution no. No. 500 and various standard solutions are No. Prepare a 500 standard solution by diluting with water. For example, APHA standard solution No. 100 is No. 100. Prepare 20.0 ml of 500 standard solution by diluting with 80.0 ml of water.
(Measuring method)
A colorless and transparent flat-bottom glass tube with the same diameter and the same diameter, with the same wall thickness of about 23mm. The colorimetric tube has a marked line at the same height from the bottom so that the liquid volume is about 100ml. Add the sample to the marked line, taking care to avoid bubbles. Next, a suitable standard solution of APHA is placed on a white plate and compared from above, and a standard solution having a concentration closest to the sample is obtained. Is the Hazen unit color number.
(8)ポリウレタンフィルムの硬度の測定
 サンプル台に塗膜サンプルを置き、ペンドラム式硬度計(BYK-Gardner  GmbH社製、ペンドラム ハードネス試験機)で振幅減衰時間を測定した。
 振幅減衰時間が長いほど、硬度が高いということを意味する。
(8) Measurement of hardness of polyurethane film A coating film sample was placed on a sample stage, and the amplitude decay time was measured with a pen drum hardness tester (manufactured by BYK-Gardner GmbH, pen drum hardness tester).
The longer the amplitude decay time, the higher the hardness.
製造例1
〔ポリカーボネートジオール(A)の製造〕
 精留塔、撹拌機、温度計、窒素導入管を備えた500mlのガラス製丸底フラスコに、ジメチルカーボネート199.3g(2.21mol)、1,4-ベンゼンジメタノール65.2g(0.47mol)、1,6-ヘキサンジオール167.2g(1.41mol)、チタンテトラブトキサイド0.03gを仕込み、常圧、撹拌下、窒素気流中でメタノールとジメチルカーボネートとの混合物を留去しながら、エステル交換反応を5時間行った。この間、反応温度は95℃から200℃まで徐々に昇温させ、留出物の組成はメタノール及びジメチルカーボネートの共沸組成ないしはその近傍となるように調節した。
 この後徐々に100mmHgまで減圧し、撹拌下、メタノールとジメチルカーボネートとの混合物を留去しながら、195℃でエステル交換反応を更に4時間行った。反応終了後(メタノール及びジメチルカーボネートの留去終了後)、反応液を室温まで冷却し、ポリカーボネートジオール(A)280gを得た。
 得られたポリカーボネートジオール(A)は、数平均分子量が950、水酸基価が118mgKOH/g、酸価が0.02mgKOH/g、水分が32ppm、融点が33℃、ガラス転移点が-50.9℃、粘度が0.6Pa・s(75℃)、ハーゼン単位色数が40であった。
Production Example 1
[Production of polycarbonate diol (A)]
In a 500 ml glass round bottom flask equipped with a rectifying column, a stirrer, a thermometer and a nitrogen introduction tube, 199.3 g (2.21 mol) of dimethyl carbonate and 65.2 g (0.47 mol) of 1,4-benzenedimethanol ), 167.2 g (1.41 mol) of 1,6-hexanediol and 0.03 g of titanium tetrabutoxide, while distilling off a mixture of methanol and dimethyl carbonate in a nitrogen stream under normal pressure and stirring. The transesterification reaction was carried out for 5 hours. During this time, the reaction temperature was gradually raised from 95 ° C. to 200 ° C., and the composition of the distillate was adjusted to be the azeotropic composition of methanol and dimethyl carbonate or in the vicinity thereof.
Thereafter, the pressure was gradually reduced to 100 mmHg, and a transesterification reaction was further carried out at 195 ° C. for 4 hours while distilling off a mixture of methanol and dimethyl carbonate with stirring. After completion of the reaction (after completion of distillation of methanol and dimethyl carbonate), the reaction solution was cooled to room temperature to obtain 280 g of polycarbonate diol (A).
The obtained polycarbonate diol (A) has a number average molecular weight of 950, a hydroxyl value of 118 mgKOH / g, an acid value of 0.02 mgKOH / g, a water content of 32 ppm, a melting point of 33 ° C., and a glass transition point of −50.9 ° C. The viscosity was 0.6 Pa · s (75 ° C.) and the Hazen unit color number was 40.
製造例2
〔ポリカーボネートジオール(B)の製造〕
 ジメチルカーボネート170.2g(1.89mol)、1,4-ベンゼンジメタノール109.9g(0.80mol)、1,6-ヘキサンジオール94.0g(0.80mol)、チタンテトラブトキサイド0.02gを仕込んだこと以外は製造例1と同様にしてポリカーボネートジオール共重合体230gを得た。
 得られたポリカーボネートジオール共重合体に、1,4-ベンゼンジメタノール2.78g(0.021mol)、1,6-ヘキサンジオール2.38g(0.020mol)を更に添加して、200mmHg、180℃でエステル交換反応を行い、ポリカーボネートジオール(B)235gを得た。
 得られたポリカーボネートジオール(B)は、数平均分子量が999、水酸基価が112mgKOH/g、酸価が0.02mgKOH/g、水分が26ppm、融点が120℃、ガラス転移点が-38.3℃、ハーゼン単位色数が50であった。
Production Example 2
[Production of polycarbonate diol (B)]
170.2 g (1.89 mol) of dimethyl carbonate, 109.9 g (0.80 mol) of 1,4-benzenedimethanol, 94.0 g (0.80 mol) of 1,6-hexanediol, and 0.02 g of titanium tetrabutoxide Except that it was charged, 230 g of polycarbonate diol copolymer was obtained in the same manner as in Production Example 1.
To the obtained polycarbonate diol copolymer, 2.78 g (0.021 mol) of 1,4-benzenedimethanol and 2.38 g (0.020 mol) of 1,6-hexanediol were further added, and 200 mmHg, 180 ° C. The ester exchange reaction was carried out to obtain 235 g of polycarbonate diol (B).
The obtained polycarbonate diol (B) has a number average molecular weight of 999, a hydroxyl value of 112 mgKOH / g, an acid value of 0.02 mgKOH / g, a water content of 26 ppm, a melting point of 120 ° C., and a glass transition point of −38.3 ° C. The Hazen unit color number was 50.
実施例1
(1)ポリウレタンポリマー溶液(I)の製造
 撹拌機、温度計を備えた内容積300mlのガラス製セパラブルフラスコに、製造例1で得られたポリカーボネートジオール(A)30.46g、1,4-ブタンジオール5.55g、ジメチルアセトアミド235.23gを加え、85℃の浴温で撹拌した(内温75~85℃)。30分後、4,4’-ジフェニルメタンジイソシアネート24.03gを加えて同温度で撹拌した。90分後、イソシアナート基含量を定量したところイソシアナート基含有率が0.10%以下であったので反応を終了し、無色透明なポリウレタンポリマー溶液(I)を得た。
(2)ポリウレタンフィルム(I)の作製
 上記(1)で得られたポリウレタンポリマー溶液(I)をガラス基板に塗布し、一晩室温で静置した後、60℃で1時間、120℃で3時間、熱硬化し、ポリウレタンフィルム(I)を得た。得られたポリウレタンフィルム(I)の硬度は、振幅減衰時間で230秒であった。
Example 1
(1) Production of polyurethane polymer solution (I) Into a glass separable flask having an internal volume of 300 ml equipped with a stirrer and a thermometer, 30.46 g of polycarbonate diol (A) obtained in Production Example 1 and 1,4- 5.55 g of butanediol and 235.23 g of dimethylacetamide were added, and the mixture was stirred at a bath temperature of 85 ° C. (internal temperature: 75 to 85 ° C.). After 30 minutes, 24.03 g of 4,4′-diphenylmethane diisocyanate was added and stirred at the same temperature. After 90 minutes, the isocyanate group content was quantified, and the isocyanate group content was 0.10% or less. Therefore, the reaction was terminated, and a colorless and transparent polyurethane polymer solution (I) was obtained.
(2) Production of polyurethane film (I) The polyurethane polymer solution (I) obtained in (1) above was applied to a glass substrate and allowed to stand overnight at room temperature, then at 60 ° C for 1 hour, at 120 ° C for 3 hours. The polyurethane film (I) was obtained by heat curing for a period of time. The hardness of the obtained polyurethane film (I) was 230 seconds in terms of amplitude decay time.
実施例2
 ポリカーボネートジオール(A)をポリカーボネートジオール(B)に変更したこと以外は実施例1と同様にしてポリウレタンポリマー溶液(II)を製造した。また、実施例1と同様にして、ポリウレタンポリマー溶液(II)からポリウレタンフィルム(II)を作製した。得られたポリウレタンフィルム(II)の硬度は、振幅減衰時間で317秒であった。
Example 2
A polyurethane polymer solution (II) was produced in the same manner as in Example 1 except that the polycarbonate diol (A) was changed to the polycarbonate diol (B). Further, in the same manner as in Example 1, a polyurethane film (II) was produced from the polyurethane polymer solution (II). The hardness of the obtained polyurethane film (II) was 317 seconds in terms of amplitude decay time.
比較例1
(1)ポリウレタンポリマー溶液(III)の製造
 撹拌機、温度計を備えた内容積1Lのガラス製セパラブルフラスコに、宇部興産株式会社製、ETERNACOLL(登録商標)「UH-100」(1,6-ヘキサンジオール及び炭酸エステルを原料として製造されたポリカーボネートジオール、モル質量:1000g/mol、水酸基価:112.2mgKOH/g)30.30g、1,4-ブタンジオール5.50g、ジメチルアセトアミド235.30gを加え、85℃の浴温で撹拌した(内温75℃~85℃)。30分後、4,4’-ジフェニルメタンジイソシアネート24.60gを加えて同温度で撹拌した。90分後、イソシアナート基含量を定量したところイソシアナート基含有率が0.10%以下であったので反応を終了し、無色透明なポリウレタンポリマー溶液(III)を得た。
(2)ポリウレタンフィルム(III)の作製
 上記(1)で得られたポリウレタンポリマー溶液(III)を用いて、実施例1と同様にしてポリウレタンフィルム(III)を得た。得られたポリウレタンフィルム(III)の硬度は、振幅減衰時間で126秒であった。
Comparative Example 1
(1) Production of polyurethane polymer solution (III) A 1-liter glass separable flask equipped with a stirrer and a thermometer was placed in an ETERNACOLL (registered trademark) “UH-100” (1, 6) manufactured by Ube Industries, Ltd. -Polycarbonate diol produced using hexanediol and carbonate ester as raw materials, molar mass: 1000 g / mol, hydroxyl value: 112.2 mg KOH / g) 30.30 g, 1,4-butanediol 5.50 g, dimethylacetamide 235.30 g And stirred at a bath temperature of 85 ° C. (inner temperature 75 ° C. to 85 ° C.). After 30 minutes, 24.60 g of 4,4′-diphenylmethane diisocyanate was added and stirred at the same temperature. After 90 minutes, the isocyanate group content was quantified to find that the isocyanate group content was 0.10% or less, so the reaction was terminated to obtain a colorless and transparent polyurethane polymer solution (III).
(2) Production of polyurethane film (III) Using the polyurethane polymer solution (III) obtained in (1) above, a polyurethane film (III) was obtained in the same manner as in Example 1. The hardness of the obtained polyurethane film (III) was 126 seconds in terms of amplitude decay time.
 本発明のポリウレタンポリマー溶液は、塗布、乾燥して得られる塗膜の強度に優れている。また、耐加水分解性、耐久性、耐熱性、耐摩耗性を有し、特に硬度に優れているため、コーティング剤、塗料用組成物等の原料として有用である。
 また、本発明の製造方法によれば、上記特性を有するポリウレタンポリマー溶液を効率的に製造することができる。
The polyurethane polymer solution of the present invention is excellent in the strength of a coating film obtained by coating and drying. In addition, it has hydrolysis resistance, durability, heat resistance, and abrasion resistance, and is particularly excellent in hardness, so that it is useful as a raw material for coating agents, paint compositions and the like.
Moreover, according to the manufacturing method of this invention, the polyurethane polymer solution which has the said characteristic can be manufactured efficiently.

Claims (8)

  1.  少なくとも下記式(1)で表される繰り返し単位を含有し、両末端が水酸基であるポリカーボネートポリオール(a)とポリイソシアネート化合物(c)とを反応させて得られるポリウレタンポリマーと有機溶剤とを含有するポリウレタンポリマー溶液。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Z1及びZ2は、それぞれ独立に、置換基を有していてもよい炭素数1~10の二価の脂肪族炭化水素基を示す。)
    A polyurethane polymer obtained by reacting at least a repeating unit represented by the following formula (1) and having a hydroxyl group at both ends and a polyisocyanate compound (c) and an organic solvent. Polyurethane polymer solution.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, Z 1 and Z 2 each independently represent a divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms which may have a substituent.)
  2.  前記ポリカーボネートポリオール(a)の数平均分子量が200~3000である、請求項1に記載のポリウレタンポリマー溶液。 The polyurethane polymer solution according to claim 1, wherein the number average molecular weight of the polycarbonate polyol (a) is 200 to 3,000.
  3.  前記ポリカーボネートポリオール(a)の前記式(1)で表される繰り返し単位が、下記式(2)で表されるものである、請求項1又は2に記載のポリウレタンポリマー溶液。
    Figure JPOXMLDOC01-appb-C000002
    The polyurethane polymer solution according to claim 1 or 2, wherein the repeating unit represented by the formula (1) of the polycarbonate polyol (a) is represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000002
  4.  前記ポリカーボネートポリオール(a)が、下記式(1)で表される繰り返し単位と下記式(3)で表される繰り返し単位とを有する、請求項1~3のいずれかに記載のポリウレタンポリマー溶液。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Z1及びZ2は前記と同じであり、R3は、置換基を有していてもよい炭素数3~20の二価の炭化水素基を示す。)
    The polyurethane polymer solution according to any one of claims 1 to 3, wherein the polycarbonate polyol (a) has a repeating unit represented by the following formula (1) and a repeating unit represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, Z 1 and Z 2 are the same as described above, and R 3 represents an optionally substituted divalent hydrocarbon group having 3 to 20 carbon atoms.)
  5.  [(前記式(1)で表される繰り返し単位)/(前記式(3)で表される繰り返し単位)]のモル比が1/9~9/1である、請求項4に記載のポリウレタンポリマー溶液。 The polyurethane according to claim 4, wherein a molar ratio of [(repeating unit represented by the formula (1)) / (repeating unit represented by the formula (3))] is 1/9 to 9/1. Polymer solution.
  6.  少なくとも下記式(1)で表される繰り返し単位を含有し、両末端が水酸基であるポリカーボネートポリオール(a)と、ポリイソシアネート化合物(c)とを有機溶剤中で反応させてポリウレタンポリマーを得る工程を含む、請求項1~5のいずれかに記載のポリウレタンポリマー溶液の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (式中、Z1及びZ2は、それぞれ独立に、置換基を有していてもよい炭素数1~10の二価の脂肪族炭化水素基を示す。)
    A step of obtaining a polyurethane polymer by reacting a polycarbonate polyol (a) containing at least a repeating unit represented by the following formula (1) and having both ends being hydroxyl groups and a polyisocyanate compound (c) in an organic solvent. The method for producing a polyurethane polymer solution according to any one of claims 1 to 5, further comprising:
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, Z 1 and Z 2 each independently represent a divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms which may have a substituent.)
  7.  前記ポリカーボネートポリオール(a)が、下記式(1)で表される繰り返し単位と下記式(3)で表される繰り返し単位を有するものである、請求項6に記載のポリウレタンポリマー溶液の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    (式中、Z1及びZ2は前記と同じであり、R3は、置換基を有していてもよい炭素数3~20の二価の炭化水素基を示す。)
    The method for producing a polyurethane polymer solution according to claim 6, wherein the polycarbonate polyol (a) has a repeating unit represented by the following formula (1) and a repeating unit represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, Z 1 and Z 2 are the same as described above, and R 3 represents an optionally substituted divalent hydrocarbon group having 3 to 20 carbon atoms.)
  8.  請求項1~5のいずれかに記載のポリウレタンポリマー溶液を含有する塗料組成物。 A coating composition containing the polyurethane polymer solution according to any one of claims 1 to 5.
PCT/JP2010/059202 2009-06-02 2010-05-31 Polyurethane polymer solution and method for manufacturing the same WO2010140566A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011518438A JP5751169B2 (en) 2009-06-02 2010-05-31 Polyurethane polymer solution and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-132975 2009-06-02
JP2009132975 2009-06-02

Publications (1)

Publication Number Publication Date
WO2010140566A1 true WO2010140566A1 (en) 2010-12-09

Family

ID=43297700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059202 WO2010140566A1 (en) 2009-06-02 2010-05-31 Polyurethane polymer solution and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JP5751169B2 (en)
WO (1) WO2010140566A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157487A (en) * 2010-02-01 2011-08-18 Ube Industries Ltd Polyurethane resin and polyurethane resin composition
WO2012121311A1 (en) * 2011-03-08 2012-09-13 宇部興産株式会社 Polyurethane compound, composition containing same, aqueous polyurethane dispersion composition, and substances resulting from curing same
WO2022191102A1 (en) * 2021-03-08 2022-09-15 旭化成株式会社 Curable composition and synthetic leather

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3547889A (en) * 1967-03-17 1970-12-15 Huels Chemische Werke Ag Coatings based on polycarbonates condensed with trifunctional isocyanates
JPH02251523A (en) * 1989-03-27 1990-10-09 Mitsui Petrochem Ind Ltd Production of aromatic polycarbonate diol
DE4100589A1 (en) * 1991-01-11 1992-07-16 Bayer Ag Concentrates of additives for plastics - contain additives dispersed in mainly aliphatic homo- or co-polycarbonate or block (co)polycarbonate binder
JPH11322887A (en) * 1998-04-15 1999-11-26 Basf Ag Production of thermoplastic polyurethane
WO2010013579A1 (en) * 2008-08-01 2010-02-04 宇部興産株式会社 Polycarbonate diol and polycarbonate diol copolymer
WO2010090186A1 (en) * 2009-02-06 2010-08-12 宇部興産株式会社 Polyurethane resin aqueous dispersion and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024736A (en) * 1988-06-22 1990-01-09 Hitachi Maxell Ltd Polycarbonate polyol, aromatic polycarbonate polyurethane resin, coating material, cast film and magnetic recording medium
JPH0289214A (en) * 1988-09-26 1990-03-29 Hitachi Maxell Ltd Magnetic recording medium
SE528577C2 (en) * 2005-03-23 2006-12-19 Perstorp Specialty Chem Ab Waterborne polyurethane dispersion and its use

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3547889A (en) * 1967-03-17 1970-12-15 Huels Chemische Werke Ag Coatings based on polycarbonates condensed with trifunctional isocyanates
JPH02251523A (en) * 1989-03-27 1990-10-09 Mitsui Petrochem Ind Ltd Production of aromatic polycarbonate diol
DE4100589A1 (en) * 1991-01-11 1992-07-16 Bayer Ag Concentrates of additives for plastics - contain additives dispersed in mainly aliphatic homo- or co-polycarbonate or block (co)polycarbonate binder
JPH11322887A (en) * 1998-04-15 1999-11-26 Basf Ag Production of thermoplastic polyurethane
WO2010013579A1 (en) * 2008-08-01 2010-02-04 宇部興産株式会社 Polycarbonate diol and polycarbonate diol copolymer
WO2010090186A1 (en) * 2009-02-06 2010-08-12 宇部興産株式会社 Polyurethane resin aqueous dispersion and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157487A (en) * 2010-02-01 2011-08-18 Ube Industries Ltd Polyurethane resin and polyurethane resin composition
WO2012121311A1 (en) * 2011-03-08 2012-09-13 宇部興産株式会社 Polyurethane compound, composition containing same, aqueous polyurethane dispersion composition, and substances resulting from curing same
JPWO2012121311A1 (en) * 2011-03-08 2014-07-17 宇部興産株式会社 Polyurethane compound, composition containing the same, aqueous polyurethane dispersion composition and cured product thereof
WO2022191102A1 (en) * 2021-03-08 2022-09-15 旭化成株式会社 Curable composition and synthetic leather

Also Published As

Publication number Publication date
JP5751169B2 (en) 2015-07-22
JPWO2010140566A1 (en) 2012-11-22

Similar Documents

Publication Publication Date Title
JP5668478B2 (en) Polyurethane resin aqueous dispersion and method for producing the same
TWI443125B (en) Polycarbonate diol
JP5720246B2 (en) Aqueous polyurethane resin dispersion, process for producing the same, and coating composition containing the same
JP5553020B2 (en) Aqueous polyurethane resin dispersion and method for producing the same
JP6252070B2 (en) Polycarbonate diol
JP6078988B2 (en) Method for producing polycarbonate polyol
CN108409955A (en) Automobile component and automobile
JPWO2012121311A1 (en) Polyurethane compound, composition containing the same, aqueous polyurethane dispersion composition and cured product thereof
JP2013209492A (en) Polycarbonate diol
JP2016044240A (en) Water-based polyurethane resin emulsion composition, synthetic leather using the composition and surface preparation agent for artificial leather
JP2020512430A (en) A process for producing polyurethanes exhibiting low blooming effect and good low temperature flexibility based on urethane-containing polymeric hydroxyl compounds.
JP5751169B2 (en) Polyurethane polymer solution and method for producing the same
JP2020084163A (en) Polycarbonate polyol and composition for forming polyurethane resin
CN110041484B (en) Highly branched polycarbonate polyol compositions
JP4969175B2 (en) Coating agent composition
JP2009235291A (en) Polycarbonatepolyol and its producing method
WO2016125893A1 (en) Urethane resin composition for coating and textured coating in which said composition is used
JP2014198808A (en) Polycarbonate diol
JP2013166852A (en) Polycarbonate diol
JP2012184380A (en) Polyurethane compound, composition containing the same and cured product thereof
JP2019131766A (en) Aqueous polyurethane resin composition, artificial leather using the composition, and surface treatment agent for leather
JP2019044003A (en) Two-part curable urethane resin composition and film molding
JP2011126945A (en) Aqueous polyurethane resin composition and aqueous coating composition using the same
JP2019019211A (en) Polyurethane, and cured product thereof
WO2022158606A1 (en) Polycarbonate polyol, production method therefor, and composition thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10783349

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011518438

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10783349

Country of ref document: EP

Kind code of ref document: A1