WO2010140358A1 - 補聴器、補聴システム、歩行検出方法および補聴方法 - Google Patents

補聴器、補聴システム、歩行検出方法および補聴方法 Download PDF

Info

Publication number
WO2010140358A1
WO2010140358A1 PCT/JP2010/003684 JP2010003684W WO2010140358A1 WO 2010140358 A1 WO2010140358 A1 WO 2010140358A1 JP 2010003684 W JP2010003684 W JP 2010003684W WO 2010140358 A1 WO2010140358 A1 WO 2010140358A1
Authority
WO
WIPO (PCT)
Prior art keywords
hearing aid
wind noise
signal
unit
detection unit
Prior art date
Application number
PCT/JP2010/003684
Other languages
English (en)
French (fr)
Inventor
御前慎哉
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201080002262.1A priority Critical patent/CN102124758B/zh
Priority to EP10783146.3A priority patent/EP2439961B1/en
Priority to US13/057,227 priority patent/US8391524B2/en
Priority to JP2011500777A priority patent/JP5485256B2/ja
Publication of WO2010140358A1 publication Critical patent/WO2010140358A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • H04R25/505Customised settings for obtaining desired overall acoustical characteristics using digital signal processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/41Detection or adaptation of hearing aid parameters or programs to listening situation, e.g. pub, forest
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2410/00Microphones
    • H04R2410/07Mechanical or electrical reduction of wind noise generated by wind passing a microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic

Definitions

  • the present invention relates to a hearing aid having a function of detecting walking.
  • a hearing aid is a system used by a hearing impaired person or a person with impaired hearing to assist hearing.
  • the hearing aid converts an externally generated acoustic signal into an electrical signal by a microphone, amplifies the level of the electrical signal, converts it again into an acoustic signal by a receiver such as an earphone, and outputs it as an audible sound heard by the user.
  • the sound signal captured by the microphone is required by the user such as life noise and environmental noise, as well as sound information necessary for the user's life such as conversational voice, output sound of television and radio, doorbell of interphone and telephone etc. It also includes various disturbing sounds that disturb the recognition of sound information. Therefore, in hearing aids, various measures have been made to combine amplification and attenuation so as to be easy for the user to hear, including non-linear amplification processing in which low-level sounds are amplified and high-level sounds are not amplified.
  • digital hearing aids which convert an acoustic signal captured by a microphone into a digital signal and perform hearing aid processing by digital signal processing.
  • the captured signal is divided into a plurality of bands, and the discrimination of the desired signal / jamming signal (for example, voice / non-voice) for each band is processed at high speed, and only the desired signal (for example, voice signal) is extracted.
  • Hearing aids have been provided that perform various noise suppression processes.
  • a hearing aid equipped with a function such as directional sound collection that extracts only an acoustic signal arriving from the front by using input time differences to microphones installed at two places before and after the hearing aid.
  • a type of hearing aid provided with a storage area inside the hearing aid, holding a plurality of hearing aid processing algorithms, and automatically or automatically switching the hearing aid processing according to the surrounding environment of the hearing aid user.
  • the hearing aid configured as shown in FIG. 1 analyzes the surrounding environment using an HMM (Hidden Markov Model, HMM) for the input sound signal, identifies and classifies the surrounding environment as a predefined scene, and corresponds to the corresponding hearing aid It switches to a processing algorithm (for example, refer to patent documents 1).
  • HMM Hidden Markov Model
  • the hearing aid configured as shown in FIG. 2 analyzes the steadyness level of ambient noise, switches directivity processing and noise suppression processing using the spectral subtraction method, or operates both simultaneously, according to the quality of ambient noise. To improve speech intelligibility (see, for example, Patent Document 2).
  • the conventional hearing aid 1001 shown in FIG. 1 is a hearing aid of a type in which an acoustic signal captured by the microphone 1002 is subjected to hearing aid processing by the hearing aid processor 1003 and output from the receiver 1004.
  • the hearing aid 1001 extracts acoustic features from the acoustic signal in the signal analysis unit 1005, and identifies an instantaneous acoustic environment situation in the signal identification unit 1006.
  • the hearing aid processing unit 1003 switches the hearing aid processing algorithm according to the acoustic environment situation identified by the signal identification unit 1006.
  • the identification of the instantaneous acoustic environment state in the signal identification unit 1006 is performed by a combination of auditory-based features such as sound intensity, spectrum shape, harmonic structure extracted by the signal analysis unit 1005, and HMM is used as an identification algorithm.
  • the HMM is a statistical method widely used in speech recognition and the like, and is a probability model that estimates an output state for an unknown input from past state transitions and appearance probability distributions in each state.
  • a training device 1007 is needed to properly initialize the parameters so as not to be in local optimum.
  • the conventional hearing aid 2001 shown in FIG. 2 is a hearing aid of a type in which acoustic signals taken in by a plurality of microphones 2002 a and 2002 b are subjected to hearing aid processing by a hearing aid processor 2003 and output from a receiver 2004.
  • the hearing aid 2001 causes the signal analysis unit 2005 to calculate the signal level of the input acoustic signal and the degree of steadyness of the acoustic signal captured by the microphones 2002a and 2002b.
  • the hearing aid processor 2003 switches between the directivity processing and the noise suppression processing using the spectral subtraction method, or operates both of them simultaneously in accordance with the stationary degree of the input acoustic signal calculated by the signal analyzer 2005.
  • the input / output characteristic table of the non-linear processing is switched according to the input sound signal level calculated by the signal analysis unit 2005.
  • the spectral subtraction method is a method of subtracting noise components estimated in the frequency domain from an input signal, and is a noise suppression method excellent in the ability to remove stationary noise such as fan noise and background noise.
  • the above-mentioned conventional hearing aids have the problem that processing different from the processing sometimes required or the processing to be performed is selected in order to extract features or changes in ambient noise and switch hearing aid processing algorithms. .
  • the hearing aid processing required depends on the usage scene of the hearing aid, so the hearing aid processing algorithm may be switched in the same manner. Not that. For example, if directional processing is performed while walking in a city, even if there is much noise in the surroundings, it is difficult for the user to avoid danger without being aware of the approach of danger from the surroundings.
  • conventional hearing aids switch to hearing aid processing that performs directivity processing and noise suppression processing because the surrounding acoustic environment is noisy.
  • the conversation scene is the main purpose of the deaf person to use the hearing aid, it is the hearing aid process that judges the conversation scene by detecting the sound component contained in the input sound signal and performs the hearing aid processing only on the sound signal. It has been widely addressed as a main function.
  • the output sound of television and radio can be detected relatively easily by feature analysis of input sound signals, and based on this detection, only the output sound of television and radio is listened to Hearing aids are also provided.
  • a system in which the hearing aid and the television terminal are directly connected via an external device such as a remote control is also provided, making it easier for the user to hear the output sound of the television.
  • the walk scene at the time of going out, etc. has hardly been assumed until now.
  • the outing scene is a lot of noise and noise and there are various types of noise as compared with the conversation scene and the viewing scene in the house.
  • the conventional hearing aid it switches to the hearing aid processing which removes noise components other than conversational speech by noise suppression processing, or extracts only a specific acoustic signal coming from the front, for example, by directivity processing.
  • the outing scene when walking in the city instead of in conversation, it is necessary to remove the notification sound representing a danger and the noise of a car approaching from behind by the noise suppression processing and the directivity processing. It leads to a very dangerous situation.
  • an object of the present invention to provide an adaptive hearing aid that detects a walking state of a user and automatically switches hearing aid processing according to the moving state and the surrounding environment.
  • the hearing aid of the present invention includes a sound pickup unit that picks up an external sound signal, and a hearing aid processing unit that switches a plurality of algorithms to the sound signal picked up to perform hearing aid processing And an output unit for outputting a sound signal subjected to hearing aid processing, the wind noise detection unit detecting a wind noise mixed in at the time of sound collection of the collected sound signal, and The hearing aid processing unit switches an algorithm of the hearing aid processing on the collected sound signal based on the temporal change of the detected wind noise.
  • the hearing aid of the present invention can detect the walking state of the user from wind noise affected by the walking state of the hearing aid user, and automatically switch to the hearing aid processing adapted to the state of the user. Can.
  • the time variation detection unit in the hearing aid of the present invention is a pulse detection unit that detects pulse nature variation of wind noise as wind noise variation, and repetition detection that detects presence or absence of temporal repetition of the detected pulse nature variation. It may be the composition provided with a part.
  • the hearing aid of the present invention can detect whether wind noise is generated in synchronization with the walking of the user and can detect the walking state of the user.
  • the sound pickup unit in the hearing aid of the present invention includes the first microphone and the second microphone, the wind noise detection unit is the main signal of the sound signal collected by the first microphone, and the second microphone is sound pickup
  • the wind noise detection unit includes a coefficient variable filter unit that updates the filter coefficient so that the difference between the estimated signal obtained by filtering the main signal and the reference signal is minimized, using the acoustic signal as a reference signal.
  • An error signal that is the difference between the estimated signal and the reference signal may be detected as wind noise.
  • the hearing aid of the present invention can more accurately detect wind noise included in the collected acoustic signal, and based on that, the walking state of the user can be detected more accurately.
  • the sound pickup unit in the hearing aid of the present invention includes the first microphone and the second microphone, the wind noise detection unit is the main signal of the sound signal collected by the first microphone, and the second microphone is sound pickup
  • the wind noise detection unit includes a coefficient variable filter unit that updates the filter coefficient so that the difference between the estimated signal obtained by filtering the main signal and the reference signal is minimized, using the acoustic signal as a reference signal.
  • the filter coefficient may be detected as wind noise.
  • the hearing aid of the present invention can more accurately detect the generation state of wind noise included in the collected acoustic signal, and can detect the walking state of the user more accurately based thereon.
  • the pulse detection unit in the hearing aid of the present invention includes: a fluctuation component extraction unit that extracts fluctuation components of the filter coefficient; and a gain control unit that controls the gain of the fluctuation components based on the smoothing level of the extracted fluctuation components.
  • the pulse detection unit may be configured to detect the pulsatility fluctuation of the filter coefficient based on the gain controlled fluctuation component level.
  • the hearing aid of the present invention can more accurately detect the change section of the wind noise generation included in the collected sound signal, and can detect the walking state of the user more accurately based thereon.
  • the gain control unit in the hearing aid of the present invention may be configured to control the gain of the fluctuation component based on the length of time in which the smoothing level of the fluctuation component exceeds a predetermined threshold.
  • the hearing aid of the present invention can cope with wind noise that changes according to the walking speed of the user, and can detect the walking state of the user even if the walking speed of the user changes.
  • the hearing aid of the present invention uses the acoustic signal collected by the first microphone and the acoustic signal collected by the second microphone to identify a directivity signal having directivity sensitivity in the first direction, and And a directivity control unit capable of switching the output of the directivity synthesis unit between the directivity signal and the nondirectional signal. And the directivity control unit does not detect the temporal repetition of the pulsatility change by the repetition detection unit, and the non-directional signal when the temporal repetition of the pulsatility fluctuation is detected. The configuration may be switched to output.
  • the hearing aid of the present invention can automatically change the way in which the ambient sound is heard, according to the walking state of the user.
  • the hearing aid of the present invention is attached to one of the user's ears, and transmits the temporal variation of wind noise detected by the time variation detection unit to another hearing aid attached to the other ear of the user.
  • a receiver and receiver for receiving temporal fluctuation of wind noise detected in another hearing aid, and the hearing aid processor, the temporal fluctuation of wind noise detected by the temporal fluctuation detection unit and the wind received by the transmitter and receiver The configuration may be such that the hearing aid algorithm for the collected sound signal is switched based on the temporal variation of noise.
  • the hearing aid of the present invention can share the detection state of wind noise between hearing aids worn on both ears, and can more accurately detect the walking state of the user. Moreover, this hearing aid can perform hearing aid processing more adapted to the user's condition by switching the hearing aid processing according to the detection result of the wind noise in the binaural hearing aid.
  • the hearing aid system is a hearing aid system comprising the above hearing aids in pairs, wherein the hearing aid transmits the temporal fluctuation of wind noise detected by the temporal fluctuation detection unit to another hearing aid And a hearing aid processor for detecting temporal variation of wind noise detected by the temporal variation detection unit and temporal variation of wind noise received by the transmission and reception unit. And switch the hearing aid algorithm for the collected sound signal.
  • the hearing aid system of the present invention can share the detection state of wind noise between the hearing aids worn on both ears, and can detect the walking state of the user more accurately.
  • a sound collection step of collecting an external sound signal includes a wind noise detection step of detecting wind noise mixed in at the time of sound collection of the collected sound signal, and detection It includes a time variation detection step of detecting the time variation of the wind noise, and a determination step of determining that the user is in the walking state in the case of repetitive pulsating variation of the wind noise.
  • the walking detection method of the present invention can detect the walking state.
  • the present invention can be realized not only as an apparatus, but also as a method in which processing means constituting the apparatus are steps, or a program which causes the computer to execute the steps, or a computer reading the program It can be realized as a recording medium such as a possible CD-ROM, or as information, data or signals indicating the program. And these programs, information, data, and signals may be distributed via a communication network such as the Internet.
  • an adaptive hearing aid that can easily detect the walking state of a hearing aid user and can automatically switch to a hearing aid process suitable for a walking scene that is a typical usage scene of a hearing aid.
  • FIG. 1 is a block diagram showing the configuration of a conventional hearing aid shown in Document 1.
  • FIG. 2 is a block diagram showing the configuration of a conventional hearing aid shown in Document 2.
  • FIG. 3 is a block diagram showing the basic configuration of the hearing aid in the first to fourth embodiments of the present invention.
  • FIG. 4 is a block diagram showing a detailed configuration of the hearing aid in Embodiment 1 of the present invention.
  • FIG. 5 is a diagram showing the relationship between the output of the wind noise detector shown in FIG. 4 and the output of the edge detector.
  • FIG. 6 is a block diagram showing a detailed configuration of the hearing aid in the second embodiment of the present invention.
  • FIG. 7 is a block diagram showing the detailed configuration of the hearing aid in Embodiment 3 of the present invention.
  • FIG. 8 is a block diagram showing a detailed configuration of the hearing aid in the fourth embodiment of the present invention.
  • FIG. 9 is a flowchart showing the walking detection method according to the first and second embodiments of the present invention.
  • FIG. 10 is a block diagram showing an example of a detailed configuration of the hearing aid when the embodiments of the present invention are combined.
  • FIG. 11 is a diagram showing output signals (experimental data) of each processing unit in the detection of walking of the hearing aid shown in FIG. 10 of the invention.
  • Embodiment 1 The configuration and operation of the hearing aid 1 according to the present embodiment will be described with reference to FIGS. 3 and 5.
  • the hearing aid 1 of the present embodiment includes a microphone 2, a hearing aid processor 3, a receiver 4, a wind noise detector 5, and a walking detector 6.
  • the walking detection unit 6 further includes a pulse detection unit 61 and a repetition detection unit 62.
  • the microphone 2 captures an externally generated acoustic signal into the hearing aid 1.
  • the hearing aid processing unit 3 performs hearing aid processing such as amplification and attenuation according to the user's hearing level and the like on the sound signal taken in by the microphone 2, and outputs the sound signal subjected to hearing aid processing to the receiver 4.
  • the receiver 4 again outputs the acoustic signal subjected to hearing aid processing to the outside to make the user listen.
  • the wind noise detection unit 5 detects the level of wind noise mixed in at the time of collecting the sound signal taken in by the microphone 2 and outputs the level to the walking detection unit 6 as a wind noise generation signal.
  • the pulse detection unit 61 of the walking detection unit 6 extracts the pulse-like variation of the wind noise generation signal, and repeatedly outputs information on the pulse-like variation to the detection unit 62.
  • the repetition detection unit 62 of the walking detection unit 6 detects the walking state of the user by detecting the temporal repetition of the pulse nature variation of the wind noise generation signal, and outputs it to the hearing aid processing unit 3 as a walking detection signal.
  • the hearing aid processing unit 3 switches the hearing aid processing algorithm according to the walking state detected by the walking detection unit 6.
  • the wind noise detector 5 includes a low pass filter (LPF) 51 and a comparator 52.
  • LPF low pass filter
  • the pulse detection unit 61 of the walking detection unit 6 includes an edge detection unit 611, and the repetition detection unit 62 includes a counter 621 and a comparator 622.
  • the frequency component of the input sound signal is concentrated in the low frequency range as compared with the case where only the voice component is contained.
  • an acoustic signal captured by the microphone 2 is input to the low pass filter 51 to extract low frequency components. Since it is known experimentally that many components of wind noise occur at 1 kHz or less, the cutoff frequency of the low pass filter may be around 1 kHz. Of course, the same effect can be expected even if a lower or higher cutoff frequency is used to extract the wind noise feature more significantly.
  • the low pass filter it is also possible to use a band pass filter that removes the low frequency component after removing the DC component.
  • the same effect can be obtained with a configuration in which only low frequency components are extracted using a frequency analyzer (FFT). Then, the level of the extracted low frequency component is compared with a predetermined threshold (Th1) by the comparator 52, and when the low frequency component level is equal to or higher than the threshold, it is determined that wind noise is generated. In the case, it is determined that no wind noise has occurred. In addition, what is necessary is just to determine experimentally the value which is easy to detect generation
  • Th1 a predetermined threshold
  • the predetermined threshold (Th1) is about 1 m / s. It should be a value that can detect the occurrence of wind noise. Further, the predetermined threshold (Th1) may be constant, or may be variable such as changing when the generation of wind noise continues for a predetermined time or more.
  • the wind noise detection unit 5 detects the generation of wind noise (step S902), and outputs it to the walking detection unit 6 as a wind noise generation signal.
  • the wind noise generation signal is a flag signal such as shown in FIG. 5 in which the time interval in which the wind noise is not detected is Low and the time interval in which the wind noise is detected is High.
  • the edge detection unit 611 of the pulse detection unit 61 of the walk detection unit 6 detects a change from low to high and / or a change from high to low of the wind noise generation signal. Thereby, the switching of the wind noise generation is detected, and information on the timing of the switching is repeatedly output to the detecting unit 62 (step S903).
  • the repetition detection unit 62 causes the counter 621 to count switching of wind noise generation within a predetermined time.
  • the counted number of wind noise switching is compared with a predetermined threshold (Th2) by the comparator 622 (step S904), and if the number of wind noise switching is equal to or greater than the threshold, it is determined to be walking ( Step S905) If it is less than the threshold value, it is determined that the user is not in the walking state (step S907).
  • a predetermined threshold Th2
  • the number of times of wind noise generation switching within a predetermined time is large, it means that the frequency of switching wind noise generation is high and one wind noise generation time is short. That is, in such a case, instantaneous wind noise is repeatedly generated (see FIG. 5A), and it can be determined that the user is in a walking state.
  • the walking detection unit 6 can detect the walking state of the user by detecting the temporal repetition of the pulse nature variation of the wind noise generation signal.
  • the predetermined threshold (Th2) may be determined experimentally so as to distinguish between normal wind noise and wind noise in a walking state. Specifically, since the pace when walking slowly and without purpose is said to be about 100 to 110 steps per minute, the predetermined threshold (Th2) may be a value according to the number of steps. Further, the predetermined threshold (Th2) may be constant, or may be variable such as changing according to the condition of the surrounding environment.
  • the walking detection unit 6 detects the walking state of the user, and outputs the detected walking state to the hearing aid processing unit 3 as a walking detection signal.
  • the walking detection signal is a flag signal such that the time period in which the walking state of the user is not detected is Low and the time period in which the walking state is detected is High.
  • the hearing aid processor 3 switches the hearing aid processing algorithm according to the walk detection signal.
  • the walking state is not detected, switching of the hearing aid processing algorithm according to the normal surrounding acoustic environment is executed, and when the walking state is detected, the walking mode different from the normal hearing aid processing algorithm switching Execute hearing aid processing with.
  • switching processing of a normal hearing aid processing algorithm will be described as processing as follows.
  • the input sound signal level is compared with a predetermined threshold value, and if the signal level is less than the threshold value, it is determined that the user is in a quiet environment such as indoors and noise suppression processing is not performed.
  • the threshold value is exceeded, it is determined that the user is in a noisy environment such as the outdoors, and noise suppression processing is performed to perform hearing aid processing on only the sound component included in the input sound signal.
  • the hearing aid processing unit 3 switches to a hearing aid processing algorithm according to the input sound signal level when the walking detection signal indicates that it is not in the walking state, and performs noise suppression processing when the signal level is equal to or higher than the predetermined threshold. If it is less than the threshold value, noise suppression processing is not performed (S 908).
  • the walk detection signal indicates that the user is walking
  • switching of the hearing aid processing algorithm according to the conventional input sound signal level is not performed, for example, when the signal level is equal to or higher than a predetermined threshold. Even though the noise suppression process is not performed, the amplification amount of the hearing aid process is suppressed (S906).
  • the hearing aid processing algorithm is switched according to the input sound signal level.
  • the noise component contained in the acoustic signal is removed to alleviate the noisy and unpleasant state.
  • noise suppression processing is not performed and hearing aid processing is performed without removing signals other than the voice component from the input sound signal, which is dangerous for other than voice signals. Even when there is a sound, the user can hear the danger sound.
  • recent hearing aids have a function of recording the usage state of the user and utilizing it for auxiliary information at the time of subsequent use and fitting. For example, it is a function of recording volume operation information of the user and setting it as an initial volume at the time of next use.
  • this function By utilizing this function and recording the walking state of the user, it is possible to infer the usage scene of the user. That is, when many walking states are recorded, it is estimated that the user's walking frequency and going out frequency are high, and for example, the user's usage scene is readjusted by re-adjusting the threshold etc. so that the walking state can be detected more easily.
  • a matched hearing aid process can be performed.
  • the threshold may be switched to a threshold that makes it easy to detect the walking state only in the time zone in which a large number of walking states are detected.
  • a hearing aid using a portable music player, in particular a music player with a noise canceling function, or a microphone of headphones or earphones (this microphone may be an existing one or a new one).
  • a portable music player in particular a music player with a noise canceling function, or a microphone of headphones or earphones (this microphone may be an existing one or a new one).
  • wind noise is detected to detect a walking state. Then, when the walking state is not detected, only the reproduction music signal is output from the earphone, and when the walking state is detected, the ambient sound is mixed to an extent that does not disturb the music viewing and is output from the earphone Processing can be performed.
  • the microphone 2 is composed of the microphones 2a and 2b.
  • the description of the same configuration as the hearing aid 1 of the first embodiment will be omitted, and the wind noise detection unit 5 of the present embodiment and the pulse detection unit 61 of the walking detection unit 6 will be described in detail.
  • the wind noise detection unit 5 of the present embodiment is configured of an adaptive filter in which one acoustic signal captured by the microphones 2a and 2b is a main signal and the other is a reference signal. Specifically, the variable coefficient filter 53, the subtractor 54, and the coefficient update unit 55 are provided.
  • the pulse detection unit 61 of the walking detection unit 6 includes a level detection unit 612, a comparator 613, and a pulse determination unit 614.
  • the adaptive filter of the wind noise detector 5 will be described.
  • wind noise is generated by utilizing the feature that the frequency component of the input acoustic signal is concentrated in the low frequency range. Detected.
  • wind noise is caused by turbulence generated near the inlet of the microphone as a feature of wind noise, so that the wind noise mixed in at the time of sound collection of acoustic signals captured by multiple microphones is uncorrelated
  • the generation of wind noise is detected from the degree of convergence and divergence of an adaptive filter whose main signal is a sound signal captured by the microphones 2a and 2b.
  • the coefficient variable filter 53 receives the main signal, which is an acoustic signal captured by the microphone 2b, and performs filtering processing using the filter coefficient from the coefficient updating unit 55 to output an estimated signal.
  • the subtractor 54 calculates the difference between the estimated signal and the reference signal acquired by the microphone 2a, and outputs the difference as an error signal.
  • the coefficient updating unit 55 adaptively updates the filter coefficient of the variable coefficient filter 53 so that the error signal calculated by the subtractor 54 is minimized.
  • the two input acoustic signals taken in by the microphones 2a and 2b include only the voice component
  • the two input acoustic signals are substantially the same signal having a delay according to the distance between the microphones. Accordingly, the adaptive filter using the acoustic signal captured by the microphone 2b as the main signal and the acoustic signal captured by the microphone 2a as the reference signal converges, and the error signal becomes close to zero.
  • the adaptive filter diverges without converging and the error signal becomes large. Become.
  • the wind noise detection unit 5 detects the occurrence of wind noise, and outputs an error signal as a wind noise generation signal to the walking detection unit 6 (step S902).
  • the wind noise generation signal is a continuous quantity corresponding to the generation amount of wind noise, and is a signal that approaches zero when wind noise is not generated, and the level increases as the wind noise increases.
  • the level detection unit 612 of the pulse detection unit 61 of the walking detection unit 6 detects the level of the wind noise generation signal.
  • the simplest configuration of the level detection unit 612 is a configuration that takes the absolute value of the wind noise generation signal, and may include smoothing processing as necessary.
  • the comparator 613 compares the detected wind noise generation level with a predetermined threshold (Th3).
  • the pulse determination unit 614 compares the width of the time when the wind noise generation level exceeds the predetermined threshold (Th3) with the predetermined time width (Th4), and the generation of the wind noise indicates pulsatility when it is within the predetermined width. Judge to have.
  • the predetermined threshold (Th3) and the predetermined time width (Th4) may be determined experimentally so as to easily detect wind noise in the walking state.
  • the predetermined threshold value (Th3) may be a value capable of detecting wind noise of about 1 m / s from the speed at which a standard person walks and the wind speed of a naturally blowing wind, and the predetermined time width (Th4) Since it is said that the pace when walking is about 100-110 steps per minute, it may be about 1 second which is a required time per about 1.2 steps. Further, the predetermined threshold (Th3) and the predetermined time width (Th4) may be constant, or variable according to the wind noise generation level detected by the level detection unit 612. It is also good. For example, when the walking speed is high, the generation level of wind noise increases, and since the walking speed is high, the pulse width of the wind noise generation becomes short.
  • the predetermined threshold (Th3) and the predetermined time width (Th4) are not limited to the combination of the first and second two, and may be a combination in which three or more thresholds are provided.
  • the pulse detection unit 61 detects the pulsatility fluctuation of the wind noise generation signal (step S903), and repeatedly outputs the detection result of the pulsatility fluctuation of the wind noise generation signal to the detection unit 62.
  • the repeat detection unit 62 compares the number of pulsating variation detection of wind noise generation within a predetermined time with a predetermined number of times (Th2), and walks as a pulsating wind noise is repeatedly generated if the number of times is greater than a predetermined number. Judge that it is a state.
  • the predetermined number of times (Th2) may be variable such as changing according to the walking speed. When the walking speed is high, the pulse wind noise repeats frequently, and when the walking speed is slow, the repetition frequency decreases.
  • the first threshold (Th31) when the wind noise generation level exceeds the first threshold (Th31), the first number (Th21) is selected, and the wind noise generation level is equal to or less than the first threshold (Th31), and If the second threshold (Th32) smaller than the first threshold (Th31) is exceeded, a second number (Th22) smaller than the first number (Th21) may be selected.
  • the detection of the walking state may be made by detecting the walking speed according to the repetition frequency of the generation of the pulsating wind noise.
  • the number of pulsating variation detection of wind noise generation within a predetermined time is the first number (Th21) or more, it is determined that the user is walking fast and the number of pulsating variation detection is the first number (Th ) And the second number (Th22) or more smaller than the first number (Th21) may be determined to be walking slowly.
  • the predetermined number of times (Th2) is not limited to the combination of the first and second two, and it goes without saying that the walking speed can be detected in three or more stages by combining three or more thresholds. Yes.
  • the walking state of the user is detected (steps S905 and S907) by detecting the temporal repetition of the pulsative variation of the wind noise generation signal (step S904).
  • the walking detection unit 6 detects the walking state of the user, and outputs the detected walking state to the hearing aid processing unit 3 as a walking detection signal.
  • the hearing aid processing according to the walking detection signal of the hearing aid processing unit 3 may be performed in the same manner as in the first embodiment, or using the microphone 2 having the microphones 2a and 2b as follows. It is also good.
  • the hearing aid processing unit 3 generates a directivity signal having directivity sensitivity in a specific direction, for example, in a forward direction of the user of the hearing aid, and a directivity synthesis to generate an omnidirectional signal not having directivity sensitivity in the specific direction.
  • An output of the directivity combining unit 31 having a unit 31 and a directivity control unit 32 that switches the output of the directivity combining unit 31 between the directivity signal and the nondirectional signal, and the output of which is switched by the directivity control unit 32 Suppose that the signal is amplified.
  • the amplifier 33 is described as a variable amplification amount amplifier for each frequency band for simplicity.
  • the normal switching process is performed.
  • the input sound signal level is compared with a predetermined threshold, and if the signal level is less than the threshold, it is determined that the user is in a quiet environment such as indoors, and the output of the directivity synthesis unit 31 is nondirectional. Switch to a signal to process hearing aids. In other words, an acoustic signal arriving from all directions is subjected to hearing aid processing such as amplification.
  • the threshold value is exceeded, it is determined that the user is in a noisy environment such as the outdoors, for example, and the output of the directivity combining unit 31 is switched to the directivity signal to perform hearing aid processing. That is, hearing processing such as amplification is performed on an acoustic signal coming from a specific direction, for example, the front of the hearing aid user (S 908).
  • the output of the directivity combining unit 31 remains the nondirectional signal, and the amplification amount of the amplifier 33 is suppressed (S906).
  • the wind noise detection unit 5 includes an adaptive filter including the coefficient variable filter 53, the subtractor 54, and the coefficient updating unit 55. Differently, the filter coefficient of the variable coefficient filter 53 is output.
  • the pulse detection unit 61 of the walking detection unit 6 includes a fluctuation component extraction unit 615, a level detection unit 612, a comparator 617, a gain limiter 618, a comparator 613, and a pulse determination unit 614.
  • the wind noise detection unit 5 outputs not the error signal of the adaptive filter but the filter coefficient of the variable coefficient filter 53 as a wind noise generation signal (step S902).
  • the two input acoustic signals have substantially the same delay with a delay corresponding to the distance between the microphones. Signal. Therefore, an adaptive filter with an acoustic signal captured by the microphone 2b as a main signal and an acoustic signal captured by the microphone 2a as a reference signal converges, and the filter coefficient converges to a certain value.
  • the adaptive filter diverges without converging and the filter coefficient also diverges.
  • the wind noise generation signal is a continuous amount corresponding to the generation amount of wind noise, converges to a specific value when wind noise is not generated, and diverges as the wind noise becomes larger and the fluctuation amount becomes larger It is a signal.
  • the pulse detection unit 61 detects the fluctuation of the pulse nature of the wind noise generation signal from the high frequency component level thereof (step S903).
  • the filter coefficients of the adaptive filter constituting the wind noise detection unit 5 diverge and the fluctuation amount of the wind noise generation signal increases, so that the high frequency component level increases. Therefore, the wind noise generation signal from the wind noise detection unit 5 is input to the fluctuation component extraction unit 615 configured by a high pass filter or the like to extract high frequency components.
  • the level detection unit 612 calculates the high frequency component level signal by obtaining the absolute value of the extracted high frequency component signal, and the smoothing level calculation unit 616 smoothes the high frequency component level signal.
  • the smoothed high frequency component level signal is compared with a predetermined threshold value (Th5) by the comparator 617, and the high frequency component level signal is amplified by the gain limiter 618 when the smoothed high frequency component level signal is equal to or greater than the threshold value.
  • Th5 a predetermined threshold value
  • the smoothed high frequency component level calculated by the smoothing level calculation unit is a predetermined threshold ( In order to get closer to the high frequency component level calculated by the level detection unit beyond Th5), the high frequency component level signal is gain-controlled by the gain limiter, greatly attenuated and output.
  • the input to the pulse detection unit is a wind noise generation signal during walking
  • the wind noise is generated instantaneously, so the rise of the high frequency component level is also instantaneous, and is calculated by the smoothing level calculation unit
  • the smoothed high-frequency component level to be changed hardly changes. Therefore, the high frequency component level signal is output as it is without gain control by the gain limiter.
  • the pulsative fluctuation of the wind noise generation signal is not affected by the gain control. Pass through the gain limiter 618 as it is. If the wind noise generation signal continues to fluctuate, it is attenuated by the gain limiter 618 by gain control.
  • the comparator 613 compares the output of the gain limiter 618 with a predetermined threshold (Th3), and the pulse determination unit 614 counts the time length of the time interval in which the output of the gain limiter 618 exceeds the threshold (Th3), The time length of the time interval is compared with a predetermined threshold (Th4).
  • the wind noise generation signal is pulsating when the high frequency component level signal of the wind noise generation signal gain controlled by the gain limiter 618 is within the predetermined threshold (Th4) of the time length of the time section exceeding the predetermined threshold (Th3) It is judged that
  • the predetermined threshold value (Th5) for determining the gain control start level of the high frequency component level signal may be determined experimentally as a value that easily detects the pulsatility fluctuation.
  • the threshold (Th5) is a value slightly smaller than the threshold (Th3).
  • the predetermined threshold (Th5) may be constant, or may be variable such as to change according to the extracted high frequency component level. As described above, by changing the predetermined threshold (Th5) according to the amount of fluctuation of the filter coefficient, it becomes possible to follow the amount of wind noise generated which changes according to the walking speed, and as in the second embodiment, more accurate. A walking state can be detected.
  • variation component extraction unit 615 is described as a configuration using a high-pass filter to extract variation components of the wind noise generation signal in the present embodiment, it is apparent that extreme variation components of wind noise generation due to strong wind are excluded. Therefore, a band pass filter that excludes the vicinity of the Nyquist component can also be used.
  • the magnitude of the high frequency component level of the wind noise generation signal as in this configuration By extracting a time interval having a large amount of fluctuation, more accurate pulse detection can be performed.
  • the walking detection unit 6 detects the walking state of the user, and outputs the detected walking state to the hearing aid processing unit 3 as a walking detection signal.
  • the hearing aid processing in accordance with the walking detection signal of the hearing aid processor 3 is performed as described in the first and second embodiments. As described above, it is possible to detect whether or not the user is in the walking state by using the variation of the filter coefficient of the adaptive filter, and switch the hearing aid mode based on the walking state, to provide the comfortable hearing aid processing desired by the user Can.
  • the present invention can be similarly applied to other audio equipment, for example, a portable music player, a headphone equipped with a noise canceling function, and an earphone.
  • Embodiment 4 Next, the configuration and operation of the hearing aids 1a and 1b according to the fourth embodiment of the present invention will be described with reference to FIG.
  • the hearing aids 1a and 1b according to the present embodiment include the transmitting / receiving unit 7.
  • the description of the same configuration as the hearing aid 1 of the first to third embodiments will be omitted, and the transmitting and receiving unit 7 will be described in detail.
  • the transmitting and receiving unit 7 of the hearing aid 1a transmits and receives the walking detection signal detected by the walking detecting unit 6 with the hearing aid 1b other than the hearing aid 1a.
  • the transmitting and receiving unit 7 of each of the hearing aids 1a and 1b transmits and receives the walking detection signal detected by the walking detection unit 6 via the wireless or cable connected to the hearing aids 1a and 1b.
  • the wind noise generated when walking is caused by wind noise from the front, so the walking state should be detected simultaneously in both the hearing aids 1a and 1b worn on the user's ears.
  • the walking state is in the hearing aid which has detected the walking state according to the walking detection signal of each hearing aid.
  • the output of the low-pass filter 51 of the first embodiment may be used as the wind noise generation amount, and may be input to the pulse detection unit 61 of the second embodiment or the third embodiment.
  • the output of the adaptive filter according to the second embodiment or the third embodiment may be determined as a wind noise generation flag, and may be input to the edge detection unit 611 according to the first embodiment.
  • the error signal of the adaptive filter of the second embodiment may be input to the fluctuation component extraction unit 615 of the third embodiment.
  • any other combination is included in the present invention. Even in these configurations, as described above, by detecting the walking state and switching the hearing aid mode based on the detected walking state, it is possible to provide a more comfortable hearing aid processing that the user desires.
  • the filter coefficient of the variable coefficient filter 53 in the third embodiment is input to the comparator 52 in the first embodiment and subjected to the threshold determination as a wind noise occurrence flag.
  • the block diagram used as the input to the edge detection part 611 of Embodiment 1 is shown.
  • FIG. 11 shows experimental data showing the walking detection in the configuration of FIG.
  • FIG. 11 shows output data and intermediate data of the wind noise detection unit 5 and the walking detection unit 6 when normal wind is blowing when walking and when stationary.
  • each configuration other than the transmitting and receiving unit 7 of the hearing aids 1a and 1b of the fourth embodiment may be any configuration of the first to third embodiments, or may be a combination thereof.
  • configurations other than the transmitting and receiving unit 7 of the hearing aids 1a and 1b may be different.
  • a part or all of the components constituting each of the above-mentioned devices may be constituted by one system LSI.
  • the system LSI is a super multifunctional LSI manufactured by integrating a plurality of components on one chip, and more specifically, is a computer system configured to include a microprocessor, a ROM, a RAM and the like. .
  • a computer program is stored in the RAM.
  • the system LSI achieves its functions as the microprocessor operates in accordance with the computer program.
  • a part or all of the components constituting each of the above-mentioned devices may be constituted by an IC card removable from each device or a single module.
  • the IC card or the module is a computer system including a microprocessor, a ROM, a RAM, and the like.
  • the IC card or the module may include the (1) super multifunctional LSI.
  • the IC card or the module achieves its function by the microprocessor operating according to the computer program. This IC card or this module may be tamper resistant.
  • the present invention may be the method described above. Further, the present invention may be a computer program that realizes these methods by a computer, or may be a digital signal composed of the computer program.
  • the present invention is also directed to a computer readable recording medium such as a flexible disk, a hard disk, a CD-ROM, an MO, a DVD, a DVD-ROM, a DVD-RAM, a BD (Blu- (ray disc), a semiconductor memory, or the like. Furthermore, the present invention may be the digital signal recorded on these recording media.
  • a computer readable recording medium such as a flexible disk, a hard disk, a CD-ROM, an MO, a DVD, a DVD-ROM, a DVD-RAM, a BD (Blu- (ray disc), a semiconductor memory, or the like.
  • the present invention may be the digital signal recorded on these recording media.
  • the computer program or the digital signal may be transmitted via a telecommunication line, a wireless or wired communication line, a network represented by the Internet, data broadcasting or the like.
  • the present invention may be a computer system comprising a microprocessor and a memory, wherein the memory stores the computer program, and the microprocessor operates according to the computer program.
  • the computer program or the digital signal may be recorded on the recording medium and transported, or may be implemented by another independent computer system by transporting via the network or the like.
  • the hearing aid of the present invention is useful as an adaptive hearing aid technology that switches the hearing aid processing automatically according to the surrounding environment.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

 周囲の音響環境を分析して補聴処理を自動で切り替える補聴器は、がやがやした屋外では指向性を絞って騒音を軽減する。一方で、歩行時などでは指向性を前方に絞った場合に、後方からの危険音の接近に気づかず非常に危険である。環境分析と共に利用者の歩行状態を識別する行動分析が必要であるが、歩数計などに用いられる一般的な歩行検出がセンサを用いており補聴器のような耳に装着する装置には適用できない。 歩行時に発生する風切り音の発生パターンに着目し、風雑音がパルス的にくり返し発生している場合を歩行状態として識別することで、センサなどを搭載せず、既存の構成を利用した歩行検出が可能となり、屋外でも安心して利用できる補聴器を提供することができる。

Description

補聴器、補聴システム、歩行検出方法および補聴方法
 本発明は、歩行を検知する機能を有する補聴器に関するものである。
 補聴器は、聴覚障害者や聴力の衰えた人などが聴力を補助するために利用するシステムである。補聴器は、外部で発生した音響信号をマイクロホンにより電気信号に変換し、この電気信号のレベルを増幅し、イヤホンのようなレシーバで再び音響信号に変換して利用者に聞こえる可聴音として出力する。
 マイクロホンで取込んだ音響信号には、会話音声やテレビやラジオの出力音、インターホンや電話の呼び鈴など利用者の生活に必要な音情報のほか、生活騒音や環境騒音など利用者が必要とする音情報の認知を妨害する様々な妨害音も含まれる。そこで補聴器では、レベルの小さな音は増幅しレベルの大きな音は増幅しない非線形な増幅処理をはじめ、利用者が聞きやすいように増幅と減衰を組み合わせる様々な工夫がされてきた。
 特に近年は、マイクロホンで取込んだ音響信号をデジタル信号に変換し、補聴処理をデジタル信号処理で行うデジタル補聴器が提供されている。例えば、取込んだ信号を複数の帯域に分割して帯域毎の希望信号/妨害信号(例えば、音声/非音声)の判別を高速に処理し、希望信号(例えば音声信号)のみを抽出する高度な雑音抑圧処理を行う補聴器が提供されている。また、補聴器の前後2ヶ所に設置されたマイクロホンへの入力時間差を用いて、前方から到来する音響信号のみを抽出する指向性収音などの機能が搭載された補聴器も提供されている。さらに、補聴器内部に記憶領域を備え、複数の補聴処理アルゴリズムを保持し、補聴器利用者の周囲環境に応じて補聴処理を自動、あるいは利用者が手動で切り替えるタイプの補聴器も提供されている。
 補聴処理を利用者の周囲環境に応じて切り替える概念は従来、多く提案されている。例えば、図1に示す構成の補聴器は、入力音響信号にHMM(隠れマルコフモデル、Hidden Markov Model)を用いて周囲環境を分析し、周囲環境を予め定義したシーンに識別・分類して対応する補聴処理アルゴリズムに切り替える(例えば、特許文献1参照)。また、図2に示す構成の補聴器は、周囲騒音の定常度を分析し、指向性処理とスペクトルサブトラクション法を用いた雑音抑圧処理を切り替え、あるいはその両方を同時に動作させ、周囲騒音の質に応じて音声の明瞭度を改善する(例えば、特許文献2参照)。
 図1に示す従来の補聴器1001は、マイクロホン1002で取込んだ音響信号を補聴処理部1003にて補聴処理し、レシーバ1004から出力するタイプの補聴器である。補聴器1001は、信号分析部1005で音響信号から音響的特徴を抽出し、信号識別部1006で瞬時的音響環境状況を識別する。補聴処理部1003は、信号識別部1006で識別した音響環境状況に応じて補聴処理アルゴリズムを切り替える。信号識別部1006における瞬時的音響環境状況の識別は、信号分析部1005で抽出した、音の強弱、スペクトル形態、調和構造などといった聴覚ベースの特徴の組み合わせによって行い、識別アルゴリズムとしてHMMを用いる。ここでHMMは、音声認識等で広く用いられている統計的手法で、過去の状態遷移や各状態における出現確率分布から、未知の入力に対する出力状態を推定する確率モデルである。HMMを適用するために、局所最適に陥らぬよう適切にパラメータを初期化するためのトレーニング装置1007が必要となる。
 また、図2に示す従来の補聴器2001は、複数のマイクロホン2002a、2002bで取込んだ音響信号を補聴処理部2003にて補聴処理し、レシーバ2004から出力するタイプの補聴器である。補聴器2001は、マイクロホン2002a、2002bで取込んだ音響信号を信号分析部2005で入力音響信号の信号レベル、および定常度を算出する。補聴処理部2003は、信号分析部2005で算出した入力音響信号の定常度に応じて、指向性処理とスペクトルサブトラクション法を用いた雑音抑圧処理を切り替えたり、あるいはその両方を同時に動作させたりする。また、信号分析部2005で算出した入力音響信号レベルに応じて非線形処理の入出力特性テーブルを切り替える。これにより、入力音響信号に含まれる雑音成分を除去した後、音声成分に対してのみ補聴処理することができる。ここでスペクトルサブトラクション法は、周波数領域で推定した雑音成分を入力信号から減算する手法で、ファンノイズや暗騒音のような定常的な雑音の除去能力に優れた雑音抑圧手法である。
特表2004-500592号公報 特許第3894875号公報
 しかしながら、上記従来の補聴器は、周囲騒音の特徴や変化を抽出し補聴処理アルゴリズムを切り替えるために、時として求められる処理またはするべき処理とは異なる処理が選択されるという問題点を有している。特に、騒音や雑音が多く騒音の種別も多様である街中では、同じ周囲音響環境であっても補聴器の利用シーンに応じて求められる補聴処理は異なるため、同じように補聴処理アルゴリズムを切り替えればよいというわけではない。例えば、周囲に雑音が多いからといって、街中を歩行中に指向性処理を行うと、利用者は周囲からの危険の接近に気づけずに危険を回避しにくくなる。しかし、従来の補聴器では、周囲音響環境が騒がしいために指向性処理や雑音抑圧処理を行う補聴処理に切り替わってしまう。
 つまり、補聴処理を自動で切り替える際には、補聴器利用者の周囲環境を識別するだけでなく、利用シーンを想定した識別が重要といえる。補聴器の利用シーンで代表的なものをあげると、会話シーン、テレビやラジオの視聴シーン、散歩(外出)シーンなどが想定される。
 会話シーンは、難聴者が補聴器を利用する最も主たる目的といえ、入力音響信号に含まれる音声成分を検出することにより会話シーンを判断し、音声信号に対してのみ補聴処理を行うことは補聴器の主機能として従来広く取組まれてきた。また、テレビやラジオの視聴シーンについても、入力音響信号の特徴分析によりテレビやラジオの出力音を比較的容易に検出可能であり、この検出に基づいて、テレビやラジオの出力音のみを補聴処理する補聴器も提供されている。さらに、近年はリモコンなどの外部機器を介して補聴器とテレビ端末を直接接続するシステムも提供され、利用者がテレビの出力音をより聞きやすくなっている。
 一方、外出時等における散歩シーンは、これまでほとんど想定されてこなかった。外出シーンは家の中での会話シーンや視聴シーンと比較すると、騒音や雑音が多く騒音の種別も多様である。このため、従来の補聴器では雑音抑圧処理によって会話音声以外の雑音成分を除去したり、指向性処理によって特定の、例えば前方から到来する音響信号のみを抽出したりする補聴処理に切り替わる。しかし外出シーンにおいて、会話中ではなく街中を歩いている場合に、雑音抑圧処理や指向性処理により、危険を表す報知音等や後方から接近する車の騒音等を除去することは、利用者を非常に危険な状態に至らしめる。外出シーンにおいても、利用者が会話をしているか歩行しているのかなどを判断し、利用シーンに応じた適切な補聴処理を行うことのできるシステムが必要となる。
 外出時における利用シーンの一つとして、利用者の歩行を検知することで、外出シーンのうち散歩(歩行)しているシーンを判断できると考えられる。このような利用者の散歩、歩行状態を検出するためには、振動や加速度センサを用いた歩行検出が一般的である。しかし、耳に装着する補聴器にこれらを搭載した場合、頭や首を振るなどした際の誤判別やセンサ搭載による補聴器の大型化・高コスト化などの課題がある。補聴器に付属するリモコンや補聴器本体のスイッチを用いて、歩行時に利用者が手動で切り替えてもよいが、(1)歩行シーンが日常的、かつ頻繁に起こりうること、(2)補聴器利用を利用者になるべく意識させない方がよいこと、といった理由から自動で切り替わることが望ましい。
 このような課題を解決するため、本発明の補聴器は利用者の歩行状態を検出し、移動状態と周囲環境に応じて、補聴処理を自動で切り替える適応型補聴器を提供することを目的とする。
 上記従来の課題を解決するために本発明の補聴器は、外部の音響信号を収音する収音部と、収音された音響信号に対して複数のアルゴリズムを切り替えて補聴処理を行う補聴処理部と、補聴処理された音響信号を出力する出力部とを備える補聴器であって、収音された音響信号の、収音時に混入している風雑音を検出する風雑音検出部と、検出された風雑音の時間的変動を検出する時間変動検出部とを備え、補聴処理部は、検出された風雑音の時間的変動に基づいて、収音された音響信号に対する補聴処理のアルゴリズムを切り替える。
 この構成によると、本発明の補聴器は、補聴器利用者の歩行状態に影響を受ける風雑音から利用者の歩行状態を検出することができ、利用者の状態に適合する補聴処理に自動で切り替えることができる。
 また、本発明の補聴器における時間変動検出部は、風雑音の変動として、風雑音のパルス性変動を検出するパルス検出部と、検出されたパルス性変動の時間的くり返しの有無を検出するくり返し検出部とを備える構成であってもよい。
 この構成により、本発明の補聴器は、風雑音が利用者の歩行に同期するように発生しているか否かを検出でき、利用者の歩行状態を検出することができる。
 また、本発明の補聴器における収音部は第1のマイクロホンと第2のマイクロホンとを備え、風雑音検出部は第1のマイクロホンが収音した音響信号を主信号、第2のマイクロホンが収音した音響信号を参照信号とし、主信号をフィルタリング処理することによって得られる推定信号と参照信号との差分が最小になるようにフィルタ係数を更新する係数可変フィルタ部を備え、風雑音検出部は、推定信号と参照信号との差分である誤差信号を風雑音として検出する構成であってもよい。
 この構成により、本発明の補聴器は、収音された音響信号に含まれる風雑音をより正確に検出でき、それに基づいてより正確に利用者の歩行状態を検出することができる。
 また、本発明の補聴器における収音部は第1のマイクロホンと第2のマイクロホンとを備え、風雑音検出部は第1のマイクロホンが収音した音響信号を主信号、第2のマイクロホンが収音した音響信号を参照信号とし、主信号をフィルタリング処理することによって得られる推定信号と参照信号との差分が最小になるようにフィルタ係数を更新する係数可変フィルタ部を備え、風雑音検出部は、フィルタ係数を風雑音として検出する構成であってもよい。
 この構成により、本発明の補聴器は、収音された音響信号に含まれる風雑音の発生状態をより正確に検出でき、それに基づいてより正確に利用者の歩行状態を検出できる。
 さらに、本発明の補聴器におけるパルス検出部はフィルタ係数の変動成分を抽出する変動成分抽出部と、抽出された変動成分の平滑化レベルに基づいて、変動成分の利得を制御する利得制御部とを備え、パルス検出部は、利得制御された変動成分レベルに基づいて、フィルタ係数のパルス性変動を検出する構成であってもよい。
 この構成により、本発明の補聴器は、収音された音響信号に含まれる風雑音発生の変化区間をより正確に検出でき、それに基づいてより正確に利用者の歩行状態を検出できる。
 さらに、本発明の補聴器における利得制御部は変動成分の平滑化レベルがあらかじめ定められた閾値を超えている時間長に基づいて、変動成分の利得を制御する構成であってもよい。
 この構成により、本発明の補聴器は、利用者の歩行速度に応じて変化する風雑音に対応することができ、利用者の歩行速度が変化しても利用者の歩行状態を検出できる。
 また、本発明の補聴器は、第1のマイクロホンが収音した音響信号と第2のマイクロホンが収音した音響信号とを用いて、第1の方向に指向感度を持った指向性信号と、特定の方向に指向感度を持たない無指向性信号とを生成する指向性合成部と、指向性合成部の出力を、指向性信号と、無指向性信号とで切り替えることが可能な指向性制御部とをさらに備え、指向性制御部がくり返し検出部でパルス性変動の時間的くり返しを検出しない場合には指向性信号を、パルス性変動の時間的くり返しを検出した場合には無指向性信号を出力するように切り替える構成であってもよい。
 この構成により、本発明の補聴器は、利用者の歩行状態に応じて、自動的に周囲音の聞こえ方を変更することができる。
 また、本発明の補聴器は、利用者の一方の耳に装着され、時間変動検出部で検出された風雑音の時間的変動を、利用者のもう一方の耳に装着される他の補聴器に送信し、他の補聴器において検出された風雑音の時間的変動を受信する送受信部をさらに備え、補聴処理部は、時間変動検出部で検出された風雑音の時間的変動および送受信部で受信した風雑音の時間的変動に基づいて、収音された音響信号に対する補聴アルゴリズムを切り替える構成であってもよい。
 この構成により、本発明の補聴器は、両耳に装着された補聴器間で、風雑音の検出状態を共有でき、利用者の歩行状態をより正確に検出できる。また、この補聴器は、両耳の補聴器における風雑音の検出結果に応じて補聴処理を切り替えることで、より利用者の状態に適合した補聴処理ができる。
 また、本発明の補聴システムは、上記の補聴器を一対で備える補聴システムであって、補聴器は、時間変動検出部で検出された風雑音の時間的変動を他の補聴器に送信し、他の補聴器において検出された風雑音の時間的変動を受信する送受信部をさらに備え、補聴処理部は、時間変動検出部で検出された風雑音の時間的変動および送受信部で受信した風雑音の時間的変動に基づいて、収音された音響信号に対する補聴アルゴリズムを切り替える。
 この構成により、本発明の補聴システムは、両耳に装着された補聴器間で風雑音の検出状態を共有でき、利用者の歩行状態をより正確に検出できる。
 また、本発明の歩行検出方法は、外部の音響信号を収音する収音ステップと、収音された音響信号の、収音時に混入している風雑音を検出する風雑音検出ステップと、検出された風雑音の時間的変動を検出する時間変動検出ステップと、風雑音の時間的変動がくり返しのあるパルス性変動の場合には、歩行状態であると判定する判定ステップとを含む。
 この構成により、本発明の歩行検出方法は、歩行状態を検出することができる。
 なお、本発明は、装置として実現できるだけでなく、その装置を構成する処理手段をステップとする方法として実現したり、それらステップをコンピュータに実行させるプログラムとして実現したり、そのプログラムを記録したコンピュータ読み取り可能なCD-ROMなどの記録媒体として実現したり、そのプログラムを示す情報、データ又は信号として実現したりすることもできる。そして、それらプログラム、情報、データ及び信号は、インターネット等の通信ネットワークを介して配信してもよい。
 本発明によれば、補聴器利用者の歩行状態を簡単に検出し、補聴器の代表的な利用シーンである歩行シーンに適合する補聴処理に自動で切り替え可能な適応型補聴器を提供することができる。
図1は、文献1で示す従来の補聴器の構成を示すブロック図である。 図2は、文献2で示す従来の補聴器の構成を示すブロック図である。 図3は、本発明の実施の形態1~4における補聴器の基本的な構成を示すブロック図である。 図4は、本発明の実施の形態1における補聴器の詳細な構成を示すブロック図である。 図5は、図4に示した風雑音検出部の出力とエッジ検出部の出力との関係を示す図である。 図6は、本発明の実施の形態2における補聴器の詳細な構成を示すブロック図である。 図7は、本発明の実施の形態3における補聴器の詳細な構成を示すブロック図である。 図8は、本発明の実施の形態4における補聴器の詳細な構成を示すブロック図である。 図9は、本発明の実施の形態1および2の歩行検出方法を示すフローチャートである。 図10は、本発明の実施の形態を組み合わせた場合における補聴器の詳細な構成の一例を示すブロック図である。 図11は、発明の図10に示した補聴器の歩行検出における各処理部の出力信号(実験データ)を示す図である。
 以下本発明の実施の形態について、図面を参照しながら説明する。
 (実施の形態1)
 図3および図5を用いて、本実施の形態に係る補聴器1の構成および動作を説明する。
 本実施の形態の補聴器1は、マイクロホン2と、補聴処理部3と、レシーバ4と、風雑音検出部5と、歩行検出部6を備える。さらに歩行検出部6は、パルス検出部61と、くり返し検出部62を備える。
 マイクロホン2は、外部で発生した音響信号を補聴器1に取込む。
 補聴処理部3は、マイクロホン2で取込んだ音響信号に利用者の聴力レベル等に応じて増幅・減衰などの補聴処理を行い、補聴処理した音響信号をレシーバ4に出力する。
 レシーバ4は、補聴処理した音響信号を再び外部に出力し、利用者に聴取させる。
 風雑音検出部5は、マイクロホン2で取込んだ音響信号の収音時に混入している風雑音のレベルを検出し、風雑音発生信号として歩行検出部6に出力する。
 歩行検出部6のパルス検出部61は、風雑音発生信号のパルス性変動を抽出し、このパルス性変動の情報をくり返し検出部62に出力する。
 歩行検出部6のくり返し検出部62は、風雑音発生信号のパルス性変動の時間的くり返しを検出することで利用者の歩行状態を検出し、歩行検出信号として補聴処理部3に出力する。
 補聴処理部3は、歩行検出部6で検出した歩行状態に応じて補聴処理アルゴリズムを切り替える。
 風雑音が雑音として不快なレベルにまで大きくなるシーンは、実際に風が吹いている屋外にいる場合のほか、自転車で走行している場合、空調機付近にいる場合、通路等で風の巻込みが生じている場合など多数ありうる。また、風雑音が不快なレベルに達しないまでも、人が普通に歩くことによっても風雑音は発生する。この風雑音は、低レベルではあっても人の歩みに同期して瞬時的に、そして周期的に発生する(図5(a)参照)。このような瞬時的な風雑音がくり返し発生することは、利用者が日常生活を送る上で歩行以外の場合には起こりうる可能性が極めて低い。利用者が静止状態にあり、風が吹いていない場合には風雑音は発生せず(図5(b)参照)、風が吹いている場合には、ある程度継続する風雑音が発生する(図5(c)参照)。また、ドアの開閉などで瞬時的に風が発生した場合には、瞬時的な風雑音は発生するがくり返しては発生しない(図5(d)参照)。このように、歩行検出部6で瞬時的な風雑音がくり返し発生している状態を検出することにより、人の歩行状態を検出することができる。
 次に図4および図9を用いて、風雑音検出部5と歩行検出部6の構成および動作を詳細に説明する。
 風雑音検出部5は、ローパスフィルタ(LPF)51と、比較器52を備える。
 歩行検出部6のパルス検出部61は、エッジ検出部611を備え、くり返し検出部62は、カウンタ621と、比較器622を備える。
 マイクロホン2で取込んだ音響信号に風雑音が含まれる場合には、音声成分だけが含まれている場合に比べて、入力音響信号の周波数成分が低域に集中する。この特徴を活かして、マイクロホン2で取込んだ音響信号をローパスフィルタ51に入力し、低域周波数成分を抽出する。実験的に風雑音の成分は1kHz以下に多く発生することがわかっているため、ローパスフィルタのカットオフ周波数は1kHz前後とすればよい。もちろん、風雑音の特徴量をより顕著に抽出するためより低い、あるいはより高いカットオフ周波数としても同様の効果は期待できる。また、ローパスフィルタのかわりにDC成分を除去した上で低域成分を抽出するバンドパスフィルタを用いることもできる。さらに、周波数分析器(FFT)を用いて、低域の周波数成分のみを抽出する構成でも同様の効果は得られる。そして抽出した低域周波数成分のレベルを比較器52で所定の閾値(Th1)と比較し、低域周波数成分レベルが閾値以上の場合には風雑音が発生していると判断し、閾値未満の場合には風雑音が発生していないと判断する。なお、この所定閾値(Th1)は、様々なレベルや持続時間の風を発生させながら、風雑音の発生を検知しやすい値を実験的に決定すればよい。具体的には、標準的な人が歩く速度は4km/h程度、即ち、1m/s程度であり、自然に吹くそよ風程度とほぼ一致することから、所定閾値(Th1)は、1m/s程度の風雑音の発生を検知できる値とすればよい。また、この所定閾値(Th1)は一定のものであってもよいし、風雑音の発生が一定時間以上継続している場合に変化するなど可変のものであってもよい。
 このようにして、風雑音検出部5は風雑音の発生を検出し(ステップS902)、風雑音発生信号として歩行検出部6に出力する。ここで風雑音発生信号は、図5に示すような風雑音を検出していない時間区間をLow、風雑音を検出している時間区間をHighとしたようなフラグ信号である。
 歩行検出部6のパルス検出部61のエッジ検出部611は、風雑音発生信号のLowからHighへの変化、あるいはHighからLowへの変化、あるいはその両方の変化を検出する。これにより、風雑音発生の切り替わりを検出し、この切り替わりのタイミングに関する情報をくり返し検出部62に出力する(ステップS903)。くり返し検出部62は、カウンタ621で所定時間内での風雑音発生の切り替わりをカウントする。そしてカウントした風雑音発生の切り替わりの回数を比較器622で所定の閾値(Th2)と比較し(ステップS904)、風雑音発生の切り替わり回数が閾値以上の場合には歩行状態であると判断し(ステップS905)、閾値未満の場合には歩行状態でないと判断する(ステップS907)。所定時間内での風雑音発生の切り替わり回数が多い場合には、即ち、風雑音発生の切り替わり頻度が高く、一回の風雑音発生時間が短時間であることを意味する。つまりこのような場合には、瞬時的な風雑音がくり返し発生しており(図5(a)参照)、歩行状態であると判断できる。逆に、切り替わり回数が少ない場合には、(1)風雑音が発生していない(図5(b)参照)、(2)一回の風雑音発生時間が長い(図5(c)参照)、(3)一回の風雑音発生時間は短いがくり返しては発生していない(図5(d)参照)、のいずれかに該当し、歩行状態でないと判断できる。このように、歩行検出部6で風雑音発生信号のパルス性変動の時間的くり返しを検出することで、利用者の歩行状態を検出することができる。なお、この所定閾値(Th2)は、通常の風雑音と歩行状態における風雑音とを区別できるような値を実験的に決定すればよい。具体的には、特に目的がなく緩やかに歩いている時のペースが毎分100-110歩程度と言われていることから、所定閾値(Th2)はこの歩数に準じた値とすればよい。また、この所定閾値(Th2)は一定のものであってもよいし、周囲環境の状況に応じて変化するなど可変のものであってもよい。
 このようにして、歩行検出部6は利用者の歩行状態を検出し、歩行検出信号として補聴処理部3に出力する。ここで歩行検出信号は、利用者の歩行状態を検出していない時間区間をLow、歩行状態を検出している時間区間をHighとしたようなフラグ信号である。
 補聴処理部3は、歩行検出信号に応じて、補聴処理アルゴリズムの切り替えを行う。歩行状態を検出していない場合には、通常の周囲音響環境に応じた補聴処理アルゴリズムの切り替えを実行し、歩行状態を検出している場合には、通常の補聴処理アルゴリズム切り替えとは異なる歩行モードで補聴処理を実行する。
 ここで、簡単のために通常の補聴処理アルゴリズムの切り替え処理は、以下のような処理であるとして説明する。通常の切り替え処理は、入力音響信号レベルを所定閾値と比較し、信号レベルが閾値未満の場合には、例えば屋内など静かな環境にいると判断して雑音抑圧処理は行わず入力音響信号をそのまま補聴処理する。一方、閾値以上の場合には、例えば屋外など騒がしい環境にいると判断して雑音抑圧処理を行い入力音響信号に含まれる音声成分のみを補聴処理する。
 補聴処理部3は、歩行検出信号が歩行状態でないことを示している場合には、入力音響信号レベルに応じた補聴処理アルゴリズムに切り替え、信号レベルが所定閾値以上の場合には雑音抑圧処理を行い、閾値未満の場合は雑音抑圧処理を行わない(S908)。一方、歩行検出信号が歩行状態であることを示している場合には、従来のような入力音響信号レベルに応じた補聴処理アルゴリズムの切り替えは行わず、例えば信号レベルが所定閾値以上の場合であっても雑音抑圧処理を行わない代わりに補聴処理の増幅量を抑制する(S906)。このようにして、歩行状態が検出されていない場合には、入力音響信号レベルに応じた補聴処理アルゴリズムの切り替えを行う。例えば騒がしい環境では音響信号に含まれる雑音成分を除去し、騒がしい不快な状態を軽減する。同時に、歩行状態が検出されている場合には、騒がしい環境であっても雑音抑圧処理を行わず入力音響信号から音声成分以外の信号を除去することなく補聴処理することで、音声信号以外に危険音が存在した場合でも利用者が危険音を聞くことができる。
 以上のように、周囲の音響信号に含まれる風雑音から歩行状態であるか否かを検出し、歩行状態に応じて補聴処理アルゴリズムを切り替えることで、より利用者が求める快適な補聴処理を提供することができる。
 また、最近の補聴器では利用者の利用状態を記録し、以降の利用時やフィッティング時の補助情報に活用する機能が搭載されている。例えば、利用者の音量操作情報を記録し、次回利用時の初期音量として設定する機能である。本機能を活用し、利用者の歩行状態を記録することで、利用者の利用シーンを推測することができる。即ち、歩行状態を多く記録する場合は、利用者の歩行頻度や外出頻度が高いと推測され、例えば歩行状態をより検出しやすいように閾値等を再調整することで、利用者の利用シーンにより合致した補聴処理を行うことができる。あるいは、時間帯に応じて歩行状態を検出する頻度が異なる場合、歩行状態を多く検出する時間帯のみ歩行状態をより検出しやすいような閾値に切り替わるようにしてもよい。
 なお、上記では補聴器として説明してきたが、他の音響機器においても同様に構成することができる。例えば、携帯用音楽プレーヤ、特にノイズキャンセリング機能搭載の音楽プレーヤ、あるいはヘッドホンやイヤホンのマイク(このマイクは既存のものであっても、新たに追加するものであってもよい)を用いて、同様に風雑音を検出し、歩行状態を検出する。そして、歩行状態を検出していない場合には、再生音楽信号のみをイヤホンから出力し、歩行状態を検出した場合には、音楽視聴を妨げない程度に周囲音を混合してイヤホンから出力するような処理を行うことができる。
 (実施の形態2)
 図6および図9を用いて、本実施の形態に係る補聴器1の構成および動作を説明する。
 本実施の形態の補聴器1は、マイクロホン2が、マイクロホン2a、2bで構成される。以下、実施の形態1の補聴器1と同じ構成の説明は省略し、本実施の形態の風雑音検出部5、および歩行検出部6のパルス検出部61について詳細に説明する。
 本実施の形態の風雑音検出部5は、マイクロホン2a、2bで取込んだ一方の音響信号を主信号、もう一方を参照信号とする適応フィルタで構成される。具体的には、係数可変フィルタ53と、減算器54と、係数更新部55を備える。
 歩行検出部6のパルス検出部61は、レベル検出部612と、比較器613と、パルス判定部614を備える。
 はじめに、風雑音検出部5の適応フィルタについて説明する。実施の形態1の風雑音検出部5では、マイクロホン2で取込んだ音響信号に風雑音が含まれる場合には、入力音響信号の周波数成分が低域に集中する特徴を活かして風雑音の発生を検出した。この特徴以外に、風雑音の特徴として、風雑音がマイクロホン入り口付近で発生する乱気流によって引き起こされるため、複数のマイクロホンで取込んだ音響信号の収音時に混入している風雑音が無相関に発生する特徴があげられる。この特徴を活かして、マイクロホン2a、2bで取込んだ音響信号をそれぞれ参照信号、主信号とする適応フィルタの収束と発散の度合いから風雑音の発生を検出する。
 係数可変フィルタ53は、マイクロホン2bで取込んだ音響信号である主信号を入力として、係数更新部55からのフィルタ係数を用いてフィルタリング処理することにより推定信号を出力する。減算器54は、推定信号とマイクロホン2aで取込んだ参照信号の差分を算出し、誤差信号として出力する。係数更新部55は、減算器54で算出した誤差信号が最小になるように、係数可変フィルタ53のフィルタ係数を適応的に更新する。
 マイクロホン2a、2bで取込んだ音響信号が音声成分のみを含んでいた場合には、2つの入力音響信号は単にマイク間距離に応じた遅延を有するほぼ同一の信号である。従って、マイクロホン2bで取込んだ音響信号を主信号、マイクロホン2aで取込んだ音響信号を参照信号とした適応フィルタは収束し、誤差信号はゼロに近くなる。逆に、マイクロホン2a、2bで取込んだ音響信号に風雑音が含まれる場合には、2つの入力音響信号は互いに無相関であるため、適応フィルタは収束せずに発散し、誤差信号は大きくなる。
 このようにして、風雑音検出部5は風雑音の発生を検出し、誤差信号を風雑音発生信号として歩行検出部6に出力する(ステップS902)。ここで風雑音発生信号は、風雑音の発生量に応じた連続量で、風雑音が発生していない場合はゼロに近づき、風雑音が大きくなるほどレベルが大きくなる信号である。
 歩行検出部6のパルス検出部61のレベル検出部612は、風雑音発生信号のレベルを検出する。レベル検出部612の最も簡単な構成は、風雑音発生信号の絶対値をとる構成であり、必要に応じて平滑化処理を含んでいてもよい。比較器613は、検出した風雑音発生レベルを所定の閾値(Th3)と比較する。
 パルス判定部614は、風雑音発生レベルが所定閾値(Th3)を超えている時間の幅を所定の時間幅(Th4)と比較し、所定時間幅以内の場合に風雑音の発生がパルス性を持っていると判断する。なお、この所定閾値(Th3)と所定時間幅(Th4)は、歩行状態の風雑音を検出しやすいような値を実験的に決定すればよい。例えば、所定閾値(Th3)は、標準的な人が歩く速度および自然に吹くそよ風の風速から1m/s程度の風雑音を検出できる値とすればよく、所定時間幅(Th4)は、緩やかに歩いている時のペースが毎分100-110歩程度と言われていることから1・2歩程度あたりの所要時間である1秒程度とすればよい。また、この所定閾値(Th3)と所定時間幅(Th4)は一定のものであってもよいし、レベル検出部612で検出された風雑音発生レベルに応じて変化するなど可変のものであってもよい。例えば、歩行速度が速い場合には風雑音の発生レベルは大きくなり、また歩行速度が速いため風雑音発生のパルス幅は短くなる。逆に、歩行速度が遅い場合には風雑音発生レベルは小さく、パルス幅は長くなる。よって、風雑音発生レベルが第一の閾値(Th31)を超えた場合、すなわち、速く歩いている場合には第一の時間幅(Th41)を選択する。また、風雑音発生レベルが第一の閾値(Th31)以下で、かつ第一の閾値(Th31)より小さい第二の閾値(Th32)を超えた場合、すなわち、ゆっくり歩いている場合には、第一の時間幅(Th41)より大きい第二の時間幅(Th42)を選択するとしてもよい。このようにすると、歩行速度の速い遅いによらず風雑音発生のパルス性を検出し、歩行状態を検出することができる。また、この所定閾値(Th3)と所定時間幅(Th4)は、第一と第二の2つの組み合わせに限ったものではなく、3つ以上の閾値を設けた組み合わせにしてもよい。
 このようにして、パルス検出部61は風雑音発生信号のパルス性変動を検出し(ステップS903)、この風雑音発生信号のパルス性変動の検出結果をくり返し検出部62に出力する。
 くり返し検出部62は、所定時間内での風雑音発生のパルス性変動検出回数を所定の回数(Th2)と比較し、所定回数以上の場合にパルス性の風雑音がくり返し発生しているとして歩行状態であると判断する。なお、この所定回数(Th2)は歩行速度に応じて変化するなど可変のものであってもよい。歩行速度が速い場合にはパルス性の風雑音のくり返し頻度は多く、逆に歩行速度が遅い場合にはくり返し頻度は少なくなる。よって、例えば前記風雑音発生レベルが第一の閾値(Th31)を超えた場合には、第一の回数(Th21)を選択し、風雑音発生レベルが第一の閾値(Th31)以下で、かつ第一の閾値(Th31)より小さい第二の閾値(Th32)を超えた場合には、第一の回数(Th21)より小さい第二の回数(Th22)を選択するとしてもよい。このようにすると、歩行速度の速い遅いによらずパルス性の風雑音発生のくり返しを検出し、歩行状態を検出することができる。またこの歩行状態の検出は、パルス性の風雑音発生のくり返し頻度に応じて歩行速度を検出するとしてもよい。例えば、所定時間内での風雑音発生のパルス性変動検出回数が第一の回数(Th21)以上の場合には速く歩行していると判断し、パルス性変動検出回数が第一の回数(Th21)未満で、かつ第一の回数(Th21)より小さい第二の回数(Th22)以上の場合にはゆっくりと歩行している判断するとしてもよい。所定回数(Th2)は、第一と第二の2つの組み合わせに限ったものではなく、3つ以上の閾値を設けた組み合わせにすることで歩行速度を3段階以上で検出可能になることは言うまでもない。このように、風雑音発生信号のパルス性変動の時間的くり返しを検出することで(ステップS904)、利用者の歩行状態を検出する(ステップS905、S907)。
 このようにして、歩行検出部6は利用者の歩行状態を検出し、歩行検出信号として補聴処理部3に出力する。
 補聴処理部3の歩行検出信号に応じた補聴処理は、実施の形態1と同様にして行うのであってもよいし、マイクロホン2がマイクロホン2a、2bを有することを利用して下記のようにしてもよい。
 補聴処理部3は、ある特定の方向、例えば補聴器の利用者の前方方向に指向感度を持った指向性信号と、特定の方向に指向感度を持たない無指向性信号とを生成する指向性合成部31と、指向性合成部31の出力を指向性信号と無指向性信号とで切り替える指向性制御部32とを有し、指向性制御部32で出力切り替えされた指向性合成部31の出力信号を増幅等するとする。図6では簡単のため周波数帯域毎に増幅量可変の増幅器33として記載する。
 歩行状態が検出されていない場合には、通常の切り替え処理を行う。通常の切り替え処理は、入力音響信号レベルを所定閾値と比較し、信号レベルが閾値未満の場合には、例えば屋内など静かな環境にいると判断して指向性合成部31の出力を無指向性信号に切り替え補聴処理する。つまり、全方位から到来する音響信号に対して増幅等補聴処理する。一方、閾値以上の場合には、例えば屋外など騒がしい環境にいると判断して指向性合成部31の出力を指向性信号に切り替え補聴処理する。つまり、ある特定の方向、例えば補聴器利用者の前方から到来する音響信号に対して増幅等補聴処理する(S908)。
 歩行状態が検出されている場合には、信号レベルが閾値以上の場合にも、指向性合成部31の出力は無指向性信号のままとし、増幅器33の増幅量を抑制する(S906)。
 このように、適応フィルタの誤差信号を用いて歩行状態であるか否かを検出し、歩行状態に基づいて補聴モードを切り替えることで、より正確に利用者の歩行状態を検出することができ、より利用者が求める快適な補聴処理を提供することができる。
 なお、上記では補聴器として説明してきたが、他の音響機器においても同様に構成することができる。
 (実施の形態3)
 次に図7および図9を用いて、本発明の実施の形態3に係る補聴器1の構成および動作を説明する。以下、実施の形態1、および2の補聴器1と同じ構成の説明は省略し、本実施の形態の風雑音検出部5、および歩行検出部6のパルス検出部61について詳細に説明する。
 本実施の形態の風雑音検出部5は、実施の形態2と同様に、係数可変フィルタ53と、減算器54と、係数更新部55を備える適応フィルタで構成されるが、実施の形態2と異なり、係数可変フィルタ53のフィルタ係数を出力する。
 歩行検出部6のパルス検出部61は、変動成分抽出部615と、レベル検出部612と、比較器617と、ゲインリミッタ618と、比較器613と、パルス判定部614を備える。
 風雑音検出部5は、適応フィルタの誤差信号ではなく、係数可変フィルタ53のフィルタ係数を風雑音発生信号として出力する(ステップS902)。実施の形態2において前述したように、マイクロホン2a、2bで取込んだ音響信号が音声信号のみを含んでいた場合には、2つの入力音響信号は単にマイク間距離に応じた遅延を有するほぼ同一の信号である。従って、マイクロホン2bで取込んだ音響信号を主信号、マイクロホン2aで取込んだ音響信号を参照信号とした適応フィルタは収束し、フィルタ係数はある特定の値に収束する。逆に、マイクロホン2a、2bで取込んだ音響信号に風雑音が含まれる場合には、2つの入力音響信号は互いに無相関であるため、適応フィルタは収束せずに発散し、フィルタ係数も発散する。ここで風雑音発生信号は、風雑音の発生量に応じた連続量で、風雑音が発生していない場合はある特定の値に収束し、風雑音が大きくなるほど発散して変動量が大きくなる信号である。このフィルタ係数を用いることでより正確に風雑音の発生状態を検出できる。
 パルス検出部61は、風雑音発生信号のパルス性の変動をその高域成分レベルから検出する(ステップS903)。風雑音が発生している場合、風雑音検出部5を構成する適応フィルタのフィルタ係数は発散し風雑音発生信号の変動量が大きくなるため、その高域成分レベルが増大する。そこで風雑音検出部5からの風雑音発生信号をハイパスフィルタなどで構成される変動成分抽出部615に入力し、高域周波数成分を抽出する。レベル検出部612は、抽出した高域周波数成分信号の絶対値をとるなどして高域成分レベル信号を算出し、平滑化レベル算出部616は、その高域成分レベル信号を平滑化処理する。平滑化した高域周波数成分レベル信号を比較器617で所定の閾値(Th5)と比較し、平滑化した高域周波数成分レベル信号が閾値以上の場合に高域周波数成分レベル信号をゲインリミッタ618で利得制御する。
 ここで、パルス検出部への入力が通常風の風雑音発生信号である場合、風雑音は継続して発生するため、平滑化レベル算出部で算出される平滑化高域成分レベルは所定閾値(Th5)を越えて、レベル検出部で算出される高域成分レベルに近づくため、高域成分レベル信号はゲインリミッタで利得制御され大きく減衰されて出力される。
 これに対し、パルス検出部への入力が歩行中の風雑音発生信号である場合、風雑音は瞬時的に発生するため、高域成分レベルの上昇も瞬時であり、平滑化レベル算出部で算出される平滑化高域成分レベルはほとんど変化しない。従って、高域成分レベル信号はゲインリミッタで利得制御されずにそのまま出力される。
 このように、風雑音発生信号の高域成分レベルを、平滑化した高域成分レベル信号のレベルに応じて利得制御することにより、風雑音発生信号のパルス性変動は利得制御の影響を受けずにゲインリミッタ618をパルス性信号のまま通過する。風雑音発生信号が変動し続けている場合には利得制御によりゲインリミッタ618で減衰される。
 比較器613は、ゲインリミッタ618の出力を所定の閾値(Th3)と比較し、パルス判定部614は、ゲインリミッタ618の出力が閾値(Th3)を超えている時間区間の時間長をカウントし、その時間区間の時間長を所定の閾値(Th4)と比較する。ゲインリミッタ618で利得制御した風雑音発生信号の高域成分レベル信号が、所定閾値(Th3)を超える時間区間の時間長が所定閾値(Th4)以内の場合に、風雑音発生信号がパルス性変動をしていると判断する。なお、高域成分レベル信号の利得制御開始レベルを決めるための所定閾値(Th5)は、パルス性変動を検出しやすい値を実験的に決定すればよい。ここでは、例えば、閾値(Th5)は、閾値(Th3)より少し小さい値としている。また、所定閾値(Th5)は一定のものであってもよいし、抽出した高域周波数成分レベルに応じて変化するなど可変のものであってもよい。このように、フィルタ係数の変動量に応じて所定閾値(Th5)を変化することで、歩行速度に応じて変化する風雑音発生量に追従可能となり、実施の形態2と同様、より高精度な歩行状態検出ができる。
 なお、本実施の形態では風雑音発生信号の変動成分を抽出するために変動成分抽出部615はハイパスフィルタを用いる構成として説明したが、明らかに強風による風雑音発生の極度な変動成分を除外するため、ナイキスト成分付近を除外するバンドパスフィルタを用いることもできる。
 なお実施の形態2で示した単に所定の閾値を超える風雑音発生信号の時間幅を検出するよりも、本構成のように風雑音発生信号の高域成分レベルの大きさから風雑音発生信号の変動量の大きな時間区間を抽出することで、より精度の高いパルス検出が可能となる。
 このようにして、歩行検出部6は利用者の歩行状態を検出し、歩行検出信号として補聴処理部3に出力する。
 補聴処理部3の歩行検出信号に応じた補聴処理は、実施の形態1~2で説明したようにして行う。このように、適応フィルタのフィルタ係数の変動を用いて歩行状態であるか否かを検出し、歩行状態に基づいて補聴モードを切り替えることで、より利用者が求める快適な補聴処理を提供することができる。
 なお、上記では補聴器として説明してきたが、他の音響機器、例えば、携帯用音楽プレーヤやノイズキャンセリング機能搭載のヘッドホンやイヤホンなどにおいても同様に構成することができる。
 (実施の形態4)
 次に図8を用いて、本発明の実施の形態4に係る補聴器1a、1bの構成および動作を説明する。
 本実施の形態の補聴器1a、1bは、送受信部7を備える。以下、実施の形態1~3の補聴器1と同じ構成の説明は省略し、送受信部7について詳細に説明する。
 補聴器1aの送受信部7は、その補聴器1a以外の補聴器1bとの間で、歩行検出部6において検出された歩行検出信号の送受信を行う。補聴器1a、1bそれぞれの送受信部7は、補聴器1a、1bに接続された無線、あるいはケーブルを介して、歩行検出部6において検出された歩行検出信号を送受信し、共有する。
 通常、歩行時に発生する風雑音は正面からの風切り音が要因のため、利用者の両耳に装着されている補聴器1a、1bの両方で同時に歩行状態が検出されるべきである。送受信部7で両補聴器間の歩行検出信号を共有し、両方の補聴器で歩行状態が検出されている場合にのみ、歩行状態であると判断する。また、いずれか一方の補聴器でのみ歩行状態が検出され、他方では検出されていない場合には、検出された方の歩行検出信号を無効(=Low)にする。これにより、歩行検出の誤検出を抑え、精度の高い歩行検出が可能となる。さらに、歩行検出の結果に応じて制御される補聴処理も両耳間で同一にすることで、利用者の違和感を取り除くことが可能である。即ち、補聴器1a、1bのいずれか一方の補聴器のみで歩行状態が検出され、他方では検出されていない場合には、検出された方の補聴器における補聴処理を、検出されていない場合の補聴処理とする。
 逆に、補聴器1a、1bのいずれか一方でも歩行状態を検出した場合に、歩行状態を検出されていたい方の補聴器においても歩行検出信号を有効(=High)に切り替えてもよい。これにより、風雑音に鋭敏に反応することができる。さらにこの場合においても、歩行検出に結果に応じて制御される補聴処理を両耳間で同一にすることで利用者の違和感を取り除くことが可能である。即ち、補聴器1a、1bのいずれか一方でも歩行状態を検出した場合に、歩行状態を検出されていない方の補聴器における補聴処理を、検出された場合の補聴処理とする。
 また、各補聴器の歩行検出信号に従い、歩行状態を検出した補聴器においてのみ歩行状態であると判断してもよい。
 (実施の形態の組み合わせ)
 なお、本発明を実施の形態1~4に基づいて説明してきたが、本発明は実施の形態1~4に限定されることはなく、実施の形態1~4の構成を組み合わせた形態も本発明に含まれる。
 即ち、実施の形態1のローパスフィルタ51の出力を風雑音発生量として、実施の形態2、あるいは実施の形態3のパルス検出部61への入力としてもよい。また、実施の形態2、あるいは実施の形態3の適応フィルタの出力を閾値判別したものを風雑音発生フラグとして、実施の形態1のエッジ検出部611への入力としてもよい。また、実施の形態2の適応フィルタの誤差信号を、実施の形態3の変動成分抽出部615への入力としてもよい。また、それ以外の任意の組み合わせも本発明に含まれる。これらの構成であっても、前述してきたように歩行状態を検出し、検出した歩行状態に基づいて補聴モードを切り替えることで、より利用者が求める快適な補聴処理を提供することができる。
 図10に、実施の形態の組み合わせの一例として、実施の形態3における係数可変フィルタ53のフィルタ係数を、実施の形態1における比較器52に入力して閾値判別したものを風雑音発生フラグとして、実施の形態1のエッジ検出部611への入力とした構成図を示す。
 図11に、図10の構成における歩行検出を示す実験データを示す。図11は、歩行時および静止時に通常風が吹いている場合での、風雑音検出部5および歩行検出部6の出力データおよび中間データを示す。
 マイクロホン2a、2bで取込んだ音響信号(図11(a)参照)を用いて、係数可変フィルタ53の出力誤差が最小になるように係数更新部55によって更新されたフィルタ係数を風雑音の発生量とする(図11(b)参照)。比較器52は、抽出した風雑音発生量のレベルを所定閾値(Th1)と比較する(図11(c)参照)ことで、風雑音の発生が検出される(図11(d)参照)。歩行時と通常風の場合とで、風雑音の発生量(図11(b))は同程度であるものの、発生頻度が異なるため、通常風の場合では風雑音が検出され続ける一方、歩行時には断続的に風雑音が検出される(図11(d))。結果、例えば風雑音発生フラグのLowからHighへの変化点に着目すると(図11(e)参照)、歩行時には風雑音がくり返し発生していることが検出され、歩行状態であると判断できる。
 また、実施の形態4の補聴器1a、1bの送受信部7以外の各構成は、実施の形態1~3のいずれの構成であってもよいし、それ らを組み合わせたものであってもよい。また、補聴器1aと1bの送受信部7以外の構成が異なっていてもよい。
 (その他の変形例)
 また、次に示すような実施の形態も本発明に含まれる。
 (1)前記の各装置を構成する構成要素の一部、または全部を、1個のシステムLSIで構成してもよい。システムLSIは、複数の構成要素を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM、RAMなどを含んで構成されるコンピュータシステムである。前記RAMには、コンピュータプログラムが記憶されている。前記マイクロプロセッサが、前記コンピュータプログラムに従って動作することにより、システムLSIはその機能を達成する。
 (2)前記の各装置を構成する構成要素の一部、または全部を、各装置に脱着可能なICカード、または単体のモジュールで構成してもよい。前記ICカード、または前記モジュールは、マイクロプロセッサ、ROM、RAMなどから構成されるコンピュータシステムである。前記ICカード、または前記モジュールは、(1)の超多機能LSIを含むとしてもよい。マイクロプロセッサが、コンピュータプログラムに従って動作することにより、前記ICカード、または前記モジュールはその機能を達成する。このICカード、またはこのモジュールは、耐タンパ性を有するとしてもよい。
 (3)本発明は、前記に示す方法であるとしてもよい。また、これらの方法をコンピュータにより実現するコンピュータプログラムであるとしてもよいし、前記コンピュータプログラムからなるデジタル信号であるとしてもよい。
 また、本発明は、前記コンピュータプログラム、または前記デジタル信号を、コンピュータ読み取り可能な記録媒体、例えば、フレキシブルディスク、ハードディスク、CD-ROM、MO、DVD、DVD-ROM、DVD-RAM、BD(Blu-ray Disc)、半導体メモリなどに記録したものとしてもよい。また、本発明は、これらの記録媒体に記録されている前記デジタル信号であるとしてもよい。
 また、本発明は、前記コンピュータプログラム、または前記デジタル信号を、電気通信回線、無線、または有線通信回線、インターネットを代表とするネットワーク、データ放送等を経由して伝送するものとしてもよい。
 また、本発明は、マイクロプロセッサとメモリを備えたコンピュータシステムであって、前記メモリは、前記コンピュータプログラムを記憶しており、前記マイクロプロセッサは、前記コンピュータプログラムに従って動作するとしてもよい。
 また、前記コンピュータプログラム、または前記デジタル信号を、前記記録媒体に記録して移送、あるいは前記ネットワーク等を経由して移送することにより、独立した他のコンピュータシステムにより実施するとしてもよい。
 (4)前記実施の形態、および前記変形例をそれぞれ組み合わせるとしてもよい。
 本発明の補聴器は、周囲環境に合わせて補聴処理を自動で切り替える適応補聴技術として有用である。
 1、1a、1b、1001、2001 補聴器
 2、2a、2b マイクロホン
 3、1003、2003       補聴処理部
 4       レシーバ
 5       風雑音検出部
 6       歩行検出部
 7       送受信部
 31      指向性合成部
 32      指向性制御部
 33      増幅器
 51      ローパスフィルタ
 52、613、617、622      比較器
 53      係数可変フィルタ
 54      減算器
 55      係数更新部
 61      パルス検出部
 62      くり返し検出部
 611     エッジ検出部
 612     レベル検出部
 614     パルス判定部
 615     変動成分抽出部
 616     平滑化レベル算出部
 618     ゲインリミッタ
 621     カウンタ
 1002、2002a、2002b マイクロホン
 1004、2004        レシーバ
 1005、2005        信号分析部
 1006             信号識別部
 1007             トレーニング装置

Claims (13)

  1.  外部の音響信号を収音する収音部と、収音された前記音響信号に対して複数のアルゴリズムを切り替えて補聴処理を行う補聴処理部と、補聴処理された前記音響信号を出力する出力部とを備える補聴器であって、
     前記収音された音響信号の、収音時に混入している風雑音を検出する風雑音検出部と、
     前記検出された風雑音の時間的変動を検出する時間変動検出部と、
     を備え、
     前記補聴処理部は、検出された前記風雑音の時間的変動に基づいて、前記収音された音響信号に対する補聴処理のアルゴリズムを切り替える
     補聴器。
  2.  前記時間変動検出部は、
      前記風雑音の変動として、前記風雑音のパルス性変動を検出するパルス検出部と、
      前記検出されたパルス性変動の時間的くり返しの有無を検出するくり返し検出部と、
     を備える請求項1に記載の補聴器。
  3.  前記収音部は、第1のマイクロホンと第2のマイクロホンとを備え、
     前記風雑音検出部は、前記第1のマイクロホンが収音した音響信号を主信号とし、前記第2のマイクロホンが収音した音響信号を参照信号とし、前記参照信号との差分が最小になるようにフィルタ係数を更新する係数可変フィルタ部を備え、
     前記風雑音検出部は、前記推定信号と前記参照信号との差分である誤差信号を風雑音として検出する
     請求項1または請求項2に記載の補聴器。
  4.  前記収音部は、第1のマイクロホンと第2のマイクロホンとを備え、
     前記風雑音検出部は、前記第1のマイクロホンが収音した音響信号を主信号とし、前記第2のマイクロホンが収音した音響信号を参照信号とし、前記主信号をフィルタリング処理することによって得られる推定信号と前記参照信号との差分が最小になるようにフィルタ係数を更新する係数可変フィルタ部を備え、
     前記風雑音検出部は、前記係数可変フィルタ部における前記フィルタ係数を風雑音として検出する
     請求項1または請求項2に記載の補聴器。
  5.  前記パルス検出部は、
      前記フィルタ係数の変動成分を抽出する変動成分抽出部と、
      前記抽出された変動成分の平滑化レベルに基づいて、前記変動成分の利得を制御する利得制御部とを備え、
     前記パルス検出部は、利得制御された前記変動成分レベルに基づいて、前記フィルタ係数のパルス性変動を検出する
     請求項4に記載の補聴器。
  6.  前記利得制御部は、
      前記変動成分の平滑化レベルがあらかじめ定められた閾値を超えている時間長に基づいて、前記変動成分の利得を制御する
     請求項5に記載の補聴器。
  7.  前記補聴処理部は、
      前記第1のマイクロホンが収音した音響信号と前記第2のマイクロホンが収音した音響信号とを用いて、第1の方向に指向感度を持った指向性信号と、特定の方向に指向感度を持たない無指向性信号とを生成する指向性合成部と、
      前記指向性合成部の出力を、前記指向性信号と、前記無指向性信号とで切り替えることが可能な指向性制御部と、
     を備え、
     前記指向性制御部は、
      前記くり返し検出部でパルス性変動の時間的くり返しを検出しない場合には前記指向性信号を、
      前記パルス性変動の時間的くり返しを検出した場合には前記無指向性信号を出力するように切り替える
     請求項3~6のいずれか一項に記載の補聴器。
  8.  前記補聴器は、
     利用者の一方の耳に装着され、前記時間変動検出部で検出された風雑音の時間的変動を、利用者のもう一方の耳に装着される他の前記補聴器に送信し、前記他の補聴器において検出された風雑音の時間的変動を受信する送受信部をさらに備え、
     前記補聴処理部は、前記時間変動検出部で検出された風雑音の時間的変動および前記送受信部で受信した風雑音の時間的変動に基づいて、前記収音された音響信号に対する補聴アルゴリズムを切り替える
     請求項1~7のいずれか一項に記載の補聴器。
  9.  請求項1~7のいずれか一項に記載の前記補聴器を一対で備える補聴システムであって、
     前記補聴器は、
      前記時間変動検出部で検出された風雑音の時間的変動を他の前記補聴器に送信し、前記他の補聴器において検出された風雑音の時間的変動を受信する送受信部をさらに備え、
     前記補聴処理部は、前記時間変動検出部で検出された風雑音の時間的変動および前記送受信部で受信した風雑音の時間的変動に基づいて、前記収音された音響信号に対する補聴アルゴリズムを切り替える
     補聴システム。
  10.  外部の音響信号を収音する収音ステップと、
     前記収音された音響信号の、収音時に混入している風雑音を検出する風雑音検出ステップと、
     前記検出された風雑音の時間的変動を検出する時間変動検出ステップと、
     検出された前記風雑音の時間的変動がくり返しのあるパルス性変動の場合には、歩行状態であると判定する判定ステップと、
     を含む歩行検出方法。
  11.  外部の音響信号を収音する収音部と、収音した前記音響信号に対して複数のアルゴリズムを切り替えて補聴処理を行う補聴処理部と、補聴処理された前記音響信号を出力する出力部とを備える補聴器における補聴方法であって、
     風雑音検出部が、前記収音された音響信号の、収音時に混入している風雑音を検出し、
     時間変動検出部が、前記検出された風雑音の時間的変動を検出し、
     前記補聴処理部は、検出された前記風雑音の時間的変動に基づいて、前記収音された前記音響信号に対する補聴処理のアルゴリズムを切り替える
     補聴方法。
  12.  外部の音響信号を収音する収音部と、収音した前記音響信号に対して複数のアルゴリズムを切り替えて補聴処理を行う補聴処理部と、補聴処理された前記音響信号を出力する出力部とを備える補聴器に実装される集積回路であって、
     前記収音された音響信号の、収音時に混入している風雑音を検出する風雑音検出部と、
     検出された前記風雑音の時間的変動を検出する時間変動検出部と
     を備え、
     前記補聴処理部は、前記風雑音の時間的変動に基づいて、前記収音された前記音響信号に対する補聴処理のアルゴリズムを切り替える
     集積回路。
  13.  コンピュータを、請求項1記載の補聴器が備える各処理部として機能させるプログラム。
     
PCT/JP2010/003684 2009-06-02 2010-06-02 補聴器、補聴システム、歩行検出方法および補聴方法 WO2010140358A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080002262.1A CN102124758B (zh) 2009-06-02 2010-06-02 助听器、助听系统、步行检测方法和助听方法
EP10783146.3A EP2439961B1 (en) 2009-06-02 2010-06-02 Hearing aid, hearing assistance system, walking detection method, and hearing assistance method
US13/057,227 US8391524B2 (en) 2009-06-02 2010-06-02 Hearing aid, hearing aid system, walking detection method, and hearing aid method
JP2011500777A JP5485256B2 (ja) 2009-06-02 2010-06-02 補聴器、補聴システム、歩行検出方法および補聴方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-132811 2009-06-02
JP2009132811 2009-06-02

Publications (1)

Publication Number Publication Date
WO2010140358A1 true WO2010140358A1 (ja) 2010-12-09

Family

ID=43297501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003684 WO2010140358A1 (ja) 2009-06-02 2010-06-02 補聴器、補聴システム、歩行検出方法および補聴方法

Country Status (5)

Country Link
US (1) US8391524B2 (ja)
EP (1) EP2439961B1 (ja)
JP (1) JP5485256B2 (ja)
CN (1) CN102124758B (ja)
WO (1) WO2010140358A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012239017A (ja) * 2011-05-11 2012-12-06 Fujitsu Ltd 風雑音抑圧装置、半導体集積回路及び風雑音抑圧方法
JP2012249185A (ja) * 2011-05-30 2012-12-13 Yamaha Corp イヤホン
JP2013030881A (ja) * 2011-07-27 2013-02-07 Kyocera Corp 携帯電子機器
KR101744464B1 (ko) 2013-06-14 2017-06-07 와이덱스 에이/에스 보청기 시스템에서의 신호 프로세싱 방법 및 보청기 시스템
JP2020034885A (ja) * 2018-08-29 2020-03-05 グォグァン エレクトリック カンパニー リミテッドGuoguang Electric Company Limited オーバーシュート抑圧を用いたマルチバンドオーディオ信号ダイナミックレンジ圧縮
JP2020150566A (ja) * 2017-03-10 2020-09-17 ヤマハ株式会社 ヘッドフォンおよびヘッドフォンの制御方法
WO2021225100A1 (ja) * 2020-05-07 2021-11-11 ソニーグループ株式会社 信号処理装置、信号処理プログラムおよび信号処理方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI474690B (zh) * 2008-02-15 2015-02-21 Koninkl Philips Electronics Nv 偵測無線麥克風訊號的無線電感測器及其方法
JPWO2012098856A1 (ja) * 2011-01-17 2014-06-09 パナソニック株式会社 補聴器、及び、補聴器の制御方法
US8989413B2 (en) 2011-09-14 2015-03-24 Cochlear Limited Sound capture focus adjustment for hearing prosthesis
EP2780906B1 (en) * 2011-12-22 2016-09-14 Cirrus Logic International Semiconductor Limited Method and apparatus for wind noise detection
US9769556B2 (en) 2012-02-22 2017-09-19 Snik Llc Magnetic earphones holder including receiving external ambient audio and transmitting to the earphones
US10524038B2 (en) 2012-02-22 2019-12-31 Snik Llc Magnetic earphones holder
US9288584B2 (en) * 2012-09-25 2016-03-15 Gn Resound A/S Hearing aid for providing phone signals
US9332359B2 (en) 2013-01-11 2016-05-03 Starkey Laboratories, Inc. Customization of adaptive directionality for hearing aids using a portable device
US20140278393A1 (en) 2013-03-12 2014-09-18 Motorola Mobility Llc Apparatus and Method for Power Efficient Signal Conditioning for a Voice Recognition System
US20140270249A1 (en) 2013-03-12 2014-09-18 Motorola Mobility Llc Method and Apparatus for Estimating Variability of Background Noise for Noise Suppression
KR102094392B1 (ko) * 2013-04-02 2020-03-27 삼성전자주식회사 복수의 마이크로폰들을 구비하는 사용자 기기 및 그 동작 방법
US9936309B2 (en) * 2013-05-24 2018-04-03 Alarm.Com Incorporated Scene and state augmented signal shaping and separation
US20150371519A1 (en) * 2014-06-24 2015-12-24 Kabushiki Kaisha Toshiba Information Processing Device and Information Processing Method
WO2017038260A1 (ja) * 2015-08-28 2017-03-09 ソニー株式会社 情報処理装置、情報処理方法、およびプログラム
US9749766B2 (en) * 2015-12-27 2017-08-29 Philip Scott Lyren Switching binaural sound
US11272281B2 (en) 2016-04-19 2022-03-08 Snik Llc Magnetic earphones holder
US10225640B2 (en) 2016-04-19 2019-03-05 Snik Llc Device and system for and method of transmitting audio to a user
US10631074B2 (en) 2016-04-19 2020-04-21 Snik Llc Magnetic earphones holder
US10951968B2 (en) 2016-04-19 2021-03-16 Snik Llc Magnetic earphones holder
US10455306B2 (en) 2016-04-19 2019-10-22 Snik Llc Magnetic earphones holder
US10979814B2 (en) 2018-01-17 2021-04-13 Beijing Xiaoniao Tingling Technology Co., LTD Adaptive audio control device and method based on scenario identification
CN110049403A (zh) * 2018-01-17 2019-07-23 北京小鸟听听科技有限公司 一种基于场景识别的自适应音频控制装置和方法
US10405115B1 (en) * 2018-03-29 2019-09-03 Motorola Solutions, Inc. Fault detection for microphone array
US10638210B1 (en) * 2019-03-29 2020-04-28 Sonova Ag Accelerometer-based walking detection parameter optimization for a hearing device user
JP7270140B2 (ja) * 2019-09-30 2023-05-10 パナソニックIpマネジメント株式会社 音声処理システム及び音声処理装置
EP4066515A1 (en) * 2019-11-27 2022-10-05 Starkey Laboratories, Inc. Activity detection using a hearing instrument
WO2021146140A1 (en) 2020-01-14 2021-07-22 Starkey Laboratories, Inc. Light sensor in hearing instrument
EP3879851A1 (en) * 2020-03-11 2021-09-15 GN Hearing A/S Hearing device with pulse power estimation, pulse detection, and related method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1023590A (ja) * 1996-07-03 1998-01-23 Matsushita Electric Ind Co Ltd マイクロホン装置
JP2004500592A (ja) 2001-01-05 2004-01-08 フォーナック アーゲー 瞬時的音響環境状況の決定方法、同方法による補聴器調整方法及び言語認識方法、並びに同方法を適用する補聴器
JP2004511153A (ja) * 2000-10-04 2004-04-08 ヴェーデクス・アクティーセルスカプ 入力トランスデューサの適応整合を有する補聴器
JP2005257817A (ja) * 2004-03-09 2005-09-22 Internatl Business Mach Corp <Ibm> 雑音除去装置、方法、及びプログラム
JP2006270952A (ja) * 2005-03-21 2006-10-05 Siemens Audiologische Technik Gmbh 補聴装置および補聴装置の作動方法
JP3894875B2 (ja) 2002-11-05 2007-03-22 リオン株式会社 補聴装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1196009T3 (en) * 2000-10-04 2016-11-28 Widex As Hearing aid with adaptive matching of input transducers
AU2001221399A1 (en) * 2001-01-05 2001-04-24 Phonak Ag Method for determining a current acoustic environment, use of said method and a hearing-aid
US6862359B2 (en) * 2001-12-18 2005-03-01 Gn Resound A/S Hearing prosthesis with automatic classification of the listening environment
DE102005032292B3 (de) * 2005-07-11 2006-09-21 Siemens Audiologische Technik Gmbh Hörgerät mit reduzierter Windempfindlichkeit und entsprechendes Verfahren

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1023590A (ja) * 1996-07-03 1998-01-23 Matsushita Electric Ind Co Ltd マイクロホン装置
JP2004511153A (ja) * 2000-10-04 2004-04-08 ヴェーデクス・アクティーセルスカプ 入力トランスデューサの適応整合を有する補聴器
JP2004500592A (ja) 2001-01-05 2004-01-08 フォーナック アーゲー 瞬時的音響環境状況の決定方法、同方法による補聴器調整方法及び言語認識方法、並びに同方法を適用する補聴器
JP3894875B2 (ja) 2002-11-05 2007-03-22 リオン株式会社 補聴装置
JP2005257817A (ja) * 2004-03-09 2005-09-22 Internatl Business Mach Corp <Ibm> 雑音除去装置、方法、及びプログラム
JP2006270952A (ja) * 2005-03-21 2006-10-05 Siemens Audiologische Technik Gmbh 補聴装置および補聴装置の作動方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2439961A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012239017A (ja) * 2011-05-11 2012-12-06 Fujitsu Ltd 風雑音抑圧装置、半導体集積回路及び風雑音抑圧方法
US9124962B2 (en) 2011-05-11 2015-09-01 Fujitsu Limited Wind noise suppressor, semiconductor integrated circuit, and wind noise suppression method
JP2012249185A (ja) * 2011-05-30 2012-12-13 Yamaha Corp イヤホン
JP2013030881A (ja) * 2011-07-27 2013-02-07 Kyocera Corp 携帯電子機器
KR101744464B1 (ko) 2013-06-14 2017-06-07 와이덱스 에이/에스 보청기 시스템에서의 신호 프로세싱 방법 및 보청기 시스템
JP2020150566A (ja) * 2017-03-10 2020-09-17 ヤマハ株式会社 ヘッドフォンおよびヘッドフォンの制御方法
JP2020034885A (ja) * 2018-08-29 2020-03-05 グォグァン エレクトリック カンパニー リミテッドGuoguang Electric Company Limited オーバーシュート抑圧を用いたマルチバンドオーディオ信号ダイナミックレンジ圧縮
WO2021225100A1 (ja) * 2020-05-07 2021-11-11 ソニーグループ株式会社 信号処理装置、信号処理プログラムおよび信号処理方法

Also Published As

Publication number Publication date
US8391524B2 (en) 2013-03-05
JP5485256B2 (ja) 2014-05-07
US20110135126A1 (en) 2011-06-09
EP2439961B1 (en) 2015-08-12
JPWO2010140358A1 (ja) 2012-11-15
EP2439961A4 (en) 2014-08-20
EP2439961A1 (en) 2012-04-11
CN102124758B (zh) 2014-03-12
CN102124758A (zh) 2011-07-13

Similar Documents

Publication Publication Date Title
WO2010140358A1 (ja) 補聴器、補聴システム、歩行検出方法および補聴方法
JP5740572B2 (ja) 補聴器、信号処理方法及びプログラム
US8744100B2 (en) Hearing aid in which signal processing is controlled based on a correlation between multiple input signals
JP6450458B2 (ja) 自身の声を迅速に検出する方法と装置
US9224395B2 (en) Voice detection for automatic volume controls and voice sensors
US10861484B2 (en) Methods and systems for speech detection
CN1897765B (zh) 助听装置以及用于检测自身声音的相应方法
CN109195042B (zh) 低功耗的高效降噪耳机及降噪系统
JP5514698B2 (ja) 補聴器
TW201042634A (en) Audio source proximity estimation using sensor array for noise reduction
EP1835785A2 (en) Environment detection and adaptation in hearing assistance devices
WO2014194932A1 (en) Method for operating a hearing device and a hearing device
US8116490B2 (en) Method for operation of a hearing device system and hearing device system
KR20150018727A (ko) 청각 기기의 저전력 운용 방법 및 장치
US9584930B2 (en) Sound environment classification by coordinated sensing using hearing assistance devices
US11297429B2 (en) Proximity detection for wireless in-ear listening devices
CN113767431A (zh) 语音检测
US20080175423A1 (en) Adjusting a hearing apparatus to a speech signal
US20140023218A1 (en) System for training and improvement of noise reduction in hearing assistance devices
WO2010002405A1 (en) Voice detection for automatic volume controls and voice sensors
US11929071B2 (en) Hearing device system and method for operating same
EP4300491A1 (en) A method for transforming audio input data into audio output data and a hearing device thereof
JPH1146397A (ja) 聴覚補助装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002262.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2011500777

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13057227

Country of ref document: US

Ref document number: 2010783146

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10783146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE