WO2010139273A1 - 多路信号复用、解复用的方法、装置和系统 - Google Patents

多路信号复用、解复用的方法、装置和系统 Download PDF

Info

Publication number
WO2010139273A1
WO2010139273A1 PCT/CN2010/073490 CN2010073490W WO2010139273A1 WO 2010139273 A1 WO2010139273 A1 WO 2010139273A1 CN 2010073490 W CN2010073490 W CN 2010073490W WO 2010139273 A1 WO2010139273 A1 WO 2010139273A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
sampling
equal
data
Prior art date
Application number
PCT/CN2010/073490
Other languages
English (en)
French (fr)
Inventor
魏孔刚
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Priority to EP10782977A priority Critical patent/EP2434672A4/en
Publication of WO2010139273A1 publication Critical patent/WO2010139273A1/zh
Priority to US13/309,974 priority patent/US9219561B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/04Distributors combined with modulators or demodulators
    • H04J3/047Distributors with transistors or integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M9/00Parallel/series conversion or vice versa

Definitions

  • the present invention relates to the field of mobile wireless communications, and in particular to a method, apparatus and system for multiplexing, demultiplexing multiple signals. Background technique
  • Multiple signal multiplexing enables multiple signals to be transmitted, and only one bus can be used to transmit multiple signals.
  • the existing multi-channel signal multiplexing technology often needs to first use the clock to perform multi-sampling and latching for each signal. Since each signal is usually sampled more than 8 times, register buffering and temporary storage are required. It is then synchronously multiplexed to the high speed data line using a high speed clock signal. This multiplexing technique is used in environments where time is not critical between two separate processing units.
  • the inventors have found that at least the following problems exist in the prior art:
  • the existing multi-channel signal multiplexing technology needs to perform multiple times for each signal first. After sampling, it is latched, and data units or data blocks are formed and then multiplexed. Therefore, its real-time performance is poor.
  • Summary of the invention In view of this, it is an object of one or more embodiments of the present invention to provide a method, apparatus, and system for multiplexing, demultiplexing multiple signals.
  • an embodiment of the present invention provides a multiplexing method for multiplexing, comprising: acquiring a sampling signal of a K-channel signal by using a first signal, where K is a natural number greater than or equal to 2; the first signal has a first Frequency F1, the highest frequency of the K-channel signal is the third frequency F3; the first frequency F1 is S times of the third frequency F3, S is the number of times of sampling of the first signal per cycle; a data string of the sampled signal;
  • the data string is transmitted using a second signal having a second frequency F2 divided by a first frequency F1 greater than or equal to K, i.e., 2/F1 ⁇ .
  • the embodiment of the invention further provides a method for demultiplexing multiple signals, including:
  • Using a second signal acquiring a data string having a preset format, the second signal having a second frequency
  • the highest frequency of the K channel signal is the third frequency F3
  • the first frequency F1 is the S of the third frequency F3 Times
  • S is the number of times the first signal is sampled per cycle
  • the second frequency F2 is divided by the first frequency F1 is greater than or equal to K, ⁇ F2 F ⁇ ⁇ K .
  • a multi-channel signal multiplexing device including:
  • a sampling unit configured to acquire a sampling signal of the K channel signal by using the first signal, where K is a natural number greater than or equal to 2;
  • the first signal has a first frequency F1, the highest frequency of the K-channel signal is a third frequency F3; the first frequency F1 is S times the third frequency F3, and S is the number of times the first signal is sampled per cycle; a generating unit, configured to generate a data string that includes the sampling signal in a preset format;
  • a sending unit configured to send the data string by using a second signal, where the second signal has a second frequency F2, and the second frequency F2 is divided by the first frequency F1 is greater than or equal to K, that is, F2/F1 ⁇ K.
  • a device for demultiplexing multiple signals including:
  • An acquisition unit configured to use a second signal to acquire a data string having a preset format, the second signal having a second frequency F2;
  • a first recovery unit configured to recover a sampling signal of the K channel signal according to a preset format of the data string, where K is a natural number greater than or equal to 2;
  • a second recovery unit configured to recover a K-channel signal from a sampling signal of the K-channel signal by using a first frequency F1, wherein a highest frequency of the K-channel signal is a third frequency F3, where the first frequency F1 is S times the third frequency F3, S is the number of times the first signal is sampled per cycle, and the second frequency F2 is divided by the first frequency F1 is greater than or equal to K, that is, F2 / l ⁇ :.
  • a system for transmitting a multiplexed signal including any one of the multiplexed signal multiplexing devices provided by the embodiments of the present invention, and any one of the multiplexed signal demultiplexing devices provided by the embodiments of the present invention, wherein:
  • the multi-channel signal multiplexing device acquires the sampling signal of the K-channel signal using the first signal, K is a natural number greater than or equal to 2, the first signal has a first frequency F1, and the highest frequency of the K-channel signal is a third frequency F3
  • the first frequency F1 is S times the third frequency F3, and S is the number of times the first signal is sampled per cycle;
  • the multiplex signal demultiplexing device uses a second signal to acquire a data string having a preset format, the second signal having a second frequency F2;
  • the embodiment of the invention Using the first frequency F1, recovering the K-channel signal from the sampling signal of the K-channel signal, the highest frequency of the K-channel signal is the third frequency F3, and the first frequency F1 is the S of the third frequency F3 Times, S is the number of times the first signal is sampled per cycle, and the second frequency F2 is divided by the first frequency F1 is greater than or equal to K, ie ⁇ K.
  • the embodiment of the invention has the following advantages:
  • the embodiment of the present invention obtains the sampling signal of the ⁇ road signal by using the first signal, K is a natural number greater than or equal to 2; the first signal has a first frequency F1, and the highest frequency of the K channel signal is a third frequency F3; The first frequency F1 is S times the third frequency F3, S is the number of times the first signal is sampled per cycle; the data string containing the sampling signal is generated in a preset format; and the data string is transmitted using the second signal.
  • the second signal has a second frequency F2, and the second frequency F2 is divided by the first frequency F1 is greater than or equal to K, so that the multi-channel signal can be sampled in real time, and then transmitted through the second signal in real time, in the receiving multiplexing.
  • the real-time and fast demultiplexing of the data string in real time can restore the original multi-path signal in real time, which significantly reduces the time for waiting for multi-signal latching in the prior art, and improves multiplexing and demultiplexing. And the speed of sending and receiving solves the technical problem of real-time in the prior art.
  • FIG. 1 is a schematic diagram of signal sampling according to Embodiment 1 of the present invention.
  • Embodiment 2 is a flow chart of Embodiment 2 of the present invention.
  • Figure 3 is a schematic diagram of sampling when the sampled signals are synchronized
  • Figure 4 is a schematic diagram of sampling when the sampled signals are not synchronized
  • FIG. 5 is a flowchart of a method for demultiplexing multiple signals according to an embodiment of the present invention
  • FIG. 6 is a multi-channel signal multiplexing device according to an embodiment of the present invention
  • FIG. 7 is a multi-channel signal demultiplexing apparatus provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a multi-channel signal multiplexing system apparatus according to an embodiment of the present invention.
  • FIG. 1 it is a schematic diagram of signal sampling according to the first embodiment of the present invention.
  • the first signal is 1010
  • the second signal is 1000
  • the third signal is 0111.
  • the maximum frequency of the three signals is 1 ⁇ , and the three signals are completely synchronized.
  • the first signal F1 has a frequency of 2 Hz, including the following steps:
  • Step 101 For the three signals, the first signal is used for sampling, and the sampling is performed once every period, and the sampling point is three signals aligned by the rising edge of the first signal; that is, 110 can be obtained, and the second is The fourth sampling point is 001, 101, 001; then the sampling of the three signals can be completed after 2 seconds of sampling. Since the real-time transmission is used in this embodiment, the sampling and transmitting of the three signals are completed simultaneously after two seconds. jobs;
  • the data points and data tails can be directly transmitted, and the obtained sampling points can be directly transmitted, and the parity bits can be added to increase the accuracy of data transmission.
  • Step 103 Send the data string by using the second signal. If the data string includes the data header and the data tail, send 0111010, the frequency of the second signal.
  • the second frequency F2 of the second signal is set to 14Hz;
  • the signals of the first to third signals can be sequentially The last few bits are sampled and sent out: the first signal 1010, the second signal 1000, the third signal 0111, and the first, second, third and fourth sampling points of each signal form a data string.
  • Step 104 Receive a data string sent by the second signal, and collect the data string by using a second signal having a second frequency F2.
  • Step 105 Removing the data header 01 and the data tail 10 from the data string to obtain the data 110, that is, the three signals obtained by sampling;
  • Step 106 Using the first signal, restore the data string 110 to the original first signal 1, the second signal 1 and the third signal 0; if a complete sampling period is passed, the first to The last few bits of the third signal are recovered: the first signal 1010, the second signal 1000, and the third signal 0111.
  • Embodiment 2 is a diagrammatic representation of the three-way and more-way signals in the embodiment of the present invention.
  • FIG. 2 it is a flowchart of Embodiment 2 of the present invention, which includes the following steps:
  • Step 201 For the K channel signal: signal 1, signal 2 ... signal K, use the first signal to obtain
  • each signal is sampled only once, that is, only one point is sampled; the first signal has a first frequency F1, and the first signal has a frequency ratio K-channel signal
  • the frequency of each of the signals is high.
  • the sampled signals sampled from signal 1, signal 2, ... signal K include K samples, which are 1.1, 2.1... K.L
  • each signal of the K-channel signal is simultaneously sampled 1-7 times as a sampling signal by using the first signal.
  • Step 202 Generate a data string including the sampling signal according to a preset format.
  • the sampled circuit signal may be directly inserted into a data string having a preset frame format, where the data string of the preset format may further include The header, the end of the frame, the check digit, etc., the resulting data string contains one sample point for each signal of the chopping signal.
  • Step 203 Send the data string to a high speed bus using a second signal, the second signal having a second frequency F2.
  • the second frequency F2 is divided by the first frequency F1 is greater than or equal to K, that is, > K. If the data string further includes a sum of a data header and a data tail length, and the sum of the data header and the data tail length is Y, the second frequency F2 is divided by the first frequency F1 is greater than or equal to ⁇ + ⁇ ;
  • the first frequency Fl the frequency of the signal with the largest medium frequency of the K channel signal is Fx
  • S is the number of times of sampling in each period of the first signal. According to the Nyquist theorem, as long as the sampling frequency is 2 times or more of the frequency of the sampled signal, the more samples are counted in each period, the recovered signal is The more precise, the closer it is to the signal before sampling. When the sampling point approaches infinity, the recovered letter The number will be the same as the signal before sampling.
  • sampling diagram When the sampled signals are not synchronized, the sampling diagram can be referred to as shown in Figure 4.
  • the value of S needs to consider the synchronization relationship between the samples being sampled. If the sampled K-channel signals are synchronized with each other, all K-channel signals can be recovered as long as the highest frequency of the K-channel signals can be recovered. This is because, for other signals with lower frequencies, it is naturally able to conform to the Nyquist theorem and can be accurately recovered. Therefore, S can take the minimum value of 2.
  • the S-value needs to be larger than when it is synchronized. The reason is that when the sampled signal is out of sync, since the sampling of the sampled signal occurs on the rising or falling edge of the first signal, if the first signal is sampled, the sampled signal also enters the rising edge or falls. Along, a sampling error will occur. As shown in the three points of eight, B and C in Figure 4. In order to overcome the possibility of such an error, the frequency of the first signal must be increased. If the frequency of the first signal is high enough, whether the sampled signal enters the rising or falling edge is negligible, that is, the influence of the sampling error on the signal recovery is negligible. But this comes at the cost of using a high-performance clock signal generator, or the complexity of the algorithm is greatly increased.
  • the measurement is performed.
  • the S value is greater than or equal to 16
  • the sampling and recovery of the unsynchronized sampled signal is good.
  • the S value can be set higher, so that the recovered signal is very close to the sampled signal.
  • the complexity of the embodiment of the present invention depends on the synchronization relationship between the signals to be sampled, the number of samples to be sampled, the highest frequency of the sampled signal, and the number of samples S in the same period. In addition, in some cases, it will also be related to the bus technology used and the transmission distance.
  • Step 204 After receiving the second signal from the high speed bus, recovering the second signal by using the phase locked loop, and using the phase locked loop having the second frequency F2, recovering the data string having the first frequency F1 therefrom; the phase locked loop generates the clock
  • the signal is the most stable and reliable.
  • Data string recovery can also be implemented here by software decoding.
  • Step 205 Using a frequency divider, recovering the data string from the data string having the first frequency F1. Since the data string includes the sampling signal of the K channel signal, the sampling of each signal may be recovered according to the preset data frame format. point. According to the sampling points of the signals that are continuously recovered, the signals can be completely recovered in real time.
  • the principles and processes of the steps 204, 205 of the demultiplexing are similar to those of the first embodiment, and are the inverse of the multiplexing process.
  • each bit of the signal can also be sampled by two bits to seven bits in each sampling period, compared to at least 8 bits or multiples of each signal in the prior art.
  • the data volume of sampling 2-7 bits in the embodiment of the present invention is still much smaller than the prior art, and the real-time performance is slightly worse than sampling once in each sampling period, but it can be received under different real-time requirements. of.
  • a mobile terminal can be applied between a mobile terminal, a portable terminal, a system device circuit module and a module, such as between a mobile phone motherboard and a liquid crystal display, between a portable device and a display, between modules of the device.
  • data signals, control signals, and status signals can be multiplexed on a set of transmission lines, for example, between a central processing unit and a memory or peripheral device, which can significantly reduce device pins, thereby greatly reducing the cost of semiconductor packaging.
  • P strives for lower product development costs, lowers printed circuit design and manufacturing costs, and thus significantly reduces equipment costs.
  • FIG. 5 it is a method for demultiplexing a multipath signal provided by an embodiment of the present invention, including:
  • Step 501 Using a second signal, collecting a data string having a preset format, the second signal having a second frequency F2;
  • Step 502 Restore the sampling signal of the K channel signal according to the preset format of the data string, where K is a natural number greater than or equal to 2;
  • the recovering the K-channel signal from the sampling signal of the K-channel signal by using the first frequency F1 includes:
  • sampling points of the K-channel signal are respectively obtained from the sampling signals.
  • the S is greater than or equal to 2.
  • the S is greater than or equal to 16.
  • the data string further includes a data header and a data tail.
  • the sum of the lengths of the data header and the data tail is Y, and the second frequency F2 is divided by the sum of the first frequency F1 and greater than or equal to K+Y.
  • the demultiplexing method provided by the embodiment of the present invention can significantly reduce the receiving time, enhance the real-time performance of the data transmission process, and reduce the device pins, thereby greatly reducing the cost of the semiconductor package and reducing the cost.
  • a multi-channel signal multiplexing apparatus includes: a sampling unit 601, configured to acquire a sampling signal of a K-channel signal by using a first signal, where K is greater than or equal to 2 Natural number;
  • the first signal has a first frequency F1, the highest frequency of the K-channel signal is a third frequency F3; the first frequency F1 is S times the third frequency F3, and S is the number of times the first signal is sampled per cycle; a generating unit 602, configured to generate a data string that includes the sampling signal in a preset format, a sending unit 603, configured to send the data string by using a second signal, where the second signal has a second The frequency F2, the second frequency F2 divided by the first frequency F1 is greater than or equal to K, that is, J P2 / J R ⁇ J i .
  • the sampling unit 601 can simultaneously sample each signal of the K channel signal 1-7 times as the sampling signal by using the first signal.
  • the S is greater than or equal to 2.
  • the S is greater than or equal to 16.
  • the data string further includes a data header and a data tail, and the sum of the data header and the data tail is Y; the second frequency F2 is divided by the first frequency F1, and is greater than or equal to the sum of K and Y, that is, F2 !F ⁇ K + Y.
  • the embodiment of the invention can recover the original multi-path signal in real time after the data string is demultiplexed in real time, which significantly reduces the time for waiting for multi-channel signal latching in the prior art, and improves multiplexing, demultiplexing and The speed of sending and receiving solves the technical problem of real-time in the prior art. In addition, it enhances the real-time performance of the data transmission process and reduces the device pins, thereby greatly reducing the cost of semiconductor packaging, reducing product development costs, reducing printed circuit design and manufacturing costs, and thus significantly reducing equipment costs.
  • Embodiment 4 Embodiment 4
  • FIG. 4 it is a device for demultiplexing multiple signals provided by Embodiment 4 of the present invention, which includes:
  • the acquiring unit 701 is configured to: use the second signal, collect a data string having a preset format, and the second signal has a second frequency F2;
  • the first restoring unit 702 is configured to recover a sampling signal of the K channel signal according to the preset format of the data string, where K is a natural number greater than or equal to 2;
  • the second recovery unit 703 is configured to recover the K-channel signal from the sampling signal of the K-channel signal by using the first frequency F1, where the highest frequency of the K-channel signal is the third frequency F3, and the first frequency F1 is S times the third frequency F3, S is the number of times the first signal is sampled per cycle, and the second frequency F2 is divided by the first frequency F1 is greater than or equal to K, that is, 2/ 1 ⁇ ⁇ :.
  • the second recovery unit uses the first frequency F1
  • the sampling signals respectively acquire 1-7 sampling points of the K channel signal.
  • the S is greater than or equal to 2.
  • the S is greater than or equal to 16.
  • the data string further includes a data header and a data tail.
  • the sum of the lengths of the data header and the data tail is ⁇ , and the second frequency F2 is divided by the first frequency F 1 is greater than or equal to the sum of ⁇ + ⁇ .
  • the multiplex signal demultiplexing apparatus provided by the embodiment of the present invention has the same technical effects as the method embodiment.
  • a system for transmitting multiple signals includes a multiplex signal multiplexing device 801 and a multiplex signal demultiplexing device 802;
  • the multiplex signal multiplexing device may be any multiplexed signal multiplexing device provided by the embodiment of the present invention.
  • the multi-channel signal multiplexing device acquires a sampling signal of the crotch signal using the first signal, where ⁇ is a natural number greater than or equal to 2, the first signal has a first frequency F1, and the highest frequency of the crotch signal is a third Frequency F3, the first frequency F1 is S times the third frequency F3, and S is the number of times the first signal is sampled per cycle;
  • the multiplex signal demultiplexing device uses a second signal to acquire a data string having a preset format, the second signal having a second frequency F2;
  • the highest frequency of the K channel signal is the third frequency F3
  • the first frequency F1 is the S of the third frequency F3 Times
  • S is the number of times the first signal is sampled per cycle
  • the second frequency F2 is divided by the first frequency F1 being greater than or equal to K.
  • the embodiment of the present invention obtains the sampling signal of the K-channel signal by using the first signal, K is a natural number greater than or equal to 2; the first signal has a first frequency F1, and the highest frequency of the K-channel signal is a third frequency F3; The first frequency F1 is S times the third frequency F3, S is the number of times the first signal is sampled per cycle; the data string containing the sampling signal is generated in a preset format; and the data string is transmitted using the second signal.
  • the second signal has a second frequency F2, and the second frequency F2 is divided by the first frequency F1 is greater than or equal to K, so that the multi-channel signal can be sampled in real time, and then transmitted through the second signal in real time, in the receiving multiplexing.
  • the real-time demultiplexing of the data string in real time can restore the original multi-channel signal in real time, which significantly reduces the multiplexing and demultiplexing in the prior art while waiting for the latching of the multi-channel signal. And the speed of sending and receiving solves the technical problem of real-time in the prior art.
  • the embodiments of the present invention can be applied between a mobile terminal, a portable terminal, a system device circuit module and a module, such as between a mobile phone motherboard and a liquid crystal display, between a portable device and a display, between modules of the device, and the like.
  • Data signals, control signals, and status signals can be multiplexed on a set of transmission lines, for example, between a central processing unit and a memory or peripheral device, which can significantly reduce device pins, thereby greatly reducing semiconductor package cost and lowering products. Development costs, reduced printed circuit design and manufacturing costs, and thus significantly reduced equipment costs.
  • the present invention can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is a better implementation. the way.
  • the essential machine software product of the present invention is stored in a storage medium, and includes a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute various embodiments of the present invention. Said method.
  • the method in the embodiment of the present invention can be implemented in the form of a software function module, and when the software function module is sold or used as a stand-alone product, it can also be stored in a computer readable storage medium.
  • the above-mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the functional units in the embodiments of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above-mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Time-Division Multiplex Systems (AREA)

Description

多路信号复用、 解复用的方法、 装置和系统 本申请要求于 2009年 6月 3日提交中国专利局、申请号为 200910145591.0、 发明名称为"多路信号复用、解复用的方法、装置和系统"的中国专利申请的优先 权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及移动无线通信领域, 具体而言是涉及多路信号复用、 解复用的 方法、 装置和系统。 背景技术
在电子产品中, 在不同的硬件单元电路之间、 以及部件与部件之间、 产品 与产品之间因为信号传送的需要, 往往存在较多的线路连接关系。 为了减少线 路连接关系, 就产生了多路信号复用。 多路信号复用是将多路相对低速的信号 叠加到相对高速的信号上。 信号解复用是从相对高速的信号上恢复出多路相对 低速的信号。
多路信号复用能够将多路信号复用后, 仅仅使用一条总线就可以所将包含 的多路信号发送出去。
现有的多路信号复用技术, 往往需要首先使用时钟对每一路信号进行多次 采样后锁存, 由于每一路信号采样的次数通常多于 8次, 所以需要使用寄存器 緩冲、 暂存, 然后使用高速时钟信号同步复用至高速数据线。 这种多路复用技 术应用于两个单独的处理单元之间对时间要求不高的环境。
综上所述, 发明人在实现本发明实施例的过程中, 发现现有技术中至少存 在如下问题: 现有技术中由于现有的多路信号复用技术需要对每一路信号先进 行多次采样后锁存, 形成数据单元或数据块后再复用, 所以, 其实时性差。 发明内容 有鉴于此, 本发明提供的一个或多个实施例的目的在于提供多路信号复用、 解复用的方法、 装置和系统。
为解决上述问题, 本发明实施例提供了一种多路信号复用方法, 包括: 使用第一信号获取 K路信号的采样信号 , K为大于等于 2的自然数; 所述第一信号具有第一频率 Fl, 所述 K路信号的最高频率为第三频率 F3; 第一频率 F1是第三频率 F3的 S倍, S为第一信号每个周期采样的次数; 按预置格式生成包含所述采样信号的数据串;
使用第二信号发送所述数据串, 所述第二信号具有第二频率 F2, 所述第二 频率 F2除以第一频率 F1大于等于 K, 即 2/F1≥ 。
同时本发明实施例还提供了一种多路信号解复用的方法, 包括:
使用第二信号, 采集具有预置格式的数据串, 所述第二信号具有第二频率
F2;
根据所述数据串的预置格式, 恢复 K路信号的采样信号, K为大于等于 2 的自然数;
使用第一频率 Fl, 从所述 K路信号的采样信号中恢复 K路信号, 所述 K 路信号的最高频率为第三频率 F3,所述第一频率 F1是所述第三频率 F3的 S倍, S为第一信号每个周期采样的次数,所述第二频率 F2除以第一频率 F1大于等于 K, ^ F2 F\≥K 。
还提供了一种多路信号复用装置, 包括:
采样单元, 用于使用第一信号获取 K路信号的采样信号, K为大于等于 2 的自然数;
所述第一信号具有第一频率 Fl, 所述 K路信号的最高频率为第三频率 F3; 第一频率 F1是第三频率 F3的 S倍, S为第一信号每个周期采样的次数; 生成单元, 用于按预置格式生成包含所述采样信号的数据串;
发送单元, 用于使用第二信号发送所述数据串, 所述第二信号具有第二频 率 F2, 所述第二频率 F2除以第一频率 F1大于等于 K, 即 F2/F1≥K。 还提供了、 一种多路信号解复用的装置, 包括:
采集单元, 用于使用第二信号, 采集具有预置格式的数据串, 所述第二信 号具有第二频率 F2;
第一恢复单元, 用于根据所述数据串的预置格式, 恢复 K路信号的采样信 号, K为大于等于 2的自然数;
第二恢复单元, 用于使用第一频率 F1 , 从所述 K路信号的采样信号中恢复 K路信号, 所述 K路信号的最高频率为第三频率 F3, 所述第一频率 F1是所述 第三频率 F3的 S倍, S为第一信号每个周期采样的次数, 所述第二频率 F2除 以第一频率 F1大于等于 K, 即 F2/ l≥ :。
还提供了一种传输多路信号的系统, 包括发明实施例所提供的任一个多路 信号复用装置和本发明实施例所提供的任一项多路信号解复用装置, 其中: 所述多路信号复用装置使用第一信号获取 K路信号的采样信号, K为大于 等于 2的自然数, 所述第一信号具有第一频率 F1 , 所述 K路信号的最高频率为 第三频率 F3 , 第一频率 F1是第三频率 F3的 S倍, S为第一信号每个周期采样 的次数;
按预置格式生成包含所述采样信号的数据串;
使用第二信号发送所述数据串, 所述第二信号具有第二频率 F2, 所述第二 频率 F2除以第一频率 F1大于等于 K, 即 2/F1≥ ;
所述多路信号解复用装置使用第二信号, 采集具有预置格式的数据串, 所 述第二信号具有第二频率 F2;
根据所述数据串的预置格式, 恢复 K路信号的采样信号, K为大于等于 2 的自然数;
使用第一频率 Fl, 从所述 K路信号的采样信号中恢复 K路信号, 所述 K 路信号的最高频率为第三频率 F3 ,所述第一频率 F1是所述第三频率 F3的 S倍, S为第一信号每个周期采样的次数,所述第二频率 F2除以第一频率 F1大于等于 K, 即
Figure imgf000005_0001
≥K 。 与现有技术相比, 本发明实施例具有以下优点:
本发明实施例通过使用第一信号获取 κ路信号的采样信号, K为大于等于 2的自然数; 所述第一信号具有第一频率 F1 , 所述 K路信号的最高频率为第三 频率 F3; 第一频率 F1是第三频率 F3的 S倍, S为第一信号每个周期采样的次 数; 按预置格式生成包含所述采样信号的数据串; 使用第二信号发送所述数据 串, 所述第二信号具有第二频率 F2, 所述第二频率 F2除以第一频率 F1大于等 于 K, 从而使得多路信号能够被实时采样后, 通过第二信号实时高速发送出去, 在接收复用信号的时候, 能够实时快速地实时解复用数据串后, 实时恢复出原 始的多路信号, 明显地减少了现有技术中等待多路信号锁存的时间, 提高了复 用、 解复用和发送接收的速度, 解决了现有技术中实时性的技术问题。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例所需要使用 的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实 施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可 以根据这些附图获得其他的附图。
图 1所示, 是本发明的实施例一的信号采样示意图;
图 2所示, 是本发明的实施例二的流程图;
图 3所示, 是被采样信号同步时的采样示意图;
图 4所示, 是被采样信号不同步时的采样示意图;
图 5所示, 是本发明实施例所提供的一种多路信号解复用的方法的流程图; 图 6所示, 是本发明实施例所提供的一种多路信号复用装置;
图 7所示, 是本发明实施例所提供的一种多路信号解复用装置;
图 8所示, 是本发明实施例所提供的一种多路信号复用系统装置。 具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都落入了本发明的保护范围。 实施例一
如图 1所示,是本发明的实施例一的信号采样示意图, 第 1路信号为 1010, 第 2路信号为 1000, 第 3路信号 0111, 以 K表示信号的路数,则 K = 3 , 这三路 信号的最高频率为 1Ηζ, 这三路信号完全同步, 第一信号 F1频率为 2Hz, 包括 以下步骤:
步骤 101 : 对这三路信号, 使用第一信号进行采样, 每个周期内采样一次, 采样点是第一信号的上升沿所对准的三路信号; 即可以得到 110, 而其第二到第 四个采样点即为 001, 101 , 001 ; 则采样 2秒后就可以完成对三路信号采样, 由 于在本实施例中采用实时发送, 所以两秒后同时完成采样和发送三路信号的工 作;
步骤 102: 将采样得到的各个采样点数据, 按预置格式生成数据串, 设本实 施例中数据串的数据头与数据尾的长度之和为 Y=4,数据头为 01,数据尾为 10, 那么, 对第一采样点而言, 生成的数据串就变成: 0111010, 对第二采样点就为 0100110, 其他依次类推;
在实际运用中, 考虑到实时传送, 可以不需要数据头和数据尾, 直接传送 得到的采样点即可, 还可以增加校验位, 以增加数据传输的准确性。
步骤 103: 采用第二信号将数据串发送出去,如果数据串包括数据头和数据 尾, 则发送 0111010即可, 第二信号的频率 , 本实施例中, 第二信号的第二频 率 F2设置为 14Hz;
发送时间为: 数据串的长度 /第二信号频率 = 7/14 = 0.5秒。
类似地, 如果经过一个完整的采样周期, 可以依次将第 1至第 3路信号的 后几位都采样并发送出去:第 1路信号 1010,第 2路信号 1000,第 3路信号 0111, 每路信号的第 1、 2、 3和 4个采样点分别组成一个数据串。
步骤 104: 接收第二信号所发送的数据串, 使用具有第二频率 F2的第二信 号采集所述数据串;
步骤 105: 从所述数据串中去除数据头 01和数据尾 10, 得到数据 110, 即 是采样得到的三路信号;
步骤 106: 使用所述第一信号, 将数据串 110恢复成原始的第 1路信号 1, 第 2路信号 1和第 3路信号 0; 如果经过一个完整的采样周期, 可以依次将第 1 至第 3路信号的后几位都恢复出来: 第 1路信号 1010, 第 2路信号 1000, 第 3 路信号 0111。
在步骤 104到 106中, 接收时间是: 数据串的长度 /第二信号频率 = 7/14 = 0.5秒。
相比较现有技术中, 以现有技术中对信号 1 : 10100000,信号 2: 10000000, 信号 3: 011100000为例, 每路信号为 8位, 信号最高频率为 1Hz, 如果并行传 递, 在使用 2Hz的第一信号进行传递时, 至少需要 4秒才能传递完毕, 如果使 用串口传递, 串口载波频率为 14Hz, 那么在不包含数据头和数据尾的情况下, 至少需要 24/14 = 1.71秒的时间。 如果对上述信号使用本发明的实施例一中的技 术方案, 在不包括数据头和数据尾的情况下, 则只需要 3/14秒。 因此, 采用本 发明实施例的技术方案, 相比较现有技术中并口传输时间,现有技术并口传输所 花费的时间是本发明实施例的 4/ ( 2/14 ) =18.7倍, 串口传输所花费的时间是本 发明实施例的 (24/14 ) / ( 3/14 ) = 8倍。 因此, 本发明实施例能够实时快速地 解复用数据串后, 实时恢复出原始的多路信号, 明显地减少了现有技术中等待 多路信号锁存的时间, 提高了复用、 解复用和发送接收的速度, 解决了现有技 术中实时性的技术问题。
下面, 说明本发明实施例在三路及更多路信号的处理过程。 实施例二
如图 2所示, 是本发明实施例二的流程图, 包括以下步骤:
步骤 201 : 对于 K路信号: 信号 1, 信号 2......信号 K, 使用第一信号获取
K路信号的采样信号, 在第一信号的一个采样周期内, 每路信号只采样一次, 即只采样一个点; 所述第一信号具有第一频率 Fl, 第一信号的频率比 K路信号 中的每一路信号的频率都高。 如图 3所示, 从信号 1、信号 2......信号 K采样得 到的采样信号共包括 K个采样点, 分别是 1.1、 2.1...... K.L
优选地, 在本发明实施例中, 使用第一信号, 对 K路信号的每路信号同时 采样 1-7次, 作为采样信号。
所述 K路信号的最高频率为第三频率 F3 , 第一频率 F1是第三频率 F3的 S 倍, 也即 1 = χ 3 ; S为第一信号每个周期采样的次数;
步骤 202: 按预置格式生成包含所述采样信号的数据串; 可以将采样得到的 Κ路信号直接插入到具有预置帧格式的数据串中, 所述预置格式的数据串还可 以包括桢头、 帧尾和校验位等, 所得到的数据串包含了 Κ路信号的每路信号一 个采样点。
步骤 203: 使用第二信号, 将所述数据串发送到高速总线, 所述第二信号具 有第二频率 F2。所述第二频率 F2除以第一频率 F1大于等于 K,也即
Figure imgf000009_0001
> K。 如果数据串还包括数据头与数据尾长度之和, 设数据头与数据尾长度之和为 Y, 那么所述第二频率 F2除以第一频率 F1大于等于 Κ+Υ;
可以使用数学公式表示如下:
第一频率 Fl, K路信号的中频率最大的信号的频率为 Fx,
Fl≥SxFx
F2≥(K + Y)xFl = (K + Y)xSxFx
其中, S为第一信号每个周期内采样的次数,根据奈奎斯特定理, 只要采样 频率为被采样信号频率 2倍及以上, 每个周期内采样的次数越多, 恢复后的信 号就越精确, 越接近于采样之前的信号。 采样点趋近于无穷大时, 恢复后的信 号将与采样之前的信号相同。
假设有 8路信号, 采集时每秒采集 8个字节, 传输时因为是串行, 所以必 须每秒传 8Bit, 才能保证实时性要求, 否则就会出现数据阻塞。
被采样信号同步时, 采样示意图可以参考图 3所示。
被采样信号不同步时, 采样示意图可以参考图 4所示。
S的取值除了要考虑信号的精确度之外,还需要考虑被采样信号之间的同步 关系。 如果被采样的 K路信号之间互相同步, 只要保证 K路信号中频率最高的 一路能够被恢复, 就能够恢复全部 K路信号。 这是因为, 对于频率比较低的其 他各路信号, 自然能够符合奈奎斯特定理, 可以被准确地恢复。 所以, S可以取 最小值 2。
如果被采样的 K路信号之间不同步, S值需要比同步的时候更大。 原因在 于, 当被采样的信号不同步时, 由于被采样的信号的采样在第一信号的上升沿 或下降沿发生, 如果第一信号进行采样时, 被采样的信号也恰好进入上升沿或 下降沿, 此时将会发生采样错误。 正如图 4中八、 B和 C三点所示那样。 为了 克服这种错误的可能性, 必须提高第一信号的频率。 如果第一信号的频率足够 高, 以至于被采样信号是否进入上升沿或下降沿可以忽略, 即采样误差对信号 恢复的影响可以忽略不计。 但是这需要付出的代价是需要使用高性能的时钟信 号产生器, 或算法的复杂度大大增加。
本发明实施例才 M居测算, 当 S值大于等于 16时, 对于不同步的被采样信号 进行采样和恢复的效果良好。 特别是一些应用场景, 如果被采样信号都是低速 信号, 而且相互完全不同步, 可以将 S值设得更高, 这样恢复出来的信号非常 接近被采样信号。
根据前述第二信号和第一信号的频率与数据串格式、 被采样信号之间的同 步关系、 被采样信号的个数、 被采样信号的最高频率及同一周期内采样次数的 对应关系看, 实现本发明实施例的复杂程度, 取决于被被采样信号之间的同步 关系、被采样信号的个数、被采样信号的最高频率及同一周期内采样次数 S, 另 夕卜, 在有些情况下, 也会与使用的总线技术和传输距离有关。 应用本发明实施 例, 只要第二信号的频率能够不断提高, 相应地, 可以供采样的信号的路数、 最高频率及其 S值, 都可以得到不断地提高。
步骤 204: 从高速总线接收第二信号后, 使用锁相环恢复出第二信号, 使用 具有第二频率 F2的锁相环, 从中恢复出具有第一频率 F1的数据串; 锁相环产 生时钟信号最稳定、 可靠。 此处也可以使用软件解码的方式实现数据串恢复。
步骤 205: 使用分频器, 从具有第一频率 F1的数据串中恢复出数据串, 由 于数据串内包含 K路信号的采样信号, 可以根据预置的数据帧格式恢复出各路 信号的采样点。 根据持续不断恢复出来的各路信号的采样点, 就可以实时完整 地恢复出各路信号。 解复用的步骤 204、 205的原理和过程与实施例一相类似, 是复用过程的逆过程。
在上述实施例的基 上, 在每个采样周期内, 还可以对每路信号采样二个 比特至七个比特, 相比较于现有技术中每路信号每次至少采样 8个比特或者其 倍数而言,本发明实施例采样 2-7个比特的数据量仍然远远小于现有技术,其实 时性虽然比每个采样周期内采样一次稍差, 但是, 在不同实时性要求下是可以 接收的。
本发明的上述各个实施例, 可以应用于移动终端、 便携式终端、 系统设备 电路模块与模块之间, 如手机主板与液晶显示屏之间, 便携机与显示器之间, 设备内部的各个模块之间等等, 可以将数据信号、 控制信号和状态信号复用在 一组传输线上, 例如应用于中央处理单元与内存或外围器件之间, 能够明显地 减少器件引脚, 从而大大降低半导体封装成本, P争低产品开发成本, 降低印制 电路设计和制造成本, 从而也会明显降低设备成本。
与上述实施例类似, 如图 5所示, 是本发明实施例所提供的一种多路信号 解复用的方法, 包括:
步骤 501 : 使用第二信号, 采集具有预置格式的数据串, 所述第二信号具有 第二频率 F2; 步骤 502: 才艮据所述数据串的预置格式, 恢复 K路信号的采样信号, K为 大于等于 2的自然数;
步骤 503:使用第一频率 F1 ,从所述 K路信号的采样信号中恢复 K路信号, 所述 K路信号的最高频率为第三频率 F3, 所述第一频率 F1是所述第三频率 F3 的 S倍, 也即 1 = 5*χ 3 ; S为第一信号每个周期采样的次数, 所述第二频率 F2除以第一频率 F1大于等于 Κ, 也即 F2/ ≥K。
其中, 所述使用第一频率 Fl,从所述 K路信号的采样信号中恢复 K路信号 包括:
使用第一频率 F1 , 从所述采样信号中分别获取 K路信号的 1-7个采样点。 其中, 如果所述 K路信号同步, 所述 S大于等于 2。
其中, 如果所述 K路信号不同步, 所述 S大于等于 16。
其中,所述数据串还包括数据头和数据尾,数据头和数据尾的长度之和为 Y, 则所述第二频率 F2除以第一频率 F1大于等于 K+Y之和。
与前述的实施例一和实施二相似, 本发明实施例所提供的解复用方法能够 明显地减少接收时间, 增强数据传输过程的实时性, 减少器件引脚, 从而大大 降低半导体封装成本, 降低产品开发成本, 降低印制电路设计和制造成本, 从 而也会明显降低设备成本。 实施例三
如图 6所示, 是本发明实施例三所提供的一种多路信号复用装置, 包括: 采样单元 601 , 用于使用第一信号获取 K路信号的采样信号, K为大于等 于 2的自然数;
所述第一信号具有第一频率 F1 , 所述 K路信号的最高频率为第三频率 F3; 第一频率 F1是第三频率 F3的 S倍, S为第一信号每个周期采样的次数; 生成单元 602, 用于按预置格式生成包含所述采样信号的数据串; 发送单元 603 , 用于使用第二信号发送所述数据串, 所述第二信号具有第二 频率 F2, 所述第二频率 F2除以第一频率 Fl大于等于 K, 也即 JP2/JR≥Ji 。 优选地, 在本发明实施例中, 采样单元 601可以使用第一信号, 对 K路信 号的每路信号同时采样 1-7次, 作为采样信号。
其中, 如果所述 K路信号同步, 所述 S大于等于 2。
其中, 如果所述 K路信号不同步, 所述 S大于等于 16。
其中, 所述数据串还包括数据头和数据尾, 所述数据头与数据尾之和为 Y; 所述第二频率 F2 除以第一频率 Fl, 大于等于 K 与 Y之和, 也即 F2!F\≥K + Y。
本发明实施例能够实时快速地解复用数据串后, 实时恢复出原始的多路信 号, 明显地减少了现有技术中等待多路信号锁存的时间, 提高了复用、 解复用 和发送接收的速度, 解决了现有技术中实时性的技术问题。 另外, 也增强数据 传输过程的实时性, 減少器件引脚, 从而大大降低半导体封装成本, 降低产品 开发成本, 降低印制电路设计和制造成本, 从而也会明显降低设备成本。 实施例四
如图 Ί所示, 是本发明实施例四所提供的一种多路信号解复用的装置, 包 括:
采集单元 701 , 用于使用第二信号, 采集具有预置格式的数据串, 所述第二 信号具有第二频率 F2;
第一恢复单元 702, 用于根据所述数据串的预置格式, 恢复 K路信号的采 样信号, K为大于等于 2的自然数;
第二恢复单元 703 , 用于使用第一频率 F1 , 从所述 K路信号的采样信号中 恢复 K路信号, 所述 K路信号的最高频率为第三频率 F3, 所述第一频率 Fl是 所述第三频率 F3的 S倍, S为第一信号每个周期采样的次数, 所述第二频率 F2 除以第一频率 F1大于等于 K, 也即 2/ 1≥^:。
其中, 优选地, 在本发明实施例中, 第二恢复单元使用第一频率 Fl, 从所 述采样信号中分别获取 K路信号的 1-7个采样点。
其中, 如果所述 Κ路信号同步, 所述 S大于等于 2。
其中, 如果所述 Κ路信号不同步, 所述 S大于等于 16。
其中,所述数据串还包括数据头和数据尾,数据头和数据尾的长度之和为 Υ, 则所述第二频率 F2除以第一频率 F 1大于等于 Κ+Υ之和。
本发明实施例所提供的多路信号解复用装置具有与方法实施例相同的技术 效果。 实施例五
如图 8 所示, 是本发明实施例五所提供的一种传输多路信号的系统, 包括 多路信号复用装置 801和多路信号解复用装置 802;
所述多路信号复用装置可以是本发明实施例所提供的任一种多路信号复用 装置,
所述多路信号复用装置使用第一信号获取 Κ路信号的采样信号, Κ为大于 等于 2的自然数, 所述第一信号具有第一频率 F1 , 所述 Κ路信号的最高频率为 第三频率 F3, 第一频率 F1是第三频率 F3的 S倍, S为第一信号每个周期采样 的次数;
按预置格式生成包含所述采样信号的数据串;
使用第二信号发送所述数据串, 所述第二信号具有第二频率 F2, 所述第二 频率 F2除以第一频率 F1大于等于 K;
所述多路信号解复用装置使用第二信号, 采集具有预置格式的数据串, 所 述第二信号具有第二频率 F2;
根据所述数据串的预置格式, 恢复 K路信号的采样信号, K为大于等于 2 的自然数;
使用第一频率 Fl, 从所述 K路信号的采样信号中恢复 K路信号, 所述 K 路信号的最高频率为第三频率 F3,所述第一频率 F1是所述第三频率 F3的 S倍, S为第一信号每个周期采样的次数,所述第二频率 F2除以第一频率 F1大于等于 K。 本发明实施例通过使用第一信号获取 K路信号的采样信号, K为大于等于 2的自然数; 所述第一信号具有第一频率 F1 , 所述 K路信号的最高频率为第三 频率 F3; 第一频率 F1是第三频率 F3的 S倍, S为第一信号每个周期采样的次 数; 按预置格式生成包含所述采样信号的数据串; 使用第二信号发送所述数据 串, 所述第二信号具有第二频率 F2, 所述第二频率 F2除以第一频率 F1大于等 于 K, 从而使得多路信号能够被实时采样后, 通过第二信号实时高速发送出去, 在接收复用信号的时候, 能够实时快速地实时解复用数据串后, 实时恢复出原 始的多路信号, 明显地减少了现有技术中等待多路信号锁存的时候, 提高了复 用、 解复用和发送接收的速度,解决了现有技术中实时性的技术问题。
本发明的实施例, 可以应用于移动终端、 便携式终端、 系统设备电路模块 与模块之间, 如手机主板与液晶显示屏之间, 便携机与显示器之间, 设备内部 的各个模块之间等等, 可以将数据信号、 控制信号和状态信号复用在一组传输 线上, 例如应用于中央处理单元与内存或外围器件之间, 能够明显地減少器件 引脚, 从而大大降低半导体封装成本, 降低产品开发成本, 降低印制电路设计 和制造成本, 从而也会明显降低设备成本。
通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了解到本发 明可借助软件加必需的通用硬件平台的方式来实现, 当然也可以通过硬件, 但 很多情况下前者是更佳的实施方式。 基于这样的理解, 本发明的技术方案本质 机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备 (可 以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述的方 法。
以上所述的本发明实施方式, 并不构成对本发明保护范围的限定。 任何在 本发明的精神和原则之内所作的修改、 等同替换和改进等, 均应包含在本发明 的保护范围之内。
可以理解的是, 本发明实施例中的方法可以软件功能模块的形式实现, 并 且该软件功能模块作为独立的产品销售或使用时, 也可以存储在一个计算机可 读取存储介质中。 上述提到的存储介质可以是只读存储器, 磁盘或光盘等。
本发明实施例中的各功能单元可以集成在一个处理模块中, 也可以是各个 单元单独物理存在, 也可以两个或两个以上单元集成在一个模块中。 上述集成 的模块既可以采用硬件的形式实现, 也可以采用软件功能模块的形式实现。 所 述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用 时, 也可以存储在一个计算机可读取存储介质中。 上述提到的存储介质可以是 只读存储器, 磁盘或光盘等。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案而非对其进行 限制, 尽管参照较佳实施例对本发明进行了详细的说明, 本领域的普通技术人 员应当理解: 其依然可以对本发明的技术方案进行修改或者等同替换, 而这些 修改或者等同替换亦不能使修改后的技术方案脱离本发明技术方案的精神和范 围。

Claims

权 利 要 求
1、 一种多路信号复用方法, 其特征在于, 包括:
使用第一信号获取 K路信号的采样信号, K为大于等于 2的自然数; 所述第一信号具有第一频率 F1F1 , 所述 K路信号的最高频率为第三频率 F3F3;
第一频率 F1F1是第三频率 F3F3的 S倍, S为第一信号每个周期采样的次数; 按预置格式生成包含所述采样信号的数据串;
使用第二信号发送所述数据串, 所述第二信号具有第二频率 F2F2; 其中, 所述第二频率 F2除以第一频率 F1大于等于 K, ?F2lF ≥K。
2、 如权利要求 1所述的方法, 其特征在于, 所述使用第一信号荻取 K路信 号的采样信号包括:
使用第一信号, 对 K路信号的每路信号同时采样 1-7次, 作为采样信号。
3、 如权利要求 1或 2任一项所述的方法, 其特征在于, 如果所述 K路信号 同步, 所述 S大于等于 2。
4、 如权利要求 1或 2任一项所述的方法, 其特征在于, 如果所述 K路信号 不同步, 所述 S大于等于 16。
5、 如权利要求 1所述的方法, 其特征在于, 所述数据串包括数据头和数据 尾, 所述数据头与数据尾的长度之和为 Y;
所述第二频率 F2除以第一频率 F1F1 , 大于等于 K与 Y之和, 即
F2!F\ > K + Y。
6、 如权利要求 1所述的方法, 其特征在于, 所述数据串还包括校验位。
7、 一种多路信号解复用的方法, 其特征在于, 包括:
使用第二信号, 采集具有预置格式的数据串, 所述第二信号具有第二频率
F2;
根据所述数据串的预置格式, 恢复 K路信号的采样信号, K为大于等于 2 的自然数; 使用第一频率 Fl, 从所述 K路信号的采样信号中恢复 K路信号, 所述 Κ路 信号的最高频率为第三频率 F3 , 所述第一频率 F1是所述第三频率 F3的 S倍, S为第一信号每个周期采样的次数, 所述第二频率 F2除以第一频率 F1大于等 于 Κ, ? Flj F\ > Κ。
8、 如权利要求 7所述的方法, 其特征在于, 所述使用第一频率 F1 , 从所述 K路信号的采样信号中恢复 K路信号包括:
使用第一频率 Fl, 从所述采样信号中分别获取 K路信号的 1-7个采样点。
9、 如权利要求 7或 8任一项所述的方法, 其特征在于, 如果所述 K路信号 同步, 所述 S大于等于 2。
10、如权利要求 7或 8任一项所述的方法,其特征在于, 如果所述 K路信号 不同步, 所述 S大于等于 16。
11、 如权利要求 7所述的方法, 其特征在于, 所述数据串还包括数据头和数 据尾, 数据头和数据尾的长度之和为 Y, 则所述第二频率 F2除以第一频率 F1 大于等于 Κ+Υ之和, 即 2/7Π≥ + ;Τ。
12、 一种多路信号复用装置, 其特征在于, 包括:
采样单元, 用于使用第一信号获取 Κ路信号的采样信号, Κ为大于等于 2 的自然数;
所述第一信号具有第一频率 Fl, 所述 K路信号的最高频率为第三频率 F3; 第一频率 F1是第三频率 F3的 S倍, S为第一信号每个周期采样的次数; 生成单元, 用于按预置格式生成包含所述采样信号的数据串;
发送单元, 用于使用第二信号发送所述数据串, 所述第二信号具有第二频率 F2, 所述第二频率 F2除以第一频率 F1大于等于 K, ^ F2/i ≥I 。
13、 如权利要求 12所述的装置, 其特征在于, 所述采样单元还用于使用第 一信号, 对 K路信号的每路信号同时采样 1-7次, 作为采样信号。
14、如权利要求 12-13任一项所述的装置, 其特征在于, 如果所述 K路信号 同步, 所述 S大于等于 2。
15、如权利要求 12-13任一项所述的装置, 其特征在于, 如果所述 K路信号 不同步, 所述 S大于等于 16。
16、 如权利要求 12所述的装置, 其特征在于, 所述数据串还包括数据头和 数据尾, 所述数据头与数据尾的长度之和为 Y;
所述第二频率 F2除以第一频率 F1 ,大于等于 K与 Y之和 ,即 F2jF\≥ + 。
17、 一种多路信号解复用的装置, 其特征在于, 包括:
采集单元, 用于使用第二信号, 采集具有预置格式的数据串, 所述第二信号 具有第二频率 F2;
第一恢复单元,用于根据所述数据串的预置格式,恢复 K路信号的采样信号, K为大于等于 2的自然数;
第二恢复单元, 用于使用第一频率 F1 , 从所述 K路信号的采样信号中恢复 K路信号, 所述 K路信号的最高频率为第三频率 F3 , 所述第一频率 F1是所述 第三频率 F3的 S倍, S为第一信号每个周期采样的次数, 所述第二频率 F2除 以第一频率 F1大于等于 K, F2/ ≥K。
18、 如权利要求 17所述的装置, 其特征在于, 所述第二恢复单元包括: 恢复模块, 用于使用第一频率 Fl, 从所述采样信号中分别获取 K路信号的 1-7个采样点。
19、如权利要求 17-18任一项所述的装置, 其特征在于, 如果所述 K路信号 同步, 所述 S大于等于 2。
20、如权利要求 17-18任一项所述的装置, 其特征在于, 如果所述 K路信号 不同步, 所述 S大于等于 16。
21、 如权利要求 17所述的装置, 其特征在于, 所述数据串还包括数据头和 数据尾, 数据头和数据尾的长度之和为 Y, 则所述第二频率 F2除以第一频率 F1大于等于 Κ+Υ之和, 即 2/ l≥ T + ;r。
22、 一种传输多路信号的系统, 其特征在于, 包括如权利要求 12至 16任一 项所述的多路信号复用装置和如权利要求 17至 19任一项所述的多路信号解复 用装置, 其中:
所述多路信号复用装置使用第一信号获取 K路信号的采样信号, K为大于等 于 2的自然数, 所述第一信号具有第一频率 F1 , 所述 K路信号的最高频率为第 三频率 F3 , 第一频率 F1是第三频率 F3的 S倍, S为第一信号每个周期采样的 次数;
按预置格式生成包含所述采样信号的数据串;
使用第二信号发送所述数据串, 所述第二信号具有第二频率 F2, 所述第二 频率 F2除以第一频率 F1大于等于 K,
Figure imgf000020_0001
≥K
所述多路信号解复用装置使用第二信号, 采集具有预置格式的数据串, 所述 第二信号具有第二频率 F2;
根据所述数据串的预置格式, 恢复 K路信号的采样信号, K为大于等于 2 的自然数;
使用第一频率 Fl, 从所述 K路信号的采样信号中恢复 K路信号, 所述 K路 信号的最高频率为第三频率 F3 , 所述第一频率 F1是所述第三频率 F3的 S倍, S为第一信号每个周期采样的次数, 所述第二频率 F2除以第一频率 F1大于等 于 K, 即 F2/F1≥K。
PCT/CN2010/073490 2009-06-03 2010-06-03 多路信号复用、解复用的方法、装置和系统 WO2010139273A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10782977A EP2434672A4 (en) 2009-06-03 2010-06-03 METHOD, DEVICE AND SYSTEM FOR MULTIPLEXING AND DEMULTIPLEXING MULTIPLEX SIGNALS
US13/309,974 US9219561B2 (en) 2009-06-03 2011-12-02 Method and apparatus for multiplexing and demultiplexing multi-channel signals and system for transmitting multi-channel signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA2009101455910A CN101577598A (zh) 2009-06-03 2009-06-03 多路信号复用、解复用的方法、装置和系统
CN200910145591.0 2009-06-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/309,974 Continuation US9219561B2 (en) 2009-06-03 2011-12-02 Method and apparatus for multiplexing and demultiplexing multi-channel signals and system for transmitting multi-channel signals

Publications (1)

Publication Number Publication Date
WO2010139273A1 true WO2010139273A1 (zh) 2010-12-09

Family

ID=41272398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/073490 WO2010139273A1 (zh) 2009-06-03 2010-06-03 多路信号复用、解复用的方法、装置和系统

Country Status (4)

Country Link
US (1) US9219561B2 (zh)
EP (1) EP2434672A4 (zh)
CN (1) CN101577598A (zh)
WO (1) WO2010139273A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101577598A (zh) * 2009-06-03 2009-11-11 深圳华为通信技术有限公司 多路信号复用、解复用的方法、装置和系统
WO2015052843A1 (ja) * 2013-10-11 2015-04-16 富士機械製造株式会社 多重化通信システム及び対基板作業機
CN110460405B (zh) 2018-05-07 2021-04-09 华为技术有限公司 业务信号传输方法及装置
CN111757128B (zh) * 2020-07-16 2021-12-07 威创集团股份有限公司 一种视频编码系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1139853A (zh) * 1995-06-30 1997-01-08 北京爱普亚太电子有限公司 用单信道传输多路信息的信息处理方法及其传输系统
CN1971540A (zh) * 2006-11-27 2007-05-30 北京中星微电子有限公司 一种多路输入数据的控制系统及其控制方法
CN101577598A (zh) * 2009-06-03 2009-11-11 深圳华为通信技术有限公司 多路信号复用、解复用的方法、装置和系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3471646A (en) * 1965-02-08 1969-10-07 Motorola Inc Time division multiplex system with prearranged carrier frequency shifts
US3549814A (en) * 1968-06-17 1970-12-22 Bell Telephone Labor Inc Pulse code modulation multiplex signaling system
KR100496144B1 (ko) * 1997-03-25 2005-11-23 삼성전자주식회사 디브이디 오디오 디스크 및 이를 재생하는 장치 및 방법
WO2009058789A1 (en) * 2007-10-30 2009-05-07 Rambus Inc. Signaling with superimposed clock and data signals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1139853A (zh) * 1995-06-30 1997-01-08 北京爱普亚太电子有限公司 用单信道传输多路信息的信息处理方法及其传输系统
CN1971540A (zh) * 2006-11-27 2007-05-30 北京中星微电子有限公司 一种多路输入数据的控制系统及其控制方法
CN101577598A (zh) * 2009-06-03 2009-11-11 深圳华为通信技术有限公司 多路信号复用、解复用的方法、装置和系统

Also Published As

Publication number Publication date
EP2434672A4 (en) 2012-05-02
US9219561B2 (en) 2015-12-22
EP2434672A1 (en) 2012-03-28
CN101577598A (zh) 2009-11-11
US20120075985A1 (en) 2012-03-29

Similar Documents

Publication Publication Date Title
US7492807B1 (en) Pseudo-random bit sequence (PRBS) synchronization for interconnects with dual-tap scrambling devices and methods
CN103825696B (zh) 一种基于fpga实现光纤高速实时通信的装置
CN107465965B (zh) 一种光口实现方法、装置及现场可编程门阵列器件
CN107087132B (zh) 接收器及信号传输方法
US11671194B2 (en) Technologies for high-precision timestamping of packets
WO2019084732A1 (zh) 时钟同步的方法和装置
US8572300B2 (en) Physical coding sublayer (PCS) architecture for synchronizing data between different reference clocks
EP2800322A1 (en) Reception apparatus, information processing apparatus and method of receiving data
CN104993982A (zh) 一种fpga芯片内置phy收发器功能的以太网实现系统
WO2010139273A1 (zh) 多路信号复用、解复用的方法、装置和系统
WO2012119561A1 (zh) 信号处理装置、方法、serdes和处理器
EP1940194A2 (en) Optical trasmission system
CN108462620B (zh) 一种吉比特级SpaceWire总线系统
US20130195233A1 (en) Techniques for synchronizing a clock of a wired connection when transmitted over a wireless channel
WO2020038424A1 (zh) 数据包的传输方法、装置、存储介质及电子装置
US11153191B2 (en) Technologies for timestamping with error correction
US20090259777A1 (en) Methods and apparatus for extending short range data interfaces
TW201514846A (zh) 用於電子顯示器之連結集中器
EP2620937A2 (en) Signal Processing Apparatus, Display Apparatus, Display System, Method for Processing Signal, and Method for Processing Audio Signal
WO2015087703A1 (ja) データ処理装置、及び、データ処理方法
US7082484B2 (en) Architecture for advanced serial link between two cards
US10827040B2 (en) System and method for enabling lossless interpacket gaps for lossy protocols
CN210927604U (zh) 一种数据串并转换装置、延时器及信号转换处理器
CN112020133A (zh) 一种多策略高精度时钟同步的边缘计算服务器设计方法
CN114513523B (zh) 数据同步方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10782977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010782977

Country of ref document: EP