WO2010137556A1 - Atmosphere replacement device - Google Patents

Atmosphere replacement device Download PDF

Info

Publication number
WO2010137556A1
WO2010137556A1 PCT/JP2010/058745 JP2010058745W WO2010137556A1 WO 2010137556 A1 WO2010137556 A1 WO 2010137556A1 JP 2010058745 W JP2010058745 W JP 2010058745W WO 2010137556 A1 WO2010137556 A1 WO 2010137556A1
Authority
WO
WIPO (PCT)
Prior art keywords
purge
door
foup
atmosphere replacement
replacement device
Prior art date
Application number
PCT/JP2010/058745
Other languages
French (fr)
Japanese (ja)
Inventor
勝則 坂田
英和 奥津
Original Assignee
ローツェ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローツェ株式会社 filed Critical ローツェ株式会社
Priority to JP2011516010A priority Critical patent/JP5448000B2/en
Priority to CN201080023009.4A priority patent/CN102449752B/en
Priority to KR1020117028196A priority patent/KR101668823B1/en
Publication of WO2010137556A1 publication Critical patent/WO2010137556A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67201Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the load-lock chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/6735Closed carriers
    • H01L21/67389Closed carriers characterised by atmosphere control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67772Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading involving removal of lid, door, cover
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67778Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading involving loading and unloading of wafers
    • H01L21/67781Batch transfer of wafers

Definitions

  • the present invention provides an atmosphere that is isolated from the outside during processing between thin plate substrates such as semiconductor wafers, liquid crystal display panels, organic EL display panels, plasma display panels, and solar cell panels.
  • the present invention relates to an atmosphere replacement device and an atmosphere replacement method for replacing an atmosphere inside a container with an atmosphere of an inert gas or the like with respect to a sealed container that stores thin plate substrates at a predetermined interval.
  • the design rule of the semiconductor circuit line width has been miniaturized and the wafer diameter has been increased, and problems that cannot be solved only by high cleaning by the conventional mini-environment method have appeared.
  • the surface of the thin plate substrate processed by the processing equipment and brought into the sealed container reacts with oxygen and moisture in the air, and a film that is undesirable in various processing steps such as a natural oxide film is generated.
  • the contaminants used in the processing equipment are brought into the sealed container while still attached to the thin plate substrate, and these contaminants reach other thin plate substrates in the sealed container. May contaminate and adversely affect the next processing step, leading to a decrease in yield.
  • Patent Document 2 in addition to the nozzle for supplying the inert gas, an auxiliary nozzle for sucking the inert gas flowing along the inner periphery of the FOUP is provided, and the inert gas draws a circular trajectory in the FOUP. It creates a flow path that can do this.
  • a method is disclosed in which purge is performed efficiently by providing a cover so as to cover the FOUP opening surface and the nozzle, thereby suppressing the outflow of purge gas to the outside.
  • the purge gas flowing out from the nozzle becomes a turbulent flow, and the inconvenience of damaging the wafer processing surface by scattering dust adhering to the wafer surface into the FOUP is sufficiently eliminated. Absent.
  • the inert gas swirls and mixes with air in the container, so that the replacement is slowed and required as a result. The amount of inert gas was increased, which was insufficient for efficient purge.
  • the cost increases due to an increase in the number of components to be added, such as adding a sealed space forming portion or providing a nozzle for flowing purge gas in addition to a nozzle for flowing purge gas.
  • the present invention has been made in view of the above problems, and provides an atmosphere replacement device that can efficiently and effectively replace the internal atmosphere of a FOUP type container with a purge gas without using a nozzle.
  • the main purpose is to provide.
  • an atmosphere replacement device for purging a FOUP type container with a purge gas.
  • the FOUP type container is a storage container having an open surface on the front surface and the open surface can be sealed with a cover, and includes, for example, FOUP (Front Opening Unified Pod) used between semiconductor processes.
  • FOUP Front Opening Unified Pod
  • this atmosphere replacement device uses a non-nozzle-type purge plate designed to flow a laminar purge gas from the outflow surface.
  • This novel purge gas ejection mechanism (non-nozzle purge plate) has a standby position and an operating position.
  • the purge plate can be moved between a standby position and an operating position by a purge plate driving mechanism (for example, an elevating mechanism). During the purge period, the purge plate is placed in this operating position, and in a posture facing the open surface of the FOUP type container, laminar purge gas flows out toward the inside of the open surface (preferably the center of the open surface). And operate to purge the vessel.
  • a purge plate driving mechanism for example, an elevating mechanism
  • the purge plate is a key component of the present invention.
  • this new purge gas ejection mechanism is (a) a uniform laminar flow in which the gas flow has a relatively large gas cross-sectional area (in terms of total pore area) by the plain outflow method. ) Because the gas flow is relatively slow (preferably in the range from 0.05 meter / second to 0.5 meter / second at a position 20 mm forward from the purge plate), in conventional nozzle type purge gas ejection mechanisms The "stirring phenomenon (with the phenomenon that residual air and supply gas are mixed in the FOUP type container)" that was encountered can be sufficiently suppressed, and as a result, effective and efficient gas replacement is possible. Become.
  • the gas flow exiting the purge plate is a slow laminar flow. Accordingly, the “dust generation phenomenon (a phenomenon in which dust rises in the FOUP type container)” encountered in the conventional nozzle type purge gas ejection mechanism can be sufficiently suppressed by this slow gas laminar flow. In a semiconductor manufacturing factory (FAB), dust (particles) contaminates semiconductor wafers and the like, resulting in a significant decrease in yield, and this dust generation suppression function based on the purge plate is very important.
  • FAB semiconductor manufacturing factory
  • the operating position of the purge plate is located on the movement path of the FOUP type container. Therefore, when the purge plate is in the standby position, the FOUP type container can occupy the operating position of the purge plate. In this occupied state, the front surface of the FOUP type container may abut against the door. Note that, like the door of the conventional load port, the door is configured such that the manipulator of the transfer robot can pass when the door is open. In this abutting state, the door is removed from the FOUP type container (open the container) and attached to the door itself by the same mechanism as that of a conventional load port door, or vice versa.
  • the FOUP type container When the purge plate is in the operating position, the FOUP type container is in a position (purge gas receiving posture) where the open surface faces the purge plate and directly receives the purge gas flow from the purge plate. For this reason, the FOUP type container moves from the “occupied position” to the “purge gas receiving position” prior to purging. Thereby, the working space of the purge plate is secured.
  • the work space securing mechanism may be a FOUP type container moving mechanism that moves the FOUP type container along the movement path.
  • This can be realized by, for example, a stage moving mechanism that moves a stage on which a FOUP type container is placed like a conventional load port.
  • a door movement mechanism can be provided that moves the door away from the FOUP type container.
  • the purge plate includes an ejection suppression element that suppresses or inhibits the ejection output of the purge gas.
  • the ejection suppressing element is made of a porous material such as an air filter material.
  • the atmosphere replacement device is designed to be compatible with the load port.
  • the door of the atmosphere replacement device itself may be realized by a normal load port door.
  • the atmosphere replacement device is provided with a door moving mechanism that moves the door in the X direction (for example, the horizontal direction) and the Y direction (for example, the direction orthogonal to the X direction, for example, the vertical direction).
  • the atmosphere replacement device is placed adjacent to the mini-environment space unit, as is a normal load port. That is, there is a mini-environment space beyond the door, and when the door is opened, the transfer robot accesses the FOUP-type container from the mini-environment space side using a manipulator (robot arm) (to perform wafer transfer work). .
  • the atmosphere replacement device performs purging (atmosphere replacement) with the FOUP type container set in the opening (only the head of the FOUP type container including the open surface enters the opening). To do.
  • the opening is defined by the inner wall of the atmosphere replacement device. Therefore, in general, there is a gap between the inner wall of the atmosphere replacement device and the door, and the inside of the opening is in limited communication with the high cleanliness air from the mini-environment space unit through this gap.
  • the atmosphere replacement device is always exposed to the high cleanliness air through the gap in the opening.
  • the mini-environment space unit is placed under a higher atmospheric pressure (“positive pressure”) than the outside in order to avoid the entry of low clean air from the outside.
  • Another feature of the present invention relates to an improvement in the case where the atmosphere replacement device with a purge plate of the present invention is applied to the gap communication type atmosphere replacement device (purge port) as described above. Therefore, these features can also be applied "in principle" to nozzle-type atmosphere replacement devices. However, even if these features are incorporated into a nozzle-type atmosphere replacement device that cannot suppress the “stirring phenomenon” and “dust generation phenomenon” inherent to the nozzle-type purge gas ejection mechanism to an acceptable level, the basic performance is improved. Cannot be expected, so synergistic effects are not expected. In other words, it is effective when applied to an atmosphere replacement device having basic performance that suppresses the “stirring phenomenon” and “dust generation phenomenon” to an acceptable level.
  • a mechanism for effectively eliminating the gap is provided in the atmosphere replacement device.
  • an inner wall shield cover having a labyrinth structure is provided on the inner wall of the atmosphere replacement device.
  • a door shield cover having a similar labyrinth structure is also provided on the door. And it arrange
  • the time (purge time) required for the required purging can be shortened.
  • because of the characteristics of the labyrinth seal structure contact or collision between the inner wall and the door (here, contact or collision between the inner wall shield cover and the door shield cover) does not occur. Is effectively prevented.
  • a gap adjusting mechanism that makes the gap variable is provided in the atmosphere replacement device.
  • an inner wall shield cover having a labyrinth structure is provided on the inner wall of the atmosphere replacement device.
  • a door shield cover having a labyrinth structure is also provided on the door.
  • a door drive mechanism for moving the door in the horizontal direction is provided. And it is designed so that the degree of the seal between the inner wall shield cover and the door shield cover can be adjusted (and therefore the gap can be adjusted) depending on the horizontal position of the door. Accordingly, the gap can be effectively adjusted to a desired size (an effective size corresponding to the “depth” of the shield), so that the purging time can be shortened. Moreover, the penetration of the high cleanliness air into the opening can be appropriately adjusted.
  • the FOUP type container is covered with a cover immediately after the operation of the purge plate is completed (for example, on the order of milliseconds, for example, about 100 milliseconds).
  • a cover immediately after the operation of the purge plate is completed (for example, on the order of milliseconds, for example, about 100 milliseconds).
  • the purge plate no longer becomes an obstacle to the movement of the FOUP type container (for example, when the purge plate moves back to the standby position)
  • the FOUP type container is moved to the door, the cover is removed from the door, and the FOUP type is removed. It will be attached to the container.
  • the time from the completion of the purge plate operation to the sealing of the FOUP type container by this method can be realized in a relatively short time (for example, about one second).
  • a mechanism can be provided that effectively reduces the ingress of high clean air from the mini-environment unit under purge plate operation completion mode. Thereby, the required purging time can be further shortened.
  • this mechanism is realized by being provided on the inner wall of the auxiliary nozzle that supplies the purge gas toward the FOUP type container.
  • the auxiliary nozzle is controlled to operate during the purge plate operation completion mode.
  • the depth-adjustable labyrinth mechanism (variable gap adjusting mechanism) can also be used for this purpose. Specifically, when the purge plate operation is completed (or starting from an appropriate timing preceding the completion point), the horizontal door drive mechanism moves the door toward the deepest seal position in the horizontal direction to operate the purge plate. During the stop, the door is controlled to be maintained at the deepest sealing position.
  • the depth adjustable labyrinth mechanism can control the size of the gap according to the internal / external differential pressure (positive pressure) of the mini-environment space unit used. It is. Thereby, the magnitude of the internal / external differential pressure (positive pressure) of the mini-environment space unit to be used (or the usage environment of the mini-environment space unit) is compensated.
  • FIG. 6 is a perspective view showing the periphery of the FIMS door of FIG. It is a perspective view which shows the Example of a purge plate.
  • FIG. 5 is a cross-sectional view schematically showing an air flow in the FOUP in order to explain how the FOUP is purged by the purge port based on the embodiment of the present invention.
  • FIG. 5 is a perspective view of the door drive mechanism which drives a FIMS door horizontally based on the example of the present invention.
  • FIG. 1 is a perspective view of the processing apparatus 1, and FIG. 2 is a sectional view thereof.
  • the processing apparatus 1 is installed in a factory called a clean room, which is managed in a relatively clean atmosphere of class 100 with 0.5 ⁇ m dust.
  • the processing apparatus 1 mainly includes a load port 2, a mini-environment space unit 3, a transfer robot 4, a fan filter unit 5, a vacuum chamber 6, and a process chamber 7.
  • the mini-environment space unit 3 has a frame, a wall surface that is fixed to the frame and is separated from the external atmosphere, and cleans the air from the outside into highly purified air, and then flows into the mini-environment space unit 3 as a downflow.
  • a fan filter unit 5 which is a high clean air introducing means to be introduced is provided.
  • the fan filter unit 5 is installed on the ceiling of the mini-environment space unit 3 and sends the air downward toward the inside of the mini-environment space unit 3, and the dust and organic matter present in the sent air.
  • the filter 9 which removes contaminants, such as these, is provided.
  • the floor surface 10 (FIG. 2) of the mini-environment space unit 3 is made of a member capable of air circulation having a predetermined opening efficiency such as a punching plate. With these configurations, the clean air supplied to the inside by the fan filter unit 5 always flows downward in the mini-environment space unit 3 and is discharged from the floor surface 10 to the outside of the apparatus.
  • the mini-environment space unit The inside of 3 is kept in a highly clean atmosphere.
  • the transfer robot 4 transfers a wafer 15 (FIG. 3A), which is a kind of thin plate, between the container 13 called FOUP and the process chamber 7, and the arm movable part of the robot 4 is a magnetic fluid.
  • the wafer 15 is transferred by the transfer robot 4 in a highly clean atmosphere.
  • the internal pressure of the mini-environment space unit 3 is a pressure “positive pressure” higher than the outside, and is typically maintained to have a differential pressure of about 1.5 Pa. In this way, by preventing the entry of contaminants and dust from the outside, the cleanliness inside the mini-environment space unit 3 can be maintained at a high cleanliness of class 1 or higher with 0.5 ⁇ m dust. It has become.
  • the load port 2 is fixed at a predetermined position of a frame 3a forming the mini-environment space unit 3, and supports a stage 14 on which a FOUP 13 which is a kind of a sealable container is placed at a predetermined position, and the stage 14
  • the stage drive mechanism 29 for moving the stage 14 forward and backward, the port opening 11 for the transfer robot 4 to unload and load the wafer 15 in the FOUP 13, and the port opening 11 with a certain gap therebetween.
  • cover opening / closing means for reciprocating the FIMS door 12 integrated with the cover 17 to a position separated from the FOUP 13 is provided, or the stage driving mechanism 29 causes the FOUP 13 to move. This can be achieved by reciprocating the placed stage 14 to a position separated from the FIMS door 12 integrated with the cover 17.
  • the stage drive mechanism 29 also serves as a cover opening / closing means.
  • the stage drive mechanism 29 includes a motor 29a as a drive source and a feed screw 29b.
  • the rotation of the motor 29a is transmitted to the feed screw 29b, and the stage 14 fixed to the feed screw 29b can be moved to an arbitrary position. It is possible.
  • a cylinder using fluid pressure such as air pressure or hydraulic pressure may be used.
  • the FOUP 13 is accurately placed at a predetermined location on the stage 14 by a kinematic pin 30 as positioning means 30 disposed on the stage 14 and is engaged with the stage 14 by an engaging means (not shown). .
  • the FIMS door 12 is fitted to a registration pin 23a for performing integration by positioning and suction force with respect to the cover 17 of the FOUP 13, and a latch key hole 24 provided in the cover 17, and is rotated to latch the key hole. 24, and a latch key 23b that engages with the latch key hole 24 and switches between a locked state and an unlocked state.
  • the FIMS door 12 is attached to the FIMS door lifting mechanism 19 via a bracket 31 so as to be movable up and down. With these configurations, the FIMS door 12 raised to a position where it can be integrated with the cover 17 of the FOUP 13 is integrated with the cover 17 as described above. For lowering, the FIMS door 12 can be lowered to an arbitrary position after releasing the lock mechanism 25 provided in the cover 17.
  • the FIMS door lifting mechanism 19 can move the FIMS door 12 up and down to an arbitrary position by causing the motor 19a as a driving source to rotate the feed screw 19b in the normal direction or the reverse direction.
  • a cylinder using fluid pressure such as air pressure or hydraulic pressure may be used.
  • the load port 2 includes a mapping sensor 32 that detects which shelf 18 in the FOUP 13 has the wafer 15 mounted thereon or the number thereof.
  • the mapping sensor 32 uses a pair of transmission sensors having an optical axis parallel to the surface on which the wafer 15 is placed, and is spaced so as to surround the peripheral edge of the wafer 15 on the horizontal plane. It is mounted on a sensor mounting portion 33 having a substantially U shape. Both ends of the sensor attachment portion 33 are rotatably attached to the sensor drive mechanism 34.
  • the drive source of the sensor drive mechanism 34 is a motor or a rotary actuator. When these drive sources rotate, the sensor mounting portion 33 rotates around the axis of the drive source, and the mapping sensor is attached to the upper part. 32 enters the inside of the carrier 16.
  • the sensor driving mechanism 34 is fixed to the bracket 31 and can be moved up and down in conjunction with the operation of the FIMS door lifting mechanism 19, thereby detecting the presence or absence of the wafer 15 in all the shelves 18 in the carrier 16. It becomes possible to do. Further, output signals to the respective drive mechanisms and input signals from sensors and the like are controlled by the control unit 37.
  • a wall surface 35 is provided in order to prevent dust generated from each drive source and movable part provided inside the load port 2 and dust from the outside from entering the mini-environment space unit 3.
  • the portion facing the outside can be covered with the cover 36.
  • an exhaust fan 37 for discharging dust generated in the load port 2 to the outside. This not only prevents the dust from flowing into the mini-environment space unit 3, but also the downflow of highly purified air flowing through the mini-environment space unit 3 enters from the upper opening of the wall surface 35. Then, it passes through the opening provided in the bottom surface of the load port 2 and is discharged to the outside of the apparatus, and contaminants such as dust adhere to the cover 17 in the lowered position in an integrated state with the FIMS door 12. Can also be prevented.
  • FIG. 3 is a perspective view showing the structure of a FOUP 13 which is a kind of semiconductor wafer storage container.
  • the FOUP 13 seals the inside of the carrier 16 by sealing the carrier 16 that accommodates the wafer 15 therein, the flange portion 26 having an open surface 161 provided on the front surface for loading and unloading the wafer 15 from the carrier 16, and the open surface 161.
  • a cover 17 for sealing is provided.
  • shelves 18 for mounting a plurality of wafers are provided on the inner wall surface of the carrier 16 at predetermined intervals in the vertical direction.
  • a top flange 20 that is an engaging portion with the FOUP transport robot when automatically transported by a FOUP transport robot represented by OHT (Overhead Hoist Transport) is provided on the upper part of the FOUP 13.
  • a handle 21 (FIG. 1) is provided on the side of the carrier 16 as a handle when the FOUP 13 is manually conveyed.
  • the FOUP 13 is sealed with the wafer 15 accommodated therein, and can be transferred automatically or manually between the processing apparatuses.
  • 3B is a diagram showing a surface of the cover 17 facing the FIMS door 12
  • FIG. 3C is a diagram showing a surface of the cover 17 that contacts the carrier 16, and the cover 17 Is fitted with the carrier 16 on the open surface 161 of the carrier 16 to make the inside of the FOUP 13 a sealed space.
  • the cover 17 On the outer surface of the FOUP cover 17, that is, the surface facing the FIMS door 12, the cover 17 is attached to the carrier 16 by a positioning hole 22 for positioning the cover 17 with respect to the FIMS door 12 and a latch key 23 provided in the load port 2.
  • a latch key hole 24 is provided for engagement / disengagement.
  • a lock mechanism 25 is provided on the upper and lower edges of the cover 17 for engaging the cover 17 with a flange portion 26 provided on the periphery of the open surface 161 of the carrier 16. The lock mechanism 25 is interlocked with the latch key hole 24. By rotating the latch key hole 24 to the left and right with the latch key 23 provided on the FIMS door 12, the lock mechanism 25 can be operated in a locked state and an open state. Yes.
  • the sealing material 27 for maintaining the hermeticity in the FOUP 13 and the edge of the wafer 15 accommodated in the FOUP 13 are horizontally arranged.
  • a holding member 28 is provided for pressing and fixing. With this holding member 28, the wafer 15 inside the carrier 16 is fixed on the inner wall of the carrier 16 and the holding member 28 in a state of being placed on the shelf 18. Is suppressed. Information on these detailed dimensions and the like is defined by the SEMI standard, which is a standard related to semiconductor manufacturing.
  • an atmosphere replacement device that replaces the atmosphere of FOUP (internal gas) is designed to be incorporated into a load port (eg, load port 2 illustrated in FIG. 4). ing.
  • a purge port is shown at 40 in the drawing.
  • FIG. 5 is a cross-sectional view of the purge port 40 for purging the inside of the FOUP 13 with a purge gas (inert gas), and
  • FIG. It is a perspective view about the FIMS door 12 periphery arrange
  • the purge port 40 includes a purge plate 41 for supplying a purge gas (inert gas) to the FOUP 13.
  • a purge gas inert gas
  • the purge plate 41 is stored in a lower retracted position (the state shown in FIG. 5).
  • the purge plate 41 advances through the insertion hole 66 (FIG. 6) to the atmosphere replacement position above the retracted position.
  • the purge plate 41 in this advanced position, the purge plate 41 is integrated with the FIMS door 12 (which is pre-mounted with the cover 17 of the FOUP 13 as illustrated in FIG. 9). And the open surface 161 of the FOUP 13.
  • the surface of the purge plate 41 (surface from which purge gas is ejected) is parallel or substantially parallel to the surface opening surface 161 of the purge plate 41 (which may be an inclination angle of plus or minus 20 degrees or less). 9)
  • the purge plate 41 is placed in a posture (orientation) facing the inside of the open surface 161 (non-peripheral portion, preferably the central portion of the open surface 161). In this facing posture, the purge plate 41 performs a purge operation. That is, a substantially uniform, low-speed purge gas is ejected from the surface of the purge plate 41, forms a laminar flow (see the black arrow in FIG.
  • the outflow surface of the purge plate 41 may have a shape corresponding to the inside (preferably the central portion) of the open surface 161 of the carrier 16.
  • the purge plate 41 is substantially rectangular.
  • the vertical and horizontal dimensions of the purge plate 41 are preferably smaller than the vertical and horizontal dimensions of the open surface 161 of the carrier 16 in consideration of fluid (purge gas) diffusion, and the inert gas from the purge plate 41 contains the carrier open surface 161. It is preferable to flow in as a laminar flow into the central part of (see FIG. 9).
  • the purge plate 14 having such a structure and arrangement. That is, the laminar inert gas (see the black arrow shown in the carrier 16 in FIG. 9) flowing out from the outflow surface of the purge plate 41 and flowing through the center of the carrier 16 is the air in the carrier (the carrier 16 in FIG. 9). (See the white arrow shown in the figure) is extruded in a laminar flow state between the peripheral edge of the purge plate 41 and the peripheral edge of the open surface 161 of the carrier 16, and mixing and stirring of the purge gas (inert gas) and air in the carrier 16 Can be reduced as much as possible.
  • the purge gas inert gas
  • the purge gas here may include dry air in addition to nitrogen, argon, neon, and krypton.
  • the purge port 40 advances the purge plate ascending mechanism 42 that moves the purge plate 41 back and forth (up and down movement) between the operating position (atmosphere replacement position) and the standby position (storage position), and the FIMS door 12.
  • a FIMS door drive mechanism 43 that moves backward and a control unit 46 that controls each component of the purge port 40 are provided.
  • the purge port opening 44 provides a place where the purge plate 41 performs purging of the FOUP 13 (atmosphere replacement operation).
  • the purge port opening 44 is also used as a place where the transfer robot 4 unloads / loads the wafer 15 in the FOUP 13.
  • the purge port opening 44 has an opening area through which the flange portion 26 of the FOUP 13 placed on the stage 14 can pass, similarly to the port opening of a normal load port (for example, the load port 2 shown in FIG. 4). Have.
  • the FOUP 13 placed on the stage 14 passes through the inlet of the purge port opening 44, encounters the FIMS door 12 waiting at a predetermined position of the opening 44, and the position, cover 16 Is removed from the FOUP 13 and attached to the FIMS door 12 (ie, integrated into the FIMS door 12).
  • the mini-environment space includes upper and lower inner walls 45 ( The partition formed by 45a, 45b, 45c, and 45d shown in FIG. 6 is isolated from the internal space of the purge port 40 (that is, fluid communication is suppressed through a gap).
  • An insertion hole 66 having a sufficient area for the purge plate 41 to pass through is formed in the lower inner wall 45d of the purge port opening 44, and the purge plate 41 is moved to the operating position (atmosphere replacement) through the insertion hole 66. Position) and a standby position (storage position).
  • the high clean air inside the mini-environment space unit 3 is located at the periphery of the FIMS door 12 (FIMS door 12 and inner walls 45a, 45b, 45c) above the insertion hole 66. , 45d) and flows out to the outside.
  • a flange panel 65 is provided on the inner wall to limit the outflow of highly purified air to the outside of the mini environment space unit 3. Is provided.
  • the flange panel 65 is provided on substantially the same plane as the FIMS door 12 facing the FOUP 13 (see FIG. 9), and the flange panels corresponding to the inner walls 45a, 45b, 45c are in close contact with each other. In the specific examples of FIGS.
  • the FIMS door 12 and the flange panel 65 are arranged with a gap of about several mm, and a highly clean air outflow adjustment function is realized by this gap. That is, an appropriate amount of highly clean air inside the mini-environment space unit 3 flows out of the gap, and the internal pressure inside the mini-environment space unit 3 is maintained, and the low pressure from the outside is maintained. Infiltration of clean air is also effectively prevented.
  • the purge plate 41 is supported by a column 47 fixed to a bracket 52 (FIG. 5) attached to the moving element of the purge plate ascending mechanism 42, and can be moved up and down in conjunction with the raising and lowering operation of the purge plate ascending mechanism 42. It has become.
  • the support 47 is in the form of a hollow pipe, and a piping path 39 through which an inert gas flows is inserted.
  • This piping path 39 (FIG. 7) is connected to the internal piping 48 of the purge plate 41 so that the inert gas can be supplied to the purge plate 41.
  • the shape and size of the purge plate 41 are preferably designed based on the shape and size of the open surface 161 of the FOUP 13 that faces the purge plate 41.
  • the purge plate 41 has a thin rectangular parallelepiped shape, and an inert gas introduced from one end is two-dimensionally arranged therein (for example, 2 A pipe 48 having a branching shape to be distributed to a large number of jet ends (in a dimensional matrix arrangement), and provided at each jet end (pipe outlet) of the pipe 48 to reduce the flow rate of the inert gas sent, In addition, it has a two-dimensional array of ejection suppression elements 49 that disperse the inert gas over a wide range.
  • the pipe 48 By making the pipe 48 into a number of branched shapes, the inert gas jet output introduced from one end of the pipe 48 is distributed to the branched jet ends, so that the inert gas jetted from the jet ends can be reduced. It works to reduce momentum.
  • Making the pipe 48 into a branched shape can be realized by various methods. For example, it may be branched to a tube material made of polyurethane, PTFE (polytetrafluoroethylene) resin or the like via a joint, or a branched shape may be formed by joining a pipe made of stainless steel material or the like. .
  • a tube material made of polyurethane, PTFE (polytetrafluoroethylene) resin or the like via a joint
  • a branched shape may be formed by joining a pipe made of stainless steel material or the like.
  • the ejection suppression element 49 attached to each ejection end of the pipe 48 can be realized by various materials having a required ejection suppression function for the purge gas to be used, and can be preferably configured by a porous material.
  • a porous material for example, it can be realized by a PTFE fine particle bonded composite member, a sintered metal, sintered glass, open cell glass, a laminated filter medium, or an air filter member having a hollow fiber membrane as a filter medium.
  • the porous ejection suppressing element 49 the flow rate of the inert gas is reduced by passing the inert gas through a narrow gap or a fine hole in the ejection suppressing element 49, and the ejection direction of the inert gas is widespread.
  • the inert gas is uniformly supplied into the purge plate 41. Further, the porous ejection suppressing element 49 can remove dust mixed in the inert gas when flowing through the pipe. In the case of the porous jet suppression element 49, since the fine structure of porous is used for jet suppression, the jet suppression element having the required jet suppression capability can be realized in a compact manner.
  • a rectifying plate 50 having a purge gas (inert gas) outflow surface is attached to a surface of the purge plate 41 facing the carrier opening.
  • the rectifying plate 50 constitutes a protective cover for the purge plate 41, and a two-dimensional hole array or hole mesh in which a large number of openings or holes are arranged vertically and horizontally on the outflow surface in order to discharge the purge gas to the outside of the purge plate 41. Is formed.
  • Each hole of the hole mesh has a rectifying function that regulates the flow direction of the purge gas.
  • the current plate 50 can be formed of a punching plate in which punched holes are uniformly arranged two-dimensionally.
  • the material of the purge plate 41, the support column 47, and the protective cover 50 is desirably a stainless material in terms of physical properties and cost, but a resin material such as a PTFE material may be used.
  • a resin material such as a PTFE material may be used.
  • the ejection suppression element 49 is a porous material such as an open-cell foamed resin, a stainless wire mesh, a sintered metal, or a ceramic porous body. Materials that do not generate can be used.
  • the ejection suppression element 49 is composed of a porous element that is individually attached to each ejection end of the pipe 48.
  • it may be constituted by a flat plate-like porous ejection suppressing element 49 (that is, a porous sheet) mounted between the purge plate 41 and the rectifying plate 50 (protective cover) ( In this case, it is not necessary to provide an individual ejection suppressing element 49 at each ejection end of the pipe 48).
  • the ejection direction of the inert gas ejected from the purge plate 41 is regulated (rectified) by the mesh-shaped pores, and flows into the carrier 16 as a laminar flow. If the reinforcing rectifying plate 79 is disposed between the ejection suppressing element 49 (porous sheet) and the purge plate 41, not only the rectification but also the effect of reinforcing the porous ejection suppressing element 49 is obtained.
  • the purge plate ascending mechanism 42 rotates in conjunction with the rotation of the motor 51 as a drive source, the feed screw 53 that moves the bracket 52 to which the support column 47 is attached, and the lifting / lowering operation of the bracket 52.
  • the guide rail 54 which guides is provided.
  • the feed screw 53 rotates in conjunction with the rotation of the motor 51, and the bracket 52 attached to the moving element of the feed screw 53 moves up and down by a predetermined amount according to the rotation angle of the motor 51.
  • the purge plate 41 can be reciprocated (lifted) between the operating position (atmosphere replacement position) and the standby position (storage position).
  • the motor 51 and the feed screw 53 are used as the elevating mechanism.
  • any appropriate mechanical reciprocating mechanism such as an air cylinder, a hydraulic cylinder, or a cam link mechanism is used. Is possible.
  • the purge plate 41 when the purge plate 41 is not in operation, the purge plate 41 is accommodated in the lower portion of the purge port opening 44 and is raised to the atmosphere replacement position during the purge operation so that the purge plate 41 is reciprocated up and down. Designing.
  • the purge plate 41 may be reciprocated between the advanced position and the retracted position by the drive mechanism.
  • the control unit 46 that performs the control necessary for the purge operation (including control of the reciprocating motion of each drive mechanism, the flow rate of inert gas, the supply time, and the supply timing) is a control BOX 70 (FIG. 12) inside the main body of the purge port 40. ) Is provided inside. As shown in FIG. 12, the inert gas is supplied from the outside of the purge port 40 into the control unit via the supply path, and is introduced into the purge plate 41.
  • the inert gas introduced into the purge plate 41 may be supplied from factory equipment in which the purge port 40 as an atmosphere replacement device is installed, or a container storing the inert gas in the purge port 40 may be provided. It can also be provided.
  • a purge gas (inert gas) using factory equipment or a stored container as a supply source 69 is introduced into the control BOX 70 through a supply path, and a pressure regulator 71, a pressure sensor 72, and an electromagnetic valve 73 provided in the control BOX 70. After that, the structure is introduced into the purge plate 41.
  • the pressure regulator 71 adjusts the pressure on the outlet side with respect to the fluctuating pressure of the supply source, and the pressure sensor 72 measures the pressure of the inert gas sent from the outlet side of the pressure regulator 71.
  • the alarm signal is transmitted to the control unit 46 when a high pressure or a low pressure is set with respect to preset upper and lower thresholds.
  • the electromagnetic valve 73 opens and closes the valve through which the inert gas flows in response to an input signal sent from the control unit 46, and has a predetermined timing according to a procedure stored in advance in a storage device provided in the control unit 46.
  • the inert gas can be supplied for a predetermined time.
  • Each supply path from the electromagnetic valve 73 to the purge plate 41 is provided with a needle valve 74, and the flow rate of the inert gas can be adjusted accurately.
  • the inert gas introduced into the control BOX 70 via the supply path is controlled to a predetermined pressure and flow rate, and then supplied to the purge plate 41 of the inert gas for a predetermined time at a predetermined timing.
  • the inert gas supply time may be determined in advance by determining a suitable time by a test, and the start and stop of supply may be controlled by a timer provided in the control unit 46 (timer method).
  • a sensor for detecting the inert gas concentration may be installed at a suitable location of the purge port 40, and the supply may be stopped when the inert gas concentration in the FOUP 13 reaches a specified value (sensor method).
  • the sensor may measure the concentration of the inert gas used as the purge gas.
  • the same effect can be obtained by using a sensor that measures a relatively inexpensive oxygen concentration. .
  • control is performed to stop the supply of purge gas when the oxygen concentration in the FOUP 13 falls below a specified numerical value.
  • the inert gas flowing into the carrier 16 can be increased by increasing the flow rate of the inert gas.
  • the amount of active gas also increased, and it was expected that the atmosphere could be replaced in a short time.
  • the dust adhering to the back surface of the wafer 15 accommodated in the carrier 16 and the dust accumulated in the carrier 16 are blown off by the injecting force of the inert gas.
  • the inventor of the present application has confirmed a phenomenon (stirring phenomenon) in which the particles collide with the processing surface of the wafer 15 and damage the processing surface.
  • the inert gas flow having a high flow velocity collides with the wall surface in the carrier 16 and then flows out to the outside or entrains air from the outside, so that the inert gas concentration in the carrier 16 does not increase. There is also a possibility of causing a malfunction.
  • lowering the flow rate of inert gas reduces problems such as scattering of dust and outflow of inert gas, but it also reduces the flow rate, resulting in a great deal of time for atmosphere replacement.
  • the inventors of the present invention have also confirmed that the oxidation of the surface of the wafer 16 progresses until the atmosphere replacement is completed, leading to a decrease in yield (oxidation phenomenon).
  • the agitation phenomenon and the oxidation phenomenon described above are conspicuous in a conventional atmosphere replacement device in which an inert gas is blown into the carrier 16 using a nozzle that is a fluid element that blows out at a higher flow rate of the inert gas.
  • a purge port atmosphere replacement device
  • a slow purge gas flow is realized by this purge plate.
  • the purge gas pipe 48 is composed of a number of branch pipes, and an inert gas introduced from one introduction end (pipe inlet) is connected to a plurality of ejection ends (pipe outlets). ). Then, a discrete porous ejection suppressing element 49 is provided at the tip of each ejection end (FIG. 7), or a sheet-like porous ejection suppressing element 49 that covers all the ejection ends is disposed (FIG. 8). . Furthermore, the inert gas is poured toward the open surface 161 of the carrier 16 through the current plate 50 in which the hole mesh is formed.
  • the purge plate 41 prevents the stirring phenomenon and prevents the dust staying in the carrier 16 from scattering.
  • a short period of purging is realized by supplying an inert gas in an amount necessary for atmosphere replacement within a predetermined time from the purge plate 41, which is a uniform planar laminar gas generation plate, into the carrier. The oxidation phenomenon of the substrate surface (wafer surface) is suppressed.
  • the inert gas diffused inside the purge plate 41 is rectified by the rectifying plate 50 having mesh holes or two-dimensional array holes, and is substantially uniform with respect to the opening surface 161 of the carrier 16.
  • a laminar flow having a flow velocity is supplied into the carrier 16.
  • the inert gas supplied to the inside of the carrier 16 gradually flows into the inside of the carrier 16 through a gap between the wafers 15 accommodated in the inside of the carrier 16, thereby filling the contaminants and the inside staying on the surface of the wafer 15.
  • the clean air that has been discharged is discharged from the periphery of the flange portion 26 of the carrier 16 so as to be pushed out by the inert gas, and the atmosphere replacement inside the carrier 16 proceeds (see FIG. 9).
  • the purge plate 41 In the atmosphere replacement position, the purge plate 41 is disposed at the center with respect to the purge port opening 44 (therefore, the vertical center line of the open surface 161 of the carrier 16 coincides with the vertical center line of the purge plate 41). This is desirable because the clean air inside the carrier 16 pushed out by the inert gas is uniformly discharged from the periphery of the purge port opening 44 to the outside. However, even if the purge plate 41 is arranged at the non-central portion of the purge port opening 44, the stirring is similarly suppressed by adjusting the flow rate and flow velocity, and an inert gas pushing effect can be obtained.
  • the rectifying plate 50 that is a purge gas output plate is constant with respect to the open surface 161. It is preferable to have an inert gas outflow surface of a proportion of 7 shows an outflow surface due to a plate material (round hole punching plate) having a large number of circular holes, and FIG. 8 shows an outflow surface due to a net plate material (square hole punching plate).
  • the area ratio of the outflow surface occupying the purge plate preferably has an appropriate size.
  • the ab / AB ratio (relative to the current plate area).
  • the ratio of the outflow surface area) is preferably in the range of 50% to 100%.
  • the area of the rectifying plate 50 is preferably 10% or more and 60% or less with respect to the area of the open surface 161 of the carrier 16, and the outflow surface area of the rectifying plate 50 is 5% with respect to the area of the carrier 16 opening surface. Above, 50% or less is preferable.
  • the FIMS door 12 is disposed at a position that effectively adjusts and inhibits the high clean air supplied from the fan filter unit 5 of the mini-environment space unit 3 from flowing into the inside of the carrier 16 when the atmosphere is replaced. It is preferable that the inert gas concentration in the carrier 16 by purging can be efficiently increased by the high clean air inflow adjustment / suppression function.
  • the purge port 40 can be configured such that highly purified air having a flow rate adjusted using the flange panel 65 flows out through the purge port 40 through the gap between the FIMS door 12 and the inner wall 45.
  • FIG. 9 shows the flow of the inert gas, highly clean air, and air in the carrier 16 when the atmosphere is replaced in such an embodiment.
  • FIG. 9A is a cross-sectional view seen from the side.
  • (B) is a cross-sectional view seen from above.
  • the purge port 40 has a highly clean air passage 121. That is, in FIG.
  • the air flow rate adjusting function performed by the highly clean air passage 121 of the purge port 40 is such that the flange portion 26 of the carrier 16 and the periphery of the purge port opening 44 are brought close to each other with almost no gap when the wafer 15 is loaded / unloaded. It can also be applied to other load ports. That is, the carrier 16 mounted on the stage 14 is slightly retracted (moved by a predetermined distance in a direction away from the mini-environment space unit 3) to form a gap between the flange portion 26 and the purge port opening 44 periphery. It is only necessary to provide a mechanism (by which the highly clean air passage 121 is formed) and to let the air inside the carrier 16 flow out of the apparatus together with the highly clean air from the formed gap (see FIG. 9).
  • a suction mechanism for sucking the atmosphere inside the carrier 16 may be provided in addition to the purge plate 41 for supplying an inert gas.
  • the suction mechanism is arranged around the purge plate 41 in the center at a position facing the open surface 161 of the carrier 16 or at a position where the purge plate 41 faces the carrier 16 open surface 161 and is shifted from the center.
  • it may have the same shape as the purge plate 41, or may be a form in which suction is performed from the suction port provided in the bottom of the carrier 16 according to the SEMI standard.
  • the wafer 15 that has been processed in the processing apparatus 1 is moved to the purge port 40 that also has the function of a load port by the transfer robot 4 provided in the mini-environment space unit 3 after the processing is completed.
  • the transfer robot 4 carries it in a predetermined shelf 18 in the carrier 16 disposed in the purge port 40 (load port).
  • the purge plate 41 is in the retracted position (storage position), and the upper portion of the insertion hole 66 through which the purge plate 41 passes to move to the advanced position is occupied by the carrier 16 for wafer transfer. (Therefore, the purge plate 41 cannot be raised).
  • the FIMS door 17 has an integrated form with the FOUP cover 17 attached, and is retracted to a position below the purge port opening 44 (retracted position). is doing.
  • the stage drive mechanism 29 slightly retracts the stage 14 on which the carrier 16 is placed in a direction away from the purge port opening 44 (that is, a direction away from the mini-environment space unit 3). .
  • the FIMS door 12 (which is in an integrated state where the FOUP cover 17 is attached at this time) has a height corresponding to the open surface 161 of the carrier 16 by the FIMS door lifting mechanism 55. Ascend to (advance position). In this way, a space (operating area of the purge plate 41) is ensured between the open surface 161 of the carrier 16 and the FOUP cover 17 (mounted on the FIMS door 12).
  • the movement of the purge port 40 by the minute backward movement performed by the stage 14 also has the purpose of moving the carrier 16 to a position where the atmosphere replacement by the purge port 40 is efficiently performed.
  • stage 14 moves backward by a slight movement, but there is a gap of about 5 mm between the flange portion 26 provided on the periphery of the carrier 16 and the inner wall 45 provided on the periphery of the purge port opening 44.
  • the high clean air inside the mini-environment space unit 3 flows out of the processing apparatus through the gap, thereby preventing the low clean air from flowing into the mini-environment space unit 3 from the outside of the apparatus.
  • the purge plate 41 is raised to a predetermined position (operating position) with respect to the open surface of the carrier 16 by the purge plate ascending mechanism 42, and the inert gas can be supplied into the carrier 16.
  • a predetermined position operating position
  • the purge plate 41 is located between the FOUP carrier 16 and the FIMS door 12, and as described above (see FIG. 9), a laminar purge gas is generated and sent toward the FOUP carrier 16 in a slow manner.
  • FOUP purging atmosphere replacement operation
  • the purge plate 41 When the FOUP purging at the operating position is completed (for example, when the inert gas is supplied into the carrier 16 for a predetermined time), the purge plate 41 is moved to the original standby position by the purge plate ascending mechanism 42. Refer to FIG. If the inert gas continues to be supplied while the purge plate 41 is lowered to the predetermined standby position (retracted position), the total time required for purging the FOUP 13 can be shortened. A decrease in the concentration of the inert gas can be suppressed, which is preferable.
  • an auxiliary nozzle 68 (FIG. 5), which will be described later, may be used to replenish inert gas from there during this purge plate lowering mode.
  • the stage 14 When the purge plate 41 finishes descending, the stage 14 is advanced to a position where the carrier 16 on the stage 14 is docked with the FOUP cover 17. Refer to FIG. In this docking position, the FIMS door 12 removes the FOUP cover 17 that has been mounted, and the carrier 16 is locked with the cover 17 by means of a latch key 23b provided therein, so that the FOUP 13 is sealed. Thereafter, the stage 14 performs the backward movement to the transfer position with the FOUP transfer robot or the OHT, whereby all the operations (loading and purging sequences) of the purge port 40 are completed. Refer to FIG. *
  • FIG. 14A is a perspective view showing a specific example in which the shield cover 67a is attached to the FIMS door 12, and is a partially cutaway view of the FIMS door 12 with the upper left portion viewed from the carrier 16 side.
  • the end of the shield cover 67a facing the carrier 16 forms a U-shaped labyrinth structure, and is fitted in a non-contact manner with the open surface side peripheral edge of the flange panel 65, so that the carrier 16 at the time of atmosphere replacement The entrance of highly clean air from inside the mini-environment space unit 3 is blocked.
  • the sensor attachment portion 33 for moving forward and backward toward the inside of the carrier 16 is usually disposed, and therefore the shield cover 67 a is provided.
  • a sensor intrusion hole is provided in the 67a.
  • the shield cover 67a attached to the FIMS door 12 and the flange cover 65 on the inner wall face each other.
  • the FIMS door 12 and the shield cover 67a are operable.
  • a labyrinth seal structure in which the concave portion and the convex portion are not in contact with each other, there is no possibility of dust generation, and the cleanliness inside the carrier 16 can be maintained.
  • the FIMS door drive mechanism 43 guides the FIMS door 12 along the guide rail 62 and is movable with respect to the carrier 16 in a direction away from and within a prescribed range of the guide rail 62 (see FIG. 10), by providing a shield cover 67b as shown in FIG. 13 and FIG. 14B, the same effect as the specific example shown in FIG. 14A can be obtained.
  • the FIMS door drive mechanism 43 is fixed to a moving element 57 of a feed screw mechanism 56 provided in the FIMS door lifting mechanism 55, and is moved up and down by the FIMS door lifting mechanism 55, and is attached to the base member 58.
  • the motor 60 that is a driving source for moving the door 12 forward and backward, and the feed screw 61 that rotates in conjunction with the rotation of the motor 60 to move the FIMS door 12 fixed to the mover 63 forward and backward, guide the movement of the FIMS door 12. It consists of a guide rail 62.
  • the guide rail 62 is attached to brackets 64 fixed to the left and right ends of the base member 58.
  • the sensor attachment portion 33 is rotatably attached to the bracket 64, and the movement of the mapping sensor 32 into the carrier 16 is enabled by the operation of the sensor drive mechanism 34.
  • the motor 60 feed screw 61 is used as the FIMS door drive mechanism 43, but another type of drive mechanism such as an air cylinder, a hydraulic cylinder, or a cam link mechanism is used instead. It's also good.
  • FIG. 13 is a perspective view of the periphery of the FIMS door 12 having a shield structure as viewed from the mini-environment space unit 3 side
  • FIG. 14B is a perspective view showing the shield structure, and the carrier 16 side of the FIMS door 12 It is the partially cutaway figure which lacked the front view upper left part seen from the front.
  • the shield cover 67b is fixed to brackets 64 provided at both ends of the FIMS door 12, and has a gate-shaped opening shape corresponding to the open surface of the flange panel 65. The inside of the open surface is the FIMS door 12.
  • the wafer 15 transported by the wafer transport robot 4 has a sufficiently large area.
  • a sensor mounting portion 33 is rotatably disposed on the bracket 64 so that the mapping sensor 32 attached to the sensor mounting portion 33 can move forward and backward toward the inside of the carrier 16 to perform wafer mapping. It has become. For this reason, it is considered that the shield cover 67b has an attachment position and shape that do not interfere with the rotation operation of the sensor attachment portion 33.
  • the bracket 64 for attaching the shield cover 67b can be moved up and down in the vertical direction by the FIMS door lifting mechanism 55, the shield cover 67a is provided at the opposite ends of the shield cover 67b and the flange cover 65.
  • the bracket 64 and the shield cover 67b can be operated by adopting a labyrinth structure in which one end is a recess (a U-shape) and the corresponding other end is a protrusion. Further, by making the concave and convex portions non-contact with each other, no dust is generated, and the cleanliness inside the carrier 16 can be maintained.
  • the FIMS door 12 can be moved within the range guided by the guide rail 62 by the FIMS door drive mechanism 43, so that the FIMS door 12 is located at the position farthest from the carrier 16.
  • the peripheral edge of the FIMS door 12 and the end of the shield cover 67b are non-contact fitted, so that the gap between the FIMS door 12 and the shield cover 67b is shielded (in the deepest labyrinth seal state). Securing), a small amount of highly purified air in the positive-pressure mini-environment space unit 3 flows out of the apparatus, thereby preventing the entry of external air.
  • the opening amount of the gap between the FIMS door 12 and the shield cover 67b is changed (the depth of the labyrinth seal state is changed) by moving the FIMS door 12 within the operation range guided by the guide rail 62.
  • the inflow amount of highly clean air from the mini-environment space unit 3 can be adjusted depending on the position of the FIMS door 12, the inflow amount of highly clean air from the mini-environment space unit 3 can be adjusted.
  • FIG. 14B is a view showing a point in time when the FIMS door 12 integrated with the cover 17 is at an intermediate position on the guide rail 62, and will be described based on this figure.
  • the highly purified air in the mini-environment space unit 3 maintained at a higher pressure than the outside air passes through the gap provided between the edge of the carrier 16 and the flange panel 65 from between the FIMS door 12 and the shield cover 67b.
  • the highly clean air in the carrier 16 is also attracted and flows out, which has the effect of increasing the efficiency of atmosphere replacement.
  • the position of the purge plate 41 located between the carrier 16 and the FIMS door 12 can be set with respect to the carrier 16 opening surface, and the optimum inert gas supply amount is increased. And the purge plate position, and the optimum purge plate area and purge plate position can be searched.
  • the SEMI standard which is a standard for semiconductor manufacturing equipment in general, has a provision that the protruding portion from the wall surface forming the mini-environment space unit 3 is within 100 mm, but in this embodiment, the shield cover 67a and The amount of protrusion of the 67b toward the mini-environment space unit 3 is within 100 mm, and is compliant with the SEMI standard.
  • the open surface 161 of the carrier 16 is sealed by the cover 17 to complete all the atmosphere replacement operations.
  • the cover 17 closes the open surface of the carrier 16 and then the oxygen concentration in the carrier 16 increases (means that the inert gas concentration in the carrier 16 decreases).
  • This is a transient purge gas concentration lowering phenomenon accompanying the disappearance of the purge gas flow from the purge plate 41. This is because after the atmosphere replacement is completed, the remaining air that has not flowed out of the apparatus has diffused throughout the carrier 16, resulting in a decrease in the inert gas concentration in the entire interior, and the completion of the atmosphere replacement.
  • an auxiliary nozzle 68 as shown in FIG. 5 can be added to the atmosphere replacement configuration of the above embodiment.
  • the auxiliary nozzle 68 is provided on the inner wall 45 provided on the periphery of the purge port opening 44. Then, from the point in time when the purge plate 41 starts moving to a predetermined standby position (storage position) (at the start of lowering) until the carrier 16 is sealed by the cover 17, the carrier 16 and the cover 17 An inert gas is supplied toward The purge gas flow supply from the auxiliary nozzle 68 functions to compensate for the purge gas flow disappearance from the purge plate 41.
  • the purge gas flow supply from the auxiliary nozzle 68 serves to shorten the total purging time necessary for the purge port 40 to achieve the required atmosphere replacement.
  • air can be prevented from entering the inside of the carrier 16 by filling the space surrounded by the carrier 16, the cover 17, and the inner walls 45a, 45b, 45c with the inert gas. Further, by supplying the inert gas from the auxiliary nozzle 68, the inert gas concentration around the carrier 16 is ensured, and the phenomenon that the inert gas concentration inside the carrier 16 decreases below the reference value after the cover 17 is closed is suppressed. be able to.
  • the auxiliary nozzle 68 may be provided on any inner wall 45a-d on the periphery of the purge port opening 44. If the flow rate of the inert gas discharged from the auxiliary nozzle 68 is increased too much, the carrier 16 entrains the surrounding air, making it difficult to achieve a sufficient inert gas concentration. Therefore, it is preferable that the flow rate of the inert gas supplied from the auxiliary nozzle 68 is substantially equal to the flow rate of the inert gas supplied from the purge plate 41.
  • the shape of the inert gas outlet of the auxiliary nozzle 68 is preferably a slit having the same length as one side of the inner wall 45 of the purge port opening 44.
  • the auxiliary nozzle 68 can also maintain the interior of the FOUP 13 in a highly clean atmosphere by supplying a dustless gas such as an inert gas or highly clean air when the cover 17 is opened. . That is, after the FOUP 13 is opened and until the forward movement by the stage drive mechanism 29 is completed, the FIMS door 12 is moved away from the carrier 16 by the FIMS door drive mechanism 43. As the door 12 moves away, the gap between the FIMS door 12 and the shield cover 67b gradually decreases, and the flow rate of highly clean air that flows out of the apparatus accordingly decreases.
  • a dustless gas such as an inert gas or highly clean air
  • low-clean air outside the apparatus may enter the inside of the carrier 16 through the gap between the flange portion 26 of the carrier 16 and the inner wall 45, and the inside of the carrier 16 may be contaminated with dust. Therefore, after the FOUP 13 is opened, the dust-free gas flows out from the auxiliary nozzle 68 between the carrier 16 opening surface and the cover 17 until the forward movement operation by the stage drive mechanism 29 is completed. Air is prevented from entering the inside of the carrier 16.
  • the test is performed by installing a purge port 40 in a test clean booth (test mini-environment space unit 3) that forms the same mini-environment space unit 3 as the actual processing apparatus 1.
  • the oxygen concentration inside the test FOUP 13 placed on the port 40 was measured.
  • As the oxygen concentration meter 78 a zirconia oxygen concentration meter LC-450A manufactured by Toray Engineering Co., Ltd. was used.
  • As the inert gas used for the atmosphere replacement nitrogen gas having a purity of 99.99% or more generally used for the atmosphere replacement was introduced into the purge port 40 from the cylinder as the supply source 69 through the supply path.
  • the reason for measuring oxygen concentration instead of nitrogen concentration is that oxygen concentration measuring instruments are cheaper and easier to obtain than nitrogen concentration measuring instruments, and the inert gas used for atmosphere replacement is not limited to nitrogen. This is because it is possible to estimate the progress of the atmosphere replacement in the test FOUP 13 by measuring the oxygen concentration. Further, the present oxygen concentration measuring instrument LC-450A can also measure the humidity indicated by the dew point, and can be used even when dry air is used as an inert gas.
  • the test FOUP 13 is composed of a carrier 16 and a cover 17 similar to a commonly used FOUP.
  • the carrier 16 is provided with 25 shelves on which the wafer 15 is placed, but a tube 79 for collecting the internal atmosphere. An insertion hole for allowing insertion of the FOUP is different from a normal FOUP.
  • the wafers were placed on all the 25-stage shelves, and the oxygen concentration measurement position inside the test FOUP 13 was set near the 14th-stage shelf on the back side when viewed from the purge plate 41 during atmosphere replacement.
  • the oxygen concentration measuring device 78 sucks the atmosphere inside the test FOUP 13 through the tube 79 by the suction pump provided inside, and the oxygen in the sucked atmosphere by the detection means provided inside. Concentration was measured.
  • the internal pressure of the test mini-environment space unit 3 is adjusted by increasing / decreasing the number of rotations of the fan 8 provided in the fan filter unit 5 that feeds highly clean air. Since the inside of the mini-environment space unit 3 is generally kept at a positive pressure with respect to the external environment because the inside of the mini-environment space unit 3 is kept highly clean, the differential pressure with respect to the external environment is a negative pressure. Some cases are not tested. Further, the nitrogen gas is supplied only from the purge plate 41 and is not supplied from the auxiliary nozzle 68. The oxygen concentration inside the test FOUP 13 was set to 100 ppm (0.01%) or less from the viewpoint of preventing oxidation of the wafer surface placed inside.
  • the internal / external pressure difference of the test mini-environment space unit 3 was set to 3.5 Pa and 2.5 Pa, and when the nitrogen gas flow rate was supplied to each environment at 120 liters per minute for 110 seconds, The change in oxygen concentration when supplying for 80 seconds at 150 liters was examined.
  • FIG. 16 is a graph showing the test results.
  • the vertical axis represents the oxygen concentration (ppm)
  • the horizontal axis represents the elapsed time (seconds)
  • the oxygen concentration increases under any conditions, but it can be seen that the higher the differential pressure, the larger the increase rate of the oxygen concentration. This is because when the purge plate 41 descends to the standby position after the supply of the nitrogen gas is completed, a part of the highly purified air flowing out from the test mini-environment space unit 3 flows into the carrier 16 from the upper part of the carrier 16. The cause is considered to be diffused throughout the test FOUP 13 even after the sealing is completed.
  • test was performed to determine how much the pressure difference between the inside and outside of the test mini-environment space unit 3 affects the oxygen concentration after sealing the test FOUP 13 with the nitrogen gas flow rate and supply time constant.
  • the internal / external differential pressure of the test mini-environment space unit 3 was set to 0 Pa, 1.0 Pa, 2.5 Pa, and 3.5 Pa, and for each internal / external differential pressure, nitrogen gas at a flow rate of 150 liters per minute was set to 110. After supplying for 2 seconds, the transition of the oxygen concentration inside the sealed test FOUP 13 was measured. The result is shown in FIG.
  • the lower the internal / external differential pressure of the test mini-environment space unit 3 the lower the oxygen concentration inside the test FOUP 13 after sealing.
  • the oxygen concentration value after 180 seconds from the start of supply is 152 ppm at 3.5 Pa, and it can be seen that the increase in oxygen concentration is suppressed compared to the above-described test at a flow rate of 120 liters. Further, the oxygen concentration at a lower differential pressure of 1.0 Pa is suppressed to 28.9 ppm after 180 seconds from the start of supply.
  • the increase in oxygen concentration is less than one-fourth at a differential pressure of 2.5 Pa and less than one-tenth at a differential pressure of 1.0 Pa, compared to the numerical value of the test at 3.5 Pa described above. It became.
  • the graph of the differential pressure of 0 Pa in FIG. 17 is obtained when the fan filter unit 5 is stopped and the internal / external differential pressure of the test mini-environment space unit 3 is made zero. 110 seconds after the start of nitrogen gas supply, the oxygen concentration decreased to 4.6 ppm and maintained 9.1 ppm even after 180 seconds, and gradually increased but almost stabilized. Therefore, it was found that the minimum mini-environment internal / external differential pressure may be zero Pa.
  • the fan filter unit 5 The supply of highly clean air from is necessary for this type of treatment device 1.
  • the purge port 40 (atmosphere replacement device) of the specific embodiment shown in the drawing is in fluid (gas) communication with the outside through a gap. Therefore, when the purge port 40 (atmosphere replacement device) of the embodiment is applied to such an environment, the internal / external differential pressure of the mini-environment space unit 3 has a lower limit of 0.1 Pa, preferably a differential pressure of 1.0 Pa. From the vicinity, the upper limit is about 4 Pa.
  • the purge port 40 of the gap fluid (gas) communication type when the purge port 40 of the gap fluid (gas) communication type is applied to the actual processing apparatus 1, it is possible to efficiently replace the atmosphere by the purge port 40 while maintaining a practically stable cleanliness in the processing apparatus 1.
  • the differential pressure internal / external differential pressure of the mini-environment space unit 3
  • the purge port 40 according to the illustrated specific example has an atmosphere replacement operation time of at most about 180 seconds or 180 seconds by operating in an environment where the differential pressure is 0.5 Pa or more and 2.5 pa or less.
  • the oxygen concentration in the FOUP 13 of 100 ppm or less (a concentration target value that means that atmosphere substitution that can sufficiently suppress the oxidation of the wafer has been made) can be achieved.
  • the purge port 40 (atmosphere replacement device) according to the illustrated specific example has a limited amount of gas (high clean air, low clean air) through the gap with the external environment. There is a communication structure.
  • the performance of the purge port 40 (atmosphere replacement device) according to the illustrated specific example depends on the state of the high cleanliness air unit 3 (for example, its positive pressure).
  • the high cleanliness air unit 3 does not constitute a component of the purge port 40 (atmosphere replacement device) according to the specific illustrated embodiment. Therefore, it should be understood that the high cleanliness air unit 3 itself does not form part of the present invention.
  • the purge port 40 is applied to an environment in which the differential pressure inside the test mini-environment space unit 3 is maintained at a positive pressure of 2.5 Pa, and the conditions of the flow rate and the supply time of the nitrogen gas as the purging gas are changed.
  • a test was conducted to see the time transition of the oxygen concentration in the FOUP 13 with respect to the purging operation.
  • the flow rate of nitrogen gas was set to 120 liters per minute and 150 liters per minute, and for each flow rate, the change in oxygen concentration when the supply time was 80 seconds and 110 seconds, We decided to look at the relationship between flow rate and supply time.
  • FIG. 18 is a graph of the results.
  • the total supply amount of nitrogen gas when supplying 120 liters of nitrogen gas per minute for 80 seconds is 160 liters, and the total supply amount of 110 liters when supplying nitrogen gas for 110 seconds is 220 liters. Further, the total supply amount of nitrogen gas when supplying 150 liters of nitrogen gas per minute for 80 seconds is 200 liters, and the total supply amount when supplying 110 seconds is 275 liters.
  • the oxygen concentration once reaches 100 ppm or less, but the target of 100 ppm or less is maintained. could not.
  • the oxygen concentration when the nitrogen gas with the flow rate of 150 liters per minute, which is the largest flow rate, is supplied for 110 seconds is temporarily reduced to 4.57 ppm, but the oxygen concentration after sealing is increased. As a result, the oxygen concentration was higher than the test result of supplying for 110 seconds at a flow rate of 120 liters per minute.
  • the surface toward the FOUP opening surface is a protective cover 50, and the size is 260 mm in length and 80 mm in width. Then, a punching plate (aperture ratio 29.6%) having 1240 holes with a diameter of 2 mm on the nitrogen outflow surface of 194 mm in length and 68 mm in width in the upper part was used.
  • the internal / external differential pressure of the test mini-environment space unit 3 may be zero. Since the volume of the test FOUP 13 is about 30 liters as in the normal FOUP 13, the nitrogen ventilation frequency (converted value) in the FOUP 13 at this time is 5 times / minute, and the nitrogen outflow rate is the center of the nitrogen outflow surface. It was 0.19 m / min at a position of 20 mm from the portion toward the inside of the carrier 16.
  • the fan filter unit 5 is stopped so that the differential pressure inside and outside the clean booth (test mini-environment space unit 3) becomes zero, and the minimum from the outflow surface of the protective cover 50 A test was conducted to determine the nitrogen supply rate.
  • the nitrogen supply rate it was found that in order to reduce the oxygen concentration after 1 minute in the FOUP to 100 ppm or less, when supplying nitrogen gas at a flow rate of 48 liters per minute, 6 minutes are required until the sealing (Fig. (Omitted). If the nitrogen gas flow rate is less than this, it takes too much time to supply the nitrogen gas, and the amount of nitrogen gas consumption is large and impractical.
  • the ventilation frequency in the FOUP by nitrogen gas is calculated as 1.6 times / min. The measurement result of the flow velocity at this time was 0.06 m / sec at a position of 20 mm from the center of the nitrogen outflow surface toward the FOUP.
  • an inert gas such as nitrogen is supplied in a laminar flow from the protective cover 50 of the purge plate 41 moved near the center of the FOUP opening surface 161, and the flow is distributed to the left and right and up and down on the back wall of the FOUP.
  • the gas is discharged from between the periphery of the purge plate and the periphery of the FOUP opening surface 161.
  • the Reynolds number was calculated and verified. In general, it is said that when the Reynolds number exceeds 2000 to 4000 in a circular pipe fluid, the laminar flow changes to turbulent flow.
  • U Speed [m / s]
  • L Distance [m]
  • Pa ⁇ sec ⁇ density [kg / m 3 ], nitrogen at 20 ° C. and 1.165.
  • the nitrogen flowing out from each hole of the purge plate 41 is calculated.
  • Re 163 was calculated when supplying 400 liters. From this result, it can be said that the laminar flow is sufficiently maintained at any flow rate. At this time, the flow velocity at a position 20 mm from the nitrogen gas outflow surface of the protective cover 50 was 0.50 m / sec.
  • the Reynolds number of the nitrogen gas flowing into the FOUP is calculated.
  • the ventilation frequency at this time is 13.3 times / minute.
  • the supply amount of nitrogen gas exceeds 400 liters per minute, the replacement speed does not decrease compared to the flow rate, and the total outflow amount of nitrogen gas increases. Inefficient and not preferable.
  • the wind speed of the inert gas (nitrogen) at a position 20 mm from the rectifying plate 50 is suitably between 0.05 m / sec and 0.5 m / sec. Preferably, it is 0.1 m / sec to 0.3 m / sec. In terms of the number of ventilations, 1.4 times / minute to 13.3 times / minute is appropriate, and preferably 2.6 times / minute to 7 times / minute.
  • the physical numbers described here are applied on the assumption that the storage container FOUP 13 is a FOUP for storing 25 300 mm wafers with a capacity of 30 liters.
  • the atmosphere in the FOUP could be replaced with a predetermined inert gas concentration within a predetermined time.
  • the atmosphere in the folding FOUP can be replaced, it does not make sense to cause dust to float inside the FOUP and deposit on the wafer surface. Therefore, in the next test, the wafer in the test FOUP 13 when the pressure difference between the inside and outside of the test mini-environment space unit 3 is 2.5 Pa and the flow rate of 120, 150 and 200 liters of nitrogen gas per minute is supplied for 110 seconds. The number of dust on the surface was measured.
  • the dust measurement test was performed by the PWP (Particles on Wafer per Pass) method. Specifically, five measurement wafers that had been previously measured for the number of dust adhering to the surface were placed on the first, seventh, thirteenth, nineteenth, and twenty-fifth shelf in the test FOUP 13, respectively. Thereafter, the operation of opening the test FOUP 13 with the purge port 40, replacing the atmosphere, and sealing is taken as one step, and this is repeated five times. After that, by measuring the number of dust adhering to the surface of the measuring wafer, an increase in the number of dust having a diameter of 0.12 micrometers or more adhering per measuring wafer in one step of the atmosphere replacement operation is obtained. This is a test method.
  • the average number of dust per wafer was 18.8 at the initial stage, and nitrogen gas was 18.3 per 120 liters per minute (ventilation rate 4 times / min, flow rate 0.15 m / sec). 19.1 liters at 150 liters per minute (5 ventilations / minute, flow rate 0.19 m / s), 200 liters per minute (6.7 ventilations / minute, flow rate 0.25 m / s) 22. There were six. From this test, the increase or decrease in the number of dust is within the measurement error range up to 150 liters per minute, but when the flow rate exceeds 200 liters per minute, the increase in the number of dusts begins. It was found that about 0.3 m / second or less is preferable. The cause of the increase in dust is generally that there is a lot of dust adhering to the back surface of the wafer, so it is considered that the dust on the back surface was blown off by a strong nitrogen stream and deposited on the wafer surface.
  • the air in a 30 liter container represented by FOUP can be replaced in a short time of usually 80 seconds, at most 180 seconds or less, and the amount of inert gas used can be reduced.
  • the oxygen concentration after sealing could be kept at 10 ppm or less, at least 100 ppm or less.
  • the inert gas ejection suppressing means is provided in the purge plate, the gas exiting the outflow surface of the purge plate can be maintained in a laminar flow, and the atmosphere can be replaced with a small amount of inert gas.
  • a purge plate smaller than the FOUP opening surface is positioned at the center of the FOUP opening surface to allow the inert gas to flow out, so that the FOUP air can be discharged outside the periphery of the purge plate, which is also a small amount of inert gas. Contributes to atmosphere replacement with gas. Further, by providing the flange panel 65 and the shield cover 67 with a labyrinth structure, air intrusion into the FOUP could be minimized. Moreover, there was no adhesion of dust to the objects to be contained. The principle of this embodiment can be applied even if the volume of the container changes.
  • the atmosphere replacement device and method of the present invention can also be applied to a load port using a mechanism for moving to the position, and it is possible to achieve the same effects as in this embodiment.
  • a mechanism for separating the carrier 16 and the cover 17 in the horizontal direction, and a purge plate 41 having a surface through which inert gas flows out into the carrier 16 at the center between the carrier 16 and the cover 17 are provided.
  • the atmosphere substitution apparatus of this invention can be comprised, and the method of this invention can be implemented using such an apparatus.
  • the purge port of the specific embodiment described in detail can be constructed independently of the load port and can be modified to be used independently within the scope of the present invention. It's just a trivial variant.
  • the silicon wafer FOUP defined by the SEMI standard and the load port adapted to the FOUP are disclosed, but the present invention is not limited to this, and the liquid crystal The present invention can also be applied to substrates that require fine processing, such as display substrates and solar cell panel substrates.
  • a container that contains a substrate to be processed and is sealed from an external atmosphere a transfer device that places or transfers the container, and a process that transfers a workpiece from the container and performs a predetermined process.
  • the atmosphere replacement apparatus and method of the present invention can be effectively applied to this kind of container of any kind of processing apparatus.
  • Purge port atmosphere replacement device
  • Purge plate 49: Ejection suppression element 50: Rectifying plate (outflow surface)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

An improved atmosphere replacement device configured to purge a FOUP type container by means of a purge gas. An atmosphere replacement device is provided with a non-nozzle type purge plate designed in such a manner that a laminar purge gas flow flows out of an outflow surface. The purge plate can be moved between a standby position and an operation position by a purge plate drive mechanism. During purging, the purge plate is placed at the operation position and, while facing the open surface, purges a FOUP type container by causing the laminar purge gas to flow out of the purge plate into the inside of the open surface of the FOUP type container.

Description

雰囲気置換装置Atmosphere replacement device
本発明は、半導体ウエハ、液晶ディスプレイパネル、有機ELディスプレイパネル、プラズマディスプレイパネル、太陽電池用パネル等の薄板状基板を処理する際の、各処理工程間の搬送において、外部から隔絶された雰囲気内で薄板状基板を所定の間隔で収納する密閉容器に対して、容器内部の雰囲気を不活性ガス等の雰囲気に置換する雰囲気置換装置及び雰囲気置換方法に関するものである。 The present invention provides an atmosphere that is isolated from the outside during processing between thin plate substrates such as semiconductor wafers, liquid crystal display panels, organic EL display panels, plasma display panels, and solar cell panels. The present invention relates to an atmosphere replacement device and an atmosphere replacement method for replacing an atmosphere inside a container with an atmosphere of an inert gas or the like with respect to a sealed container that stores thin plate substrates at a predetermined interval.
従来から、半導体ウエハ等の薄板状基板に成膜、エッチングといった様々な処理を行う処理装置や、移載を行うEFEM(Equipment Front End Module)、ロット番号を読み取り仕分けするソーターと呼ばれる装置では、空気中に浮遊するパーティクルが薄板状基板に付着するのを防止するため、薄板状基板の曝される装置内部雰囲気を高清浄に保つミニエンバイロメント方式と呼ばれる高度に清浄化された微小空間とすることで、比較的安価に高い清浄度を保つ工夫がなされてきた。 Conventionally, in a processing apparatus that performs various processes such as film formation and etching on a thin substrate such as a semiconductor wafer, an EFEM (Equipment Front End Module) that performs transfer, and a sorter that reads and sorts lot numbers, In order to prevent particles floating inside from adhering to the thin plate substrate, a highly purified micro space called a mini-environment system that keeps the internal atmosphere of the device exposed to the thin plate substrate highly clean Therefore, a device for maintaining high cleanliness at a relatively low cost has been made.
しかし近年、半導体回路線幅のデザインルールの微細化、ウエハ直径の大口径化が進行し、従来のミニエンバイロメント方式による高清浄化だけでは対応出来ない問題が現れてきている。処理装置により処理され、密閉容器内部に運び込まれた薄板状基板の表面が空気中の酸素や水分に反応して自然酸化膜等の各種処理工程上好ましくない膜が生成してしまったり、空気中の酸素や水分以外にも、処理装置内で使用された汚染物質が薄板状基板上に付着したままの状態で密閉容器内に運び込まれ、この汚染物質が密閉容器内の他の薄板状基板までも汚染してしまったりして、次の処理工程に悪影響を及ぼすこととなり歩留まりの悪化を招いてしまう。 However, in recent years, the design rule of the semiconductor circuit line width has been miniaturized and the wafer diameter has been increased, and problems that cannot be solved only by high cleaning by the conventional mini-environment method have appeared. The surface of the thin plate substrate processed by the processing equipment and brought into the sealed container reacts with oxygen and moisture in the air, and a film that is undesirable in various processing steps such as a natural oxide film is generated. In addition to oxygen and moisture, the contaminants used in the processing equipment are brought into the sealed container while still attached to the thin plate substrate, and these contaminants reach other thin plate substrates in the sealed container. May contaminate and adversely affect the next processing step, leading to a decrease in yield.
そういった問題を解決するための方法として、密閉容器内に入り込んだ空気や汚染物質を不活性ガスで除去し、密閉容器内を不活性ガスで満たすことにより内部に収納された薄板状基板表面の酸化を防止する様々な方法が考えられてきた。
[特許文献1]では、密閉容器の1つであるFOUP(FrontOpeningUnifiedPod)に載置されたウエハと所定の距離だけ隔てた位置に設けられ、不活性のパージガスを吹出するガス供給ノズルを鉛直方向に上下動させることにより、ウエハ表面に付着した汚染物質を除去する方法が開示されている。しかし、この方法では、薄板状基板の1種であるウエハの表面に付着した汚染物質をウエハ上から吹き飛ばすことは可能であるが、吹き飛ばされた汚染物質がミニエンバイロメント空間内に排出されてしまったり、FOUP内部やウエハ表面に付着していた塵埃をFOUP内に撒き散らせてウエハ処理面を傷つけてしまったりという不都合が起きる可能性がある。
As a method for solving such problems, the air and contaminants that have entered the sealed container are removed with an inert gas, and the inside of the sealed container is filled with the inert gas to oxidize the surface of the thin plate substrate contained inside. Various methods for preventing this have been considered.
In [Patent Document 1], a gas supply nozzle that is provided at a predetermined distance from a wafer placed on a FOUP (Front Opening Unified Pod) that is one of hermetically sealed containers and blows an inert purge gas in a vertical direction. A method of removing contaminants attached to the wafer surface by moving up and down is disclosed. However, in this method, it is possible to blow away contaminants attached to the surface of the wafer, which is a kind of thin plate substrate, from the wafer, but the blown contaminants are discharged into the mini-environment space. There is a possibility that inconvenience may occur such that dust adhered to the inside of the FOUP or the wafer surface is scattered in the FOUP to damage the wafer processing surface.
また、[特許文献2]では、不活性ガスを供給するノズルに加えて、FOUP内周縁に沿って流れた不活性ガスを吸入する補助ノズルを設け、FOUP内を不活性ガスが周回軌跡を描くことが出来るような流路を作り出している。また、FOUP開放面とノズルを覆う様にカバーを設けることで、パージガスの外部への流出を抑え、効率の良いパージを行う方法が開示されている。 In [Patent Document 2], in addition to the nozzle for supplying the inert gas, an auxiliary nozzle for sucking the inert gas flowing along the inner periphery of the FOUP is provided, and the inert gas draws a circular trajectory in the FOUP. It creates a flow path that can do this. In addition, a method is disclosed in which purge is performed efficiently by providing a cover so as to cover the FOUP opening surface and the nozzle, thereby suppressing the outflow of purge gas to the outside.
しかし、この方法でもノズルから流出されたパージガスが乱流となってしまい、ウエハ表面に付着している塵埃をFOUP内に撒き散らせて、ウエハ処理面を傷つけてしまう不都合は十分に解消されていない。その上、容器開放部の一方の縦側端からガスを吹き込み他方の縦側に排出する際、容器内で不活性ガスが空気と旋回混合することで置換が遅くなり、結果として必要とされる不活性ガス量が多くなってしまい、効率の良いパージを行うには不十分なものであった。また、密閉空間形成部を付加したり、パージガスを流出するノズルに加えて、パージガスを流入するノズルを設けたりといった、付加する部品が増えることによるコストアップとなってしまうという問題がある。 However, even with this method, the purge gas flowing out from the nozzle becomes a turbulent flow, and the inconvenience of damaging the wafer processing surface by scattering dust adhering to the wafer surface into the FOUP is sufficiently eliminated. Absent. In addition, when the gas is blown from one vertical end of the container opening and discharged to the other vertical side, the inert gas swirls and mixes with air in the container, so that the replacement is slowed and required as a result. The amount of inert gas was increased, which was insufficient for efficient purge. In addition, there is a problem that the cost increases due to an increase in the number of components to be added, such as adding a sealed space forming portion or providing a nozzle for flowing purge gas in addition to a nozzle for flowing purge gas.
特開2005-33118号公報JP 2005-33118 A 国際公開WO2005/124853号公報International Publication WO2005 / 124853
本発明は、以上のような問題点に鑑みてなされたものであり、ノズルを使用することなく、効率よく、有効にFOUP型容器の内部雰囲気をパージガスで置換することが可能な雰囲気置換装置を提供することを主たる目的とする。 The present invention has been made in view of the above problems, and provides an atmosphere replacement device that can efficiently and effectively replace the internal atmosphere of a FOUP type container with a purge gas without using a nozzle. The main purpose is to provide.
本発明の一形態によれば、FOUP型容器をパージガスでパージする雰囲気置換装置が提供される。ここに、FOUP型容器とは、前面に開放面を有し、開放面をカバーで密閉可能な収納容器であり、たとえば、半導体プロセス間で使用されるFOUP(FrontOpeningUnifiedPod)を含むがこれには限定されない。この雰囲気置換装置は、従来のノズル型のパージガス噴出機構とは対照的に、流出面から層流のパージガスを流出するように設計された非ノズル型パージプレートを使用する。この新規なパージガス噴出機構(非ノズル型パージプレート)は、待機位置と作動位置を有する。パージプレート駆動機構(たとえば、昇降機構)によって、パージプレートは待機位置と作動位置との間で移動可能である。パージ期間中、パージプレートはこの作動位置におかれ、FOUP型容器の開放面に対面する姿勢で、開放面の内部(好適には、開放面の中央)に向けて、層流のパージガスを流出して前記容器をパージするように作動する。 According to one aspect of the present invention, an atmosphere replacement device for purging a FOUP type container with a purge gas is provided. Here, the FOUP type container is a storage container having an open surface on the front surface and the open surface can be sealed with a cover, and includes, for example, FOUP (Front Opening Unified Pod) used between semiconductor processes. Not. In contrast to the conventional nozzle-type purge gas ejection mechanism, this atmosphere replacement device uses a non-nozzle-type purge plate designed to flow a laminar purge gas from the outflow surface. This novel purge gas ejection mechanism (non-nozzle purge plate) has a standby position and an operating position. The purge plate can be moved between a standby position and an operating position by a purge plate driving mechanism (for example, an elevating mechanism). During the purge period, the purge plate is placed in this operating position, and in a posture facing the open surface of the FOUP type container, laminar purge gas flows out toward the inside of the open surface (preferably the center of the open surface). And operate to purge the vessel.
パージプレートは本発明のキーコンポーネントである。この新規なパージガス噴出機構は、従来のノズル型に比べて、(a)ガス流がプレーン流出方式による比較的大きなガス断面積(総気孔面積換算)を有する一様な層流である、(b)ガス流が比較的低速である(好ましくは、パージプレートから前方、20mmの位置において、0.05メートル/秒から0.5メートル/秒までの範囲)ため、従来のノズル型パージガス噴出機構において遭遇していた「攪拌現象(FOUP型容器内で、残留空気と供給ガスとが混じり合う現象を伴う)」を十分に抑制することができ、結果として、有効で効率のよいガス置換が可能となる。 The purge plate is a key component of the present invention. Compared with the conventional nozzle type, this new purge gas ejection mechanism is (a) a uniform laminar flow in which the gas flow has a relatively large gas cross-sectional area (in terms of total pore area) by the plain outflow method. ) Because the gas flow is relatively slow (preferably in the range from 0.05 meter / second to 0.5 meter / second at a position 20 mm forward from the purge plate), in conventional nozzle type purge gas ejection mechanisms The "stirring phenomenon (with the phenomenon that residual air and supply gas are mixed in the FOUP type container)" that was encountered can be sufficiently suppressed, and as a result, effective and efficient gas replacement is possible. Become.
パージプレートから出るガス流はスローであるにもかかわらず、従来のノズル型から得られる高速のガス流よりも短い時間でパージングを実施する可能性を有する。これは予想外の効果であるといえる。また、パージプレートから出るガス流はスローな層流である。したがって、従来のノズル型パージガス噴出機構において遭遇していた「発塵現象(FOUP型容器内で塵埃が舞い上がる現象)」をこのスローなガス層流で十分に抑制することができる。半導体製造工場(FAB)において、塵埃(パーティクル)は半導体ウエハなどを汚染し、重大な歩留まりの低下をもたらすことから、パージプレートに基づく、この発塵抑制機能は非常に重要である。 Despite the slow gas flow exiting the purge plate, it has the potential to perform purging in less time than the high speed gas flow obtained from conventional nozzle types. This is an unexpected effect. The gas flow exiting the purge plate is a slow laminar flow. Accordingly, the “dust generation phenomenon (a phenomenon in which dust rises in the FOUP type container)” encountered in the conventional nozzle type purge gas ejection mechanism can be sufficiently suppressed by this slow gas laminar flow. In a semiconductor manufacturing factory (FAB), dust (particles) contaminates semiconductor wafers and the like, resulting in a significant decrease in yield, and this dust generation suppression function based on the purge plate is very important.
パージプレートの作動位置に関して説明する。好適な形態において、パージプレートの作動位置は、FOUP型容器の移動経路上に位置する。したがって、パージプレートが待機位置にあるとき、FOUP型容器は、パージプレートの作動位置を占有することができる。この占有状態において、FOUP型容器の前面はドアに当接してよい。なお、ドアは、従来のロードポートのドアと同様に、開いているときに、搬送ロボットのマニュプレータが通過可能になっている。この当接状態において、ドアは、従来のロードポートのドアと同様のメカニズムで、FOUP型容器からカバーを取り外し(容器を開放し)ドア自身に装着し、あるいは、この逆に、カバーをドアから取り外しFOUP型容器の開放面に装着する(容器を密閉する)こととなる。パージプレートが作動位置にあるとき、FOUP型容器は、その開放面がパージプレートに対面し、パージプレートからのパージガス流をダイレクトに受ける位置(パージガス受け入れ体勢)にある。このために、FOUP型容器は、パージに先立って、「占有位置」から「パージガス受け入れ位置」に移動する。これにより、パージプレートの作業スペースが確保される。 The operation position of the purge plate will be described. In a preferred form, the operating position of the purge plate is located on the movement path of the FOUP type container. Therefore, when the purge plate is in the standby position, the FOUP type container can occupy the operating position of the purge plate. In this occupied state, the front surface of the FOUP type container may abut against the door. Note that, like the door of the conventional load port, the door is configured such that the manipulator of the transfer robot can pass when the door is open. In this abutting state, the door is removed from the FOUP type container (open the container) and attached to the door itself by the same mechanism as that of a conventional load port door, or vice versa. It is attached to the open surface of the removed FOUP type container (sealing the container). When the purge plate is in the operating position, the FOUP type container is in a position (purge gas receiving posture) where the open surface faces the purge plate and directly receives the purge gas flow from the purge plate. For this reason, the FOUP type container moves from the “occupied position” to the “purge gas receiving position” prior to purging. Thereby, the working space of the purge plate is secured.
作業スペース確保機構はFOUP型容器を移動経路に沿って移動させるFOUP型容器移動機構であり得る。これは、たとえば、従来のロードポートのようにFOUP型容器を載せたステージを移動させるステージ移動機構で実現できる。代替として、あるいはこれと組み合わせて、ドアをFOUP型容器から離れる方向に移動させるドア移動機構を設けることができる。このような作業スペース確保機構により、パージプレートの作動位置は、FOUP型容器(の開放面)とドアとの中間に存在することになる。 The work space securing mechanism may be a FOUP type container moving mechanism that moves the FOUP type container along the movement path. This can be realized by, for example, a stage moving mechanism that moves a stage on which a FOUP type container is placed like a conventional load port. Alternatively or in combination, a door movement mechanism can be provided that moves the door away from the FOUP type container. By such a working space securing mechanism, the operation position of the purge plate is located between the FOUP type container (the open surface thereof) and the door.
好適な形態において、パージプレートは、パージガスの噴出力を抑制または阻害する噴出抑制素子を備える。好ましくは、噴出抑制素子はエアフィルタ材などの多孔質材で構成される。 In a preferred embodiment, the purge plate includes an ejection suppression element that suppresses or inhibits the ejection output of the purge gas. Preferably, the ejection suppressing element is made of a porous material such as an air filter material.
好適な形態において、雰囲気置換装置はロードポートとコンパチブルに設計される。 In a preferred form, the atmosphere replacement device is designed to be compatible with the load port.
雰囲気置換装置のドア自体は、通常のロードポートのドアで実現してよい。好適な形態において、雰囲気置換装置に、ドアをX方向(たとえば水平方向)とY方向(たとえばX方向と直交する方向、たとえば垂直方向)に移動するドア移動機構が設けられる。 The door of the atmosphere replacement device itself may be realized by a normal load port door. In a preferred embodiment, the atmosphere replacement device is provided with a door moving mechanism that moves the door in the X direction (for example, the horizontal direction) and the Y direction (for example, the direction orthogonal to the X direction, for example, the vertical direction).
所定の応用において、雰囲気置換装置は、通常のロードポートがそうであるように、ミニエンバイロメント空間ユニットに隣接して配置される。すなわち、ドアの向こうにミニエンバイロメント空間があり、このドアの開放時にミニエンバイロメント空間側から搬送ロボットがマニピュレータ(ロボットアーム)を使ってFOUP型容器にアクセスする(ウエハ移載作業を行うため)。この種の応用では、雰囲気置換装置は、開口部内にFOUP型容器をセットした状態(開放面を含むFOUP型容器の頭部分のみが開口部内に入り込んだ状態)で、パージング(雰囲気置換)を実施する。開口部は雰囲気置換装置の内壁により画定される。したがって、一般に、雰囲気置換装置の内壁とドアとの間には、隙間があり、開口部内は、この隙間を通して、ミニエンバイロメント空間ユニットからの高清浄度空気と限定的に連通している。 In certain applications, the atmosphere replacement device is placed adjacent to the mini-environment space unit, as is a normal load port. That is, there is a mini-environment space beyond the door, and when the door is opened, the transfer robot accesses the FOUP-type container from the mini-environment space side using a manipulator (robot arm) (to perform wafer transfer work). . In this type of application, the atmosphere replacement device performs purging (atmosphere replacement) with the FOUP type container set in the opening (only the head of the FOUP type container including the open surface enters the opening). To do. The opening is defined by the inner wall of the atmosphere replacement device. Therefore, in general, there is a gap between the inner wall of the atmosphere replacement device and the door, and the inside of the opening is in limited communication with the high cleanliness air from the mini-environment space unit through this gap.
したがって、開口部にFOUP型容器をセットした状態において、雰囲気置換装置は、開口部内が、この隙間を通じて常時、高清浄度空気に曝されている。一般に、ミニエンバイロメント空間ユニットは外部からの低清浄度空気の浸入を回避するため、外部より高い気圧(「陽圧」)下に置かれる。 Therefore, in the state where the FOUP type container is set in the opening, the atmosphere replacement device is always exposed to the high cleanliness air through the gap in the opening. In general, the mini-environment space unit is placed under a higher atmospheric pressure (“positive pressure”) than the outside in order to avoid the entry of low clean air from the outside.
この発明の別の諸特徴は、本発明のパージプレート付雰囲気置換装置を上記のような隙間連通型雰囲気置換装置(パージポート)に適用した場合の改良に関している。したがって、これらの特徴は、「原理的に」、ノズル型雰囲気置換装置にも適用できる。しかしながら、ノズル型パージガス噴出機構に固有の「攪拌現象」、「発塵現象」を許容可能なレベルに抑制できないノズル型雰囲気置換装置に、これらの特徴を組み入れたとしても、基本的性能には改善が期待できないため、相乗効果は得られないと考えられる。換言すると、「攪拌現象」、「発塵現象」を許容可能なレベルに抑制する基本性能を備えた雰囲気置換装置に適用した場合に有効である。 Another feature of the present invention relates to an improvement in the case where the atmosphere replacement device with a purge plate of the present invention is applied to the gap communication type atmosphere replacement device (purge port) as described above. Therefore, these features can also be applied "in principle" to nozzle-type atmosphere replacement devices. However, even if these features are incorporated into a nozzle-type atmosphere replacement device that cannot suppress the “stirring phenomenon” and “dust generation phenomenon” inherent to the nozzle-type purge gas ejection mechanism to an acceptable level, the basic performance is improved. Cannot be expected, so synergistic effects are not expected. In other words, it is effective when applied to an atmosphere replacement device having basic performance that suppresses the “stirring phenomenon” and “dust generation phenomenon” to an acceptable level.
好適な形態において、上記隙間を実効的に無しとする機構が、雰囲気置換装置に設けられる。具体的には、雰囲気置換装置の内壁にラビリンス構造の内壁シールドカバーを設ける。さらに、前記ドアにも、同様なラビリンス構造のドアシールドカバーを設ける。そして、前記内壁シールドカバーと前記ドアシールドカバーとにより、前記隙間が非接触シールされるように配置、構成する。これにより、実効的に、隙間が無くなるため、高清浄度空気の浸入が可及的に低減される。この結果、所要のパージングに必要な時間(パージタイム)を短縮することができる。さらに、ラビリンスシール構造の特性から、内壁とドアとの接触、または衝突(ここでは、内壁シールドカバーとドアシールドカバーとの接触または衝突)は、起きないため、接触、衝突に起因する「発塵」は有効に防止される。 In a preferred embodiment, a mechanism for effectively eliminating the gap is provided in the atmosphere replacement device. Specifically, an inner wall shield cover having a labyrinth structure is provided on the inner wall of the atmosphere replacement device. Furthermore, a door shield cover having a similar labyrinth structure is also provided on the door. And it arrange | positions and comprises so that the said clearance gap may be non-contact sealed by the said inner wall shield cover and the said door shield cover. This effectively eliminates the gap, so that the entry of high cleanliness air is reduced as much as possible. As a result, the time (purge time) required for the required purging can be shortened. Furthermore, because of the characteristics of the labyrinth seal structure, contact or collision between the inner wall and the door (here, contact or collision between the inner wall shield cover and the door shield cover) does not occur. Is effectively prevented.
別の好適な形態において、上記隙間を可変とする隙間調整機構が、雰囲気置換装置に設けられる。具体的には、雰囲気置換装置の内壁にラビリンス構造の内壁シールドカバーを設ける。同様に、前記ドアにもラビリンス構造のドアシールドカバーを設ける。さらに、前記ドアを水平方向に移動するドア駆動機構を設ける。そして、前記ドアの水平方向の位置により、前記内壁シールドカバーと前記ドアシールドカバーとの間のシールの程度が調整可能(したがって、前記隙間が調整可能)となるように設計する。これにより、実効的に、隙間を所望の大きさ(シールドの「深さ」に対応した実効的な大きさ)に調整できるので、パージングタイムを短縮できる。また、高清浄度空気の開口部内への浸入を適度に調整できる。 In another preferred embodiment, a gap adjusting mechanism that makes the gap variable is provided in the atmosphere replacement device. Specifically, an inner wall shield cover having a labyrinth structure is provided on the inner wall of the atmosphere replacement device. Similarly, a door shield cover having a labyrinth structure is also provided on the door. Furthermore, a door drive mechanism for moving the door in the horizontal direction is provided. And it is designed so that the degree of the seal between the inner wall shield cover and the door shield cover can be adjusted (and therefore the gap can be adjusted) depending on the horizontal position of the door. Accordingly, the gap can be effectively adjusted to a desired size (an effective size corresponding to the “depth” of the shield), so that the purging time can be shortened. Moreover, the penetration of the high cleanliness air into the opening can be appropriately adjusted.
ミニエンバイロメント空間の隣にパージプレート付雰囲気置換装置を配置した形態の場合、隙間を介して連通する高清浄度空気の流れ(図9の高清浄度空気通路121参照)は、パージプレートがパージガス流れをFOUP型容器FOUP型容器に供給する期間(パージ期間)では、適度に存在する方が、結果的にパージングタイムを短縮することを本願発明者は見いだした(図9の流れ模式図を参照)。パージプレートの動作が停止すると(パージプレートのパージ動作完了)、パージガスのストリームが消滅することから、パージガスカーテン効果がなくなり、このモード(パージプレート動作完了モード)下での高清浄度空気の浸入(一部は、FOUP型容器の奥へと浸入するであろう)は、結果的にパージタイムを長引かせる要因になる。 In the case where an atmosphere replacement device with a purge plate is placed next to the mini-environment space, the flow of high cleanliness air communicating through a gap (see the high cleanliness air passage 121 in FIG. 9) The inventor of the present application has found that, in the period during which the flow is supplied to the FOUP-type container FOUP-type container (purge period), the purging time is shortened as a result of being appropriately present (see the flow schematic diagram in FIG. 9). ). When the operation of the purge plate is stopped (the purge operation of the purge plate is completed), the purge gas stream disappears, so the purge gas curtain effect disappears, and the high cleanliness air enters under this mode (purge plate operation completion mode) ( Some will penetrate into the back of the FOUP type container), resulting in prolonged purge time.
この遅延要因を排除するため、パージプレートの動作完了後、瞬時に(たとえば、ミリ秒のオーダー、たとえば、100ミリ秒程度で)FOUP型容器にカバーを被せて容器を密閉することが考えられる。しかし、カバーをドア以外の場所に待機させておいて装着する必要があり、実用的ではない。現実的には、パージプレートがFOUP型容器の移動の障害にならなくなったタイミング(たとえば、待機位置に後退したタイミング)で、ドアにまでFOUP型容器を移動させ、ドアからカバーを外し、FOUP型容器に取り付けることになる。この方式による、パージプレート動作完了からFOUP型容器密閉までの時間は、ある程度短時間(例えば、一秒程度)で実現可能である。 In order to eliminate this delay factor, it is conceivable that the FOUP type container is covered with a cover immediately after the operation of the purge plate is completed (for example, on the order of milliseconds, for example, about 100 milliseconds). However, it is necessary to put the cover on a place other than the door in a standby state, which is not practical. In reality, when the purge plate no longer becomes an obstacle to the movement of the FOUP type container (for example, when the purge plate moves back to the standby position), the FOUP type container is moved to the door, the cover is removed from the door, and the FOUP type is removed. It will be attached to the container. The time from the completion of the purge plate operation to the sealing of the FOUP type container by this method can be realized in a relatively short time (for example, about one second).
代替として、または組み合わせて、パージプレート動作完了モード下で、ミニエンバイロメントユニットからの高清浄度空気の浸入を実効的に低減する機構を設けることができる。これにより、所要のパージングタイムをさらに短縮することができる。 Alternatively or in combination, a mechanism can be provided that effectively reduces the ingress of high clean air from the mini-environment unit under purge plate operation completion mode. Thereby, the required purging time can be further shortened.
一構成例において、この機構は、FOUP型容器内に向けてパージガスを補給する補助ノズル内壁に設けることで実現される。好ましくは、この補助ノズルはパージプレート動作完了モード中に動作するように制御される。これは簡単な構成であるが、結果的に十分有効であること(特に、所要パージングタイムを短縮する点に関して有効であること)が判明した。 In one configuration example, this mechanism is realized by being provided on the inner wall of the auxiliary nozzle that supplies the purge gas toward the FOUP type container. Preferably, the auxiliary nozzle is controlled to operate during the purge plate operation completion mode. Although this is a simple configuration, it has been found that it is sufficiently effective as a result (especially effective in terms of reducing the required purging time).
上記深さ調整可能なラビリンス機構(隙間可変調整機構)をこの目的に利用することもできる。具体的には、パージプレート動作完了時に(あるいは完了時点に先行する適当なタイミングから開始して)、水平ドア駆動機構により、ドアを水平方向に最も深いシール位置に向けて動かし、パージプレートの動作停止中に、ドアが最も深いシール位置に維持されるように制御する。 The depth-adjustable labyrinth mechanism (variable gap adjusting mechanism) can also be used for this purpose. Specifically, when the purge plate operation is completed (or starting from an appropriate timing preceding the completion point), the horizontal door drive mechanism moves the door toward the deepest seal position in the horizontal direction to operate the purge plate. During the stop, the door is controlled to be maintained at the deepest sealing position.
また、上記深さ調整可能なラビリンス機構(隙間可変調整機構)は、使用するミニエンバイロメント空間ユニットの内外差圧(陽圧)の大きさに応じて、隙間の大きさを制御することが可能である。これによって、使用するミニエンバイロメント空間ユニットの内外差圧(陽圧)の大きさ(またはミニエンバイロメント空間ユニットの使用環境)を補償する。 The depth adjustable labyrinth mechanism (variable gap adjustment mechanism) can control the size of the gap according to the internal / external differential pressure (positive pressure) of the mini-environment space unit used. It is. Thereby, the magnitude of the internal / external differential pressure (positive pressure) of the mini-environment space unit to be used (or the usage environment of the mini-environment space unit) is compensated.
本発明の上記およびその他の目的、特徴、利点は、図面を参照してなされる以下の詳細な説明から明らかとなる。参照する図面は下記の通りである。
一般的な処理装置の概要を示す斜視図である。 処理装置の断面図である。 ウエハ収納容器の一つであるFOUPの構造を示す斜視図である。 ロードポートの概要を示す斜視図である。 本発明の一実施例に係るパージポート(雰囲気置換装置)を示す断面図である。 図5のFIMSドア周辺を示す斜視図である。 パージプレートの実施例を示す斜視図である。 パージプレートの別の実施例を示す斜視図である。 本発明の実施例に基づいて、パージポートによりFOUPがパージングされる様子を説明するため、FOUP内の気流を模擬的に示した断面図である。 本発明の実施例に基づいて、FIMSドアを水平方向に駆動するドア駆動機構の斜視図である。 パージポートの動作シーケンスを示す断面図である。 パージプレート内の配管及び信号入出力の系統を示す図である。 FIMSドア駆動機構周辺を示す斜視図である 本発明の実施例に基づいて、FIMSドアに取り付けられたシールドカバー67a、67bを示した斜視図である。 試験環境を示した説明図である。 試験用ミニエンバイロメント空間ユニットの内外差圧を3.5Paと2.5Paとした場合の窒素ガス(パージガス)流量と供給時間の違いによる酸素濃度の推移を示したグラフである。 窒素ガスの流量及び供給時間を一定にした場合の内外差圧と酸素濃度の推移の関係を示したグラフである。 内外差圧を一定にした場合の窒素ガス流量と供給時間の違いによる酸素濃度の推移を示したグラフである。
The above and other objects, features and advantages of the present invention will become apparent from the following detailed description made with reference to the drawings. The drawings to be referred to are as follows.
It is a perspective view which shows the outline | summary of a general processing apparatus. It is sectional drawing of a processing apparatus. It is a perspective view which shows the structure of FOUP which is one of the wafer storage containers. It is a perspective view which shows the outline | summary of a load port. It is sectional drawing which shows the purge port (atmosphere substitution apparatus) which concerns on one Example of this invention. FIG. 6 is a perspective view showing the periphery of the FIMS door of FIG. It is a perspective view which shows the Example of a purge plate. It is a perspective view which shows another Example of a purge plate. FIG. 5 is a cross-sectional view schematically showing an air flow in the FOUP in order to explain how the FOUP is purged by the purge port based on the embodiment of the present invention. It is a perspective view of the door drive mechanism which drives a FIMS door horizontally based on the example of the present invention. It is sectional drawing which shows the operation | movement sequence of a purge port. It is a figure which shows the piping in a purge plate, and the system of signal input / output. It is a perspective view which shows the FIMS door drive mechanism periphery. It is the perspective view which showed shield cover 67a, 67b attached to the FIMS door based on the Example of this invention. It is explanatory drawing which showed test environment. It is the graph which showed transition of the oxygen concentration by the difference in nitrogen gas (purge gas) flow volume and supply time when the internal / external pressure difference of the test mini-environment space unit is 3.5 Pa and 2.5 Pa. It is the graph which showed the relationship between the internal / external differential pressure when oxygen gas flow volume and supply time were made constant, and transition of oxygen concentration. It is the graph which showed transition of the oxygen concentration by the difference in nitrogen gas flow volume and supply time when internal / external differential pressure is made constant.
以下に、本発明を図面に示した特定の実施例について詳しく説明する。図1は処理装置1の斜視図であり、図2はその断面図である。処理装置1はクリーンルームと呼ばれる、0.5μmダストでクラス100程度の比較的清浄な雰囲気に管理された工場内に設置されている。処理装置1は主として、ロードポート2、ミニエンバイロメント空間ユニット3、搬送ロボット4、ファンフィルタユニット5、真空チャンバ6、プロセスチャンバ7で構成されている。ミニエンバイロメント空間ユニット3はフレームと、そのフレームに固定され外部雰囲気と分離するための壁面と、外部からの空気を高清浄な空気に清浄化したうえでダウンフローとしてミニエンバイロメント空間ユニット3に導入する高清浄空気導入手段であるファンフィルタユニット5が設けられている。ファンフィルタユニット5にはミニエンバイロメント空間ユニット3の天井に設置され、ミニエンバイロメント空間ユニット3内部に向かって下向きに空気を送るファン8と、送られてきた空気の中に存在する塵埃や有機物などの汚染物質を除去するフィルタ9が具えられている。 In the following, the invention will be described in detail with reference to specific embodiments shown in the drawings. FIG. 1 is a perspective view of the processing apparatus 1, and FIG. 2 is a sectional view thereof. The processing apparatus 1 is installed in a factory called a clean room, which is managed in a relatively clean atmosphere of class 100 with 0.5 μm dust. The processing apparatus 1 mainly includes a load port 2, a mini-environment space unit 3, a transfer robot 4, a fan filter unit 5, a vacuum chamber 6, and a process chamber 7. The mini-environment space unit 3 has a frame, a wall surface that is fixed to the frame and is separated from the external atmosphere, and cleans the air from the outside into highly purified air, and then flows into the mini-environment space unit 3 as a downflow. A fan filter unit 5 which is a high clean air introducing means to be introduced is provided. The fan filter unit 5 is installed on the ceiling of the mini-environment space unit 3 and sends the air downward toward the inside of the mini-environment space unit 3, and the dust and organic matter present in the sent air. The filter 9 which removes contaminants, such as these, is provided.
また、ミニエンバイロメント空間ユニット3の床面10(図2)はパンチングプレート等所定の開効率を有する空気流通可能な部材が用いられている。これらの構成により、ファンフィルタユニット5により内部に供給された清浄空気は常にミニエンバイロメント空間ユニット3内を下向きに流れ、床面10から装置外部へと排出されることとなり、ミニエンバイロメント空間ユニット3内は高清浄雰囲気に保たれている。搬送ロボット4は薄板状物の1種であるウエハ15(図3(a))をFOUPと呼ばれる容器13内とプロセスチャンバ7との間を搬送するもので、ロボット4のアーム可動部分は磁性流体シールなどの発塵防止のシール構造とすることで、発塵によるウエハ15への悪影響を極力抑える工夫がなされている。この構成により、ウエハ15は高清浄な雰囲気内で搬送ロボット4により搬送される。また、ミニエンバイロメント空間ユニット3内部気圧は外部よりも高い圧力「陽圧」となっており、典型的には1.5Pa程度の差圧をもつように維持されている。このようにして、外部からの汚染物質や塵埃の侵入を防止することで、ミニエンバイロメント空間ユニット3内部の清浄度は0.5μmダストでクラス1以上の高清浄度を維持することが可能となっている。 Further, the floor surface 10 (FIG. 2) of the mini-environment space unit 3 is made of a member capable of air circulation having a predetermined opening efficiency such as a punching plate. With these configurations, the clean air supplied to the inside by the fan filter unit 5 always flows downward in the mini-environment space unit 3 and is discharged from the floor surface 10 to the outside of the apparatus. The mini-environment space unit The inside of 3 is kept in a highly clean atmosphere. The transfer robot 4 transfers a wafer 15 (FIG. 3A), which is a kind of thin plate, between the container 13 called FOUP and the process chamber 7, and the arm movable part of the robot 4 is a magnetic fluid. By adopting a seal structure for preventing dust generation such as a seal, a contrivance has been made to minimize the adverse effect of dust generation on the wafer 15. With this configuration, the wafer 15 is transferred by the transfer robot 4 in a highly clean atmosphere. Further, the internal pressure of the mini-environment space unit 3 is a pressure “positive pressure” higher than the outside, and is typically maintained to have a differential pressure of about 1.5 Pa. In this way, by preventing the entry of contaminants and dust from the outside, the cleanliness inside the mini-environment space unit 3 can be maintained at a high cleanliness of class 1 or higher with 0.5 μm dust. It has become.
次にロードポート2について図1及び図4にて以下に説明する。ロードポート2はミニエンバイロメント空間ユニット3を形成するフレーム3aの所定の位置に固定されており、密閉可能な容器の一種であるFOUP13を所定の位置に載置するステージ14と、ステージ14を支持し、ステージ14を前進・後退動作させるステージ駆動機構29と、搬送ロボット4がFOUP13内のウエハ15の搬出・搬入を行うためのポート開口部11と、ポート開口部11を一定の隙間を開けて塞ぐ位置にあり、FOUP13の内部を密閉するためのカバー17と一体化するFIMSドア12と、FIMSドア12を昇降動作させるFIMSドア昇汞機構19を具えている。 Next, the load port 2 will be described below with reference to FIGS. The load port 2 is fixed at a predetermined position of a frame 3a forming the mini-environment space unit 3, and supports a stage 14 on which a FOUP 13 which is a kind of a sealable container is placed at a predetermined position, and the stage 14 The stage drive mechanism 29 for moving the stage 14 forward and backward, the port opening 11 for the transfer robot 4 to unload and load the wafer 15 in the FOUP 13, and the port opening 11 with a certain gap therebetween. There is a FIMS door 12 integrated with a cover 17 for sealing the inside of the FOUP 13 at a closing position, and a FIMS door raising mechanism 19 for moving the FIMS door 12 up and down.
FIMSドア12の開扉動作及び閉扉動作については、カバー17と一体化したFIMSドア12をFOUP13に対して離間した位置まで往復動作させるカバー開閉手段を設けるか、若しくは、ステージ駆動機構29がFOUP13を載置したステージ14を、カバー17と一体化したFIMSドア12に対して離間した位置まで往復動作させることで可能となる。この場合、ステージ駆動機構29がカバー開閉手段の役割も担うこととなる。なお、これらの機構は半導体製造に係る規格であるSEMI規格によって規定されたFIMS(Front-opening Interface Mechanical Standard)システムに対応したものとなっている。 For opening and closing operations of the FIMS door 12, cover opening / closing means for reciprocating the FIMS door 12 integrated with the cover 17 to a position separated from the FOUP 13 is provided, or the stage driving mechanism 29 causes the FOUP 13 to move. This can be achieved by reciprocating the placed stage 14 to a position separated from the FIMS door 12 integrated with the cover 17. In this case, the stage drive mechanism 29 also serves as a cover opening / closing means. These mechanisms correspond to a FIMS (Front-opening Interface Mechanical Standard) system defined by the SEMI standard, which is a standard related to semiconductor manufacturing.
ステージ駆動機構29は駆動源であるモータ29aと送りネジ29bを具えており、モータ29aの回転が送りネジ29bに伝達され、送りネジ29bに固定されたステージ14を任意の位置まで移動させることが可能となっている。なお、モータ29aと送りネジ29bに代えて、空気圧や油圧といった流体圧を利用したシリンダを使用することとしても良い。FOUP13はステージ14に配置された位置決め手段30としてのキネマティックピン30によりステージ14の所定の場所に正確に載置され、不図示の係合手段によってステージ14と係合される構造となっている。 The stage drive mechanism 29 includes a motor 29a as a drive source and a feed screw 29b. The rotation of the motor 29a is transmitted to the feed screw 29b, and the stage 14 fixed to the feed screw 29b can be moved to an arbitrary position. It is possible. In place of the motor 29a and the feed screw 29b, a cylinder using fluid pressure such as air pressure or hydraulic pressure may be used. The FOUP 13 is accurately placed at a predetermined location on the stage 14 by a kinematic pin 30 as positioning means 30 disposed on the stage 14 and is engaged with the stage 14 by an engaging means (not shown). .
FIMSドア12は、FOUP13のカバー17に対して、位置決めと吸着力による一体化を行うためのレジストレーションピン23aと、カバー17に具えられたラッチキー穴24に嵌合し、回転することでラッチキー穴24と連動するロック機構25と、ラッチキー穴24と係合し、ロック状態とロック解除状態を切り換えるラッチキー23bを具えている。これらの構成によって、FOUP13を構成するカバー17とキャリア16のロック状態は解除され、カバー17とFIMSドア12は一体化される。 The FIMS door 12 is fitted to a registration pin 23a for performing integration by positioning and suction force with respect to the cover 17 of the FOUP 13, and a latch key hole 24 provided in the cover 17, and is rotated to latch the key hole. 24, and a latch key 23b that engages with the latch key hole 24 and switches between a locked state and an unlocked state. With these configurations, the cover 17 and the carrier 16 constituting the FOUP 13 are unlocked, and the cover 17 and the FIMS door 12 are integrated.
FIMSドア12はブラケット31を介して、FIMSドア昇汞機構19に昇降自在に取り付けられている。これらの構成によって、FOUP13のカバー17と一体化出来る位置まで上昇させられたFIMSドア12は、上記のようにしてカバー17と一体化する。下降のために、FIMSドア12はカバー17に備えられたロック機構25を解除した後、任意の位置までの下降動作が可能となる。なお、図4において、FIMSドア昇汞機構19は、駆動源であるモータ19aが送りネジ19bを正転もしくは逆転の回転動作させることにより、FIMSドア12を任意の位置まで昇降移動させることが可能となる構成としているが、これに代えて、空気圧や油圧といった流体圧を利用したシリンダを使用することとしても良い。 The FIMS door 12 is attached to the FIMS door lifting mechanism 19 via a bracket 31 so as to be movable up and down. With these configurations, the FIMS door 12 raised to a position where it can be integrated with the cover 17 of the FOUP 13 is integrated with the cover 17 as described above. For lowering, the FIMS door 12 can be lowered to an arbitrary position after releasing the lock mechanism 25 provided in the cover 17. In FIG. 4, the FIMS door lifting mechanism 19 can move the FIMS door 12 up and down to an arbitrary position by causing the motor 19a as a driving source to rotate the feed screw 19b in the normal direction or the reverse direction. However, instead of this, a cylinder using fluid pressure such as air pressure or hydraulic pressure may be used.
また、上記の構成に加えて、ロードポート2にはFOUP13内部のどの棚18にウエハ15が載置されているか否か、或いはその数を検知するマッピングセンサ32が具えられている。 In addition to the above-described configuration, the load port 2 includes a mapping sensor 32 that detects which shelf 18 in the FOUP 13 has the wafer 15 mounted thereon or the number thereof.
図4において、マッピングセンサ32は、ウエハ15の載置される面と平行な光軸を有する一対の透過型センサが用いられており、ウエハ15の水平面上の周縁を囲む様に間隔を開けた略コの字形状のセンサ取付部33上に取付けられている。センサ取付部33の両端はセンサ駆動機構34に回転自在に取り付けられている。センサ駆動機構34の駆動源としてはモータやロータリーアクチュエータであり、これらの駆動源が回転動作することにより、駆動源の軸を中心にセンサ取付部33が回動し、上部に取り付けられたマッピングセンサ32がキャリア16内部に進入することとなる。 In FIG. 4, the mapping sensor 32 uses a pair of transmission sensors having an optical axis parallel to the surface on which the wafer 15 is placed, and is spaced so as to surround the peripheral edge of the wafer 15 on the horizontal plane. It is mounted on a sensor mounting portion 33 having a substantially U shape. Both ends of the sensor attachment portion 33 are rotatably attached to the sensor drive mechanism 34. The drive source of the sensor drive mechanism 34 is a motor or a rotary actuator. When these drive sources rotate, the sensor mounting portion 33 rotates around the axis of the drive source, and the mapping sensor is attached to the upper part. 32 enters the inside of the carrier 16.
センサ駆動機構34はブラケット31に固定されており、FIMSドア昇汞機構19の動作に連動して昇降動作を行うことが可能で、これによりキャリア16内の全棚18についてのウエハ15の有無を検知することが可能となる。また、各駆動機構への出力信号やセンサ等の入力信号は制御部37によって制御されている。 The sensor driving mechanism 34 is fixed to the bracket 31 and can be moved up and down in conjunction with the operation of the FIMS door lifting mechanism 19, thereby detecting the presence or absence of the wafer 15 in all the shelves 18 in the carrier 16. It becomes possible to do. Further, output signals to the respective drive mechanisms and input signals from sensors and the like are controlled by the control unit 37.
上記の構成に加えて、ロードポート2の内部に具えられた各駆動源や可動部から発生する塵埃や外部からの塵埃がミニエンバイロメント空間ユニット3に侵入することを防ぐために、壁面35を設けることや、外部からの低清浄空気の進入を防ぐために外部に面した部分をカバー36で覆うことも出来る。また、ロードポート2内で発生した塵埃を外部に排出するための排気ファン37を具えることも可能である。これによって、ミニエンバイロメント空間ユニット3内に塵埃が流出するのを防止出来るだけでなく、ミニエンバイロメント空間ユニット3内を流れている高清浄空気のダウンフローが壁面35の上部開口部分から浸入し、ロードポート2の底面に設けられた開口部を通り、装置外部へ排出されることとなり、FIMSドア12と一体化された状態で下降位置にあるカバー17に塵埃等の汚染物質が付着することも防止できる。 In addition to the above configuration, a wall surface 35 is provided in order to prevent dust generated from each drive source and movable part provided inside the load port 2 and dust from the outside from entering the mini-environment space unit 3. In order to prevent the entry of low clean air from the outside, the portion facing the outside can be covered with the cover 36. It is also possible to provide an exhaust fan 37 for discharging dust generated in the load port 2 to the outside. This not only prevents the dust from flowing into the mini-environment space unit 3, but also the downflow of highly purified air flowing through the mini-environment space unit 3 enters from the upper opening of the wall surface 35. Then, it passes through the opening provided in the bottom surface of the load port 2 and is discharged to the outside of the apparatus, and contaminants such as dust adhere to the cover 17 in the lowered position in an integrated state with the FIMS door 12. Can also be prevented.
次に密閉可能な容器の一種であるFOUP13について説明する。FOUP13は内部を高清浄な雰囲気に維持することで、被収納物であるウエハ15を低清浄な外部雰囲気から隔絶し、各工程間の搬送を行うための密閉可能な容器である。図3は半導体のウエハ収納容器の1種であるであるFOUP13の構造を示す斜視図である。FOUP13は内部にウエハ15を収容するキャリア16と、キャリア16からウエハ15を出し入れするために前面に設けられた開放面161を有するフランジ部26と、開放面161を密閉して、キャリア16内部を密閉するためのカバー17を備えている。図3(a)に示すように、キャリア16の内部壁面にはウエハを複数枚載置するための棚18が垂直方向に所定の間隔をおいて設けられている。 Next, FOUP 13, which is a kind of container that can be sealed, will be described. The FOUP 13 is a sealable container for isolating the wafer 15 that is an object to be stored from a low-clean external atmosphere by maintaining the inside in a high-clean atmosphere, and carrying between the processes. FIG. 3 is a perspective view showing the structure of a FOUP 13 which is a kind of semiconductor wafer storage container. The FOUP 13 seals the inside of the carrier 16 by sealing the carrier 16 that accommodates the wafer 15 therein, the flange portion 26 having an open surface 161 provided on the front surface for loading and unloading the wafer 15 from the carrier 16, and the open surface 161. A cover 17 for sealing is provided. As shown in FIG. 3A, shelves 18 for mounting a plurality of wafers are provided on the inner wall surface of the carrier 16 at predetermined intervals in the vertical direction.
また、FOUP13の上部にはOHT(Overhead Hoist Transport)に代表されるFOUP搬送ロボットにより自動搬送される際のFOUP搬送ロボットとの係合部であるトップフランジ20が具えられている。また、キャリア16の側部にはFOUP13を手動で搬送する際に取っ手となるハンドル21(図1)が具えられている。これによりFOUP13は、内部にウエハ15を収納した状態で密閉され、自動または手動にて処理装置間を搬送されることが可能となる。なお、図3(b)はカバー17のFIMSドア12に対向する面を示した図であり、図3(c)はカバー17のキャリア16と当接する面を示した図であって、カバー17はキャリア16の開放面161においてキャリア16と嵌合し、FOUP13内部を密閉空間とするものである。 In addition, a top flange 20 that is an engaging portion with the FOUP transport robot when automatically transported by a FOUP transport robot represented by OHT (Overhead Hoist Transport) is provided on the upper part of the FOUP 13. Further, a handle 21 (FIG. 1) is provided on the side of the carrier 16 as a handle when the FOUP 13 is manually conveyed. As a result, the FOUP 13 is sealed with the wafer 15 accommodated therein, and can be transferred automatically or manually between the processing apparatuses. 3B is a diagram showing a surface of the cover 17 facing the FIMS door 12, and FIG. 3C is a diagram showing a surface of the cover 17 that contacts the carrier 16, and the cover 17 Is fitted with the carrier 16 on the open surface 161 of the carrier 16 to make the inside of the FOUP 13 a sealed space.
FOUPカバー17の外側の面、すなわちFIMSドア12と対向する面には、FIMSドア12に対するカバー17の位置決めのための位置決め穴22と、ロードポート2に具えられたラッチキー23によってカバー17をキャリア16に係合/分離するためのラッチキー穴24が具えられている。また、カバー17の上下の縁にはロック機構25が具えられているが、これはカバー17をキャリア16の開放面161周縁に設けられたフランジ部分26に係合するためのものである。このロック機構25はラッチキー穴24と連動しており、ラッチキー穴24をFIMSドア12に具えられたラッチキー23で左右に回転させることにより、ロック機構25をロック状態と開放状態に操作可能となっている。 On the outer surface of the FOUP cover 17, that is, the surface facing the FIMS door 12, the cover 17 is attached to the carrier 16 by a positioning hole 22 for positioning the cover 17 with respect to the FIMS door 12 and a latch key 23 provided in the load port 2. A latch key hole 24 is provided for engagement / disengagement. A lock mechanism 25 is provided on the upper and lower edges of the cover 17 for engaging the cover 17 with a flange portion 26 provided on the periphery of the open surface 161 of the carrier 16. The lock mechanism 25 is interlocked with the latch key hole 24. By rotating the latch key hole 24 to the left and right with the latch key 23 provided on the FIMS door 12, the lock mechanism 25 can be operated in a locked state and an open state. Yes.
FOUPカバー17の内側の面、すなわち、キャリア16の開放面と接触する面には、FOUP13内の密閉性を保つためのシール材27と、FOUP13内部に収納されたウエハ15の縁を水平方向に押さえ付け、固定するための保持部材28が具えられている。この保持部材28により、キャリア16内部のウエハ15は棚18上に載置された状態でキャリア16内壁と保持部材28により固定され、手動もしくはFOUP搬送ロボットによる搬送の際、FOUP内部でのガタつきが抑制される。これら詳細な寸法等の情報は半導体製造に係る規格であるSEMI規格によって規定されている。 On the inner surface of the FOUP cover 17, that is, the surface in contact with the open surface of the carrier 16, the sealing material 27 for maintaining the hermeticity in the FOUP 13 and the edge of the wafer 15 accommodated in the FOUP 13 are horizontally arranged. A holding member 28 is provided for pressing and fixing. With this holding member 28, the wafer 15 inside the carrier 16 is fixed on the inner wall of the carrier 16 and the holding member 28 in a state of being placed on the shelf 18. Is suppressed. Information on these detailed dimensions and the like is defined by the SEMI standard, which is a standard related to semiconductor manufacturing.
本発明の実施例によれば、FOUPの雰囲気(内部ガス)を置換する雰囲気置換装置(「パージポート」)は、ロードポート(例えば、図4に例示したロードポート2)に組み込み可能に設計されている。このようなパージポートを図面に40で示している。図5は、FOUP13内をパージガス(不活性ガス)でパージするパージポート40を側面から見た断面図であり、図6はパージポート40のキーコンポーネントであるパージプレート41が往復運動可能(出没可能)に配置されるFIMSドア12周辺についての斜視図である。 According to an embodiment of the present invention, an atmosphere replacement device (“purge port”) that replaces the atmosphere of FOUP (internal gas) is designed to be incorporated into a load port (eg, load port 2 illustrated in FIG. 4). ing. Such a purge port is shown at 40 in the drawing. FIG. 5 is a cross-sectional view of the purge port 40 for purging the inside of the FOUP 13 with a purge gas (inert gas), and FIG. It is a perspective view about the FIMS door 12 periphery arrange | positioned in FIG.
本発明の実施例の特徴によれば、パージポート40は、FOUP13にパージガス(不活性ガス)を供給するためのパージプレート41を備える。パージプレート41は、非動作時には、下方の後退位置(図5に示す状態)に収納される。パージ動作のために、パージプレート41は、挿通孔66(図6)を通って後退位置の上方である雰囲気置換位置に進出する。本発明の実施例の特徴によれば、この進出位置において、パージプレート41は、図9に例示するように、FIMSドア12(これには、あらかじめFOUP13のカバー17が装着され、一体化されている)とFOUP13の開放面161との間に位置する。好ましくは、この進出位置において、パージプレート41の面(パージガスが噴出する面)は、パージプレート41の面開放面161と平行または略平行(傾き角度プラスマイナス20度以下でありえる)になり(図9)、パージプレート41は開放面161の内部(非周縁部、好ましくは、開放面161の中央部)と面する姿勢(オリエンテーション)に置かれる。この対面姿勢において、パージプレート41はパージ動作を行う。すなわち、パージプレート41の面から、ほぼ一様で、低速のパージガスが噴出し、層流(図9の黒塗りの矢印参照)を形成して容器13内部に流入し、容器13の雰囲気がパージされる。パージプレート41の流出面は、キャリア16の開放面161の内部(好ましくは中央部)に対応する形状を有してよい。たとえば、図示の実施例において、パージプレート41は略長方形である。このパージプレート41の縦横の寸法は、流体(パージガス)拡散を考慮して、キャリア16の開放面161の縦横それぞれより小さいことが好ましく、且つ、パージプレート41からの不活性ガスがキャリア開放面161の中央部に層流として流入することが好ましい(図9参照)。 According to the features of the embodiment of the present invention, the purge port 40 includes a purge plate 41 for supplying a purge gas (inert gas) to the FOUP 13. When not operating, the purge plate 41 is stored in a lower retracted position (the state shown in FIG. 5). For the purge operation, the purge plate 41 advances through the insertion hole 66 (FIG. 6) to the atmosphere replacement position above the retracted position. According to the feature of the embodiment of the present invention, in this advanced position, the purge plate 41 is integrated with the FIMS door 12 (which is pre-mounted with the cover 17 of the FOUP 13 as illustrated in FIG. 9). And the open surface 161 of the FOUP 13. Preferably, in this advanced position, the surface of the purge plate 41 (surface from which purge gas is ejected) is parallel or substantially parallel to the surface opening surface 161 of the purge plate 41 (which may be an inclination angle of plus or minus 20 degrees or less). 9) The purge plate 41 is placed in a posture (orientation) facing the inside of the open surface 161 (non-peripheral portion, preferably the central portion of the open surface 161). In this facing posture, the purge plate 41 performs a purge operation. That is, a substantially uniform, low-speed purge gas is ejected from the surface of the purge plate 41, forms a laminar flow (see the black arrow in FIG. 9), flows into the container 13, and the atmosphere of the container 13 is purged. Is done. The outflow surface of the purge plate 41 may have a shape corresponding to the inside (preferably the central portion) of the open surface 161 of the carrier 16. For example, in the illustrated embodiment, the purge plate 41 is substantially rectangular. The vertical and horizontal dimensions of the purge plate 41 are preferably smaller than the vertical and horizontal dimensions of the open surface 161 of the carrier 16 in consideration of fluid (purge gas) diffusion, and the inert gas from the purge plate 41 contains the carrier open surface 161. It is preferable to flow in as a laminar flow into the central part of (see FIG. 9).
このような構造、配置を有するパージプレート14によって、効率の良い雰囲気ガス置換が実現される。すなわち、パージプレート41の流出面から出てキャリア16の中央部を流れる層流の不活性ガス(図9のキャリア16内に示す黒塗り矢印参照)は、キャリア内の空気(図9のキャリア16内に示す白抜き矢印参照)をパージプレート41の周縁とキャリア16の開放面161の周縁との間を通して層流状態で押し出し、キャリア16内におけるパージガス(不活性ガス)と空気との混合、攪拌をできるだけ少なくすることができるのである。尚、ここでいうパージガス(不活性ガス)とは、窒素、アルゴン、ネオン、クリプトンのほか、乾燥空気をも含み得る。
さらに、パージポート40は、パージプレート41を作動位置(雰囲気置換位置)と待機位置(収納位置)との間で上下に往復移動(昇降移動)させるパージプレート昇汞機構42と、FIMSドア12を前進・後退させるFIMSドア駆動機構43と、パージポート40の各コンポーネントを制御する制御部46を具えている。
Efficient atmospheric gas replacement is realized by the purge plate 14 having such a structure and arrangement. That is, the laminar inert gas (see the black arrow shown in the carrier 16 in FIG. 9) flowing out from the outflow surface of the purge plate 41 and flowing through the center of the carrier 16 is the air in the carrier (the carrier 16 in FIG. 9). (See the white arrow shown in the figure) is extruded in a laminar flow state between the peripheral edge of the purge plate 41 and the peripheral edge of the open surface 161 of the carrier 16, and mixing and stirring of the purge gas (inert gas) and air in the carrier 16 Can be reduced as much as possible. The purge gas (inert gas) here may include dry air in addition to nitrogen, argon, neon, and krypton.
Further, the purge port 40 advances the purge plate ascending mechanism 42 that moves the purge plate 41 back and forth (up and down movement) between the operating position (atmosphere replacement position) and the standby position (storage position), and the FIMS door 12. A FIMS door drive mechanism 43 that moves backward and a control unit 46 that controls each component of the purge port 40 are provided.
好適な実施例のパージポート40において、パージポート開口部44は、パージプレート41によってFOUP13のパージング(雰囲気置換動作)が行われる場所を提供する。また、パージポート開口部44は、搬送ロボット4がFOUP13内のウエハ15を搬出・搬入する場所としても使用される。このパージポート開口部44は、通常のロードポート(たとえば、図4に示すロードポート2)のポート開口部と同様に、ステージ14に載置されたFOUP13のフランジ部分26が通過可能な開口面積を有している。ローディングシーケンスの1動作ステップにおいて、ステージ14に載置されたFOUP13はパージポート開口部44の入口を通り、開口部44の所定の位置に待機しているFIMSドア12に出会い、その位置、カバー16がFOUP13から取り外され、FIMSドア12に装着される(すなわちFIMSドア12に一体化される)。また、隣接したミニエンバイロメント空間ユニット3とパージポート開口部44との間のダイレクトな流体連通を防止または抑制するために、ミニエンバイロメント空間は、パージポート開口部44の上下左右の内壁45(図6に示す45a、45b、45c、45d)が構成する隔壁によってパージポート40の内部空間とは隔離されている(すなわち、流体連痛は隙間を介して抑制されている)。 In the purge port 40 of the preferred embodiment, the purge port opening 44 provides a place where the purge plate 41 performs purging of the FOUP 13 (atmosphere replacement operation). The purge port opening 44 is also used as a place where the transfer robot 4 unloads / loads the wafer 15 in the FOUP 13. The purge port opening 44 has an opening area through which the flange portion 26 of the FOUP 13 placed on the stage 14 can pass, similarly to the port opening of a normal load port (for example, the load port 2 shown in FIG. 4). Have. In one operation step of the loading sequence, the FOUP 13 placed on the stage 14 passes through the inlet of the purge port opening 44, encounters the FIMS door 12 waiting at a predetermined position of the opening 44, and the position, cover 16 Is removed from the FOUP 13 and attached to the FIMS door 12 (ie, integrated into the FIMS door 12). Further, in order to prevent or suppress direct fluid communication between the adjacent mini-environment space unit 3 and the purge port opening 44, the mini-environment space includes upper and lower inner walls 45 ( The partition formed by 45a, 45b, 45c, and 45d shown in FIG. 6 is isolated from the internal space of the purge port 40 (that is, fluid communication is suppressed through a gap).
パージポート開口部44の下側内壁45dにはパージプレート41が通過するに十分な面積を有する挿通孔66が形成されており、この挿通孔66を通って、パージプレート41は作動位置(雰囲気置換位置)と待機位置(収納位置)との間を昇降移動可能となっている。なお、図示の実施例(図5、図6参照)において、挿通孔66の上方はミニエンバイロメント空間ユニット3内部の高清浄空気がFIMSドア12の周縁(FIMSドア12と内壁45a、45b、45c、45dとの隙間)を通って外部へ流出している。この高清浄空気の流れが、「エアカーテン」ないし「エアドア」となって、プロセス装置外部の低清浄な空気が挿通孔66を通って待機位置(収納位置)にいるパージプレート41にまで達することを防いでいるので、挿通孔66を覆う蓋部材を設ける必要はないが、所望であれば、挿通孔66を開閉自在に覆う蓋部材を設けることで挿通孔66から内部への低清浄空気の浸入を確実に防止することができる。 An insertion hole 66 having a sufficient area for the purge plate 41 to pass through is formed in the lower inner wall 45d of the purge port opening 44, and the purge plate 41 is moved to the operating position (atmosphere replacement) through the insertion hole 66. Position) and a standby position (storage position). In the illustrated embodiment (see FIGS. 5 and 6), the high clean air inside the mini-environment space unit 3 is located at the periphery of the FIMS door 12 (FIMS door 12 and inner walls 45a, 45b, 45c) above the insertion hole 66. , 45d) and flows out to the outside. This flow of highly purified air becomes an “air curtain” or “air door”, and the low clean air outside the process apparatus reaches the purge plate 41 that is in the standby position (storage position) through the insertion hole 66. Therefore, it is not necessary to provide a lid member that covers the insertion hole 66, but if desired, a lid member that covers the insertion hole 66 so that it can be opened and closed is provided so that low clean air from the insertion hole 66 to the inside can be removed. Intrusion can be reliably prevented.
また、内壁45a、45b、45cとFIMSドア12周縁部分との間の隙間が大きすぎると、ミニエンバイロメント空間ユニット3内の高清浄空気が大量にその隙間を通って外部へ流れ出してしまい、ミニエンバイロメント空間ユニット3内部の内圧が上がらず、清浄度が維持出来ない場合もあるので、高清浄空気のミニエンバイロメント空間ユニット3外部への流出を制限するために、内壁にはフランジパネル65が設けられている。このフランジパネル65は、FOUP13に対向するFIMSドア12の面と略同一面上に設けられ(図9参照)、内壁45a、45b、45cと対応する各フランジパネル辺は密接されている。なお、図6、図9の具体例において、FIMSドア12とフランジパネル65とは、数mm程度の隙間をもって配置されており、この隙間により高清浄空気流出調整機能が実現される。すなわち、この隙間から、ミニエンバイロメント空間ユニット3内部の適度な量の高清浄空気が外部へと流出されることとなり、ミニエンバイロメント空間ユニット3内部の内圧を維持した上で、外部からの低清浄な空気の浸入も有効に防止される。 Also, if the gap between the inner walls 45a, 45b, 45c and the peripheral edge portion of the FIMS door 12 is too large, a large amount of highly purified air in the mini-environment space unit 3 flows out through the gap, Since the internal pressure inside the environment space unit 3 does not increase and the cleanliness may not be maintained, a flange panel 65 is provided on the inner wall to limit the outflow of highly purified air to the outside of the mini environment space unit 3. Is provided. The flange panel 65 is provided on substantially the same plane as the FIMS door 12 facing the FOUP 13 (see FIG. 9), and the flange panels corresponding to the inner walls 45a, 45b, 45c are in close contact with each other. In the specific examples of FIGS. 6 and 9, the FIMS door 12 and the flange panel 65 are arranged with a gap of about several mm, and a highly clean air outflow adjustment function is realized by this gap. That is, an appropriate amount of highly clean air inside the mini-environment space unit 3 flows out of the gap, and the internal pressure inside the mini-environment space unit 3 is maintained, and the low pressure from the outside is maintained. Infiltration of clean air is also effectively prevented.
次にパージプレートの具体例について、図7及び図8を参照し、詳しく説明していく。パージプレート41は、上記パージプレート昇汞機構42の移動子に取り付けられたブラケット52(図5)に固定された支柱47に支持されていて、パージプレート昇汞機構42の昇降動作に連動して昇降可能となっている。支柱47は中空のパイプ状になっていて、内部には不活性ガスを流通させる配管経路39が挿通している。この配管経路39(図7)がパージプレート41の内部配管48と繋がっており、パージプレート41に不活性ガスの供給が可能となっている。 Next, a specific example of the purge plate will be described in detail with reference to FIGS. The purge plate 41 is supported by a column 47 fixed to a bracket 52 (FIG. 5) attached to the moving element of the purge plate ascending mechanism 42, and can be moved up and down in conjunction with the raising and lowering operation of the purge plate ascending mechanism 42. It has become. The support 47 is in the form of a hollow pipe, and a piping path 39 through which an inert gas flows is inserted. This piping path 39 (FIG. 7) is connected to the internal piping 48 of the purge plate 41 so that the inert gas can be supplied to the purge plate 41.
パージプレート41の形状、サイズは、好適には、パージプレート41と対面するFOUP13の開放面161の形状、サイズに基づいて設計される。具体例として、図7及び図8に示すように、パージプレート41は薄い直方体形状を有しており、内部には一端から導入されてきた不活性ガスを、2次元配置された(たとえば、2次元マトリクス配置された)多数の噴出端に分散させるための枝分かれ形状を有する配管48と、配管48の各噴出端(配管出口)に設けられ、送られてきた不活性ガスの流速を低減し、且つ不活性ガスを広範囲に放散させる噴出抑制素子49の2次元アレイを有している。配管48を多数の枝分かれ形状とすることで、配管48の一端から導入された不活性ガスの噴出力は枝分かれした各噴出端に分散されることによって、各噴出端から噴出される不活性ガスの勢いを低下させる働きがある。 The shape and size of the purge plate 41 are preferably designed based on the shape and size of the open surface 161 of the FOUP 13 that faces the purge plate 41. As a specific example, as shown in FIGS. 7 and 8, the purge plate 41 has a thin rectangular parallelepiped shape, and an inert gas introduced from one end is two-dimensionally arranged therein (for example, 2 A pipe 48 having a branching shape to be distributed to a large number of jet ends (in a dimensional matrix arrangement), and provided at each jet end (pipe outlet) of the pipe 48 to reduce the flow rate of the inert gas sent, In addition, it has a two-dimensional array of ejection suppression elements 49 that disperse the inert gas over a wide range. By making the pipe 48 into a number of branched shapes, the inert gas jet output introduced from one end of the pipe 48 is distributed to the branched jet ends, so that the inert gas jetted from the jet ends can be reduced. It works to reduce momentum.
配管48を枝分かれ形状とすることは種々の方法で実現できる。たとえば、ポリウレタンやPTFE(ポリテトラフルオロエチレン)樹脂等からなるチューブ材に継手を介して分岐させることとしても良いし、ステンレススチール材等からなるパイプを接合することで枝分かれ形状を形成しても良い。 Making the pipe 48 into a branched shape can be realized by various methods. For example, it may be branched to a tube material made of polyurethane, PTFE (polytetrafluoroethylene) resin or the like via a joint, or a branched shape may be formed by joining a pipe made of stainless steel material or the like. .
配管48の各噴出端に装着される噴出抑制素子49は、使用するパージガスに対して所要の噴出抑制機能を有する種々の素材で実現でき、好適には、多孔質の材料で構成できる。たとえば、PTFE微粒子結合複合部材や焼結金属、焼結ガラス、連続気泡ガラス、積層濾材、または中空糸膜を濾材として具えるエアフィルタ部材で実現できる。多孔質の噴出抑制素子49の場合、噴出抑制素子49内の狭い間隙、ないし細かい孔を不活性ガスが通り抜けることで不活性ガスの流速が低減され、不活性ガスの噴出方向が広範囲に広がり、不活性ガスがパージプレート41内に均一に供給されることとなる。さらに、配管を流通する際に不活性ガスに混入した塵埃の除去も多孔質の噴出抑制素子49により可能となる。多孔性噴出抑制素子49の場合、噴出抑制に多孔質という、微細構造を利用するので、所要の噴出抑制能力をもつ噴出抑制素子をコンパクトに実現できる。 The ejection suppression element 49 attached to each ejection end of the pipe 48 can be realized by various materials having a required ejection suppression function for the purge gas to be used, and can be preferably configured by a porous material. For example, it can be realized by a PTFE fine particle bonded composite member, a sintered metal, sintered glass, open cell glass, a laminated filter medium, or an air filter member having a hollow fiber membrane as a filter medium. In the case of the porous ejection suppressing element 49, the flow rate of the inert gas is reduced by passing the inert gas through a narrow gap or a fine hole in the ejection suppressing element 49, and the ejection direction of the inert gas is widespread. The inert gas is uniformly supplied into the purge plate 41. Further, the porous ejection suppressing element 49 can remove dust mixed in the inert gas when flowing through the pipe. In the case of the porous jet suppression element 49, since the fine structure of porous is used for jet suppression, the jet suppression element having the required jet suppression capability can be realized in a compact manner.
好適には、パージプレート41のキャリア開放部に対向する面には、パージガス(不活性ガス)の流出面を有する整流板50が取り付けられる。整流板50はパージプレート41の保護カバーを構成し、その流出面には、パージプレート41の外部にパージガスを放出するために、縦横に多数の開口又は孔を配置した2次元孔アレイないし孔メッシュが形成されている。孔メッシュの各孔は、パージガスの流れの方向を規制する整流機能を有する。具体例として、整流板50は打ち抜き孔が2次元的に一様に配置されたパンチングプレートで構成できる。パージプレート41や支柱47及び保護カバー50の材質は、物性やコストの面からステンレス材とすることが望ましいが、PTFE材等の樹脂材を使用することとしても良い。この構成により、パージプレート41に送られてきた不活性ガスは、噴出抑制素子49によってパージプレート41内部に充満し、整流板50の孔メッシュを通して広範囲にかつ均等にキャリア16内部に層流として流入させることとなる。 Preferably, a rectifying plate 50 having a purge gas (inert gas) outflow surface is attached to a surface of the purge plate 41 facing the carrier opening. The rectifying plate 50 constitutes a protective cover for the purge plate 41, and a two-dimensional hole array or hole mesh in which a large number of openings or holes are arranged vertically and horizontally on the outflow surface in order to discharge the purge gas to the outside of the purge plate 41. Is formed. Each hole of the hole mesh has a rectifying function that regulates the flow direction of the purge gas. As a specific example, the current plate 50 can be formed of a punching plate in which punched holes are uniformly arranged two-dimensionally. The material of the purge plate 41, the support column 47, and the protective cover 50 is desirably a stainless material in terms of physical properties and cost, but a resin material such as a PTFE material may be used. With this configuration, the inert gas sent to the purge plate 41 is filled into the purge plate 41 by the ejection suppression element 49 and flows into the carrier 16 as a laminar flow widely and evenly through the hole mesh of the rectifying plate 50. Will be allowed to.
また、噴出抑制素子49としては、上記のエアフィルタ部材以外にも連続気泡発泡樹脂やステンレスワイヤメッシュ、焼結金属やセラミック多孔体といった多孔質材料であって、素材自体に汚染物質が無く、塵を発生しない素材が使用可能である。図7では、噴出抑制素子49は、配管48の各噴出端に個別に装着される多孔質素子で構成した。代替形態として、図8にあるように、パージプレート41と整流板50(保護カバー)の間に装着される平板状の多孔質噴出抑制素子49(すなわち多孔質シート)で構成してもよい(この場合、配管48の各噴出端には個別の噴出抑制素子49を設ける必要はない)。平板状の多孔質噴出抑制素子49に加えて、パージプレート41内から噴出される不活性ガスの噴出方向をメッシュ状の細孔で規制(整流)し、層流としてキャリア16内部に流入させるための補強整流板79を噴出抑制素子49(多孔質シート)とパージプレート41の間に配置しておけば、整流のみならず多孔質噴出抑制素子49の補強としての効果もある。 In addition to the air filter member described above, the ejection suppression element 49 is a porous material such as an open-cell foamed resin, a stainless wire mesh, a sintered metal, or a ceramic porous body. Materials that do not generate can be used. In FIG. 7, the ejection suppression element 49 is composed of a porous element that is individually attached to each ejection end of the pipe 48. As an alternative form, as shown in FIG. 8, it may be constituted by a flat plate-like porous ejection suppressing element 49 (that is, a porous sheet) mounted between the purge plate 41 and the rectifying plate 50 (protective cover) ( In this case, it is not necessary to provide an individual ejection suppressing element 49 at each ejection end of the pipe 48). In addition to the plate-like porous ejection suppressing element 49, the ejection direction of the inert gas ejected from the purge plate 41 is regulated (rectified) by the mesh-shaped pores, and flows into the carrier 16 as a laminar flow. If the reinforcing rectifying plate 79 is disposed between the ejection suppressing element 49 (porous sheet) and the purge plate 41, not only the rectification but also the effect of reinforcing the porous ejection suppressing element 49 is obtained.
次に、パージプレート41を昇降移動させるパージプレート昇汞機構42について図5を参照して説明する。パージプレート昇汞機構42は駆動源であるモータ51と、モータ51の回転に連動して回転し、支柱47が取り付けられているブラケット52を上下方向に移動させる送りネジ53、及びブラケット52の昇降動作を案内するガイドレール54を具えている。モータ51の回転に連動して送りネジ53が回転し、その回転により送りネジ53の移動子に取り付けられたブラケット52が、モータ51の回転角度に応じて所定量昇降動作する。 Next, a purge plate raising mechanism 42 that moves the purge plate 41 up and down will be described with reference to FIG. The purge plate ascending mechanism 42 rotates in conjunction with the rotation of the motor 51 as a drive source, the feed screw 53 that moves the bracket 52 to which the support column 47 is attached, and the lifting / lowering operation of the bracket 52. The guide rail 54 which guides is provided. The feed screw 53 rotates in conjunction with the rotation of the motor 51, and the bracket 52 attached to the moving element of the feed screw 53 moves up and down by a predetermined amount according to the rotation angle of the motor 51.
これにより、上記作動位置(雰囲気置換位置)と上記待機位置(収納位置)との間で、パージプレート41を往復移動(昇降)させることが可能となる。なお、本実施例では昇降機構としてモータ51と送りネジ53を用いているが、これに代えて、任意の適当な機械的往復移動機構たとえば、エアシリンダや油圧シリンダ、或いはカムリンク機構を用いることが可能である。さらに、本実施例では、パージプレート41を非動作時はパージポート開口部44の下部に収納し、パージ動作に際して雰囲気置換位置まで上昇させるようにして、パージプレート41を上下に往復移動させるように設計している。これは、省スペースで実現でき、既存のロードポートとの互換性を確保しやすい点で好ましい形態であるが、所望であれば、これに代えて、パージポート開口部44の上部または側部に収納することとし、駆動機構によってパージプレート41を進出位置と後退位置との間で往復移動させる形態を採ることとしても良い。 Accordingly, the purge plate 41 can be reciprocated (lifted) between the operating position (atmosphere replacement position) and the standby position (storage position). In this embodiment, the motor 51 and the feed screw 53 are used as the elevating mechanism. Instead, any appropriate mechanical reciprocating mechanism such as an air cylinder, a hydraulic cylinder, or a cam link mechanism is used. Is possible. Further, in this embodiment, when the purge plate 41 is not in operation, the purge plate 41 is accommodated in the lower portion of the purge port opening 44 and is raised to the atmosphere replacement position during the purge operation so that the purge plate 41 is reciprocated up and down. Designing. This is a preferable form in that it can be realized in a space-saving manner, and it is easy to ensure compatibility with an existing load port. However, if desired, it can be replaced with an upper portion or a side portion of the purge port opening 44 instead. The purge plate 41 may be reciprocated between the advanced position and the retracted position by the drive mechanism.
パージ動作に必要な制御(各駆動機構の往復移動動作や不活性ガスの流量や供給時間、供給タイミングの制御を含む)を行う制御部46は、パージポート40の本体内部の制御BOX70(図12)内に具えられている。不活性ガスは図12に示すようにパージポート40外部から制御部内に供給経路を介して供給され、パージプレート41へと導入される。 The control unit 46 that performs the control necessary for the purge operation (including control of the reciprocating motion of each drive mechanism, the flow rate of inert gas, the supply time, and the supply timing) is a control BOX 70 (FIG. 12) inside the main body of the purge port 40. ) Is provided inside. As shown in FIG. 12, the inert gas is supplied from the outside of the purge port 40 into the control unit via the supply path, and is introduced into the purge plate 41.
パージプレート41に導入される不活性ガスは、雰囲気置換装置であるパージポート40が設置されている工場設備から供給されることとしても良いし、パージポート40内に不活性ガスを貯留した容器を具えることとしても良い。工場設備もしくは貯留した容器を供給源69とするパージガス(不活性ガス)は、供給経路を経て制御BOX70内に導入され、制御BOX70内に具えられた圧力調節器71、圧力サンサ72、電磁弁73を介した後、パージプレート41へと導入される構成となっている。圧力調節器71は供給源の変動する圧力に対し、出口側の圧力を一定に調節するものであり、圧力センサ72は圧力調節器71の出口側から送られてくる不活性ガスの圧力を測定しており、予め設定された上限と下限の閾値に対して高圧若しくは低圧状態になった場合、アラーム信号を制御部46に送信する働きをしている。 The inert gas introduced into the purge plate 41 may be supplied from factory equipment in which the purge port 40 as an atmosphere replacement device is installed, or a container storing the inert gas in the purge port 40 may be provided. It can also be provided. A purge gas (inert gas) using factory equipment or a stored container as a supply source 69 is introduced into the control BOX 70 through a supply path, and a pressure regulator 71, a pressure sensor 72, and an electromagnetic valve 73 provided in the control BOX 70. After that, the structure is introduced into the purge plate 41. The pressure regulator 71 adjusts the pressure on the outlet side with respect to the fluctuating pressure of the supply source, and the pressure sensor 72 measures the pressure of the inert gas sent from the outlet side of the pressure regulator 71. The alarm signal is transmitted to the control unit 46 when a high pressure or a low pressure is set with respect to preset upper and lower thresholds.
電磁弁73は制御部46より送られてくる入力信号によって不活性ガスの流通する弁の開閉を行うもので、制御部46内に具えられた記憶装置に予め記憶させた手順に従って、所定のタイミングで所定の時間だけ不活性ガスの供給を行うことが可能となっている。また、電磁弁73からパージプレート41への各々の供給経路にはニードル弁74が具えられており、不活性ガスの流量の正確な調整が可能である。この構成により、供給経路を経て制御BOX70内に導入された不活性ガスは所定の圧力と流量に制御された後、所定のタイミングで所定の時間だけ不活性ガスのパージプレート41へ供給される。 The electromagnetic valve 73 opens and closes the valve through which the inert gas flows in response to an input signal sent from the control unit 46, and has a predetermined timing according to a procedure stored in advance in a storage device provided in the control unit 46. Thus, the inert gas can be supplied for a predetermined time. Each supply path from the electromagnetic valve 73 to the purge plate 41 is provided with a needle valve 74, and the flow rate of the inert gas can be adjusted accurately. With this configuration, the inert gas introduced into the control BOX 70 via the supply path is controlled to a predetermined pressure and flow rate, and then supplied to the purge plate 41 of the inert gas for a predetermined time at a predetermined timing.
なお、不活性ガスの供給時間は、試験によって予め好適な時間を割り出しておき、制御部46に具えられたタイマーにより供給開始と供給停止の制御を行うこと(タイマー方式)としても良いし、代替として、パージポート40の好適な場所に不活性ガス濃度を検知するセンサを設置しておき、FOUP13内の不活性ガス濃度が規定の数値に達したら供給を停止すること(センサ方式)としても良い。さらに、センサはパージガスとして使用する不活性ガスの濃度を測定するものとしても良いが、代替として、比較的安価な酸素濃度を測定するセンサを使用することでも同様の効果を得ることが可能である。なお、酸素濃度センサを使用する場合は、FOUP13内の酸素濃度が規定の数値以下になったら、パージガスの供給を停止するように制御する。 The inert gas supply time may be determined in advance by determining a suitable time by a test, and the start and stop of supply may be controlled by a timer provided in the control unit 46 (timer method). As an alternative, a sensor for detecting the inert gas concentration may be installed at a suitable location of the purge port 40, and the supply may be stopped when the inert gas concentration in the FOUP 13 reaches a specified value (sensor method). . Further, the sensor may measure the concentration of the inert gas used as the purge gas. Alternatively, the same effect can be obtained by using a sensor that measures a relatively inexpensive oxygen concentration. . When an oxygen concentration sensor is used, control is performed to stop the supply of purge gas when the oxygen concentration in the FOUP 13 falls below a specified numerical value.
キャリア16内部に不活性ガスを流入させるために、配管48から直にキャリア16内に不活性ガスを供給する雰囲気置換装置の場合、不活性ガスの流速を上げれば、キャリア16内部に流入する不活性ガスの量も増加し、短時間での雰囲気置換が可能と期待されていた。しかし、実際には、キャリア16内に収納したウエハ15の裏面に付着している塵埃、キャリア16内に堆積している塵埃が不活性ガスの噴射力により吹き飛ばされてしまい、その吹き飛ばされた塵埃の粒子がウエハ15の処理面に衝突して、処理面を傷つけてしまう現象(攪拌現象)が本願発明者により確認された。 In the case of an atmosphere replacement device that supplies an inert gas directly into the carrier 16 from the pipe 48 in order to allow the inert gas to flow into the carrier 16, the inert gas flowing into the carrier 16 can be increased by increasing the flow rate of the inert gas. The amount of active gas also increased, and it was expected that the atmosphere could be replaced in a short time. However, in reality, the dust adhering to the back surface of the wafer 15 accommodated in the carrier 16 and the dust accumulated in the carrier 16 are blown off by the injecting force of the inert gas. The inventor of the present application has confirmed a phenomenon (stirring phenomenon) in which the particles collide with the processing surface of the wafer 15 and damage the processing surface.
また、流速の大きい不活性ガス流がキャリア16内の壁面に衝突した後外部に流出してしまったり、外部からの空気を巻き込んでしまったりして、キャリア16内の不活性ガス濃度が上がらないという不具合を起こす可能性もある。逆に、不活性ガスの流速を下げると、塵埃の飛散や不活性ガスの流出といった不具合は低減されるが、流量も減少してしまうこととなり、その結果雰囲気置換に多大な時間を要してしまうこととなり、雰囲気置換が終了するまでにウエハ16表面の酸化が進行し歩留まりの低下を招いてしまうこと(酸化現象)も本願発明者により確認された。さらに、上記の攪拌現象、酸化現象は、不活性ガスの流速を高速化して吹き出す流体素子であるノズルを用いて、不活性ガスをキャリア16内に吹きいれる従来の雰囲気置換装置で顕著であることが確認された。本願発明によれば、パージポート(雰囲気置換装置)に非ノズル型のパージプレートを設け、このパージプレートにより、層流でスローなパージガスフローを実現している。このような新規なパージプレート付きの雰囲気置換装置によれば、上記攪拌現象、酸化現象は十分に抑制できることが本願発明者により見いだされた。 Further, the inert gas flow having a high flow velocity collides with the wall surface in the carrier 16 and then flows out to the outside or entrains air from the outside, so that the inert gas concentration in the carrier 16 does not increase. There is also a possibility of causing a malfunction. Conversely, lowering the flow rate of inert gas reduces problems such as scattering of dust and outflow of inert gas, but it also reduces the flow rate, resulting in a great deal of time for atmosphere replacement. The inventors of the present invention have also confirmed that the oxidation of the surface of the wafer 16 progresses until the atmosphere replacement is completed, leading to a decrease in yield (oxidation phenomenon). Furthermore, the agitation phenomenon and the oxidation phenomenon described above are conspicuous in a conventional atmosphere replacement device in which an inert gas is blown into the carrier 16 using a nozzle that is a fluid element that blows out at a higher flow rate of the inert gas. Was confirmed. According to the present invention, a purge port (atmosphere replacement device) is provided with a non-nozzle type purge plate, and a slow purge gas flow is realized by this purge plate. The inventor of the present application has found that the agitation phenomenon and the oxidation phenomenon can be sufficiently suppressed according to such a novel atmosphere replacement device with a purge plate.
たとえば、好適な実施例に係るパージプレート41において、パージガス配管48は多数の枝分かれ配管で構成して、一つの導入端(配管入口)から導入された不活性ガスが、複数の噴出端(配管出口)に分散させる。そして、各噴出端の先端にディスクリートな多孔質噴出抑制素子49を設けるか(図7)、あるいは、複数の噴出端をすべてカバーするシート状の多孔質噴出抑制素子49を配置する(図8)。さらに、孔メッシュが形成された整流板50に通して、不活性ガスをキャリア16の開放面161に向けて流し込んでいる。このようにして、パージプレート41により、攪拌現象を抑止してキャリア16内に滞留する塵埃の飛散を防止する。また、所定時間内で雰囲気置換に必要な量の不活性ガスを一様なプラナー層流ガス発生プレートであるパージプレート41からキャリア内に供給することで短時間のパージング(雰囲気置換)を実現し、基板表面(ウエハ表面)の酸化現象を抑制している。 For example, in the purge plate 41 according to a preferred embodiment, the purge gas pipe 48 is composed of a number of branch pipes, and an inert gas introduced from one introduction end (pipe inlet) is connected to a plurality of ejection ends (pipe outlets). ). Then, a discrete porous ejection suppressing element 49 is provided at the tip of each ejection end (FIG. 7), or a sheet-like porous ejection suppressing element 49 that covers all the ejection ends is disposed (FIG. 8). . Furthermore, the inert gas is poured toward the open surface 161 of the carrier 16 through the current plate 50 in which the hole mesh is formed. In this way, the purge plate 41 prevents the stirring phenomenon and prevents the dust staying in the carrier 16 from scattering. In addition, a short period of purging (atmosphere replacement) is realized by supplying an inert gas in an amount necessary for atmosphere replacement within a predetermined time from the purge plate 41, which is a uniform planar laminar gas generation plate, into the carrier. The oxidation phenomenon of the substrate surface (wafer surface) is suppressed.
好適な実施例のパージング動作において、パージプレート41内部に放散させられた不活性ガスはメッシュ孔ないし2次元アレイ孔を有する整流板50により整流され、キャリア16の開口面161に対して略均等な流速を有する層流となってキャリア16内部へと供給されることとなる。キャリア16内部へ供給された不活性ガスは、内部に収納されたウエハ15の隙間を通って徐々にキャリア16内部へ流入し、それによってウエハ15の表面に滞留していた汚染物質や内部に充満していた清浄空気は、不活性ガスに押し出されるようにキャリア16のフランジ部分26周縁から外部へと排出されることとなり、キャリア16内部の雰囲気置換が進行していく(図9参照)。 In the purging operation of the preferred embodiment, the inert gas diffused inside the purge plate 41 is rectified by the rectifying plate 50 having mesh holes or two-dimensional array holes, and is substantially uniform with respect to the opening surface 161 of the carrier 16. A laminar flow having a flow velocity is supplied into the carrier 16. The inert gas supplied to the inside of the carrier 16 gradually flows into the inside of the carrier 16 through a gap between the wafers 15 accommodated in the inside of the carrier 16, thereby filling the contaminants and the inside staying on the surface of the wafer 15. The clean air that has been discharged is discharged from the periphery of the flange portion 26 of the carrier 16 so as to be pushed out by the inert gas, and the atmosphere replacement inside the carrier 16 proceeds (see FIG. 9).
なお、雰囲気置換位置において、パージプレート41は、パージポート開口部44に対して中央に配置されること(したがって、キャリア16の開放面161の縦中心線がパージプレート41の縦中心線と一致する配置関係)が、不活性ガスに押し出されたキャリア16内部の清浄空気が均等にパージポート開口部44周縁から外部へと排出されることとなり望ましい。しかし、パージプレート41をパージポート開口部44の非中央部に配置したとしても、流量、流速を調整することで、同様に攪拌が抑制されて、不活性ガス押出し効果が得られる。 In the atmosphere replacement position, the purge plate 41 is disposed at the center with respect to the purge port opening 44 (therefore, the vertical center line of the open surface 161 of the carrier 16 coincides with the vertical center line of the purge plate 41). This is desirable because the clean air inside the carrier 16 pushed out by the inert gas is uniformly discharged from the periphery of the purge port opening 44 to the outside. However, even if the purge plate 41 is arranged at the non-central portion of the purge port opening 44, the stirring is similarly suppressed by adjusting the flow rate and flow velocity, and an inert gas pushing effect can be obtained.
前述のように、パージプレート41からキャリア16の開放面161に向けて不活性ガスが層流で流れるようにするためには、パージガス出力プレートである整流板50は、開放面161に対して一定の割合の不活性ガス流出面を有することが好ましい。図7は多数の円形穴を有する板材(丸穴形パンチングプレート)による流出面、図8は網板材(角穴型パンチングプレート)による流出面である。パージプレートに占める流出面の面積比率は、適度な大きさを有することが好ましい。整流板50の横方向の寸法をA,縦方向の寸法をBとし、パージプレートの流出面の横方向の寸法をa、縦方向の寸法をbとすると、ab/AB比(整流板面積に対する流出面面積の比)は50%以上、100%以下の範囲とすることが好ましく。また、整流板50の面積は、キャリア16の開放面161の面積に対して10%以上60%以下が好ましく、更に、整流板50の流出面面積はキャリア16開口面の面積に対して5%以上、50%以下が好ましい。 As described above, in order to allow the inert gas to flow in a laminar flow from the purge plate 41 toward the open surface 161 of the carrier 16, the rectifying plate 50 that is a purge gas output plate is constant with respect to the open surface 161. It is preferable to have an inert gas outflow surface of a proportion of 7 shows an outflow surface due to a plate material (round hole punching plate) having a large number of circular holes, and FIG. 8 shows an outflow surface due to a net plate material (square hole punching plate). The area ratio of the outflow surface occupying the purge plate preferably has an appropriate size. When the horizontal dimension of the current plate 50 is A, the vertical dimension is B, the horizontal dimension of the outflow surface of the purge plate is a, and the vertical dimension is b, the ab / AB ratio (relative to the current plate area). The ratio of the outflow surface area) is preferably in the range of 50% to 100%. The area of the rectifying plate 50 is preferably 10% or more and 60% or less with respect to the area of the open surface 161 of the carrier 16, and the outflow surface area of the rectifying plate 50 is 5% with respect to the area of the carrier 16 opening surface. Above, 50% or less is preferable.
なお、FIMSドア12は、雰囲気置換の際に、ミニエンバイロメント空間ユニット3のファンフィルタユニット5から供給される高清浄空気がキャリア16内部に流入するのを有効に、調整、抑止する位置に配置されることが好ましく、高清浄空気流入調整/抑止機能により、パージングによるキャリア16内の不活性ガス濃度を効率よく上昇させることができる。 The FIMS door 12 is disposed at a position that effectively adjusts and inhibits the high clean air supplied from the fan filter unit 5 of the mini-environment space unit 3 from flowing into the inside of the carrier 16 when the atmosphere is replaced. It is preferable that the inert gas concentration in the carrier 16 by purging can be efficiently increased by the high clean air inflow adjustment / suppression function.
パージポート40は、フランジパネル65を用いて調整された流量の高清浄空気がFIMSドア12と内壁45との隙間を介してパージポート40を経由して、外部に流出するように構成できる。図9は、このような実施形態において、雰囲気置換を行った場合の不活性ガス、高清浄空気、及びキャリア16内の空気の流れを示したもので、(a)は側面から見た断面図であり(b)は上面から見た断面図である。図9に示すように、パージポート40には高清浄空気通路121が存在する。すなわち、図9において、右隣にあるミニエンバイロメント空間ユニット3(図示せず)から適量の高清浄空気が、FIMSドア12とフランジパネル65との間に設けられた隙間を通って、装置外部に流出する。このため、不活性ガスの流入により押し出されたキャリア16内部の空気が、この高清浄空気通路121の高清浄空気流に誘引または吸引されて装置外部に排気される。したがって、雰囲気置換中にキャリア16内部に残留している空気を吸引(排気)するための専用の装置を付加する必要はない。このように、隙間によって形成される高清浄空気通路121は、キャリア内部の雰囲気置換を促進する機能を有している。 The purge port 40 can be configured such that highly purified air having a flow rate adjusted using the flange panel 65 flows out through the purge port 40 through the gap between the FIMS door 12 and the inner wall 45. FIG. 9 shows the flow of the inert gas, highly clean air, and air in the carrier 16 when the atmosphere is replaced in such an embodiment. FIG. 9A is a cross-sectional view seen from the side. (B) is a cross-sectional view seen from above. As shown in FIG. 9, the purge port 40 has a highly clean air passage 121. That is, in FIG. 9, an appropriate amount of highly purified air from the mini-environment space unit 3 (not shown) on the right side passes through the gap provided between the FIMS door 12 and the flange panel 65, and enters the outside of the apparatus. To leak. For this reason, the air inside the carrier 16 pushed out by the inflow of the inert gas is attracted or sucked by the high clean air flow in the high clean air passage 121 and exhausted outside the apparatus. Therefore, it is not necessary to add a dedicated device for sucking (exhausting) air remaining inside the carrier 16 during atmosphere replacement. Thus, the highly clean air passage 121 formed by the gap has a function of promoting the atmosphere replacement inside the carrier.
この雰囲気置換の際、わずかな量の不活性ガスが高清浄空気とともに装置外部に流出することもあるが、装置外部に排出された不活性ガスを含む高清浄空気は工場内に設けられたダウンフローによって即座に床のパンチング孔を通して工場外部へと流出されることとなり人体や他の設備に悪影響を及ぼすことはない。 During this atmosphere replacement, a small amount of inert gas may flow out of the device together with highly clean air. However, highly purified air containing inert gas discharged outside the device is The flow will immediately flow out of the factory through the punching holes in the floor and will not adversely affect the human body or other equipment.
また、上記パージポート40の高清浄空気通路121により果たされる空気流量調整機能は、ウエハ15の搬入出時にキャリア16のフランジ部分26とパージポート開口部44周縁とをほぼ隙間なく近接させている既存のロードポートに対しても適用できる。すなわち、ステージ14に載置されているキャリア16を微小に後退させる(ミニエンバイロメント空間ユニット3から離れる方向に所定距離、移動させる)ことでフランジ部分26とパージポート開口部44周縁に隙間を形成させる(これにより、高清浄空気通路121が形成される)機構を設け、形成した隙間からキャリア16内部の空気を高清浄空気とともに装置外部に流出させることとすれば良い(図9参照)。 Further, the air flow rate adjusting function performed by the highly clean air passage 121 of the purge port 40 is such that the flange portion 26 of the carrier 16 and the periphery of the purge port opening 44 are brought close to each other with almost no gap when the wafer 15 is loaded / unloaded. It can also be applied to other load ports. That is, the carrier 16 mounted on the stage 14 is slightly retracted (moved by a predetermined distance in a direction away from the mini-environment space unit 3) to form a gap between the flange portion 26 and the purge port opening 44 periphery. It is only necessary to provide a mechanism (by which the highly clean air passage 121 is formed) and to let the air inside the carrier 16 flow out of the apparatus together with the highly clean air from the formed gap (see FIG. 9).
所望であれば、不活性ガスを供給するパージプレート41に加えて、キャリア16内部の雰囲気を吸引する吸引機構を設けても良い。吸引機構は、例えばキャリア16の開放面161に面する位置で中央部のパージプレート41の周囲に、またはパージプレート41をキャリア16開放面161に面し、且つ中央部からずれた位置に配置し、その隣にパージプレート41と同様の形状を有するものであっても良いし、キャリア16底部にSEMI規格の規定により具えられている吸入口から吸引する形態であっても良い。 If desired, a suction mechanism for sucking the atmosphere inside the carrier 16 may be provided in addition to the purge plate 41 for supplying an inert gas. For example, the suction mechanism is arranged around the purge plate 41 in the center at a position facing the open surface 161 of the carrier 16 or at a position where the purge plate 41 faces the carrier 16 open surface 161 and is shifted from the center. Next, it may have the same shape as the purge plate 41, or may be a form in which suction is performed from the suction port provided in the bottom of the carrier 16 according to the SEMI standard.
次にパージポート40の動作について図11を参照しながら詳しく説明していく。
処理装置1内で処理が終了したウエハ15は、処理終了後、ミニエンバイロメント空間ユニット3内に具えられた搬送ロボット4によってロードポートの機能を兼ね備えたパージポート40に移される。すなわち、搬送ロボット4によって、パージポート40(ロードポート)に配置したキャリア16内の所定の棚18に搬入される。図11(a)参照。このウエハ移載モードでは、パージプレート41は後退位置(収納位置)にあり、進出位置に移動するためにパージプレート41が通る挿通孔66の上方は、ウエハ移載のため、キャリア16に占有されている(したがって、パージプレート41は上昇動作できない)。また、常に、「陽圧」(周辺より高い気圧)のミニエンバイロメント空間ユニット3からパージポート40の隙間(フランジ部分26とフランジパネル65の間)を通って、装置1外部へ適量の高清浄空気が流出しているので、装置1内部及びキャリア16内部が装置1外部の低清浄空気に汚染されることは無い。なお、図11(a)に示すFOUPへのウエハ移載モードにおいて、FIMSドア17はFOUPカバー17を装着した一体化形態となっており、パージポート開口部44の下方位置(後退位置)に退避している。
Next, the operation of the purge port 40 will be described in detail with reference to FIG.
The wafer 15 that has been processed in the processing apparatus 1 is moved to the purge port 40 that also has the function of a load port by the transfer robot 4 provided in the mini-environment space unit 3 after the processing is completed. In other words, the transfer robot 4 carries it in a predetermined shelf 18 in the carrier 16 disposed in the purge port 40 (load port). Refer to FIG. In this wafer transfer mode, the purge plate 41 is in the retracted position (storage position), and the upper portion of the insertion hole 66 through which the purge plate 41 passes to move to the advanced position is occupied by the carrier 16 for wafer transfer. (Therefore, the purge plate 41 cannot be raised). In addition, an appropriate amount of high cleanliness is always passed through the gap between the purge port 40 (between the flange portion 26 and the flange panel 65) from the mini-environment space unit 3 of "positive pressure" (atmospheric pressure higher than the surroundings) to the outside of the apparatus 1. Since the air is flowing out, the inside of the device 1 and the inside of the carrier 16 are not contaminated by the low clean air outside the device 1. Note that, in the wafer transfer mode to the FOUP shown in FIG. 11A, the FIMS door 17 has an integrated form with the FOUP cover 17 attached, and is retracted to a position below the purge port opening 44 (retracted position). is doing.
搬送ロボット4によるウエハ搬送が終了すると、ステージ駆動機構29がキャリア16を載置したステージ14をパージポート開口部44から遠ざかる方向(すなわち、ミニエンバイロメント空間ユニット3から遠ざかる方向)に、微小後退させる。このステージ14の後退動作に連動して、FIMSドア12(このとき、FOUPカバー17を装着した一体化状態にある)が、FIMSドア昇汞機構55により、キャリア16の開放面161に対応した高さ(進出位置)まで上昇する。このようにしてキャリア16の開放面161と(FIMSドア12に装着された)FOUPカバー17との間にスペース(パージプレート41の作動エリア)が確保される。図11(b)参照。尚、このパージポート40のステージ14が行う微小な後退動作による移動は、パージポート40による雰囲気置換が効率良く行われる位置までキャリア16を移動させるという目的を兼ねている。 When the wafer transfer by the transfer robot 4 is completed, the stage drive mechanism 29 slightly retracts the stage 14 on which the carrier 16 is placed in a direction away from the purge port opening 44 (that is, a direction away from the mini-environment space unit 3). . In conjunction with the backward movement of the stage 14, the FIMS door 12 (which is in an integrated state where the FOUP cover 17 is attached at this time) has a height corresponding to the open surface 161 of the carrier 16 by the FIMS door lifting mechanism 55. Ascend to (advance position). In this way, a space (operating area of the purge plate 41) is ensured between the open surface 161 of the carrier 16 and the FOUP cover 17 (mounted on the FIMS door 12). Refer to FIG. Note that the movement of the purge port 40 by the minute backward movement performed by the stage 14 also has the purpose of moving the carrier 16 to a position where the atmosphere replacement by the purge port 40 is efficiently performed.
また、ステージ14は微小移動で後退することになるが、キャリア16周縁に設けられたフランジ部分26とパージポート開口部44の周縁に設けられた内壁45との間には5mm程度の隙間があり、ミニエンバイロメント空間ユニット3内部の高清浄空気がその隙間を通って処理装置外部に流出することで、装置外部からのミニエンバイロメント空間ユニット3内部への低清浄空気の流入を防いでいる。 Further, the stage 14 moves backward by a slight movement, but there is a gap of about 5 mm between the flange portion 26 provided on the periphery of the carrier 16 and the inner wall 45 provided on the periphery of the purge port opening 44. The high clean air inside the mini-environment space unit 3 flows out of the processing apparatus through the gap, thereby preventing the low clean air from flowing into the mini-environment space unit 3 from the outside of the apparatus.
その後、パージプレート41がパージプレート昇汞機構42によりキャリア16の開放面に対する所定の位置(作動位置)まで上昇し、キャリア16内部への不活性ガスの供給が可能となる。図11(c)参照。作動位置において、パージプレート41はFOUPキャリア16とFIMSドア12との間に位置し、上述したように(図9参照)、FOUPキャリア16に向けてスローで層流のパージガスを発生して送り込み、FOUPパージング(雰囲気置換操作)を実施する。 Thereafter, the purge plate 41 is raised to a predetermined position (operating position) with respect to the open surface of the carrier 16 by the purge plate ascending mechanism 42, and the inert gas can be supplied into the carrier 16. Refer to FIG. In the operating position, the purge plate 41 is located between the FOUP carrier 16 and the FIMS door 12, and as described above (see FIG. 9), a laminar purge gas is generated and sent toward the FOUP carrier 16 in a slow manner. FOUP purging (atmosphere replacement operation) is performed.
作動位置でのFOUPパージングが完了すると(たとえば、キャリア16内部への不活性ガスの供給が所定の時間行われたら)、パージプレート41はパージプレート昇汞機構42により元の待機位置まで移動させられる。図11(d)参照。なお、パージプレート41が所定の待機位置(後退位置)まで下降させられる間も不活性ガスを供給し続けることとしておけば、FOUP13のパージングに必要な全時間を短縮でき、また、キャリア16内の不活性ガスの濃度低下を抑えることができ、好ましい。この目的のため、代替または組み合わせとして、後述する補助ノズル68(図5)を用いて、そこからこのパージプレート下降モードの間、不活性ガスを補給するようにしてもよい。 When the FOUP purging at the operating position is completed (for example, when the inert gas is supplied into the carrier 16 for a predetermined time), the purge plate 41 is moved to the original standby position by the purge plate ascending mechanism 42. Refer to FIG. If the inert gas continues to be supplied while the purge plate 41 is lowered to the predetermined standby position (retracted position), the total time required for purging the FOUP 13 can be shortened. A decrease in the concentration of the inert gas can be suppressed, which is preferable. For this purpose, as an alternative or a combination, an auxiliary nozzle 68 (FIG. 5), which will be described later, may be used to replenish inert gas from there during this purge plate lowering mode.
パージプレート41が下降を終了したら、ステージ14上のキャリア16がFOUPカバー17とドッキングする位置までステージ14を前進させる。図11(e)参照。このドッキング位置で、FIMSドア12は装着していたFOUPカバー17を離脱させ、内部に具えられたラッチキー23bによりキャリア16をカバー17でロックしてFOUP13を密閉状態にする。その後、ステージ14はFOUP搬送ロボット、またはOHTとの受け渡し位置まで後退動作を行うことで、パージポート40の全ての動作(ローディングおよびパージングのシーケンス)が完了する。図11(f)参照。  When the purge plate 41 finishes descending, the stage 14 is advanced to a position where the carrier 16 on the stage 14 is docked with the FOUP cover 17. Refer to FIG. In this docking position, the FIMS door 12 removes the FOUP cover 17 that has been mounted, and the carrier 16 is locked with the cover 17 by means of a latch key 23b provided therein, so that the FOUP 13 is sealed. Thereafter, the stage 14 performs the backward movement to the transfer position with the FOUP transfer robot or the OHT, whereby all the operations (loading and purging sequences) of the purge port 40 are completed. Refer to FIG. *
さらに、処理装置1の種類やプロセスの種類によってはファンフィルタユニット5に具えられたファン8の回転数を上げることで、ミニエンバイロメント空間ユニット3内部の内圧を高くし、清浄度を上げようとするものもある。そういった処理装置の環境下でパージポート40を使用する場合、雰囲気置換の際にFIMSドア12キャリア16端部のフランジ部分26の隙間から強風(高速)の高清浄空気がパージプレート41周辺に流れ込んでしまい、その高清浄空気の流れに影響されて不活性ガスの層流が乱され、雰囲気置換が十分に行われない可能性がある。これは、雰囲気置換装置の上記隙間を小さく調整してそこから流入する高清浄空気の量を適量に調整する機構を設けることで防止できる。あるいは、上記の隙間調整型の高清浄空気量調整機構に代えて、ミニエンバイロメント空間ユニット3との流体遮蔽性を高めた以下のシール機構を使用することができる。 Further, depending on the type of the processing apparatus 1 and the type of process, an attempt is made to increase the internal pressure of the mini-environment space unit 3 and increase the cleanliness by increasing the rotational speed of the fan 8 provided in the fan filter unit 5. Some will do. When the purge port 40 is used in the environment of such a processing apparatus, strong air (high speed) high clean air flows into the periphery of the purge plate 41 from the gap of the flange portion 26 at the end of the FIMS door 12 carrier 16 at the time of atmosphere replacement. Therefore, the laminar flow of the inert gas is disturbed by the flow of the highly clean air, and the atmosphere replacement may not be sufficiently performed. This can be prevented by providing a mechanism that adjusts the gap of the atmosphere replacement device to be small and adjusts the amount of highly purified air flowing from there to an appropriate amount. Alternatively, in place of the gap adjustment type high clean air amount adjusting mechanism, the following sealing mechanism with improved fluid shielding with the mini-environment space unit 3 can be used.
具体的には、FIMSドア12周縁のミニエンバイロメント空間ユニット3に面する側に、FIMSドア12とフランジパネル65との間の隙間を非接触で遮蔽するように形成された、ラビリンスシール構造を有するシールドカバー67aもしくはシールドカバー67bを取り付けることで可能となる。図14(a)は、FIMSドア12にシールドカバー67aを取り付けた具体例を示した斜視図で、FIMSドア12のキャリア16側からみて左上方部分を欠いた一部切り欠図である。 Specifically, a labyrinth seal structure formed so as to shield the gap between the FIMS door 12 and the flange panel 65 in a non-contact manner on the side of the periphery of the FIMS door 12 facing the mini-environment space unit 3. This is possible by attaching the shield cover 67a or the shield cover 67b. FIG. 14A is a perspective view showing a specific example in which the shield cover 67a is attached to the FIMS door 12, and is a partially cutaway view of the FIMS door 12 with the upper left portion viewed from the carrier 16 side.
シールドカバー67aのキャリア16に面した端部はU字型のラビリンス構造を形成しており、フランジパネル65の開放面側周縁部と非接触で嵌合することで、雰囲気置換の際のキャリア16内へのミニエンバイロメント空間ユニット3内からの高清浄空気の浸入を遮断している。また、FIMSドア12の周縁にマッピングセンサ32が取り付けられる構成形態では、通常、キャリア16内部に向かって前進後退動作をさせるためのセンサ取付部33が配置されているので、シールドカバー67aを設ける場合はセンサ取付部33の動作を干渉しない形状とするため67aにセンサ出没穴を設けるが、これはなるべく小さな穴とするか、センシングしない場合は蓋をするなどの設計が望ましい。 The end of the shield cover 67a facing the carrier 16 forms a U-shaped labyrinth structure, and is fitted in a non-contact manner with the open surface side peripheral edge of the flange panel 65, so that the carrier 16 at the time of atmosphere replacement The entrance of highly clean air from inside the mini-environment space unit 3 is blocked. Further, in the configuration in which the mapping sensor 32 is attached to the periphery of the FIMS door 12, the sensor attachment portion 33 for moving forward and backward toward the inside of the carrier 16 is usually disposed, and therefore the shield cover 67 a is provided. In order to make the shape of the sensor mounting portion 33 not interfere with the operation of the sensor mounting portion 33, a sensor intrusion hole is provided in the 67a.
さらに、シールドカバー67aを取り付けるFIMSドア12はFIMSドア昇汞機構55によって鉛直方向に昇降可能となっているので、FIMSドア12に取り付けられているシールドカバー67aと内壁のフランジカバー65とが相対する端部については、一方の端部を凹部にし、対応するもう一方の端部を凸部とする互いに非接触のラビリンス構造とすることが好ましい。これにより、FIMSドア12とシールドカバー67aは動作可能となっている。また、凹部と凸部を互いに非接触としたラビリンスシール構造とすることで塵埃の発生する可能性が全くなく、キャリア16内部の清浄度も維持できることとなる。 Further, since the FIMS door 12 to which the shield cover 67a is attached can be moved up and down in the vertical direction by the FIMS door lifting mechanism 55, the shield cover 67a attached to the FIMS door 12 and the flange cover 65 on the inner wall face each other. About a part, it is preferable to set it as the mutually non-contact labyrinth structure which makes one edge part a recessed part and makes the other corresponding edge part a convex part. Thereby, the FIMS door 12 and the shield cover 67a are operable. Further, by employing a labyrinth seal structure in which the concave portion and the convex portion are not in contact with each other, there is no possibility of dust generation, and the cleanliness inside the carrier 16 can be maintained.
さらに、FIMSドア駆動機構43により、FIMSドア12をガイドレール62に沿ってガイドし、キャリア16に対し、ガイドレール62の規定範囲内で離間する方向と接近する方向に、移動自在な構成(図10参照)とする場合には、図13及び図14(b)に示すようなシールドカバー67bを設けることで図14(a)に示した具体例と同様の効果が得られる。 Further, the FIMS door drive mechanism 43 guides the FIMS door 12 along the guide rail 62 and is movable with respect to the carrier 16 in a direction away from and within a prescribed range of the guide rail 62 (see FIG. 10), by providing a shield cover 67b as shown in FIG. 13 and FIG. 14B, the same effect as the specific example shown in FIG. 14A can be obtained.
ここで、FIMSドア駆動機構43について図10を参照し説明する。FIMSドア駆動機構43はFIMSドア昇汞機構55に具えられた送りネジ機構56の移動子57に固定され、FIMSドア昇汞機構55によって昇降移動させられるベース部材58と、ベース部材58に取り付けられ、FIMSドア12を前進後退させる駆動源であるモータ60、モータ60の回転に連動して回転し、移動子63に固定されたFIMSドア12を前進後退させる送りネジ61、FIMSドア12の移動を案内するガイドレール62から成っている。 Here, the FIMS door drive mechanism 43 will be described with reference to FIG. The FIMS door drive mechanism 43 is fixed to a moving element 57 of a feed screw mechanism 56 provided in the FIMS door lifting mechanism 55, and is moved up and down by the FIMS door lifting mechanism 55, and is attached to the base member 58. The motor 60 that is a driving source for moving the door 12 forward and backward, and the feed screw 61 that rotates in conjunction with the rotation of the motor 60 to move the FIMS door 12 fixed to the mover 63 forward and backward, guide the movement of the FIMS door 12. It consists of a guide rail 62.
また、ガイドレール62は、ベース部材58の左右両端に固定されたブラケット64に取り付けられている。他にも、ブラケット64にはセンサ取付部33が回動可能に取り付けられており、センサ駆動機構34の動作により、マッピングセンサ32のキャリア16内への移動を可能にしている。なお、図10の具体例ではFIMSドアの駆動機構43としてモータ60送りネジ61を用いているが、これに代えて他の種類の駆動機構、たとえばエアシリンダや油圧シリンダ、或いはカムリンク機構を用いることとしても良い。 Further, the guide rail 62 is attached to brackets 64 fixed to the left and right ends of the base member 58. In addition, the sensor attachment portion 33 is rotatably attached to the bracket 64, and the movement of the mapping sensor 32 into the carrier 16 is enabled by the operation of the sensor drive mechanism 34. In the specific example of FIG. 10, the motor 60 feed screw 61 is used as the FIMS door drive mechanism 43, but another type of drive mechanism such as an air cylinder, a hydraulic cylinder, or a cam link mechanism is used instead. It's also good.
図13はシールド構造を有するFIMSドア12周辺をミニエンバイロメント空間ユニット3側から見た斜視図であり、図14(b)はそのシールド構造を示した斜視図で、FIMSドア12のキャリア16側から見た正面視左上方部分を欠いた一部切り欠き図である。シールドカバー67bはFIMSドア12の両端に具えられているブラケット64に固定されており、フランジパネル65の開放面に対応した門型の開口形状を有しており、その開放面内はFIMSドア12及びウエハ搬送ロボット4により搬送されるウエハ15が十分通行可能な面積を有している。また、ブラケット64には、センサ取付部33が回転自在に配置されており、このセンサ取付部33に取り付けられたマッピングセンサ32がキャリア16内部に向かって前進後退してウエハマッピングを遂行できるようになっている。このため、シールドカバー67bは、センサ取付部33の回転動作に干渉しない取付け位置及び形状を持つように配慮する。 13 is a perspective view of the periphery of the FIMS door 12 having a shield structure as viewed from the mini-environment space unit 3 side, and FIG. 14B is a perspective view showing the shield structure, and the carrier 16 side of the FIMS door 12 It is the partially cutaway figure which lacked the front view upper left part seen from the front. The shield cover 67b is fixed to brackets 64 provided at both ends of the FIMS door 12, and has a gate-shaped opening shape corresponding to the open surface of the flange panel 65. The inside of the open surface is the FIMS door 12. In addition, the wafer 15 transported by the wafer transport robot 4 has a sufficiently large area. In addition, a sensor mounting portion 33 is rotatably disposed on the bracket 64 so that the mapping sensor 32 attached to the sensor mounting portion 33 can move forward and backward toward the inside of the carrier 16 to perform wafer mapping. It has become. For this reason, it is considered that the shield cover 67b has an attachment position and shape that do not interfere with the rotation operation of the sensor attachment portion 33.
また、シールドカバー67bを取り付けるブラケット64はFIMSドア昇汞機構55によって鉛直方向に昇降可能となっているので、シールドカバー67bとフランジカバー65との相対する端部については、シールドカバー67aを設けた場合と同様に、一方の端部を凹部(コの字型)にし対応するもう一方の端部を凸部とする互いに非接触のラビリンス構造とすることで、ブラケット64とシールドカバー67bは動作可能となり、また凹部と凸部を互いに非接触とすることで塵埃の発生は全くなく、キャリア16内部の清浄度も維持できることとなる。 Further, since the bracket 64 for attaching the shield cover 67b can be moved up and down in the vertical direction by the FIMS door lifting mechanism 55, the shield cover 67a is provided at the opposite ends of the shield cover 67b and the flange cover 65. In the same manner as above, the bracket 64 and the shield cover 67b can be operated by adopting a labyrinth structure in which one end is a recess (a U-shape) and the corresponding other end is a protrusion. Further, by making the concave and convex portions non-contact with each other, no dust is generated, and the cleanliness inside the carrier 16 can be maintained.
さらに、図13に示すように、FIMSドア12はFIMSドア駆動機構43によりガイドレール62が案内する範囲内を移動可能となっているので、FIMSドア12がキャリア16に対して最も離間した位置に到達した際、FIMSドア12の周縁とシールドカバー67bの端部が非接触嵌合することで、FIMSドア12とシールドカバー67bとの間の隙間が遮蔽されることとなり(最も深いラビリンスシール状態の確保)、陽圧のミニエンバイロメント空間ユニット3内の高清浄空気が装置外部に少量流出することで外部の空気の侵入を防止している。 Further, as shown in FIG. 13, the FIMS door 12 can be moved within the range guided by the guide rail 62 by the FIMS door drive mechanism 43, so that the FIMS door 12 is located at the position farthest from the carrier 16. When reaching, the peripheral edge of the FIMS door 12 and the end of the shield cover 67b are non-contact fitted, so that the gap between the FIMS door 12 and the shield cover 67b is shielded (in the deepest labyrinth seal state). Securing), a small amount of highly purified air in the positive-pressure mini-environment space unit 3 flows out of the apparatus, thereby preventing the entry of external air.
加えて、FIMSドア12がガイドレール62によって案内される動作範囲内を移動することによって、FIMSドア12とシールドカバー67bとの隙間の開口量を変化させる(ラビリンスシール状態の深さを変える)こととなり、FIMSドア12の位置に依存してミニエンバイロメント空間ユニット3内からの高清浄空気の流入量を調節することができる。 In addition, the opening amount of the gap between the FIMS door 12 and the shield cover 67b is changed (the depth of the labyrinth seal state is changed) by moving the FIMS door 12 within the operation range guided by the guide rail 62. Thus, depending on the position of the FIMS door 12, the inflow amount of highly clean air from the mini-environment space unit 3 can be adjusted.
図14(b)はカバー17と一体化されたFIMSドア12がガイドレール62上の中間位置にある時点を表した図で、この図を元に説明する。外気に比べ高圧に維持されたミニエンバイロメント空間ユニット3内の高清浄空気はFIMSドア12とシールドカバー67bの間から、キャリア16縁部とフランジパネル65の間に設けられた隙間を通って装置外部に流出する際に、キャリア16内にある高清浄な空気も誘引して流出することとなり、雰囲気置換の効率を上げる効果がある。この構造により、処理装置1の都合によりファンフィルタユニット5の回転数を変更しミニエンバイロメント空間ユニット3内の内圧を変更することになったとしても、最適な高清浄空気の流出量を容易に求めることが出来ることとなり、従来行っていた、内圧の変更に伴う改造を行う必要がなくなる。 FIG. 14B is a view showing a point in time when the FIMS door 12 integrated with the cover 17 is at an intermediate position on the guide rail 62, and will be described based on this figure. The highly purified air in the mini-environment space unit 3 maintained at a higher pressure than the outside air passes through the gap provided between the edge of the carrier 16 and the flange panel 65 from between the FIMS door 12 and the shield cover 67b. When flowing out, the highly clean air in the carrier 16 is also attracted and flows out, which has the effect of increasing the efficiency of atmosphere replacement. With this structure, even if the rotational speed of the fan filter unit 5 is changed due to the convenience of the processing apparatus 1 and the internal pressure in the mini-environment space unit 3 is changed, the optimal amount of high clean air can be easily discharged. Therefore, it is not necessary to make a modification in accordance with the change of the internal pressure, which has been conventionally performed.
さらに、FIMSドア12を前後に移動可能とすることで、キャリア16とFIMSドア12の間に位置するパージプレート41のキャリア16開放面に対する位置設定に自由度が増し、最適の不活性ガス供給量とパージプレート位置、最適のパージプレート面積とパージプレート位置など条件探索できる効果がある。 Furthermore, by making the FIMS door 12 movable back and forth, the position of the purge plate 41 located between the carrier 16 and the FIMS door 12 can be set with respect to the carrier 16 opening surface, and the optimum inert gas supply amount is increased. And the purge plate position, and the optimum purge plate area and purge plate position can be searched.
なお、半導体製造装置全般に対する標準規格であるSEMI規格には、ミニエンバイロメント空間ユニット3を形成する壁面からの突出部分は100mm以内とするという規定があるが、本実施例において、シールドカバー67a及び67bのミニエンバイロメント空間ユニット3側への突出量は100mm以内であり、SEMI規格に準拠したものとなっている。 Note that the SEMI standard, which is a standard for semiconductor manufacturing equipment in general, has a provision that the protruding portion from the wall surface forming the mini-environment space unit 3 is within 100 mm, but in this embodiment, the shield cover 67a and The amount of protrusion of the 67b toward the mini-environment space unit 3 is within 100 mm, and is compliant with the SEMI standard.
ところで、パージプレート41による不活性ガスの供給が完了した後、キャリア16の開放面161がカバー17により密閉されることで全ての雰囲気置換動作は終了となるが、パージプレート41による不活性ガスの供給終了からカバー17によるキャリア16の開放面の密閉が完了した後、キャリア16内の酸素濃度が増加する現象(キャリア16内の不活性ガスの濃度が低下することを意味する)が発生する。これは、パージプレート41からのパージガス流消滅に伴う過渡的なパージガス濃度低下現象である。これは、雰囲気置換終了後、装置外部に流出されず残留していた空気がキャリア16全体に拡散したことで結果的に内部全体の不活性ガス濃度を下げてしまっていることと、雰囲気置換終了後、キャリア16の開放面が密閉されるまでの僅かな時間に、キャリア16周辺の空気がキャリア16内に入りこんでしまう為と考えられる。パージプレート41によるパージングの時間が短すぎる場合に、この過渡的なパージガス濃度低下現象は、密閉操作後に、(キャリア16内の不活性ガス濃度の平均値は実質、変動しないが)、キャリア16内の中央部にある不活性ガスの濃度は、安定する前に規定値以下にまで減少する。 By the way, after the supply of the inert gas by the purge plate 41 is completed, the open surface 161 of the carrier 16 is sealed by the cover 17 to complete all the atmosphere replacement operations. After the supply is completed, the cover 17 closes the open surface of the carrier 16 and then the oxygen concentration in the carrier 16 increases (means that the inert gas concentration in the carrier 16 decreases). This is a transient purge gas concentration lowering phenomenon accompanying the disappearance of the purge gas flow from the purge plate 41. This is because after the atmosphere replacement is completed, the remaining air that has not flowed out of the apparatus has diffused throughout the carrier 16, resulting in a decrease in the inert gas concentration in the entire interior, and the completion of the atmosphere replacement. Thereafter, it is considered that the air around the carrier 16 enters the carrier 16 in a short time until the open surface of the carrier 16 is sealed. When the purging time by the purge plate 41 is too short, this transient purge gas concentration lowering phenomenon occurs after the sealing operation (although the average value of the inert gas concentration in the carrier 16 does not substantially fluctuate), The concentration of the inert gas in the center of the plate decreases to below a specified value before stabilizing.
このようなパージガス濃度低下を抑制するため、上記実施例の雰囲気置換構成に、図5に示すような補助ノズル68を追加することができる。補助ノズル68は、パージポート開口部44周縁に具えられた内壁45に設けられる。そして、パージプレート41が所定の待機位置(収納位置)への移動を始めた時点(下降開始時)からキャリア16がカバー17によって密閉されるまでの間、補助ノズル68からキャリア16とカバー17との間に向かって不活性ガスを供給する。補助ノズル68からのパージガス流供給は上記パージプレート41からのパージガス流消滅を補償するように機能する。また、補助ノズル68からのパージガス流供給は、パージポート40が所要の雰囲気置換を達成するのに必要なトータルのパージングタイムを短縮する働きがある。 In order to suppress such a decrease in purge gas concentration, an auxiliary nozzle 68 as shown in FIG. 5 can be added to the atmosphere replacement configuration of the above embodiment. The auxiliary nozzle 68 is provided on the inner wall 45 provided on the periphery of the purge port opening 44. Then, from the point in time when the purge plate 41 starts moving to a predetermined standby position (storage position) (at the start of lowering) until the carrier 16 is sealed by the cover 17, the carrier 16 and the cover 17 An inert gas is supplied toward The purge gas flow supply from the auxiliary nozzle 68 functions to compensate for the purge gas flow disappearance from the purge plate 41. The purge gas flow supply from the auxiliary nozzle 68 serves to shorten the total purging time necessary for the purge port 40 to achieve the required atmosphere replacement.
このようにして、不活性ガスがキャリア16とカバー17と内壁45a、45b、45cに囲まれた空間内に充満することで空気がキャリア16内部に入り込むのを防止できる。また、補助ノズル68からの不活性ガス補給により、キャリア16周辺の不活性ガス濃度が確保され、カバー17の閉扉後、キャリア16内部の不活性ガス濃度が基準値以下に低下する現象を抑制することができる。 Thus, air can be prevented from entering the inside of the carrier 16 by filling the space surrounded by the carrier 16, the cover 17, and the inner walls 45a, 45b, 45c with the inert gas. Further, by supplying the inert gas from the auxiliary nozzle 68, the inert gas concentration around the carrier 16 is ensured, and the phenomenon that the inert gas concentration inside the carrier 16 decreases below the reference value after the cover 17 is closed is suppressed. be able to.
この補助ノズル68はパージポート開口部44周縁のどの内壁45a-dに設けても良い。補助ノズル68から放出される不活性ガスの流速を速くし過ぎると、キャリア16が周辺の空気を巻き込んでしまい十分な不活性ガス濃度が達成困難になる。したがって、補助ノズル68から補給する不活性ガスの流速は、パージプレート41から供給される不活性ガスの流速とほぼ同等であるのが好ましい。ここで、補助ノズル68不活性ガス流出口の形状は、パージポート開口部44の内壁45の一辺とほぼ同じ長さのスリット状であることが好ましい。 The auxiliary nozzle 68 may be provided on any inner wall 45a-d on the periphery of the purge port opening 44. If the flow rate of the inert gas discharged from the auxiliary nozzle 68 is increased too much, the carrier 16 entrains the surrounding air, making it difficult to achieve a sufficient inert gas concentration. Therefore, it is preferable that the flow rate of the inert gas supplied from the auxiliary nozzle 68 is substantially equal to the flow rate of the inert gas supplied from the purge plate 41. Here, the shape of the inert gas outlet of the auxiliary nozzle 68 is preferably a slit having the same length as one side of the inner wall 45 of the purge port opening 44.
また上記に加えて、補助ノズル68はカバー17の開扉動作の際に不活性ガス若しくは高清浄空気といった無塵ガスを供給することで、FOUP13内部を高清浄雰囲気に維持することも可能である。すなわち、FOUP13が開扉された後ステージ駆動機構29による前進動作が完了するまでの間、FIMSドア12はFIMSドア駆動機構43によりキャリア16に対して離間する方向に移動するが、この際、FIMSドア12が離間する方向に移動するに従って、FIMSドア12とシールドカバー67bとの隙間が徐々に小さくなり、それに従って装置外部に流出する高清浄空気の流量も少なくなっていく。 In addition to the above, the auxiliary nozzle 68 can also maintain the interior of the FOUP 13 in a highly clean atmosphere by supplying a dustless gas such as an inert gas or highly clean air when the cover 17 is opened. . That is, after the FOUP 13 is opened and until the forward movement by the stage drive mechanism 29 is completed, the FIMS door 12 is moved away from the carrier 16 by the FIMS door drive mechanism 43. As the door 12 moves away, the gap between the FIMS door 12 and the shield cover 67b gradually decreases, and the flow rate of highly clean air that flows out of the apparatus accordingly decreases.
その結果、装置外部の低清浄な空気がキャリア16のフランジ部分26と内壁45との隙間を通ってキャリア16内部に浸入してしまい、キャリア16内部を塵埃で汚染してしまう可能性がある。そこで、FOUP13が開扉された後、ステージ駆動機構29による前進動作が完了するまでの間、補助ノズル68からキャリア16開放面とカバー17の間に無塵ガスを流出させることで、低清浄な空気がキャリア16内部に浸入することが防止される。 As a result, low-clean air outside the apparatus may enter the inside of the carrier 16 through the gap between the flange portion 26 of the carrier 16 and the inner wall 45, and the inside of the carrier 16 may be contaminated with dust. Therefore, after the FOUP 13 is opened, the dust-free gas flows out from the auxiliary nozzle 68 between the carrier 16 opening surface and the cover 17 until the forward movement operation by the stage drive mechanism 29 is completed. Air is prevented from entering the inside of the carrier 16.
次に、上記の実施例を具えたパージポート40による雰囲気置換試験の結果を開示する。図15に示すように、試験は実際の処理装置1と同じミニエンバイロメント空間ユニット3を形成する試験用のクリーンブース(試験用ミニエンバイロメント空間ユニット3)にパージポート40を設置し、そのパージポート40に載置された試験用FOUP13内部の酸素濃度を測定した。酸素濃度計78としては、東レエンジニアリング株式会社製ジルコニア式酸素濃度計LC-450Aを使用した。雰囲気置換に使用する不活性ガスは、一般的に最も雰囲気置換に使用されている純度99.99パーセント以上の窒素ガスを供給源69であるボンベから供給経路を介してパージポート40に導入した。 Next, the results of an atmosphere replacement test using the purge port 40 having the above-described embodiment will be disclosed. As shown in FIG. 15, the test is performed by installing a purge port 40 in a test clean booth (test mini-environment space unit 3) that forms the same mini-environment space unit 3 as the actual processing apparatus 1. The oxygen concentration inside the test FOUP 13 placed on the port 40 was measured. As the oxygen concentration meter 78, a zirconia oxygen concentration meter LC-450A manufactured by Toray Engineering Co., Ltd. was used. As the inert gas used for the atmosphere replacement, nitrogen gas having a purity of 99.99% or more generally used for the atmosphere replacement was introduced into the purge port 40 from the cylinder as the supply source 69 through the supply path.
窒素濃度ではなく酸素濃度を測定した理由は、窒素濃度測定器に比べ酸素濃度測定器が安価で容易に入手できるという点と、雰囲気置換に使用される不活性ガスは窒素に限らないからであり、酸素濃度を測定することで試験用FOUP13内部の雰囲気置換の進捗度合いを推し量ることが可能だからである。また、本酸素濃度測定器LC-450Aは露点で表示される湿度も測定でき、不活性ガスとして乾燥空気を用いる場合でも使用できる。試験用FOUP13は通常用いられるFOUPと同じくキャリア16とカバー17から構成されていて、キャリア16にはウエハ15を載置する棚が25段具えられているが、内部雰囲気を採取するためのチューブ79を挿通させるための挿通穴が開けられているのが通常のFOUPとは異なる部分である。 The reason for measuring oxygen concentration instead of nitrogen concentration is that oxygen concentration measuring instruments are cheaper and easier to obtain than nitrogen concentration measuring instruments, and the inert gas used for atmosphere replacement is not limited to nitrogen. This is because it is possible to estimate the progress of the atmosphere replacement in the test FOUP 13 by measuring the oxygen concentration. Further, the present oxygen concentration measuring instrument LC-450A can also measure the humidity indicated by the dew point, and can be used even when dry air is used as an inert gas. The test FOUP 13 is composed of a carrier 16 and a cover 17 similar to a commonly used FOUP. The carrier 16 is provided with 25 shelves on which the wafer 15 is placed, but a tube 79 for collecting the internal atmosphere. An insertion hole for allowing insertion of the FOUP is different from a normal FOUP.
試験では25段の全ての棚にウエハを載置して、試験用FOUP13内部の酸素濃度測定位置は雰囲気置換時のパージプレート41から見て奥側の、14段目の棚付近とした。酸素濃度測定器78は、図15にあるように内部に具えられた吸引ポンプがチューブ79を介して試験用FOUP13内部の雰囲気を吸引し、内部に具えられた検出手段によりその吸引した雰囲気の酸素濃度を測定した。 In the test, the wafers were placed on all the 25-stage shelves, and the oxygen concentration measurement position inside the test FOUP 13 was set near the 14th-stage shelf on the back side when viewed from the purge plate 41 during atmosphere replacement. As shown in FIG. 15, the oxygen concentration measuring device 78 sucks the atmosphere inside the test FOUP 13 through the tube 79 by the suction pump provided inside, and the oxygen in the sucked atmosphere by the detection means provided inside. Concentration was measured.
まず第1の試験として、雰囲気置換を行う上で試験用ミニエンバイロメント空間ユニット3内部と外部環境との差圧はどの程度が好ましいかを試験してみた。試験用ミニエンバイロメント空間ユニット3の内部圧力は、高清浄空気を送り込むファンフィルタユニット5に具えられたファン8の回転数を増減させることで調節している。なお、ミニエンバイロメント空間ユニット3内部を高清浄に保つという理由から、一般に、外部環境に対してミニエンバイロメント空間ユニット3内部は陽圧に保たれるため、外部環境に対する差圧が負圧である場合の試験は行っていない。また、窒素ガスの供給はパージプレート41からのみで行い、補助ノズル68による供給は行っていない。試験用FOUP13内部の酸素濃度は、内部に載置されたウエハ表面の酸化を防止するという観点から、100ppm(0.01%)以下を目標値とした。 First, as a first test, an experiment was conducted to determine what is the preferable differential pressure between the inside of the test mini-environment space unit 3 and the external environment when performing atmosphere replacement. The internal pressure of the test mini-environment space unit 3 is adjusted by increasing / decreasing the number of rotations of the fan 8 provided in the fan filter unit 5 that feeds highly clean air. Since the inside of the mini-environment space unit 3 is generally kept at a positive pressure with respect to the external environment because the inside of the mini-environment space unit 3 is kept highly clean, the differential pressure with respect to the external environment is a negative pressure. Some cases are not tested. Further, the nitrogen gas is supplied only from the purge plate 41 and is not supplied from the auxiliary nozzle 68. The oxygen concentration inside the test FOUP 13 was set to 100 ppm (0.01%) or less from the viewpoint of preventing oxidation of the wafer surface placed inside.
試験は、試験用ミニエンバイロメント空間ユニット3の内外差圧を3.5Paと2.5Paとに設定し、それぞれの環境に窒素ガスの流量を毎分120リットルで110秒供給した時と、毎分150リットルで80秒供給した時の、酸素濃度の変化を調べた。 In the test, the internal / external pressure difference of the test mini-environment space unit 3 was set to 3.5 Pa and 2.5 Pa, and when the nitrogen gas flow rate was supplied to each environment at 120 liters per minute for 110 seconds, The change in oxygen concentration when supplying for 80 seconds at 150 liters was examined.
図16がその試験結果を表したグラフである。縦軸を酸素濃度(ppm)、横軸を経過時間(秒)とし、パージプレート41からキャリア16内部に窒素ガスの供給を開始した時点を0としている。窒素ガスの供給が停止されてキャリア16の内部雰囲気がカバー17によって完全に密閉されるまでの時間は約1秒必要であるから、供給開始から81秒、若しくは111秒以降は密閉された試験用FOUP13内部の酸素濃度の推移を表していることとなる。 FIG. 16 is a graph showing the test results. The vertical axis represents the oxygen concentration (ppm), the horizontal axis represents the elapsed time (seconds), and the time when the supply of nitrogen gas from the purge plate 41 to the inside of the carrier 16 is set to 0. Since it takes about 1 second until the internal atmosphere of the carrier 16 is completely sealed by the cover 17 after the supply of nitrogen gas is stopped, 81 seconds after the start of the supply, or 111 seconds or more are used for the sealed test. This represents the transition of the oxygen concentration inside the FOUP 13.
内外差圧3.5Paの環境で毎分120リットルの流量の窒素ガスを110秒供給した場合、窒素ガスの供給開始から111秒後の試験用FOUP13が密閉された時点での酸素濃度は10ppmまで低下し、供給開始から180秒後(密閉後69秒)の時点で47.2ppmに上昇しているが、目標値の100ppm以下を維持しておりほぼ安定している。また、内外差圧3.5Paで流量が毎分150リットルの窒素ガスを80秒供給した場合は、供給開始から81秒後で酸素濃度は8.9ppmまで下がるが、供給開始から180秒経過した時点で262ppmまで上昇している。この結果から見ると、不活性ガスの流量と供給時間を調節すれば、内外差圧4Paの陽圧までは上げることが可能である。 When nitrogen gas at a flow rate of 120 liters per minute is supplied for 110 seconds in an internal / external pressure difference of 3.5 Pa, the oxygen concentration at the time when the test FOUP 13 is sealed 111 seconds after the start of supply of nitrogen gas is up to 10 ppm. Although it has decreased and increased to 47.2 ppm 180 seconds after the start of supply (69 seconds after sealing), the target value is maintained below 100 ppm and is almost stable. In addition, when nitrogen gas having a flow rate of 150 liters / min was supplied for 80 seconds at an internal / external pressure difference of 80 Pa, the oxygen concentration dropped to 8.9 ppm 81 seconds after the start of supply, but 180 seconds had elapsed since the start of supply. It has risen to 262 ppm at the time. From this result, it is possible to increase the positive pressure of the internal / external differential pressure of 4 Pa by adjusting the flow rate of the inert gas and the supply time.
窒素ガスの供給が終了し、試験用FOUP13の密閉完了後、どの条件でも酸素濃度の上昇が見られるが、差圧が高いほど酸素濃度の上昇率も大きいことがわかる。これは窒素ガスの供給終了後、パージプレート41が待機位置に下降する際、試験用ミニエンバイロメント空間ユニット3から外部に流出する高清浄空気の一部がキャリア16上部からキャリア16内部に流れ込み、密閉完了後も試験用FOUP13内の全体に拡散していることが原因と考えられる。 After the supply of the nitrogen gas is completed and the sealing of the test FOUP 13 is completed, the oxygen concentration increases under any conditions, but it can be seen that the higher the differential pressure, the larger the increase rate of the oxygen concentration. This is because when the purge plate 41 descends to the standby position after the supply of the nitrogen gas is completed, a part of the highly purified air flowing out from the test mini-environment space unit 3 flows into the carrier 16 from the upper part of the carrier 16. The cause is considered to be diffused throughout the test FOUP 13 even after the sealing is completed.
また、窒素ガスの供給停止直後の酸素濃度には大きな差は見られず、どの差圧環境でも10ppm程度で目標値を十分満たしているが、差圧3.5Paの環境で毎分150リットルの窒素ガスを80秒供給した試験では、密閉後の酸素濃度の上昇が大きく、窒素ガスの供給開始から150秒(密閉後69秒)の時点で200ppm、供給開始から180秒(密閉後99秒)の時点で259ppmであった。また、内外差圧2.5Paの環境であれば、180秒経過時点での酸素濃度は62.7ppmと30.8ppmであり、目標値を十分満たす結果が得られている。 In addition, there is no significant difference in oxygen concentration immediately after the supply of nitrogen gas is stopped, and the target value is sufficiently satisfied at about 10 ppm in any differential pressure environment, but 150 liters per minute in an environment with a differential pressure of 3.5 Pa. In the test in which nitrogen gas was supplied for 80 seconds, the increase in oxygen concentration after sealing was large, 200 ppm at 150 seconds from the start of nitrogen gas supply (69 seconds after sealing), 180 seconds from the start of supply (99 seconds after sealing) At that time, it was 259 ppm. Further, in an environment where the internal / external differential pressure is 2.5 Pa, the oxygen concentrations at the time of 180 seconds elapse are 62.7 ppm and 30.8 ppm, and a result that sufficiently satisfies the target value is obtained.
次に、窒素ガスの流量と供給時間を一定にした状態で、試験用ミニエンバイロメント空間ユニット3の内外差圧が試験用FOUP13密閉後の酸素濃度にどの程度影響するかの試験を行った。試験は試験用ミニエンバイロメント空間ユニット3の内外差圧を0Pa、1.0Pa、2.5Pa、および3.5Paに設定し、それぞれの内外差圧について、流量毎分150リットルの窒素ガスを110秒間供給した後、密閉された試験用FOUP13内部の酸素濃度の推移を測定することとした。その結果が図17である。 Next, a test was performed to determine how much the pressure difference between the inside and outside of the test mini-environment space unit 3 affects the oxygen concentration after sealing the test FOUP 13 with the nitrogen gas flow rate and supply time constant. In the test, the internal / external differential pressure of the test mini-environment space unit 3 was set to 0 Pa, 1.0 Pa, 2.5 Pa, and 3.5 Pa, and for each internal / external differential pressure, nitrogen gas at a flow rate of 150 liters per minute was set to 110. After supplying for 2 seconds, the transition of the oxygen concentration inside the sealed test FOUP 13 was measured. The result is shown in FIG.
試験の結果、試験用ミニエンバイロメント空間ユニット3の内外差圧が低ければ低いほど、密閉後の試験用FOUP13内部の酸素濃度上昇は抑えられることがわかる。供給開始から180秒経過時点での酸素濃度値は、3.5Paで152ppmとなっており、前述の流量120リットルでの試験と比べても酸素濃度の上昇は抑えられていることがわかる。さらに低い差圧1.0Paでの酸素濃度は、供給開始から180秒経過時点での酸素濃度値は28.9ppmまで抑えられている。酸素濃度の上昇量は前述した3.5Paでの試験の数値と比較して、差圧2.5Paで4分の1以下、差圧1.0Paだと10分の1以下にまで抑えられる結果となった。 As a result of the test, it can be seen that the lower the internal / external differential pressure of the test mini-environment space unit 3, the lower the oxygen concentration inside the test FOUP 13 after sealing. The oxygen concentration value after 180 seconds from the start of supply is 152 ppm at 3.5 Pa, and it can be seen that the increase in oxygen concentration is suppressed compared to the above-described test at a flow rate of 120 liters. Further, the oxygen concentration at a lower differential pressure of 1.0 Pa is suppressed to 28.9 ppm after 180 seconds from the start of supply. The increase in oxygen concentration is less than one-fourth at a differential pressure of 2.5 Pa and less than one-tenth at a differential pressure of 1.0 Pa, compared to the numerical value of the test at 3.5 Pa described above. It became.
図17での差圧0Paのグラフは、ファンフィルタユニット5を停止して試験用ミニエンバイロメント空間ユニット3の内外差圧をゼロにした場合のものである。窒素ガス供給開始から110秒後には酸素濃度4.6ppmまで下がり、180秒後でも9.1ppmを維持していて、徐々には上昇しているがほぼ安定している。従って、最低のミニエンバイロメント内外差圧はゼロPaで良いことが解った。 The graph of the differential pressure of 0 Pa in FIG. 17 is obtained when the fan filter unit 5 is stopped and the internal / external differential pressure of the test mini-environment space unit 3 is made zero. 110 seconds after the start of nitrogen gas supply, the oxygen concentration decreased to 4.6 ppm and maintained 9.1 ppm even after 180 seconds, and gradually increased but almost stabilized. Therefore, it was found that the minimum mini-environment internal / external differential pressure may be zero Pa.
ただし、半導体工場などで稼働される実際の処理装置1の場合、ミニエンバイロメント空間ユニット3内部では搬送ロボット4がウエハ15を搬送しており清浄度を維持する必要があるので、ファンフィルタユニット5からの高清浄空気の供給はこの種の処理装置1にとって必要である。上記のように、図面に示した特定実施例のパージポート40(雰囲気置換装置)は、隙間を介して外部と流体(気体)連通している。そこで、このような環境に実施例のパージポート40(雰囲気置換装置)を適用する場合には、ミニエンバイロメント空間ユニット3の内外差圧は下限を0.1Paとし、望ましくは差圧1.0Pa付近から、上限4Pa程度となる。すなわち、隙間流体(気体)連通型のパージポート40を実際の処理装置1に適用する場合、処理装置1における実用上安定した清浄度を維持しつつ、パージポート40による効率の良い雰囲気置換の可能となる差圧(ミニエンバイロメント空間ユニット3の内外差圧)はこの範囲となる。望ましくは差圧を0.5Pa以上、2.5pa以下とした環境での運用とすることで、図示の特定実施例に係るパージポート40は、最長でも180秒または180秒程度の雰囲気置換操作時間により、FOUP13内の酸素濃度100ppm以下(ウエハの酸化を十分に抑制できる雰囲気置換がなされたことを意味する濃度目標値)を確実に達成できる。
以上のように、図示の特定実施例に係るパージポート40(雰囲気置換装置)は、外部環境との間で、隙間を通じて気体(高清浄度空気、低清浄度空気)が、制限された量ではあるが、連通した構造である。特に、図示の特定実施例に係るパージポート40(雰囲気置換装置)は、高清浄度空気ユニット3の状態(たとえば、その陽圧)に性能が依存する。しかしながら、高清浄度空気ユニット3が特定の図示実施例に係るパージポート40(雰囲気置換装置)のコンポーネントを構成していないことは明らかである。したがって、高清浄度空気ユニット3自体は、本発明の一部を構成しないと解されるべきである。
However, in the case of an actual processing apparatus 1 operated in a semiconductor factory or the like, since the transfer robot 4 is transferring the wafer 15 inside the mini-environment space unit 3 and it is necessary to maintain the cleanliness, the fan filter unit 5 The supply of highly clean air from is necessary for this type of treatment device 1. As described above, the purge port 40 (atmosphere replacement device) of the specific embodiment shown in the drawing is in fluid (gas) communication with the outside through a gap. Therefore, when the purge port 40 (atmosphere replacement device) of the embodiment is applied to such an environment, the internal / external differential pressure of the mini-environment space unit 3 has a lower limit of 0.1 Pa, preferably a differential pressure of 1.0 Pa. From the vicinity, the upper limit is about 4 Pa. That is, when the purge port 40 of the gap fluid (gas) communication type is applied to the actual processing apparatus 1, it is possible to efficiently replace the atmosphere by the purge port 40 while maintaining a practically stable cleanliness in the processing apparatus 1. The differential pressure (internal / external differential pressure of the mini-environment space unit 3) is in this range. Desirably, the purge port 40 according to the illustrated specific example has an atmosphere replacement operation time of at most about 180 seconds or 180 seconds by operating in an environment where the differential pressure is 0.5 Pa or more and 2.5 pa or less. Thus, the oxygen concentration in the FOUP 13 of 100 ppm or less (a concentration target value that means that atmosphere substitution that can sufficiently suppress the oxidation of the wafer has been made) can be achieved.
As described above, the purge port 40 (atmosphere replacement device) according to the illustrated specific example has a limited amount of gas (high clean air, low clean air) through the gap with the external environment. There is a communication structure. In particular, the performance of the purge port 40 (atmosphere replacement device) according to the illustrated specific example depends on the state of the high cleanliness air unit 3 (for example, its positive pressure). However, it is clear that the high cleanliness air unit 3 does not constitute a component of the purge port 40 (atmosphere replacement device) according to the specific illustrated embodiment. Therefore, it should be understood that the high cleanliness air unit 3 itself does not form part of the present invention.
次に、試験用ミニエンバイロメント空間ユニット3内部の差圧を2.5Paの陽圧に維持した環境にパージポート40を適用し、パージングガスとしての窒素ガスについて、流量と供給時間の条件を変えた場合において、パージング操作に対するFOUP13内の酸素濃度の時間推移をみる試験を行った。この試験では、窒素ガスの流量を毎分120リットルと毎分150リットルに設定し、それぞれの流量に対し、供給時間を80秒とした場合と、110秒とした場合の酸素濃度の推移から、流量と供給時間の関係を見ることとした。図18がその結果のグラフである。 Next, the purge port 40 is applied to an environment in which the differential pressure inside the test mini-environment space unit 3 is maintained at a positive pressure of 2.5 Pa, and the conditions of the flow rate and the supply time of the nitrogen gas as the purging gas are changed. In this case, a test was conducted to see the time transition of the oxygen concentration in the FOUP 13 with respect to the purging operation. In this test, the flow rate of nitrogen gas was set to 120 liters per minute and 150 liters per minute, and for each flow rate, the change in oxygen concentration when the supply time was 80 seconds and 110 seconds, We decided to look at the relationship between flow rate and supply time. FIG. 18 is a graph of the results.
なお、流量毎分120リットルの窒素ガスを80秒供給した場合の窒素ガス総供給量は160リットルであり、110秒供給した場合の総供給量は220リットルとなる。また、流量毎分150リットルの窒素ガスを80秒供給した場合の窒素ガス総供給量は200リットルであり、110秒供給した場合の総供給量は275リットルとなる。窒素ガスの総供給量が毎分160リットルと、最も少ない条件である流量が毎分120リットルの窒素ガスを80秒供給した場合では酸素濃度100ppm以下に一旦到達するが、100ppm以下の目標を維持できなかった。 The total supply amount of nitrogen gas when supplying 120 liters of nitrogen gas per minute for 80 seconds is 160 liters, and the total supply amount of 110 liters when supplying nitrogen gas for 110 seconds is 220 liters. Further, the total supply amount of nitrogen gas when supplying 150 liters of nitrogen gas per minute for 80 seconds is 200 liters, and the total supply amount when supplying 110 seconds is 275 liters. When the total supply of nitrogen gas is 160 liters per minute and the flow rate of 120 liters per minute of nitrogen gas is supplied for 80 seconds, the oxygen concentration once reaches 100 ppm or less, but the target of 100 ppm or less is maintained. could not.
また、総供給量275リットルと最も多い条件である流量が毎分150リットルの窒素ガスを110秒供給した場合の酸素濃度は一時4.57ppmまで低下しているが、密閉後の酸素濃度の上昇が大きく、毎分120リットルの流量で110秒供給した試験結果よりも酸素濃度が上昇してしまう結果となった。 Moreover, the oxygen concentration when the nitrogen gas with the flow rate of 150 liters per minute, which is the largest flow rate, is supplied for 110 seconds, is temporarily reduced to 4.57 ppm, but the oxygen concentration after sealing is increased. As a result, the oxygen concentration was higher than the test result of supplying for 110 seconds at a flow rate of 120 liters per minute.
以上の結果から、流量毎分150リットルの窒素ガスを80秒供給すれば、FOUP密閉後も内部を酸素濃度100ppm以下に維持出来ることが証明されたことになる。なお、流量毎分120リットルの窒素ガスを110秒供給した場合でも目標値は達成出来ていて、酸素濃度も最も低い数値となっているが、窒素ガスの総供給量が220リットル必要であることと、供給時間に110秒も要しており、次の工程の遅れに影響を及ぼす可能性もあるので、最適の供給条件を決定する際には注意が必要である。 From the above results, it was proved that if nitrogen gas at a flow rate of 150 liters per minute was supplied for 80 seconds, the inside could be maintained at an oxygen concentration of 100 ppm or less even after the FOUP was sealed. The target value was achieved even when nitrogen gas at a flow rate of 120 liters per minute was supplied for 110 seconds, and the oxygen concentration was the lowest, but the total supply amount of nitrogen gas was 220 liters. Since the supply time takes 110 seconds and may affect the delay of the next process, care must be taken when determining the optimal supply conditions.
なお、上記の試験(図16-図18に示す一連の試験)で窒素ガスを供給するパージプレート41として、FOUP開放面に向かう面が保護カバー50となっていて、そのサイズは縦260mm横80mmで、上方部に縦194mm、横68mmの窒素流出面に直径2mmの穴を1240個開けたパンチングプレート(開口率29.6%)を具えるものを用いた。 In addition, as the purge plate 41 for supplying nitrogen gas in the above test (a series of tests shown in FIGS. 16 to 18), the surface toward the FOUP opening surface is a protective cover 50, and the size is 260 mm in length and 80 mm in width. Then, a punching plate (aperture ratio 29.6%) having 1240 holes with a diameter of 2 mm on the nitrogen outflow surface of 194 mm in length and 68 mm in width in the upper part was used.
前述の図17に表された試験で、内外差圧を0Paとして窒素ガス供給開始後180秒までの酸素濃度の測定を行ったものでは、上記パージプレート41の流出面から窒素を毎分150リットル供給したところ、試験用FOUP13の密閉から60秒後の酸素濃度を100ppm以下に維持するために必要な窒素ガスの供給時間は55秒であり、10ppm以下にするための時間は110秒であった。このことから、試験用ミニエンバイロメント空間ユニット3内外の差圧は試験用FOUP13を開扉してキャリア16内にパージプレート41から窒素を供給開始するまでキャリア16内部への塵埃の侵入を防ぐことができれば、以後は試験用ミニエンバイロメント空間ユニット3の内外差圧はゼロであってもよいことが分かった。なお、試験用FOUP13の容積は通常使用されるFOUP13と同じく約30リットルであるので、この時のFOUP13内窒素換気回数(換算値)は5回/分となり、窒素の流出速度は窒素流出面中央部からキャリア16内部に向けて20mmの位置で0.19m/分であった。 In the test shown in FIG. 17 described above, when the oxygen concentration was measured up to 180 seconds after starting the supply of nitrogen gas with the internal / external differential pressure set to 0 Pa, nitrogen was supplied from the outflow surface of the purge plate 41 at 150 liters per minute. When supplied, the supply time of nitrogen gas required to maintain the oxygen concentration 60 seconds after sealing of the test FOUP 13 at 100 ppm or less was 55 seconds, and the time for making it 10 ppm or less was 110 seconds. . From this, the differential pressure inside and outside the test mini-environment space unit 3 prevents dust from entering the carrier 16 until the test FOUP 13 is opened and the supply of nitrogen from the purge plate 41 into the carrier 16 is started. After that, it was found that the internal / external differential pressure of the test mini-environment space unit 3 may be zero. Since the volume of the test FOUP 13 is about 30 liters as in the normal FOUP 13, the nitrogen ventilation frequency (converted value) in the FOUP 13 at this time is 5 times / minute, and the nitrogen outflow rate is the center of the nitrogen outflow surface. It was 0.19 m / min at a position of 20 mm from the portion toward the inside of the carrier 16.
次に、窒素ガスの供給を開始した後、ファンフィルタユニット5を止めることでクリーンブース(試験用ミニエンバイロメント空間ユニット3)内外の差圧をゼロとして、この保護カバー50の流出面からの最低窒素供給速度を求める試験を実施した。その結果、FOUP内の密閉1分後の酸素濃度を100ppm以下とするためには、毎分48リットルの流量で窒素ガスを供給する場合では、密閉まで6分必要であることが解った(図省略)。これ未満の窒素ガス流量は窒素ガス供給時間が掛かり過ぎ、窒素ガス消費量も多く実用的でない。この時、窒素ガスによるFOUP内の換気回数は1.6回/分と計算される。この時の流速の測定結果は、窒素流出面中央部からFOUP内に向けて20mmの位置で0.06m/秒であった。 Next, after the supply of nitrogen gas is started, the fan filter unit 5 is stopped so that the differential pressure inside and outside the clean booth (test mini-environment space unit 3) becomes zero, and the minimum from the outflow surface of the protective cover 50 A test was conducted to determine the nitrogen supply rate. As a result, it was found that in order to reduce the oxygen concentration after 1 minute in the FOUP to 100 ppm or less, when supplying nitrogen gas at a flow rate of 48 liters per minute, 6 minutes are required until the sealing (Fig. (Omitted). If the nitrogen gas flow rate is less than this, it takes too much time to supply the nitrogen gas, and the amount of nitrogen gas consumption is large and impractical. At this time, the ventilation frequency in the FOUP by nitrogen gas is calculated as 1.6 times / min. The measurement result of the flow velocity at this time was 0.06 m / sec at a position of 20 mm from the center of the nitrogen outflow surface toward the FOUP.
本発明では、FOUP開放面161の中央部付近に移動させたパージプレート41の保護カバー50から、窒素など不活性ガスを層流で供給し、FOUP奥壁で左右、上下に流れが振り分けられ、パージプレート周縁とFOUP開放面161の周縁との間から排出される。本発明では不活性ガスの流れが層流であることが要求されるので、レイノルズ数を計算し検証した。一般に、円管の流体ではレイノルズ数が2000~4000を超えると層流から乱流になるといわれる。 In the present invention, an inert gas such as nitrogen is supplied in a laminar flow from the protective cover 50 of the purge plate 41 moved near the center of the FOUP opening surface 161, and the flow is distributed to the left and right and up and down on the back wall of the FOUP. The gas is discharged from between the periphery of the purge plate and the periphery of the FOUP opening surface 161. In the present invention, since the flow of the inert gas is required to be a laminar flow, the Reynolds number was calculated and verified. In general, it is said that when the Reynolds number exceeds 2000 to 4000 in a circular pipe fluid, the laminar flow changes to turbulent flow.
レイノルズ数は、Re=UL/μρの式から求めることが出来る。
ここで、U:速度[m/s]、  
L:距離[m]、 パージプレート41の窒素流出口の穴φ2mm、ウエハ間隔10mm
μ:粘度[Pa・sec]、20℃窒素1.8×10-5Pa・sec
ρ:密度[kg/m3]、20℃窒素1.165 である。
まず、パージプレート41の各穴から流出する窒素について計算する。
The Reynolds number can be obtained from the equation Re = UL / μρ.
Where U: Speed [m / s]
L: Distance [m], nitrogen outlet hole of purge plate 41 φ2 mm, wafer interval 10 mm
μ: Viscosity [Pa · sec], 20 ° C Nitrogen 1.8 × 10 -5 Pa · sec
ρ: density [kg / m 3 ], nitrogen at 20 ° C. and 1.165.
First, the nitrogen flowing out from each hole of the purge plate 41 is calculated.
保護カバー50に開けられた前記φ2mm穴1240個のうち1個の穴から流出する窒素ガスのレイノルズ数は、パージプレート41からキャリア16内部に毎分150リットル供給する場合でRe=61、毎分400リットル供給する場合でRe=163と計算された。この結果から、どちらの流量であっても充分層流を保っていると言える。なお、この時保護カバー50の窒素ガス流出面から20mm位置での流速は0.50m/秒であった。 The Reynolds number of the nitrogen gas flowing out from one of the 1240 φ2 mm holes opened in the protective cover 50 is Re = 61 when supplying 150 liters per minute from the purge plate 41 into the carrier 16. Re = 163 was calculated when supplying 400 liters. From this result, it can be said that the laminar flow is sufficiently maintained at any flow rate. At this time, the flow velocity at a position 20 mm from the nitrogen gas outflow surface of the protective cover 50 was 0.50 m / sec.
次に、FOUP内に流れ込んだ窒素ガスのレイノルズ数について計算する。FOUP内に収納されているウエハ同士の間隔L=10mmであり、ここに毎分400リットルの窒素ガスを供給した場合のレイノルズ数はRe=24と小さく、層流であると言うことができる。また、この時の換気回数は13.3回/分となるが、窒素ガス供給量が毎分400リットルを超えると、流量に比べて置換速度が下がらず、窒素ガスの総流出量が多くなり効率が悪く、好ましいものではない。 Next, the Reynolds number of the nitrogen gas flowing into the FOUP is calculated. The distance L between the wafers stored in the FOUP is L = 10 mm. When 400 liters of nitrogen gas is supplied here, the Reynolds number is as small as Re = 24, and it can be said that the flow is laminar. In addition, the ventilation frequency at this time is 13.3 times / minute. However, when the supply amount of nitrogen gas exceeds 400 liters per minute, the replacement speed does not decrease compared to the flow rate, and the total outflow amount of nitrogen gas increases. Inefficient and not preferable.
以上述べた理由から、整流板50(パージプレートのガス流出プレート)から20mmの位置での不活性ガス(窒素)の風速は、0.05m/秒から0.5m/秒の間が適当であり、好ましくは、0.1m/秒から0.3m/秒である。換気回数に換算すると、1.4回/分から13.3回/分が適当であり、好ましくは2.6回/分から7回/分である。ここで述べた物理的数字は、収納容器FOUP13が容積30リットルの300mmウエハ25枚収納用FOUPであるとして適用したが、容器の容量や形状が変っても充分適用できる。 For the reasons described above, the wind speed of the inert gas (nitrogen) at a position 20 mm from the rectifying plate 50 (the gas outflow plate of the purge plate) is suitably between 0.05 m / sec and 0.5 m / sec. Preferably, it is 0.1 m / sec to 0.3 m / sec. In terms of the number of ventilations, 1.4 times / minute to 13.3 times / minute is appropriate, and preferably 2.6 times / minute to 7 times / minute. The physical numbers described here are applied on the assumption that the storage container FOUP 13 is a FOUP for storing 25 300 mm wafers with a capacity of 30 liters.
ここまでの試験で上記実施例により、所定の時間内にFOUP内を所定の不活性ガス濃度に雰囲気置換できることが立証された。しかし、折角FOUP内の雰囲気置換が出来たとしてもFOUP内部に塵埃を浮遊させ、ウエハ表面に沈着させる結果となっては意味がない。そこで、次の試験として、試験用ミニエンバイロメント空間ユニット3内外の差圧が2.5Paで流量毎分120リットル、150リットル、200リットルの窒素ガスを110秒間供給した場合の試験用FOUP13内ウエハ表面の塵埃数を測定した。 In the tests so far, it was proved by the above example that the atmosphere in the FOUP could be replaced with a predetermined inert gas concentration within a predetermined time. However, even if the atmosphere in the folding FOUP can be replaced, it does not make sense to cause dust to float inside the FOUP and deposit on the wafer surface. Therefore, in the next test, the wafer in the test FOUP 13 when the pressure difference between the inside and outside of the test mini-environment space unit 3 is 2.5 Pa and the flow rate of 120, 150 and 200 liters of nitrogen gas per minute is supplied for 110 seconds. The number of dust on the surface was measured.
塵埃測定試験は、PWP(Particles on Wafer per Pass)法によって行うこととした。具体的には、予め表面に付着した塵埃の数を測定しておいた測定用のウエハ5枚を試験用FOUP13内の1、7、13、19、25段目の棚にそれぞれ載置し、その後パージポート40による試験用FOUP13の開扉、雰囲気置換、密閉という動作を1工程とし、これを5回繰り返す。その後測定用ウエハ表面に付着した塵埃の数を測定することで、雰囲気置換動作の1工程に於ける測定用ウエハ一枚あたりに付着した直径0.12マイクロメートル以上の塵埃の増加個数を求めるという試験方法である。 The dust measurement test was performed by the PWP (Particles on Wafer per Pass) method. Specifically, five measurement wafers that had been previously measured for the number of dust adhering to the surface were placed on the first, seventh, thirteenth, nineteenth, and twenty-fifth shelf in the test FOUP 13, respectively. Thereafter, the operation of opening the test FOUP 13 with the purge port 40, replacing the atmosphere, and sealing is taken as one step, and this is repeated five times. After that, by measuring the number of dust adhering to the surface of the measuring wafer, an increase in the number of dust having a diameter of 0.12 micrometers or more adhering per measuring wafer in one step of the atmosphere replacement operation is obtained. This is a test method.
その結果、ウエハ1枚当たりの平均塵埃数は、初期18.8個であった所、窒素ガスを毎分120リットル(換気回数4回/分、流速0.15m/秒)で18.3個、毎分150リットル(換気回数5回/分、流速0.19m/秒)で19.1個、毎分200リットル(換気回数6.7回/分、流速0.25m/秒)で22.6個であった。本試験から、毎分150リットルまでは塵埃数の増減は測定誤差範囲内であるが、流量が毎分200リットルを超えると塵埃数の増加が始まっており、換気回数は7回程度以下、流速は0.3m/秒程度以下が好ましいことが解った。塵埃増加の原因は、一般にウエハ裏面に付着している塵埃が多いため、裏面の塵埃が強い窒素気流で吹き飛ばされウエハ表面に沈着したと考えられる。 As a result, the average number of dust per wafer was 18.8 at the initial stage, and nitrogen gas was 18.3 per 120 liters per minute (ventilation rate 4 times / min, flow rate 0.15 m / sec). 19.1 liters at 150 liters per minute (5 ventilations / minute, flow rate 0.19 m / s), 200 liters per minute (6.7 ventilations / minute, flow rate 0.25 m / s) 22. There were six. From this test, the increase or decrease in the number of dust is within the measurement error range up to 150 liters per minute, but when the flow rate exceeds 200 liters per minute, the increase in the number of dusts begins. It was found that about 0.3 m / second or less is preferable. The cause of the increase in dust is generally that there is a lot of dust adhering to the back surface of the wafer, so it is considered that the dust on the back surface was blown off by a strong nitrogen stream and deposited on the wafer surface.
<パージング性能>
以上の試験結果にサポートされた特定実施例のパージング性能を概括する。この特定実施例によれば、FOUPに代表される30リットル容器内の空気を通常80秒、長くても180秒以下という短時間で置換でき、且つ、使用する不活性ガス量も少なくて済み、密閉後の酸素濃度を10ppm以下、少なくとも100ppm以下に保持することができた。パージプレート内に不活性ガス噴出抑制手段を設ける場合は、パージプレートの流出面を出たガスを層流に保つことができ、少量の不活性ガスで雰囲気置換させることができた。また、FOUP開放面より小さいパージプレートを、FOUP開放面の中央部に位置させて不活性ガスを流出させるため、パージプレート周縁の外を通ってFOUPの空気を排出でき、これも少量の不活性ガスでの雰囲気置換に貢献している。さらに、フランジパネル65やシールドカバー67にラビリンス構造を設けることにより、FOUP内部への空気侵入を最小限にすることができたのである。しかも、塵埃の被収容物への付着も皆無であった。本実施例の原理は、容器の容積が変っても適用できる。
<Purging performance>
The purging performance of a specific example supported by the above test results is summarized. According to this specific embodiment, the air in a 30 liter container represented by FOUP can be replaced in a short time of usually 80 seconds, at most 180 seconds or less, and the amount of inert gas used can be reduced. The oxygen concentration after sealing could be kept at 10 ppm or less, at least 100 ppm or less. In the case where the inert gas ejection suppressing means is provided in the purge plate, the gas exiting the outflow surface of the purge plate can be maintained in a laminar flow, and the atmosphere can be replaced with a small amount of inert gas. In addition, a purge plate smaller than the FOUP opening surface is positioned at the center of the FOUP opening surface to allow the inert gas to flow out, so that the FOUP air can be discharged outside the periphery of the purge plate, which is also a small amount of inert gas. Contributes to atmosphere replacement with gas. Further, by providing the flange panel 65 and the shield cover 67 with a labyrinth structure, air intrusion into the FOUP could be minimized. Moreover, there was no adhesion of dust to the objects to be contained. The principle of this embodiment can be applied even if the volume of the container changes.
以上、上記実施例の説明を通じて、カバー17とキャリア16とを分離させる際に、カバー17は静止したままでキャリア16をカバー17に対して後退動作をさせることにより分離させる移動機構を用いたロードポートにおいて不活性ガスによる雰囲気置換機能を付加する装置(パージポート40)、方法を開示した。また、既存のこの種ロードポートとコンパチブルな雰囲気置換装置(パージポート40)、方法について開示した。しかしながら、本発明は上記の実施例には限定されない。例えば、当業者にとって、パージポートにおいて使用する移動機構の変形は自明である。例えば、カバー17と一体化されたFIMSドア12一方のみをキャリア16から遠ざかるように水平方向に移動させることによりキャリア16とカバー17を分離させる機構や、キャリア16とカバー17の両方を水平反対方向に移動させる機構を用いたロードポートに対しても本発明の雰囲気置換装置、方法を適用でき、本実施例と同様の効果を奏することは十分可能である。あるいは、簡単な構成において、キャリア16とカバー17を水平方向に分離させる機構と、キャリア16とカバー17の間の中央部に不活性ガスをこのキャリア16内に流出させる面を有するパージプレート41を挿入させる機構とを備え、前述の範囲の換気回数を備えたものであれば、本発明の雰囲気置換装置を構成でき、そのような装置を用いて本発明の方法を実施できる。当業者には明らかなように、詳細に説明した特定実施例のパージポートをロードポートとは独立した構造で構成し、独立して使用されるように変形することは本発明の範囲内で行える自明な変形にすぎない。 As described above, when the cover 17 and the carrier 16 are separated through the description of the above embodiment, the load using the moving mechanism that separates the carrier 16 by moving the carrier 16 backward with respect to the cover 17 while the cover 17 is stationary. An apparatus (purge port 40) and method for adding an atmosphere replacement function with an inert gas at a port have been disclosed. In addition, an atmosphere replacement device (purge port 40) and method compatible with this existing load port have been disclosed. However, the present invention is not limited to the above embodiments. For example, those skilled in the art will appreciate variations in the moving mechanism used in the purge port. For example, a mechanism that separates the carrier 16 and the cover 17 by moving only one of the FIMS doors 12 integrated with the cover 17 away from the carrier 16 in the horizontal direction, or both the carrier 16 and the cover 17 in the opposite horizontal direction. The atmosphere replacement device and method of the present invention can also be applied to a load port using a mechanism for moving to the position, and it is possible to achieve the same effects as in this embodiment. Alternatively, in a simple configuration, a mechanism for separating the carrier 16 and the cover 17 in the horizontal direction, and a purge plate 41 having a surface through which inert gas flows out into the carrier 16 at the center between the carrier 16 and the cover 17 are provided. If it is provided with the mechanism to insert and provided the ventilation frequency of the above-mentioned range, the atmosphere substitution apparatus of this invention can be comprised, and the method of this invention can be implemented using such an apparatus. As will be apparent to those skilled in the art, the purge port of the specific embodiment described in detail can be constructed independently of the load port and can be modified to be used independently within the scope of the present invention. It's just a trivial variant.
また、本実施例の説明を通じて、SEMI規格にて規定されたシリコンウエハ用FOUPと、FOUPに適応するロードポートを対象として開示しているが、本発明はこれに限定されることはなく、液晶ディスプレイ基板や太陽電池パネル基板など、微細な処理を必要とする基板にも本発明を適用できる。また、処理すべき基板を収納し外部雰囲気から密閉する容器と、その容器を載置若しくは搬送する搬送装置、及び、その容器内から被処理物を搬送し、所定の処理を施す構成を有する処理装置であるかぎり、任意のこの種の処理装置のこの種の容器に対して、本発明の雰囲気置換装置、方法を有用に、適用することができる。 Further, through the description of the present embodiment, the silicon wafer FOUP defined by the SEMI standard and the load port adapted to the FOUP are disclosed, but the present invention is not limited to this, and the liquid crystal The present invention can also be applied to substrates that require fine processing, such as display substrates and solar cell panel substrates. In addition, a container that contains a substrate to be processed and is sealed from an external atmosphere, a transfer device that places or transfers the container, and a process that transfers a workpiece from the container and performs a predetermined process. As long as it is an apparatus, the atmosphere replacement apparatus and method of the present invention can be effectively applied to this kind of container of any kind of processing apparatus.
40:パージポート(雰囲気置換装置)
41:パージプレート
49:噴出抑制素子
50:整流板(流出面)
51-53:パージプレート昇降機構(パージプレート駆動機構)
13:FOUP(FOUP型容器)
161:開放面
15:ウエハ(基板)
2:ロードポート
3:ミニエンバイロメント空間ユニット
4:搬送ロボット
12:FIMSドア(ドア)
43&56:ドア駆動機構
43:水平方向ドア駆動機構
56:垂直方向ドア駆動機構
45:内壁
44:開口部
121:高清浄度空気通路
67a,67b:ラビリンスシールドカバー
68:補助ノズル
40: Purge port (atmosphere replacement device)
41: Purge plate 49: Ejection suppression element 50: Rectifying plate (outflow surface)
51-53: Purge plate lifting mechanism (purge plate drive mechanism)
13: FOUP (FOUP type container)
161: Open surface 15: Wafer (substrate)
2: Load port 3: Mini-environment space unit 4: Transfer robot 12: FIMS door (door)
43 & 56: Door drive mechanism 43: Horizontal door drive mechanism 56: Vertical door drive mechanism 45: Inner wall 44: Opening 121: High cleanliness air passages 67a, 67b: Labyrinth shield cover 68: Auxiliary nozzle

Claims (20)

  1. FOUP型容器(13)をパージガスでパージする雰囲気置換装置(40)において、
    流出面(50)から層流のパージガスを流出するように設計された非ノズル型パージプレート(41)と、
    待機位置と作動位置との間で前記パージプレート(41)を移動させるパージプレート駆動機構(51,52,53)と、
    パージ期間中、前記パージプレート(41)は前記作動位置におかれ、前記容器(13)の開放面(161)に対面する姿勢で、前記開放面(161)の内部に向けて、層流のパージガスを流出して前記容器(13)をパージすることと、
    を備える雰囲気置換装置。
    In the atmosphere replacement device (40) for purging the FOUP type container (13) with a purge gas,
    A non-nozzle purge plate (41) designed to flow laminar purge gas from the outflow surface (50);
    A purge plate drive mechanism (51, 52, 53) for moving the purge plate (41) between a standby position and an operating position;
    During the purge period, the purge plate (41) is in the operating position, facing the open surface (161) of the container (13), and laminar flow toward the inside of the open surface (161). Purging the vessel (13) by flowing a purge gas;
    An atmosphere replacement device comprising:
  2. 前記作動位置において、前記パージプレート(41)は前記開放面(161)の中央に向けて、層流のパージガスが流出するように配置される、請求項1に記載の雰囲気
    置換装置。
    The atmosphere replacement device according to claim 1, wherein in the operating position, the purge plate (41) is arranged such that a laminar purge gas flows out toward the center of the open surface (161).
  3. 前記FOUP型容器(13)は、基板(15)を収納する容器である、請求項1に記載の雰囲気置換装置。 The atmosphere replacement device according to claim 1, wherein the FOUP type container (13) is a container for storing a substrate (15).
  4. 前記基板(15)はウエハ(15)である、請求項2に記載の雰囲気置換装置。 The atmosphere replacement device according to claim 2, wherein the substrate (15) is a wafer (15).
  5. ロードポート(2)とコンパチブルである、請求項1に記載の雰囲気置換装置。 The atmosphere replacement device according to claim 1, which is compatible with the load port (2).
  6. 前記パージガスは窒素ガスである、請求項1に記載の雰囲気置換装置。 The atmosphere replacement device according to claim 1, wherein the purge gas is nitrogen gas.
  7. 前記パージプレート(41)は、前記容器(13)の前記開放面(161)より小さい面積を有する雰囲気置換装置。 The atmosphere replacement device, wherein the purge plate (41) has an area smaller than the open surface (161) of the container (13).
  8. 前記パージプレート(41)は、前記パージガスの噴出力を抑制する噴出抑制素子(49)を備える、請求項1に記載の雰囲気置換装置。 The atmosphere replacement device according to claim 1, wherein the purge plate (41) includes an ejection suppression element (49) configured to suppress an ejection output of the purge gas.
  9. 前記噴出抑制素子(49)は多孔質材で構成される、請求項8に記載の雰囲気置換装置。 The atmosphere replacement device according to claim 8, wherein the ejection suppressing element (49) is made of a porous material.
  10. 開放時に搬送ロボット(4)による前記FOUP型容器(13)へのアクセスが可能となるようにした、開閉自在なドア(12)と、
    前記ドア(12)をX方向およびY方向に移動させるドア駆動機構(60-63、56)を
    備える請求項1に記載の雰囲気置換装置。
    An openable and closable door (12) that enables access to the FOUP type container (13) by the transfer robot (4) when opened;
    The atmosphere replacement device according to claim 1, further comprising a door drive mechanism (60-63, 56) for moving the door (12) in the X direction and the Y direction.
  11. 前記X方向は水平方向であり、前記Y方向は垂直方向である、請求項10に記載の雰囲気置換装置。 The atmosphere replacement device according to claim 10, wherein the X direction is a horizontal direction and the Y direction is a vertical direction.
  12. 開放時に搬送ロボット(4)による前記FOUP型容器(13)へのアクセスが可能となるようにした、開閉自在なドア(12)と、
    前記ドア(12)の周縁に配置される内壁(45)と
    前記ドア(12)と前記内壁(45)との間に形成される隙間を通る高清浄度空気通路(121)を
    備える、請求項1に記載の雰囲気置換装置。
    An openable and closable door (12) that enables access to the FOUP type container (13) by the transfer robot (4) when opened;
    The high cleanliness air passage (121) which passes the crevice formed between the inner wall (45) arranged at the perimeter of the door (12), and the door (12) and the inner wall (45). 2. The atmosphere replacement device according to 1.
  13. 前記内壁(45)に設けられたラビリンス構造の内壁シールドカバー(67a,67b)と、
    前記ドアに設けられたラビリンス構造のドアシールドカバー(67a,67b)と、
    前記内壁シールドカバー(67a,67b)と前記ドアシールドカバー(67a,67b)とにより、前記隙間が非接触シールされることを
    備える、請求項12に記載の雰囲気置換装置。
    An inner wall shield cover (67a, 67b) having a labyrinth structure provided on the inner wall (45);
    A labyrinth structure door shield cover (67a, 67b) provided on the door;
    The atmosphere replacement device according to claim 12, comprising the non-contact sealing of the gap by the inner wall shield cover (67a, 67b) and the door shield cover (67a, 67b).
  14. 前記内壁(45)に設けられたラビリンス構造の内壁シールドカバー(67a,67b)と、
    前記ドアに設けられたラビリンス構造のドアシールドカバー(67a,67b)と、
    前記ドアを水平方向に移動するドア駆動機構(60-63)と、
    前記ドアの水平方向の位置により、前記内壁シールドカバー(67a,67b)と前記ドアシール間のシールの程度が、したがって、前記隙間が調整可能であることを、
    備える、請求項12に記載の雰囲気置換装置。
    An inner wall shield cover (67a, 67b) having a labyrinth structure provided on the inner wall (45);
    A labyrinth structure door shield cover (67a, 67b) provided on the door;
    A door drive mechanism (60-63) for moving the door in a horizontal direction;
    Depending on the horizontal position of the door, the degree of sealing between the inner wall shield cover (67a, 67b) and the door seal, and therefore the gap can be adjusted,
    The atmosphere substitution device according to claim 12 provided.
  15. ミニエンバイロメント空間ユニット(3)に隣接して配置される請求項1に記載の雰囲気置換装置。 The atmosphere replacement device according to claim 1, which is arranged adjacent to the mini-environment space unit (3).
  16. 前記ミニエンバイロメント空間ユニット(3)からの高清浄度空気が隙間を介して連通するように構成される請求項15に記載の雰囲気置換装置。 The atmosphere replacement device according to claim 15, which is configured so that high cleanliness air from the mini-environment space unit (3) communicates through a gap.
  17. 前記FOUP型容器(13)がドッキングされる開口部(44)と、
    前記開口部(44)を画定する内壁(45)と、
    前記隙間が前記内壁(45)と前記ドア(12)の周縁との間に形成されることと、
    前記開口部(44)の上部に設けられ、前記パージガスを前記容器(13)に向けて放出する補助ノズル(68)を、
    備える請求項16に記載の雰囲気置換装置。
    An opening (44) into which the FOUP type container (13) is docked;
    An inner wall (45) defining the opening (44);
    The gap is formed between the inner wall (45) and the periphery of the door (12);
    An auxiliary nozzle (68) provided above the opening (44) and for discharging the purge gas toward the container (13);
    The atmosphere substitution device according to claim 16 provided.
  18. パージ期間中、前記パージプレート(41)から流出される1分間あたりのパージガス量は、前記容器(13)の容積の1.4倍から13.3倍までの範囲である、請求項1に記載の雰囲気置換装置。 The purge gas amount per minute flowing out of the purge plate (41) during the purge period ranges from 1.4 to 13.3 times the volume of the vessel (13). Atmosphere replacement equipment.
  19. 前記パージプレート(41)から流出する前記パージガスの速度は、前記パージプレートから20mm前方の位置において、0.05メートル/秒から0.5メートル/秒までの範囲である、請求項1に記載の雰囲気置換装置。 The velocity of the purge gas flowing out of the purge plate (41) ranges from 0.05 meter / second to 0.5 meter / second at a position 20 mm forward from the purge plate. Atmosphere replacement device.
  20. 前記パージプレート(41)の面積は前記容器(13)の前記開放面(161)の面積の10%から60%までの範囲である、雰囲気置換装置。 The atmosphere replacement device, wherein the area of the purge plate (41) ranges from 10% to 60% of the area of the open surface (161) of the container (13).
PCT/JP2010/058745 2009-05-27 2010-05-24 Atmosphere replacement device WO2010137556A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011516010A JP5448000B2 (en) 2009-05-27 2010-05-24 Atmosphere replacement device
CN201080023009.4A CN102449752B (en) 2009-05-27 2010-05-24 Atmosphere replacement device
KR1020117028196A KR101668823B1 (en) 2009-05-27 2010-05-24 Atmosphere replacement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-127479 2009-05-27
JP2009127479 2009-05-27

Publications (1)

Publication Number Publication Date
WO2010137556A1 true WO2010137556A1 (en) 2010-12-02

Family

ID=43222665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058745 WO2010137556A1 (en) 2009-05-27 2010-05-24 Atmosphere replacement device

Country Status (5)

Country Link
JP (1) JP5448000B2 (en)
KR (1) KR101668823B1 (en)
CN (1) CN102449752B (en)
TW (1) TWI500104B (en)
WO (1) WO2010137556A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157462A1 (en) * 2012-04-16 2013-10-24 ローツェ株式会社 Accommodating container, shutter opening and closing unit for accommodating container, and wafer stocker using same
WO2015005192A1 (en) * 2013-07-09 2015-01-15 株式会社日立国際電気 Substrate processing device, gas-purging method, method for manufacturing semiconductor device, and recording medium containing anomaly-processing program
JP2015162531A (en) * 2014-02-27 2015-09-07 Tdk株式会社 Pod and purge system using the pod
JP2016046292A (en) * 2014-08-20 2016-04-04 信越ポリマー株式会社 Load port and conveyance method for substrate
JP5951889B2 (en) * 2013-03-27 2016-07-13 東京エレクトロン株式会社 Substrate processing equipment
JP2016225352A (en) * 2015-05-27 2016-12-28 信越ポリマー株式会社 Substrate housing container
JP2017092429A (en) * 2015-11-17 2017-05-25 株式会社ダイフク Container conveying facility
JP2020061538A (en) * 2018-10-12 2020-04-16 國立臺北科技大學 Laminar flow device
CN112424923A (en) * 2018-07-13 2021-02-26 日商乐华股份有限公司 Conveyor with local cleaning function
US11107722B2 (en) 2017-05-11 2021-08-31 Rorze Corporation Thin-plate substrate holding finger and transfer robot provided with said finger

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2999016A1 (en) * 2012-11-30 2014-06-06 Adixen Vacuum Products STATION AND METHOD FOR MEASURING CONTAMINATION IN PARTICLES OF A TRANSPORT ENCLOSURE FOR CONVEYING AND ATMOSPHERIC STORAGE OF SEMICONDUCTOR SUBSTRATES
KR102186620B1 (en) 2013-05-06 2020-12-03 삼성전자주식회사 load port module and method of loading a substrate into a process chamber using the same
US9607873B2 (en) 2014-02-07 2017-03-28 Taiwan Semiconductor Manufacturing Company Ltd. Apparatus and operation method thereof
KR101533914B1 (en) * 2014-02-14 2015-07-03 조창현 Wafer carrier container cleaning for purging apparatus
CN106856664B (en) 2014-09-05 2019-11-19 日商乐华股份有限公司 The atmosphere method of replacing of load port and load port
KR101674107B1 (en) * 2014-11-12 2016-11-22 주식회사 아이에스티이 Cover opening and closing device for substrate container
JP6553498B2 (en) * 2015-12-15 2019-07-31 信越ポリマー株式会社 Substrate storage container
JP6855774B2 (en) * 2016-12-13 2021-04-07 Tdk株式会社 Wafer transfer container atmosphere measuring device, wafer transfer container, wafer transfer container internal cleaning device, and wafer transfer container internal cleaning method
KR101956797B1 (en) * 2017-06-09 2019-03-12 주식회사 저스템 Apparatus for supplying gas for wafer container
CN109979845B (en) * 2017-12-28 2021-04-13 沈阳新松机器人自动化股份有限公司 Clamping device for foup box, foup device and fixing method
CN109979866B (en) * 2017-12-28 2021-03-26 沈阳新松机器人自动化股份有限公司 Foup device
CN109969456B (en) * 2017-12-28 2021-03-23 沈阳新松机器人自动化股份有限公司 Vacuum nitrogen filling system in foup box and foup box air exhaust method
JP7037379B2 (en) 2018-02-06 2022-03-16 ローツェ株式会社 A transfer robot equipped with a thin plate-shaped substrate holding device and a holding device.
KR102076166B1 (en) * 2018-03-26 2020-02-11 주식회사 나인벨 Cassette loadlock apparatus having aligner
CN110838461B (en) * 2018-08-16 2023-09-08 细美事有限公司 Purifying device and purifying method
JP7187890B2 (en) * 2018-08-24 2022-12-13 東京エレクトロン株式会社 SUBSTRATE TRANSFER MODULE AND SUBSTRATE TRANSFER METHOD
US10549427B1 (en) * 2018-08-31 2020-02-04 Kawasaki Jukogyo Kabushiki Kaisha Substrate transfer robot

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177225A (en) * 1992-08-31 1994-06-24 Matsushita Electric Ind Co Ltd Environmental controller
JPH10321714A (en) * 1997-05-20 1998-12-04 Sony Corp Airtight container and airtight container atmosphere replacer and atmosphere replacing method
JP2002170876A (en) * 2000-12-04 2002-06-14 Ebara Corp Substrate transport container
JP2005210118A (en) * 2004-01-20 2005-08-04 Alcatel Station for controlling and purging mini-environment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970006728B1 (en) * 1992-08-31 1997-04-29 마쯔시다 덴기 산교 가부시끼가이샤 Environmental control apparatus
US5752796A (en) * 1996-01-24 1998-05-19 Muka; Richard S. Vacuum integrated SMIF system
JP3880343B2 (en) 2001-08-01 2007-02-14 株式会社ルネサステクノロジ Load port, substrate processing apparatus, and atmosphere replacement method
JP2004235516A (en) * 2003-01-31 2004-08-19 Trecenti Technologies Inc Purging method in wafer housing jig, load port, and method for manufacturing semiconductor device
WO2004097927A1 (en) * 2003-04-28 2004-11-11 Tdk Corporation Purging apparatus and purging method
JP3964361B2 (en) * 2003-07-11 2007-08-22 Tdk株式会社 Purge apparatus and purge method
JP2005340243A (en) 2004-05-24 2005-12-08 Miraial Kk Gas replacing apparatus of accommodation vessel and gas replacing method using the same
JP4585514B2 (en) * 2004-06-21 2010-11-24 株式会社ライト製作所 Load port

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177225A (en) * 1992-08-31 1994-06-24 Matsushita Electric Ind Co Ltd Environmental controller
JPH10321714A (en) * 1997-05-20 1998-12-04 Sony Corp Airtight container and airtight container atmosphere replacer and atmosphere replacing method
JP2002170876A (en) * 2000-12-04 2002-06-14 Ebara Corp Substrate transport container
JP2005210118A (en) * 2004-01-20 2005-08-04 Alcatel Station for controlling and purging mini-environment

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9437466B2 (en) 2012-04-16 2016-09-06 Rorze Corporation Storage container, shutter opening/closing unit of storage container, and wafer stocker using storage container and shutter opening/closing unit
TWI582023B (en) * 2012-04-16 2017-05-11 Rorze Corp Storage container, storage container door closing unit, and wafer automatic storage
JPWO2013157462A1 (en) * 2012-04-16 2015-12-21 ローツェ株式会社 Storage container, shutter opening / closing unit of storage container, and wafer stocker using them
WO2013157462A1 (en) * 2012-04-16 2013-10-24 ローツェ株式会社 Accommodating container, shutter opening and closing unit for accommodating container, and wafer stocker using same
JP5951889B2 (en) * 2013-03-27 2016-07-13 東京エレクトロン株式会社 Substrate processing equipment
US10269603B2 (en) 2013-07-09 2019-04-23 Kokusai Electric Corporation Substrate processing apparatus, gas-purging method, method for manufacturing semiconductor device, and recording medium containing abnormality-processing program
WO2015005192A1 (en) * 2013-07-09 2015-01-15 株式会社日立国際電気 Substrate processing device, gas-purging method, method for manufacturing semiconductor device, and recording medium containing anomaly-processing program
JPWO2015005192A1 (en) * 2013-07-09 2017-03-02 株式会社日立国際電気 Substrate processing apparatus, semiconductor device manufacturing method, and abnormality processing program
JP2015162531A (en) * 2014-02-27 2015-09-07 Tdk株式会社 Pod and purge system using the pod
JP2016046292A (en) * 2014-08-20 2016-04-04 信越ポリマー株式会社 Load port and conveyance method for substrate
JP2016225352A (en) * 2015-05-27 2016-12-28 信越ポリマー株式会社 Substrate housing container
JP2017092429A (en) * 2015-11-17 2017-05-25 株式会社ダイフク Container conveying facility
US11107722B2 (en) 2017-05-11 2021-08-31 Rorze Corporation Thin-plate substrate holding finger and transfer robot provided with said finger
CN112424923A (en) * 2018-07-13 2021-02-26 日商乐华股份有限公司 Conveyor with local cleaning function
JP2020061538A (en) * 2018-10-12 2020-04-16 國立臺北科技大學 Laminar flow device

Also Published As

Publication number Publication date
TW201110259A (en) 2011-03-16
KR101668823B1 (en) 2016-10-24
CN102449752A (en) 2012-05-09
KR20120027010A (en) 2012-03-20
JPWO2010137556A1 (en) 2012-11-15
CN102449752B (en) 2015-04-01
JP5448000B2 (en) 2014-03-19
TWI500104B (en) 2015-09-11

Similar Documents

Publication Publication Date Title
JP5448000B2 (en) Atmosphere replacement device
JP6556148B2 (en) Load port and load port atmosphere replacement method
KR102297447B1 (en) Substrate processing systems, apparatus, and methods with factory interface environmental controls
US7841371B2 (en) Lid opening/closing system of an airtight container
KR100583726B1 (en) Apparatus and method for treating substrates
US10566227B2 (en) Controlling method for a wafer transportation part and a load port part on an EFEM
JP4354675B2 (en) Thin plate electronic component clean transfer device and thin plate electronic product manufacturing system
US20150024671A1 (en) Efem and load port
US20070151619A1 (en) Lid opening/closing system of an airtight container
US9153468B2 (en) Load port apparatus
WO2018207599A1 (en) Thin-plate substrate holding finger and transfer robot provided with said finger
JP6206126B2 (en) Closed container lid opening / closing system and substrate processing method using the system
TW202005894A (en) Transport system having local purge function
JP2001102426A (en) Object container opening and closing and transfer device and object container opening and closing and transfer method
JP6274379B1 (en) Load port and wafer transfer method
CN109564887B (en) Load port and wafer transfer method
JP2003264219A (en) Local cleaning device
JP4439140B2 (en) Semiconductor wafer processing equipment with dustproof function

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080023009.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780511

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011516010

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117028196

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780511

Country of ref document: EP

Kind code of ref document: A1