WO2010137443A1 - Adhesive sheet for connecting circuit member, and method for manufacturing semiconductor device - Google Patents

Adhesive sheet for connecting circuit member, and method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2010137443A1
WO2010137443A1 PCT/JP2010/057604 JP2010057604W WO2010137443A1 WO 2010137443 A1 WO2010137443 A1 WO 2010137443A1 JP 2010057604 W JP2010057604 W JP 2010057604W WO 2010137443 A1 WO2010137443 A1 WO 2010137443A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
component
adhesive layer
parts
film
Prior art date
Application number
PCT/JP2010/057604
Other languages
French (fr)
Japanese (ja)
Inventor
大久保 恵介
永井 朗
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Publication of WO2010137443A1 publication Critical patent/WO2010137443A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67132Apparatus for placing on an insulating substrate, e.g. tape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • H01L2224/73104Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81192Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body

Definitions

  • the present invention relates to an adhesive sheet for connecting circuit members and a method for manufacturing a semiconductor device.
  • a face-down bonding method in which a semiconductor chip is directly connected to a circuit board is known as a semiconductor chip mounting technique.
  • a solder bump is formed on the electrode part of the semiconductor chip and soldered to the electrode of the circuit board, or a conductive adhesive is applied to the protruding electrode provided on the semiconductor chip to connect with the electrode of the circuit board.
  • a conductive adhesive is applied to the protruding electrode provided on the semiconductor chip to connect with the electrode of the circuit board.
  • connection reliability is likely to decrease.
  • connection reliability is likely to decrease.
  • an underfill material such as an epoxy resin.
  • the underfill material filling method includes a method of injecting a low viscosity liquid resin after connecting the chip and the substrate, and a method of mounting the chip after providing the underfill material on the substrate. Furthermore, the latter method includes a method of applying a liquid resin and a method of attaching a film-like resin.
  • the method using a film-like resin can easily give an optimum amount of resin by adjusting the thickness of the film, but requires a step of sticking a film-like resin called a temporary pressure bonding step to a substrate.
  • a reel-shaped adhesive tape that is slit to a width larger than the target chip width is prepared, and the adhesive tape on the base material is cut according to the chip size. Thermocompression bonding is performed on the substrate at a temperature that does not react.
  • it is difficult to accurately supply the film to the chip mounting position and it is difficult to process a thin reel corresponding to a microchip or the like it is generally pasted by temporary pressure bonding to secure the yield. This can be done by making the film larger than the chip size. For this reason, in this method, it is necessary to secure an extra distance from adjacent components and a mounting area, and it is difficult to support high-density mounting.
  • a method using a chip with a film adhesive has been studied as one of high-density mounting technologies.
  • a wafer is prepared by preparing a wafer with a film-like adhesive attached, grinding the back surface of the wafer, and then cutting the wafer together with the adhesive into chips.
  • a method of manufacturing a semiconductor device by manufacturing a chip with a film adhesive to which an adhesive having the same size as the chip size is attached and mounting the chip on a circuit board.
  • JP 2006-049482 A Japanese Patent No. 2833111
  • the film adhesive in the above method goes through a wafer sticking process, a wafer back grinding process, a dicing process, and a flip chip bonding process.
  • the film adhesive is required to have stickability that can sufficiently suppress the occurrence of peeling and voids when sticking to a wafer.
  • the film adhesive is required to have excellent wafer back surface grindability, that is, to have adhesiveness and adhesiveness that can sufficiently prevent the occurrence of breakage and cracks due to grinding.
  • a film-like adhesive is required to have a embeddability in which voids are unlikely to occur when connected to a circuit member such as a semiconductor element mounting member.
  • the wafer processing tape described in Patent Document 1 has a pressure-sensitive adhesive layer and an adhesive layer on a base film, the peelability between the pressure-sensitive adhesive layer and the adhesive layer during storage is low. There was a possibility that the adhesive layer would be difficult to stick to the wafer due to a decrease over time.
  • the adhesive film described in Patent Document 2 does not necessarily have sufficient embeddability in the flip chip bonding process, and in particular, voids are generated at the time of thermocompression bonding at 200 ° C. or higher when performing solder bonding simultaneously. There was something to do.
  • the present invention has been made in view of the above circumstances, and is an adhesive sheet for connecting a circuit member that satisfies all of a high level of adhesiveness to a semiconductor wafer, grindability of a wafer back surface, and embedding at the time of flip chip bonding. And a method of manufacturing a semiconductor device.
  • An adhesive sheet for connecting a circuit member of the present invention that solves the above problems is an adhesive sheet for connecting a circuit member for connecting circuit members facing each other, and is provided on a support base material and the support base material.
  • An adhesive layer comprising the adhesive composition thus prepared, the adhesive composition comprising: (A) a high molecular weight component having a weight average molecular weight of 100,000 or more; (B) an epoxy resin; and (C) a phenolic compound.
  • An epoxy resin curing agent, (D) a radiation polymerizable compound, (E) a photoinitiator, and (F) a curing accelerator are included.
  • the adhesive sheet for connecting circuit members of the present invention having the above-described configuration satisfies all of the adhesiveness to the semiconductor wafer, the wafer back surface grindability, and the embedding property at the time of flip chip bonding at a high level. Can do.
  • the present inventors consider the reason why the above effect is obtained by the adhesive sheet for connecting circuit members of the present invention as follows.
  • the combination of the radiation polymerizable compound and the photoinitiator greatly contributes to both the embedding at a relatively low temperature required in the sticking process to the wafer and the adhesiveness and adhesion required in the wafer back grinding process.
  • the adhesiveness of the adhesive layer is increased and the adhesiveness to the semiconductor wafer is sufficiently excellent.
  • the flowability during heating can be controlled by cross-linking the radiation-polymerizable compound by pre-irradiation by blending the radiation-polymerizable compound and photoinitiator before flip-chip bonding.
  • the present inventors think that it contributes to sex.
  • the adhesive composition comprises 100 parts by weight of component (A), 5 to 500 parts by weight of component (B), and 5 to 100 parts by weight of component (D).
  • component (E) 0.1 to 20 parts by mass
  • component (F) component 0.1 to 20 parts by mass
  • component (B) component (C) component phenol with respect to the epoxy group of the epoxy resin
  • the equivalent ratio of the functional hydroxyl group is preferably 0.5 to 1.5.
  • the component (A) is preferably a glycidyl group-containing (meth) acrylic copolymer containing 0.5 to 6% by mass of repeating units having a glycidyl group.
  • the present invention also provides a semiconductor wafer having a plurality of circuit electrodes on one of the main surfaces, and the adhesive of the adhesive sheet for connecting a circuit member of the present invention on the side of the semiconductor wafer on which the circuit electrodes are provided.
  • a step of pasting a layer, a step of thinning the semiconductor wafer by grinding the side opposite to the side on which the circuit electrodes of the semiconductor wafer are provided, a step of irradiating the adhesive layer with radiation, and a thinned semiconductor The wafer and the adhesive layer irradiated with radiation are diced into a semiconductor element with a film adhesive, and the semiconductor element with the film adhesive and the semiconductor element mounting support member are attached with the film adhesive.
  • a method of manufacturing a semiconductor device comprising a step of bonding via a film-like adhesive of a semiconductor element.
  • an adhesive sheet for connecting a circuit member that satisfies all of adhesiveness to a semiconductor wafer, wafer back surface grindability, and embedding at the time of flip chip bonding at a high level.
  • the manufacturing method of the semiconductor device using said adhesive sheet for circuit member connection can be provided, and, thereby, the semiconductor device excellent in connection reliability can be provided.
  • FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of an adhesive sheet for connecting circuit members according to the present invention. It is a schematic cross section for explaining one embodiment of a manufacturing method of a semiconductor device concerning the present invention. It is a schematic cross section for explaining one embodiment of a manufacturing method of a semiconductor device concerning the present invention. It is a schematic cross section for explaining one embodiment of a manufacturing method of a semiconductor device concerning the present invention. It is a schematic cross section for explaining one embodiment of a manufacturing method of a semiconductor device concerning the present invention. It is a schematic cross section for explaining one embodiment of a manufacturing method of a semiconductor device concerning the present invention. It is a schematic cross section for explaining one embodiment of a manufacturing method of a semiconductor device concerning the present invention.
  • FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of an adhesive sheet for connecting circuit members according to the present invention.
  • An adhesive sheet 10 for connecting circuit members shown in FIG. 1 includes a support base 3, an adhesive layer 2 provided on the support base 3 and made of the adhesive composition of the present invention, and an adhesive layer 2. And a protective film 1 to be coated.
  • the adhesive composition according to the present invention includes (A) a high molecular weight component ((A) component) having a weight average molecular weight of 100,000 or more, (B) an epoxy resin ((B) component), and (C) phenol.
  • Epoxy resin curing agent component (C)
  • D radiation polymerizable compound
  • E photoinitiator
  • F curing accelerator
  • the high molecular weight component having a weight average molecular weight of 100,000 or more is used, for example, for imparting coating properties to the adhesive composition.
  • those having a functional group such as a glycidyl group, an acryloyl group, a methacryloyl group, a carboxyl group, a hydroxyl group, and an episulfide group are preferable in terms of improving adhesiveness.
  • examples of such a high molecular weight component include (meth) acrylic ester copolymers and acrylic rubber, and acrylic rubber is particularly preferable.
  • the acrylic rubber is a rubber mainly composed of an acrylate ester and mainly composed of a copolymer with butyl acrylate and acrylonitrile, or a copolymer with ethyl acrylate and acrylonitrile.
  • the copolymer monomer include butyl acrylate, ethyl acrylate methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, and acrylonitrile.
  • the component (A) is preferably a high molecular weight component having a glycidyl group from the viewpoint of crosslinkability.
  • Specific examples include a glycidyl group-containing (meth) acrylic copolymer having a weight average molecular weight of 100,000 or more obtained by polymerizing a raw material monomer containing glycidyl acrylate or glycidyl methacrylate.
  • a glycidyl group containing (meth) acryl copolymer is a phrase which shows both a glycidyl group containing acrylic copolymer and a glycidyl group containing methacryl copolymer.
  • glycidyl group-containing (meth) acrylic copolymer having a weight average molecular weight of 100,000 or more a glycidyl group-containing (meth) acrylic copolymer prepared by appropriately selecting a monomer from the copolymerization monomer, glycidyl acrylate, glycidyl methacrylate, or the like can be used.
  • Commercially available products for example, “HTR-860P-3” manufactured by Nagase ChemteX Corporation) can also be used.
  • the high molecular weight component having a weight average molecular weight of 100,000 or more can adjust the crosslinking density by appropriately changing the functional group content.
  • the high molecular weight component is a copolymer of a plurality of monomers
  • the functional group-containing monomer used as a raw material is preferably contained in an amount of about 0.5 to 6.0% by mass of the copolymer.
  • the repeating unit having a glycidyl group such as glycidyl acrylate or glycidyl methacrylate is preferably 0.5 to 6.0% by mass, more preferably 0.5 to 5.0% by mass. %, Even more preferably 0.8 to 5.0% by mass of a glycidyl group-containing (meth) acrylic copolymer is used.
  • the amount of the repeating unit having a glycidyl group is in the above range, the glycidyl group is slowly crosslinked, and thus it is easy to prevent gelation while securing the adhesive force. Moreover, since it becomes incompatible with (B) epoxy resin, it will be excellent in stress relaxation property.
  • the mixing ratio is preferably determined in consideration of the glass transition temperature of the glycidyl group-containing (meth) acrylic copolymer. Specifically, the mixing ratio is preferably set so that the glass transition temperature of such a polymer is ⁇ 10 ° C. or higher. It is preferable that the glass transition temperature of the polymer is ⁇ 10 ° C. or higher because the tackiness of the adhesive layer in the B-stage state is appropriate and no problem occurs in handling.
  • the polymerization method is not particularly limited, and methods such as pearl polymerization and solution polymerization Can be used.
  • the weight average molecular weight of the component (A) is 100,000 or more, preferably 300,000 to 3,000,000, more preferably 400,000 to 2,500,000, and 500,000 to 2,000,000. It is particularly preferred. When the weight average molecular weight is within this range, it becomes easy to satisfactorily balance the strength, flexibility and tackiness of the adhesive layer made into a sheet or film, and the flowability of the adhesive layer becomes good. Therefore, the circuit filling property (embedding property) of the wiring can be sufficiently secured.
  • a weight average molecular weight means the value measured using the calibration curve by a standard polystyrene from a gel permeation chromatograph (GPC) according to the conditions shown in Table 1.
  • the component (A) is preferably incompatible with the epoxy resin (B) from the viewpoint of reflow resistance.
  • compatibility is not determined only by the characteristics of the component (A), a combination in which both the components (A) and (B) are not compatible is selected.
  • the epoxy resin is not particularly limited as long as it is cured and has an adhesive action.
  • a wide range of epoxy resins described in the epoxy resin handbook (edited by Masaki Shinbo, Nikkan Kogyo Shimbun) are used. Can do.
  • bifunctional epoxy resins such as bisphenol A type epoxy, novolac type epoxy resins such as phenol novolac type epoxy resin and cresol novolac type epoxy resin, and trisphenolmethane type epoxy resin can be used.
  • a polyfunctional epoxy resin a glycidyl amine type epoxy resin, a heterocyclic ring-containing epoxy resin, or an alicyclic epoxy resin, can be applied.
  • Examples thereof include YD8125, YDF8170, and the like.
  • Examples of the phenol novolac type epoxy resin include Epicoat 152 and 154 manufactured by Japan Epoxy Resin Co., Ltd., EPPN-201 manufactured by Nippon Kayaku Co., Ltd., and DEN-438 manufactured by Dow Chemical Company.
  • Examples of the o-cresol novolak type epoxy resin include EOCN-102S, 103S, 104S, 1012, 1025, 1027 manufactured by Nippon Kayaku Co., Ltd., YDCN701, 702, 703, 704 manufactured by Toto Kasei Co., Ltd. .
  • As the polyfunctional epoxy resin E1032-H60 manufactured by Japan Epoxy Resin Co., Ltd., Araldite 0163 manufactured by Ciba Specialty Chemicals Co., Ltd., Denacol EX-611, 614, 614B, 622, 512, 521 manufactured by Nagase ChemteX Corporation. , 421, 411, 321 and the like.
  • amine type epoxy resin Epicoat 604 manufactured by Japan Epoxy Resin Co., Ltd., YH-434 manufactured by Tohto Kasei Co., Ltd., TETRAD-X, TETRAD-C manufactured by Mitsubishi Gas Chemical Co., Ltd., ELM- manufactured by Sumitomo Chemical Co., Ltd. 120 etc. are mentioned.
  • heterocyclic ring-containing epoxy resin include Araldite PT810 manufactured by Ciba Specialty Chemicals Co., Ltd., ERL4234, 4299, 4221, 4206 manufactured by UCC, and the like. These epoxy resins can be used alone or in combination of two or more.
  • the content of the component (B) in the adhesive composition according to the present invention is preferably 5 to 500 parts by weight, and preferably 10 to 400 parts by weight with respect to 100 parts by weight of the component (A). More preferred is 40 to 300 parts by mass.
  • content of (B) component exists in said range, the elasticity modulus of the adhesive bond layer formed in the film form and the flow property suppression at the time of shaping
  • the phenolic epoxy resin curing agent When combined with an epoxy resin, the phenolic epoxy resin curing agent has excellent impact resistance under high temperature and high pressure, and can maintain sufficient adhesive properties even under severe thermal moisture absorption.
  • component (C) examples include phenol resins such as phenol novolak resin, bisphenol A novolak resin, and cresol novolak resin. More specifically, for example, trade names: Phenolite LF4871, Phenolite LF2822, Phenolite TD-2090, Phenolite TD-2149, Phenolite VH-4150, and Phenolite VH4170 are available from DIC Corporation. These can be used alone or in combination of two or more.
  • phenol resins such as phenol novolak resin, bisphenol A novolak resin, and cresol novolak resin. More specifically, for example, trade names: Phenolite LF4871, Phenolite LF2822, Phenolite TD-2090, Phenolite TD-2149, Phenolite VH-4150, and Phenolite VH4170 are available from DIC Corporation. These can be used alone or in combination of two or more.
  • the content of the component (C) in the adhesive composition according to the present invention is such that the equivalent ratio of the phenolic hydroxyl group of the component (C) to the epoxy group of the component (B) is 0 from the viewpoint of imparting electric corrosion resistance during moisture absorption. 0.5 to 1.5 is preferable, and 0.8 to 1.2 is more preferable.
  • the curing (crosslinking) of the epoxy resin can proceed to a sufficient level, and the glass transition temperature of the cured product can be sufficiently increased. Thereby, the moisture resistance of the cured adhesive layer and the connection reliability at a high temperature can be sufficiently ensured, and as a result, the electric corrosion resistance at the time of moisture absorption is more reliably improved.
  • Examples of the radiation-polymerizable compound include compounds that can be cross-linked by irradiation with radiation.
  • Specific examples of the component (D) include, for example, pentaerythritol triacrylate, dipentaerythritol hexaacrylate, dipentaerythritol pentaacrylate, trimethylolpropane triacrylate, isocyanuric acid EO-modified triacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol.
  • Examples thereof include acrylates or methacrylates such as tetraacrylate, dicyclopentenyloxyethyl acrylate, and 2,2-bis [4- (methacryloxy ⁇ diethoxy) phenyl] propane. These compounds can be used alone or in combination of two or more.
  • Commercial products such as Shin-Nakamura Industrial Chemical Co., Ltd .: A-DPH, Hitachi Chemical Co., Ltd .: FA-512AS, FA-513AS can be used.
  • the compounding amount of the component (D) in the adhesive composition according to the present invention is preferably 10 to 200 parts by mass with respect to 100 parts by mass of the component (A).
  • the blending amount is 10 parts by mass or more, the polymerization reaction of the radiation-polymerizable compound by irradiation with radiation such as ultraviolet rays can be sufficiently advanced, and the fluidity at the time of high-temperature pressure bonding can be suppressed.
  • the blending amount exceeds 200 parts by mass, cross-linking occurs excessively, and it becomes difficult to obtain the fluidity necessary for pressure bonding.
  • the blending amount is more preferably 15 to 150 parts by weight, and particularly preferably 20 to 100 parts by weight.
  • the photoinitiator includes a compound capable of curing the component (D) by irradiation with radiation.
  • the component (E) include benzophenones such as 4,4′-diethylaminobenzophenone and 4,4′-dimethylaminobenzophenone, 1-hydroxy-cyclohexyl phenyl ketone, 2-methyl-1 [4- (methylthio) Phenyl] -2-morpholinopropan-1-one, ketones such as 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, and bis (2,4,6-trimethyl) Benzoyl) -phenylphosphine oxide.
  • Irg-184 and Irg-819 manufactured by Ciba Specialty Chemicals are preferable from the viewpoint of solubility in a solvent and stability during heating.
  • a photoinitiator can be used individually by 1 type or in combination of 2 or more types.
  • the amount of component (E) is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of component (A). If the blending amount is less than 0.1 parts by mass, the unreacted component (D) tends to remain. In this case, voids increase at the time of high-temperature pressure bonding, and the embedding property tends to be adversely affected. On the other hand, when the blending amount exceeds 30 parts by mass, it is difficult to sufficiently increase the molecular weight by the polymerization reaction, and there is a tendency that many low molecular weight components exist. In this case, the low molecular weight component may affect the fluidity during heating.
  • the blending amount is more preferably 0.5 to 20 parts by mass, and particularly preferably 1 to 10 parts by mass.
  • the curing accelerator includes a compound that accelerates the reaction between (B) the epoxy resin and (C) the phenolic epoxy resin curing agent.
  • the component (F) include imidazoles, dicyandiamide derivatives, dicarboxylic acid dihydrazide, triphenylphosphine, tetraphenylphosphonium tetraphenylborate, 2-ethyl-4-methylimidazoletetraphenylborate and 1,8-diazabicyclo (5,5). 4,0) undecene-7-tetraphenylborate.
  • imidazoles are preferable. These can be used individually by 1 type or in combination of 2 or more types.
  • the content of the component (F) in the adhesive composition according to the present invention is 0 with respect to a total of 100 parts by mass of the component (B) and the component (C) from the viewpoint of achieving both curability and storage stability.
  • 0.1 to 20 parts by weight is preferable, 0.1 to 10 parts by weight is more preferable, and 0.2 to 5 parts by weight is even more preferable.
  • the adhesive composition according to the present invention may be blended with a high molecular weight resin other than the component (A) that is compatible with the epoxy resin (G). it can.
  • a high molecular weight resin other than the component (A) that is compatible with the epoxy resin (G). it can.
  • (G) component what becomes incompatible with (A) component is preferable from a viewpoint of a reliability improvement, for example, a phenoxy resin, a high molecular weight epoxy resin, and an ultra high molecular weight epoxy resin are mentioned. These can be used alone or in combination of two or more.
  • the above (G) component is blended to make the (B) epoxy resin more compatible with the (G) component.
  • (B) It may be possible to make the epoxy resin and the component (A) incompatible with each other. By such an action, flexibility and reflow crack resistance can be further improved.
  • the compounding quantity of a component shall be 40 mass parts or less with respect to a total of 100 mass parts of (B) and (C) component from a viewpoint of ensuring the glass transition temperature (Tg) of an adhesive bond layer. preferable.
  • an inorganic filler can be added for the purpose of improving the handleability of the formed adhesive layer, improving the thermal conductivity, adjusting the melt viscosity, and imparting thixotropic properties.
  • the inorganic filler is not particularly limited, and examples thereof include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, and aluminum borate whisker. , Boron nitride, crystalline silica and amorphous silica. These fillers can be used alone or in combination of two or more. Further, the shape of the filler is not particularly limited.
  • aluminum oxide, aluminum nitride, boron nitride, crystalline silica, amorphous silica, and the like are preferable for improving thermal conductivity.
  • aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, crystallinity Silica, amorphous silica and the like are preferable.
  • complex oxides such as mullite and cordierite, and clay minerals such as montmorillonite and smectite can also be used.
  • the compounding amount of the inorganic filler is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the total amount of the adhesive composition. If the blending amount is less than 1 part by mass, the effect of addition tends not to be sufficiently obtained. If it exceeds 100 parts by mass, the storage elastic modulus of the adhesive layer is increased, the adhesiveness is lowered, and the electricity due to voids remains. There is a tendency that problems such as deterioration of characteristics tend to occur.
  • various coupling agents can be added to the adhesive composition according to the present invention in order to improve interfacial bonding between different materials.
  • the coupling agent include silane, titanium, and aluminum.
  • silane coupling agent examples include ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropylmethyldimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropyltriethoxysilane, and 3-aminopropylmethyl.
  • examples include diethoxysilane, 3-ureidopropyltriethoxysilane and 3-ureidopropyltrimethoxysilane. These can be used alone or in combination of two or more. Commercial products such as A-189 and A-1160 manufactured by Nippon Unicar Co., Ltd. can also be used.
  • the blending amount of the coupling agent is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of component (A), from the viewpoint of the effect of addition, heat resistance and cost.
  • an ion scavenger can be further added to the adhesive composition according to the present invention for the purpose of adsorbing ionic impurities and improving the insulation reliability during moisture absorption.
  • ion-trapping agents include triazine thiol compounds and bisphenol-based reducing agents, such as compounds known as copper damage inhibitors to prevent copper ionization and dissolution, and zirconium-based and antimony bismuth-based agents.
  • An inorganic ion adsorbent such as a magnesium aluminum compound is included.
  • the compounding amount of the ion scavenger is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the component (A) from the viewpoint of the effect of addition, heat resistance, cost, and the like.
  • conductive particles can be added to the adhesive composition as long as the effect of the present invention is not impaired, and an anisotropic conductive adhesive film (ACF) can be obtained.
  • ACF anisotropic conductive adhesive film
  • NCF non-conductive adhesive film
  • the adhesive layer 2 is formed by dissolving or dispersing the above-described adhesive composition according to the present invention in a solvent to form a varnish, applying the varnish on the support substrate 3, and removing the solvent by heating. Can do.
  • the support varnish 3 may be laminated after the varnish is applied onto a protective film (hereinafter sometimes referred to as “release sheet”) 1 and the adhesive layer 2 is formed by removing the solvent by heating. it can.
  • the solvent to be used is not particularly limited, but it is preferable to determine the volatility at the time of forming the adhesive layer from the boiling point.
  • solvents with relatively low boiling points such as methanol, ethanol, 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, methyl ethyl ketone, acetone, methyl isobutyl ketone, toluene, xylene are bonded when the adhesive layer is formed. It is preferable in that the curing of the agent layer is difficult to proceed.
  • a solvent having a high boiling point such as dimethylacetamide, dimethylformamide, N-methylpyrrolidone, cyclohexanone and the like. These solvents can be used alone or in combination of two or more.
  • the support substrate 3 a known material can be used as long as it has radiation transparency.
  • the supporting substrate 3 include plastic films such as a polytetrafluoroethylene film, a polyethylene film, a polypropylene film, and a polymethylpentene film.
  • the support base 3 may be a mixture of two or more selected from the above materials, or a multilayer of the above film.
  • the thickness of the support substrate 3 is not particularly limited, but is preferably 5 to 250 ⁇ m. If the thickness is less than 5 ⁇ m, the support substrate may be cut during grinding (back grinding) of the semiconductor wafer, and if it is more than 250 ⁇ m, it is not economical, which is not preferable.
  • the support substrate 3 preferably has high light transmittance, and specifically, the minimum light transmittance in the wavelength region of 500 to 800 nm is preferably 10% or more.
  • a single pressure-sensitive adhesive layer can be provided on the support substrate 3.
  • the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer include an acrylic copolymer synthesized by a solution polymerization method using 2-ethylhexyl acrylate and methyl methacrylate as main monomers and hydroxyethyl acrylate and acrylic acid as functional group monomers. Can be used.
  • the protective film for example, a polymer film having heat resistance and solvent resistance such as polyethylene terephthalate can be used.
  • examples of commercially available products include polyethylene terephthalate films such as “A-31” manufactured by Teijin DuPont Films.
  • the protective film preferably has a thickness of 10 to 100 ⁇ m, more preferably 30 to 75 ⁇ m, and particularly preferably 35 to 50 ⁇ m. If the thickness is less than 10 ⁇ m, the protective film tends to be broken during coating, and if it exceeds 100 ⁇ m, the cost tends to be inferior.
  • Examples of methods for applying the varnish on the support substrate or the protective film include generally known methods such as knife coating, roll coating, spray coating, gravure coating, bar coating, and curtain coating.
  • the temperature condition for removing the solvent by heating is preferably about 70 to 150 ° C.
  • the thickness of the adhesive layer 2 is not particularly limited but is preferably 3 to 200 ⁇ m. If the thickness is smaller than 3 ⁇ m, the stress relaxation effect tends to be poor. If the thickness is larger than 200 ⁇ m, it is not economical and it becomes difficult to meet the demand for downsizing of the semiconductor device.
  • the 5% weight reduction temperature of the adhesive layer 2 is preferably 180 ° C. or more, and more preferably 200 to 350 ° C.
  • the above-described adhesive sheet 10 for connecting a circuit member is interposed between a circuit member and a semiconductor element having circuit electrodes which are opposed to each other and solder-bonded, or between semiconductor elements, and the circuit member and the semiconductor elements or the semiconductor elements are interleaved.
  • the circuit member and the semiconductor element or the semiconductor elements can be bonded with a sufficient adhesive force while suppressing generation of voids by thermocompression bonding. Thereby, the connection body excellent in connection reliability can be obtained.
  • FIGS. 2 to 6 are schematic cross-sectional views for explaining a preferred embodiment of a method for manufacturing a semiconductor device according to the present invention.
  • the manufacturing method of the semiconductor device of this embodiment is as follows: (A) A semiconductor wafer having a plurality of circuit electrodes on one of the main surfaces is prepared, and the adhesive for the above-described adhesive sheet for connecting circuit members according to the present invention is provided on the side of the semiconductor wafer where the circuit electrodes are provided.
  • a step of applying a layer (B) a step of grinding the opposite side of the semiconductor wafer to the side where the circuit electrodes are provided to thin the semiconductor wafer; (C) removing the support substrate after irradiating the adhesive layer with radiation; (D) a step of dicing the thinned semiconductor wafer and the adhesive layer irradiated with radiation into individual semiconductor elements with a film adhesive; (E) a step of bonding the semiconductor element with a film adhesive and the semiconductor element mounting support member through the film adhesive of the semiconductor element with a film adhesive; Is provided.
  • the adhesive sheet 10 is arrange
  • the circuit electrode 20 is provided with solder bumps for solder bonding. It is also possible to provide solder bumps on the circuit electrodes of the semiconductor element mounting support member without providing the circuit electrodes 20 with solder bumps.
  • the side of the semiconductor wafer A opposite to the side where the circuit electrodes 20 are provided is ground by the grinder 4 to thin the semiconductor wafer.
  • the thickness of the semiconductor wafer can be, for example, 10 ⁇ m to 300 ⁇ m. From the viewpoint of miniaturization and thinning of the semiconductor device, the thickness of the semiconductor wafer is preferably 20 ⁇ m to 100 ⁇ m.
  • the support base material 3 functions as a back grind tape, but the back grind tape can be attached to the support base material 3 to grind the semiconductor wafer.
  • the adhesive bond layer 2 is hardened by irradiating the adhesive bond layer 2 from the support base material 3 side, and the adhesive bond layer 2, the support base material 3, and Reduce the adhesive strength between.
  • the radiation used include ultraviolet rays, electron beams, and infrared rays.
  • the irradiation condition is such that the irradiation amount is such that the (D) component such as the acrylic monomer is polymerized at an illuminance of 5 to 300 mW / cm 2. Irradiation is preferably performed so as to be ⁇ 1000 mJ.
  • FIG.4 (a) shows, the dicing tape 5 is affixed on the semiconductor wafer A of a laminated body, this is arrange
  • the semiconductor wafer A and the adhesive layer 2 are diced with a dicing saw 6 as shown in FIG.
  • the semiconductor wafer A is divided into a plurality of semiconductor elements A ′, and the adhesive layer 2 is divided into a plurality of film adhesives 2a.
  • the semiconductor elements A ′ obtained by the dicing tape 5 are pushed up with a needle while the semiconductor elements A ′ obtained by the dicing are separated from each other, and film-like adhesion is performed.
  • the film-like adhesive-attached semiconductor element 12 made of the agent 2a is sucked and picked up by the suction collet 7.
  • circuit electrode 20 or the circuit electrode 22 When the circuit electrode 20 or the circuit electrode 22 is provided with solder bumps, the circuit electrode 20 and the circuit electrode 22 are electrically and mechanically connected by solder bonding by thermocompression bonding.
  • the temperature at the time of thermocompression bonding is preferably 200 ° C. or higher, more preferably 220 to 260 ° C., from the viewpoint of solder bonding and adhesive curing.
  • the thermocompression bonding time can be 1 to 20 seconds.
  • the pressure for thermocompression bonding can be 0.1 to 5 MPa.
  • the semiconductor device 30 is obtained through the above steps.
  • the manufacturing method of the semiconductor device according to the present embodiment by using the adhesive sheet for connecting circuit members according to the present invention, in the step (a), generation of peeling and voids can be sufficiently suppressed, and in the step (b) The wafer can be ground while sufficiently preventing the occurrence of breakage and cracks, and in the step (e), the semiconductor element and the semiconductor element mounting member can be satisfactorily bonded while sufficiently suppressing the generation of voids. .
  • the semiconductor device 30 can be excellent in connection reliability.
  • the method for manufacturing a semiconductor device of this embodiment such a semiconductor device can be manufactured with a high yield.
  • Example 1 First, 100 parts by mass of “HTR-860P-3” (trade name, manufactured by Nagase ChemteX Corp., acrylic rubber containing glycidyl group, weight average molecular weight 800,000, Tg ⁇ 7 ° C.), “1032-H60” (cyclohexanone) Japan Epoxy Resin Co., Ltd.
  • “HTR-860P-3” trade name, manufactured by Nagase ChemteX Corp., acrylic rubber containing glycidyl group, weight average molecular weight 800,000, Tg ⁇ 7 ° C.
  • “1032-H60” cyclohexanone
  • the adhesive varnish is dried on a surface release-treated polyethylene terephthalate (Teijin DuPont Film Co., Ltd., Teijin Tetron Film: A-31, thickness 50 ⁇ m) as a protective film so that the thickness after drying becomes 30 ⁇ m. And then dried by heating at 100 ° C. for 30 minutes to form an adhesive layer.
  • a protective substrate surface release-treated polyethylene terephthalate
  • an adhesive layer and a support are laminated on the adhesive layer by laminating a support base material (manufactured by Ron Seal, soft polyolefin film: POF-120A, thickness 100 ⁇ m).
  • the adhesive sheet for circuit member connection which consists of a base material was obtained.
  • Example 2 A circuit was prepared in the same manner as in Example 1, except that “A-DPH” in the preparation of the adhesive varnish was changed to “FA-512AS” (trade name, manufactured by Hitachi Chemical Co., Ltd., dicyclopentenyloxyethyl acrylate). An adhesive sheet for member connection was obtained.
  • Example 3 Other than changing “A-DPH” in preparation of adhesive varnish to “BPE-200” (trade name, 2,2-bis [4- (methacryloxy-diethoxy) phenyl] propane, manufactured by Shin-Nakamura Chemical Co., Ltd.) In the same manner as in Example 1, an adhesive sheet for connecting circuit members was obtained.
  • BPE-200 trade name, 2,2-bis [4- (methacryloxy-diethoxy) phenyl] propane, manufactured by Shin-Nakamura Chemical Co., Ltd.
  • Example 4 The support base material used for preparation of Example 1 was changed to the following back grind (BG) tape A which is a support base material with an adhesive layer, and the adhesive sheet for circuit member connection was obtained.
  • BG tape A back grind
  • an acrylic copolymer was synthesized by a solution polymerization method using 2-ethylhexyl acrylate and methyl methacrylate as main monomers and hydroxyethyl acrylate and acrylic acid as functional group monomers.
  • the resulting acrylic copolymer had a weight average molecular weight of 400,000 and a glass transition temperature of ⁇ 38 ° C.
  • an adhesive varnish was prepared by blending 10 parts by mass of a polyfunctional isocyanate crosslinking agent (trade name: Colonate HL, manufactured by Nippon Polyurethane Industry Co., Ltd.) with respect to 100 parts by mass of the acrylic copolymer, and polyolefin film (Okamoto Co., Ltd.)
  • the product was dried on a product (trade name: WNH-2110, thickness: 100 ⁇ m) so that the thickness of the pressure-sensitive adhesive layer when dried was 10 ⁇ m.
  • a biaxially stretched polyester film made by Teijin DuPont Films, trade name: A3171, thickness 25 ⁇ m coated with a silicone release agent was laminated on the adhesive surface.
  • the film with the pressure-sensitive adhesive layer was allowed to stand at room temperature for 1 week and sufficiently aged.
  • BG tape A was obtained by removing the biaxially stretched polyester film from the film with an adhesive layer after aging.
  • Comparative Example 4 A circuit member connecting adhesive sheet was obtained in the same manner as in Comparative Example 2 except that the supporting base material was changed to the BG tape A used in Example 4.
  • ⁇ Wafer backside grindability> a laminate of an adhesive sheet for connecting circuit members and a silicon wafer (thickness: 625 ⁇ m) was prepared, and this was placed on a back grinder, and the back surface of the silicon wafer was ground until the thickness reached 280 ⁇ m (back grinding) )did. The ground wafer was inspected visually and under a microscope, and the wafer backside grindability was evaluated based on the following criteria. A: There is no breakage of the wafer and generation of microcracks. B: The wafer is broken and microcracks are generated.
  • a chip (10 mm square, thickness 280 ⁇ m) with gold wire bumps (leveled, bump height 30 ⁇ m, 184 bumps) was placed on the stage of the temporary pressure bonding apparatus with the bump surface facing up.
  • the adhesive sheet for connecting circuit members from which the protective film has been peeled is cut into 11 mm squares together with the supporting base material, and this is covered with a chip so that the adhesive layer side faces the bump surface, and further, a heat conductive cover made of silicone The film was placed and heated and pressurized at 80 ° C. and 1 MPa.
  • the support substrate was peeled off from the adhesive layer, and the adhesive layer was exposed to 500 mJ at an illuminance of 15 mW / cm 2 using ultraviolet rays to obtain a chip with an adhesive.
  • the obtained chip with adhesive was aligned with a Ni / Au plated Cu circuit printed circuit board, and then heated and pressurized at 250 ° C., 5 MPa, and 10 seconds.
  • the void situation was observed with the ultrasonic microscope, and embedding property was evaluated based on the following reference
  • the wafer back surface grindability evaluation sample was irradiated with ultraviolet rays under the conditions of illuminance: 20 mW / cm 2 and exposure amount: 500 mJ, and then the support substrate (or BG tape) of the adhesive sheet for connecting circuit members was 5 mm / second. It peeled at the speed of.
  • the support substrate (or BG tape) after peeling and the surface of the wafer with the adhesive for connecting circuit members were inspected visually and under a microscope, and the support substrate peelability was evaluated based on the following criteria.
  • A: The supporting substrate (or BG tape) can be peeled from the adhesive layer, and there is no peeling of the adhesive layer and the wafer.
  • a support base material (or BG tape) cannot partly peel from an adhesive layer, and part of the adhesive layer is peeled off from the wafer. (Peeling area of adhesive layer from wafer is less than 30%)
  • C The supporting substrate (or BG tape) cannot be peeled off from the adhesive layer, and the entire adhesive layer is peeled off from the wafer. (Peeling area of adhesive layer from wafer is 30% or more)

Abstract

Disclosed is an adhesive sheet for connecting a circuit member, which comprises a supporting base and an adhesive layer that is provided on the supporting base and composed of an adhesive composition. The adhesive composition contains (A) a high molecular weight component having a weight average molecular weight of not less than 100,000, (B) an epoxy resin, (C) a phenolic epoxy resin curing agent, (D) a radiation polymerizable compound, (E) a photoinitiator and (F) a curing accelerator.

Description

回路部材接続用接着剤シート及び半導体装置の製造方法Circuit member connecting adhesive sheet and method for manufacturing semiconductor device
 本発明は、回路部材接続用接着剤シート及び半導体装置の製造方法に関する。 The present invention relates to an adhesive sheet for connecting circuit members and a method for manufacturing a semiconductor device.
 一般に、半導体チップの実装技術として、半導体チップを直接回路基板に接続するフェイスダウンボンディング方式が知られている。この方式には、半導体チップの電極部分にはんだバンプを形成して回路基板の電極にはんだ接続する方法や、半導体チップに設けた突起電極に導電性接着剤を塗布して回路基板の電極との電気的な接続を行う方法がある。 Generally, a face-down bonding method in which a semiconductor chip is directly connected to a circuit board is known as a semiconductor chip mounting technique. In this method, a solder bump is formed on the electrode part of the semiconductor chip and soldered to the electrode of the circuit board, or a conductive adhesive is applied to the protruding electrode provided on the semiconductor chip to connect with the electrode of the circuit board. There are ways to make electrical connections.
 フェイスダウンボンディング方式で製造された半導体装置は、各種環境下に曝された場合、接続されたチップと基板の熱膨張係数差に基づくストレスが接続界面で発生するため、接続信頼性が低下しやすいという問題を有している。このため、接続界面のストレスを緩和する目的で、チップと基板との間隙をエポキシ樹脂等のアンダーフィル材で充填することが行われている。 When exposed to various environments, a semiconductor device manufactured by the face-down bonding method generates stress at the connection interface due to a difference in thermal expansion coefficient between the connected chip and the substrate, and thus connection reliability is likely to decrease. Has the problem. For this reason, in order to relieve stress at the connection interface, the gap between the chip and the substrate is filled with an underfill material such as an epoxy resin.
 アンダーフィル材の充填方式としては、チップと基板とを接続した後に低粘度の液状樹脂を注入する方式と、基板上にアンダーフィル材を設けた後にチップを搭載する方式がある。さらに、後者の方式には、液状樹脂を塗布する方式とフィルム状樹脂を貼付ける方式がある。 The underfill material filling method includes a method of injecting a low viscosity liquid resin after connecting the chip and the substrate, and a method of mounting the chip after providing the underfill material on the substrate. Furthermore, the latter method includes a method of applying a liquid resin and a method of attaching a film-like resin.
 液状樹脂を用いる方式は、ディスペンサーによる精密な塗布量コントロールが困難である。特に、近年の薄型化されたチップを実装する場合、塗布量が多すぎると、ボンディング時に滲み出した樹脂がチップの側面を這い上がり、ボンディングツールを汚染してしまう。そのため、本方式では、ツールの洗浄が必要となり、量産時の工程が煩雑化する。 In the method using liquid resin, it is difficult to precisely control the coating amount with a dispenser. In particular, when mounting a thin chip in recent years, if the amount applied is too large, the resin that has oozed out during bonding crawls up the side surface of the chip and contaminates the bonding tool. Therefore, in this method, the tool needs to be cleaned, and the process during mass production becomes complicated.
 他方、フィルム状樹脂を用いる方式は、フィルムの厚みを調整することによって最適な樹脂量を与えることが容易にできる反面、仮圧着工程と呼ばれるフィルム状樹脂を基板に貼付ける工程を必要とする。通常、仮圧着工程は、対象となるチップ幅よりも大きめの幅にスリットされたリール状の接着剤テープを用意し、チップサイズに応じて基材上の接着剤テープをカットして接着剤が反応しない程度の温度で基板上に熱圧着する。ところが、チップ搭載位置にフィルムを精度よく供給することは難しく、また微小チップ等に対応した細幅のリール加工は困難であることから、一般的に、歩留りの確保には、仮圧着で貼付けるフィルムをチップサイズより大きくすることで対応している。そのため、本方式では、隣接部品との距離や実装面積を余分に確保する必要があり、高密度化実装に対応しにくい。 On the other hand, the method using a film-like resin can easily give an optimum amount of resin by adjusting the thickness of the film, but requires a step of sticking a film-like resin called a temporary pressure bonding step to a substrate. Usually, in the pre-bonding process, a reel-shaped adhesive tape that is slit to a width larger than the target chip width is prepared, and the adhesive tape on the base material is cut according to the chip size. Thermocompression bonding is performed on the substrate at a temperature that does not react. However, since it is difficult to accurately supply the film to the chip mounting position and it is difficult to process a thin reel corresponding to a microchip or the like, it is generally pasted by temporary pressure bonding to secure the yield. This can be done by making the film larger than the chip size. For this reason, in this method, it is necessary to secure an extra distance from adjacent components and a mounting area, and it is difficult to support high-density mounting.
 最近、高密度化実装技術の一つとして、フィルム状接着剤付チップを用いる方法が検討されている。例えば、下記特許文献1及び2等には、フィルム状の接着剤が貼付されたウエハを準備し、このウエハの裏面を研削した後、ウエハを接着剤と共に切断してチップ化することにより、チップにチップサイズと同サイズの接着剤が付着したフィルム状接着剤付チップを作製し、これを回路基板に実装して半導体装置を製造する方法が提案されている。 Recently, a method using a chip with a film adhesive has been studied as one of high-density mounting technologies. For example, in the following Patent Documents 1 and 2, etc., a wafer is prepared by preparing a wafer with a film-like adhesive attached, grinding the back surface of the wafer, and then cutting the wafer together with the adhesive into chips. There has been proposed a method of manufacturing a semiconductor device by manufacturing a chip with a film adhesive to which an adhesive having the same size as the chip size is attached and mounting the chip on a circuit board.
 一方、近年ではさらなる高機能化、高速動作を可能とするものとしてチップ間を最短距離で接続する3次元実装技術であるシリコン貫通電極(TSV:Through Silicon Via)が注目されている(非特許文献1参照)。この結果、半導体ウエハの厚さはできるだけ薄く、かつ機械的強度が低下しないことが要求されてきている。 On the other hand, in recent years, through silicon vias (TSV: Through Silicon Via), which is a three-dimensional mounting technology for connecting chips with the shortest distance to enable higher functionality and higher speed operation, has been attracting attention (non-patent literature). 1). As a result, it has been demanded that the thickness of the semiconductor wafer be as thin as possible and the mechanical strength not be lowered.
特開2006-049482号公報JP 2006-049482 A 特許第2833111号Japanese Patent No. 2833111
 上記の方法におけるフィルム状接着剤は、ウエハへの貼付工程、ウエハ裏面研削工程、ダイシング工程、フリップチップボンディング工程を経ることになる。ウエハへの貼付工程では、ウエハに貼付したときに剥離やボイドの発生を十分抑制できる貼付性がフィルム状接着剤に求められる。ウエハ裏面研削工程では、ウエハ裏面研削性に優れていること、すなわち、研削による破損やクラックの発生を十分防止できる粘着性や密着性を有していることがフィルム状接着剤に求められる。フリップチップボンディング工程では、半導体素子搭載用部材等の回路部材との接続時にボイドが発生しにくい埋込性がフィルム状接着剤に求められる。 The film adhesive in the above method goes through a wafer sticking process, a wafer back grinding process, a dicing process, and a flip chip bonding process. In the step of sticking to a wafer, the film adhesive is required to have stickability that can sufficiently suppress the occurrence of peeling and voids when sticking to a wafer. In the wafer back surface grinding step, the film adhesive is required to have excellent wafer back surface grindability, that is, to have adhesiveness and adhesiveness that can sufficiently prevent the occurrence of breakage and cracks due to grinding. In the flip chip bonding process, a film-like adhesive is required to have a embeddability in which voids are unlikely to occur when connected to a circuit member such as a semiconductor element mounting member.
 しかしながら、特許文献1に記載のウエハ加工用テープは、基材フィルム上に粘着剤層及び接着剤層を有するものであることから、保存時に粘着剤層と接着剤層との間の剥離性が経時的に低下してしまい、接着剤層をウエハへ貼付することが困難となる可能性があった。また、上記特許文献2に記載の接着剤フィルムは、フリップチップボンディング工程における埋込性が必ずしも十分とはいえず、特に、ハンダ接合を同時に行う場合の200℃以上での熱圧着時にボイドが発生することがあった。 However, since the wafer processing tape described in Patent Document 1 has a pressure-sensitive adhesive layer and an adhesive layer on a base film, the peelability between the pressure-sensitive adhesive layer and the adhesive layer during storage is low. There was a possibility that the adhesive layer would be difficult to stick to the wafer due to a decrease over time. In addition, the adhesive film described in Patent Document 2 does not necessarily have sufficient embeddability in the flip chip bonding process, and in particular, voids are generated at the time of thermocompression bonding at 200 ° C. or higher when performing solder bonding simultaneously. There was something to do.
 本発明は、上記事情に鑑みてなされたものであり、半導体ウエハへの貼付性、ウエハ裏面研削性及びフリップチップボンディング時の埋込性のすべてを高水準で満足する回路部材接続用接着剤シート、及び半導体装置の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is an adhesive sheet for connecting a circuit member that satisfies all of a high level of adhesiveness to a semiconductor wafer, grindability of a wafer back surface, and embedding at the time of flip chip bonding. And a method of manufacturing a semiconductor device.
 上記課題を解決する本発明の回路部材接続用接着剤シートは、相対向する回路部材を接続するための回路部材接続用接着剤シートであって、支持基材と、該支持基材上に設けられた接着剤組成物からなる接着剤層とを備え、接着剤組成物が、(A)重量平均分子量が10万以上である高分子量成分と、(B)エポキシ樹脂と、(C)フェノール系エポキシ樹脂硬化剤と、(D)放射線重合性化合物と、(E)光開始剤と、(F)硬化促進剤とを含む。 An adhesive sheet for connecting a circuit member of the present invention that solves the above problems is an adhesive sheet for connecting a circuit member for connecting circuit members facing each other, and is provided on a support base material and the support base material. An adhesive layer comprising the adhesive composition thus prepared, the adhesive composition comprising: (A) a high molecular weight component having a weight average molecular weight of 100,000 or more; (B) an epoxy resin; and (C) a phenolic compound. An epoxy resin curing agent, (D) a radiation polymerizable compound, (E) a photoinitiator, and (F) a curing accelerator are included.
 本発明の回路部材接続用接着剤シートによれば、上記構成を有することにより、半導体ウエハへの貼付性、ウエハ裏面研削性及びフリップチップボンディング時の埋込性のすべてを高水準で満足することができる。 According to the adhesive sheet for connecting circuit members of the present invention, having the above-described configuration satisfies all of the adhesiveness to the semiconductor wafer, the wafer back surface grindability, and the embedding property at the time of flip chip bonding at a high level. Can do.
 本発明の回路部材接続用接着剤シートにより上記の効果が得られる理由を本発明者らは以下のとおり考えている。すなわち、放射線重合性化合物及び光開始剤の配合により、ウエハへの貼付工程で求められる比較的低温での埋込性及びウエハ裏面研削工程で求められる粘着性や密着性との両立に大きく寄与し、接着剤層の粘接着性が増して半導体ウエハへの貼付性に十分に優れる。その後の工程で、フリップチップボンディング前の放射線重合性化合物及び光開始剤の配合により事前の放射線照射により放射線重合性化合物が架橋することで加熱時の流動性を制御できることが、高温時の埋込性に寄与していると本発明者らは考えている。 The present inventors consider the reason why the above effect is obtained by the adhesive sheet for connecting circuit members of the present invention as follows. In other words, the combination of the radiation polymerizable compound and the photoinitiator greatly contributes to both the embedding at a relatively low temperature required in the sticking process to the wafer and the adhesiveness and adhesion required in the wafer back grinding process. In addition, the adhesiveness of the adhesive layer is increased and the adhesiveness to the semiconductor wafer is sufficiently excellent. In subsequent processes, the flowability during heating can be controlled by cross-linking the radiation-polymerizable compound by pre-irradiation by blending the radiation-polymerizable compound and photoinitiator before flip-chip bonding. The present inventors think that it contributes to sex.
 本発明の回路部材接続用接着剤シートにおいて、上記接着剤組成物は、(A)成分を100質量部と、(B)成分を5~500質量部と、(D)成分を5~100質量部と、(E)成分を0.1~20質量部と、(F)成分を0.1~20質量部とを含み、(B)成分のエポキシ樹脂のエポキシ基に対する(C)成分のフェノール性水酸基の当量比が0.5~1.5であることが好ましい。 In the adhesive sheet for connecting circuit members of the present invention, the adhesive composition comprises 100 parts by weight of component (A), 5 to 500 parts by weight of component (B), and 5 to 100 parts by weight of component (D). Component (E) 0.1 to 20 parts by mass, (F) component 0.1 to 20 parts by mass, (B) component (C) component phenol with respect to the epoxy group of the epoxy resin The equivalent ratio of the functional hydroxyl group is preferably 0.5 to 1.5.
 また、上記(A)成分が、グリシジル基を有する反復単位を0.5~6質量%含有するグリシジル基含有(メタ)アクリル共重合体であることが好ましい。 The component (A) is preferably a glycidyl group-containing (meth) acrylic copolymer containing 0.5 to 6% by mass of repeating units having a glycidyl group.
 本発明はまた、主面の一方に複数の回路電極を有する半導体ウエハを準備し、該半導体ウエハの回路電極が設けられている側に、上記本発明の回路部材接続用接着剤シートの接着剤層を貼付ける工程と、半導体ウエハの回路電極が設けられている側とは反対側を研削して半導体ウエハを薄化する工程と、接着剤層に放射線を照射する工程と、薄化した半導体ウエハ及び放射線が照射された接着剤層をダイシングしてフィルム状接着剤付半導体素子に個片化する工程と、フィルム状接着剤付半導体素子と半導体素子搭載用支持部材とをフィルム状接着剤付半導体素子のフィルム状接着剤を介して接着する工程とを備える半導体装置の製造方法を提供する。 The present invention also provides a semiconductor wafer having a plurality of circuit electrodes on one of the main surfaces, and the adhesive of the adhesive sheet for connecting a circuit member of the present invention on the side of the semiconductor wafer on which the circuit electrodes are provided. A step of pasting a layer, a step of thinning the semiconductor wafer by grinding the side opposite to the side on which the circuit electrodes of the semiconductor wafer are provided, a step of irradiating the adhesive layer with radiation, and a thinned semiconductor The wafer and the adhesive layer irradiated with radiation are diced into a semiconductor element with a film adhesive, and the semiconductor element with the film adhesive and the semiconductor element mounting support member are attached with the film adhesive. There is provided a method of manufacturing a semiconductor device comprising a step of bonding via a film-like adhesive of a semiconductor element.
 本発明によれば、半導体ウエハへの貼付性、ウエハ裏面研削性及びフリップチップボンディング時の埋込性のすべてを高水準で満足する回路部材接続用接着剤シートを提供することができる。また、本発明によれば、上記の回路部材接続用接着剤シートを用いた半導体装置の製造方法を提供することができ、これにより接続信頼性に優れた半導体装置を提供することができる。 According to the present invention, it is possible to provide an adhesive sheet for connecting a circuit member that satisfies all of adhesiveness to a semiconductor wafer, wafer back surface grindability, and embedding at the time of flip chip bonding at a high level. Moreover, according to this invention, the manufacturing method of the semiconductor device using said adhesive sheet for circuit member connection can be provided, and, thereby, the semiconductor device excellent in connection reliability can be provided.
本発明に係る回路部材接続用接着剤シートの好適な一実施形態を示す模式断面図である。1 is a schematic cross-sectional view showing a preferred embodiment of an adhesive sheet for connecting circuit members according to the present invention. 本発明に係る半導体装置の製造方法の一実施形態を説明するための模式断面図である。It is a schematic cross section for explaining one embodiment of a manufacturing method of a semiconductor device concerning the present invention. 本発明に係る半導体装置の製造方法の一実施形態を説明するための模式断面図である。It is a schematic cross section for explaining one embodiment of a manufacturing method of a semiconductor device concerning the present invention. 本発明に係る半導体装置の製造方法の一実施形態を説明するための模式断面図である。It is a schematic cross section for explaining one embodiment of a manufacturing method of a semiconductor device concerning the present invention. 本発明に係る半導体装置の製造方法の一実施形態を説明するための模式断面図である。It is a schematic cross section for explaining one embodiment of a manufacturing method of a semiconductor device concerning the present invention. 本発明に係る半導体装置の製造方法の一実施形態を説明するための模式断面図である。It is a schematic cross section for explaining one embodiment of a manufacturing method of a semiconductor device concerning the present invention.
 図1は、本発明に係る回路部材接続用接着剤シートの好適な一実施形態を示す模式断面図である。図1に示す回路部材接続用接着剤シート10は、支持基材3と、該支持基材3上に設けられ、本発明の接着剤組成物からなる接着剤層2と、接着剤層2を被覆する保護フィルム1とを備えている。 FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of an adhesive sheet for connecting circuit members according to the present invention. An adhesive sheet 10 for connecting circuit members shown in FIG. 1 includes a support base 3, an adhesive layer 2 provided on the support base 3 and made of the adhesive composition of the present invention, and an adhesive layer 2. And a protective film 1 to be coated.
 まず、接着剤層2を構成する本発明に係る接着剤組成物について説明する。 First, the adhesive composition according to the present invention constituting the adhesive layer 2 will be described.
 本発明に係る接着剤組成物は、(A)重量平均分子量が10万以上である高分子量成分((A)成分)と、(B)エポキシ樹脂((B)成分)と、(C)フェノール系エポキシ樹脂硬化剤((C)成分)と、(D)放射線重合性化合物((D)成分)と、(E)光開始剤((E)成分)と、(F)硬化促進剤((F)成分)とを含む。 The adhesive composition according to the present invention includes (A) a high molecular weight component ((A) component) having a weight average molecular weight of 100,000 or more, (B) an epoxy resin ((B) component), and (C) phenol. Epoxy resin curing agent (component (C)), (D) radiation polymerizable compound (component (D)), (E) photoinitiator (component (E)), and (F) curing accelerator (( F) component).
 (A)重量平均分子量が10万以上である高分子量成分は、例えば、接着剤組成物に塗膜性を付与するために使用される。具体例としては、接着性向上の点で、グリシジル基、アクリロイル基、メタクリロイル基、カルボキシル基、水酸基、エピスルフィド基等の官能基を有するものが好ましい。このような高分子量成分としては、例えば、(メタ)アクリルエステル共重合体、アクリルゴムが挙げられ、特に、アクリルゴムがより好ましい。アクリルゴムは、アクリル酸エステルを主成分とし、主として、ブチルアクリレート及びアクリロニトリル等との共重合体や、エチルアクリレート及びアクリロニトリル等との共重合体からなるゴムである。共重合体モノマーとしては、例えば、ブチルアクリレート、エチルアクリレートアクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル及びアクリロニトリルを挙げることができる。 (A) The high molecular weight component having a weight average molecular weight of 100,000 or more is used, for example, for imparting coating properties to the adhesive composition. As specific examples, those having a functional group such as a glycidyl group, an acryloyl group, a methacryloyl group, a carboxyl group, a hydroxyl group, and an episulfide group are preferable in terms of improving adhesiveness. Examples of such a high molecular weight component include (meth) acrylic ester copolymers and acrylic rubber, and acrylic rubber is particularly preferable. The acrylic rubber is a rubber mainly composed of an acrylate ester and mainly composed of a copolymer with butyl acrylate and acrylonitrile, or a copolymer with ethyl acrylate and acrylonitrile. Examples of the copolymer monomer include butyl acrylate, ethyl acrylate methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, and acrylonitrile.
 また、(A)成分としては、架橋性の点で、グリシジル基を有する高分子量成分が好ましい。具体的には、グリシジルアクリレート又はグリシジルメタクリレートを含む原料モノマーを重合させて得られる重量平均分子量が10万以上であるグリシジル基含有(メタ)アクリル共重合体を挙げることができる。なお、本明細書において、グリシジル基含有(メタ)アクリル共重合体とは、グリシジル基含有アクリル共重合体とグリシジル基含有メタクリル共重合体の両方を示す語句である。 The component (A) is preferably a high molecular weight component having a glycidyl group from the viewpoint of crosslinkability. Specific examples include a glycidyl group-containing (meth) acrylic copolymer having a weight average molecular weight of 100,000 or more obtained by polymerizing a raw material monomer containing glycidyl acrylate or glycidyl methacrylate. In addition, in this specification, a glycidyl group containing (meth) acryl copolymer is a phrase which shows both a glycidyl group containing acrylic copolymer and a glycidyl group containing methacryl copolymer.
 重量平均分子量が10万以上であるグリシジル基含有(メタ)アクリル共重合体は、上記共重合モノマーと、グリシジルアクリレートやグリシジルメタクリレート等とから適宜モノマーを選択して製造したものを用いることができる。また、市販品(例えば、ナガセケムテックス(株)製「HTR-860P-3」等)を用いることもできる。 As the glycidyl group-containing (meth) acrylic copolymer having a weight average molecular weight of 100,000 or more, a glycidyl group-containing (meth) acrylic copolymer prepared by appropriately selecting a monomer from the copolymerization monomer, glycidyl acrylate, glycidyl methacrylate, or the like can be used. Commercially available products (for example, “HTR-860P-3” manufactured by Nagase ChemteX Corporation) can also be used.
 (A)重量平均分子量が10万以上である高分子量成分は、官能基の含有量を適宜変更することにより架橋密度を調整することができる。高分子量成分が複数のモノマーの共重合体である場合は、原料として使用する官能基含有モノマーが、共重合体の0.5~6.0質量%程度含まれることが好ましい。 (A) The high molecular weight component having a weight average molecular weight of 100,000 or more can adjust the crosslinking density by appropriately changing the functional group content. When the high molecular weight component is a copolymer of a plurality of monomers, the functional group-containing monomer used as a raw material is preferably contained in an amount of about 0.5 to 6.0% by mass of the copolymer.
 グリシジル基含有(メタ)アクリル共重合体の場合、グリシジルアクリレートやグリシジルメタクリレート等のグリシジル基を有する反復単位を好ましくは0.5~6.0質量%、より好ましくは0.5~5.0質量%、さらにより好ましくは0.8~5.0質量%含有するグリシジル基含有(メタ)アクリル共重合体が用いられる。グリシジル基を有する反復単位の量が上記範囲にあると、グリシジル基の緩やかな架橋が起こるため、接着力を確保しつつゲル化を防止することが容易となる。また、(B)エポキシ樹脂と非相溶になるため、応力緩和性に優れるようになる。 In the case of a glycidyl group-containing (meth) acrylic copolymer, the repeating unit having a glycidyl group such as glycidyl acrylate or glycidyl methacrylate is preferably 0.5 to 6.0% by mass, more preferably 0.5 to 5.0% by mass. %, Even more preferably 0.8 to 5.0% by mass of a glycidyl group-containing (meth) acrylic copolymer is used. When the amount of the repeating unit having a glycidyl group is in the above range, the glycidyl group is slowly crosslinked, and thus it is easy to prevent gelation while securing the adhesive force. Moreover, since it becomes incompatible with (B) epoxy resin, it will be excellent in stress relaxation property.
 また、上記グリシジル基含有(メタ)アクリル共重合体には、グリシジルアクリレート又はグリシジルメタクリレート等以外に他の官能基が組み込まれていてもよい。その場合の混合比率は、グリシジル基含有(メタ)アクリル共重合体のガラス転移温度を考慮して決定することが好ましい。具体的には、かかる重合体のガラス転移温度が-10℃以上となるように混合比率を設定することが好ましい。重合体のガラス転移温度が-10℃以上であると、Bステージ状態での接着剤層のタック性が適当であり、取り扱い性に問題を生じないため好ましい。 Further, other functional groups may be incorporated in the glycidyl group-containing (meth) acrylic copolymer in addition to glycidyl acrylate or glycidyl methacrylate. In this case, the mixing ratio is preferably determined in consideration of the glass transition temperature of the glycidyl group-containing (meth) acrylic copolymer. Specifically, the mixing ratio is preferably set so that the glass transition temperature of such a polymer is −10 ° C. or higher. It is preferable that the glass transition temperature of the polymer is −10 ° C. or higher because the tackiness of the adhesive layer in the B-stage state is appropriate and no problem occurs in handling.
 (A)成分として、上記グリシジル基含有モノマーを重合させて得られるグリシジル基含有(メタ)アクリル共重合体を使用する場合、その重合方法としては特に制限はなく、パール重合、溶液重合等の方法を使用することができる。 When the glycidyl group-containing (meth) acrylic copolymer obtained by polymerizing the glycidyl group-containing monomer is used as the component (A), the polymerization method is not particularly limited, and methods such as pearl polymerization and solution polymerization Can be used.
 本発明において、(A)成分の重量平均分子量は10万以上であるが、30万~300万であることが好ましく、40万~250万であることがより好ましく、50万~200万であることが特に好ましい。重量平均分子量がこの範囲にあると、シート状又はフィルム状とした接着剤層の強度、可とう性及びタック性を良好にバランスさせることが容易となるとともに接着剤層のフロー性が良好となるため、配線の回路充填性(埋込性)を十分確保できる。なお、本明細書において、重量平均分子量とは、表1に示す条件にしたがって、ゲル浸透クロマトグラフ(GPC)より標準ポリスチレンによる検量線を用いて測定した値をいう。 In the present invention, the weight average molecular weight of the component (A) is 100,000 or more, preferably 300,000 to 3,000,000, more preferably 400,000 to 2,500,000, and 500,000 to 2,000,000. It is particularly preferred. When the weight average molecular weight is within this range, it becomes easy to satisfactorily balance the strength, flexibility and tackiness of the adhesive layer made into a sheet or film, and the flowability of the adhesive layer becomes good. Therefore, the circuit filling property (embedding property) of the wiring can be sufficiently secured. In addition, in this specification, a weight average molecular weight means the value measured using the calibration curve by a standard polystyrene from a gel permeation chromatograph (GPC) according to the conditions shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、(A)成分は、耐リフロー性の点で、(B)エポキシ樹脂と非相溶であることが好ましい。ただし、相溶性については(A)成分の特性のみでは決定されないので、(A)成分及び(B)成分の両者が相溶しない組み合わせを選択する。 Further, the component (A) is preferably incompatible with the epoxy resin (B) from the viewpoint of reflow resistance. However, since compatibility is not determined only by the characteristics of the component (A), a combination in which both the components (A) and (B) are not compatible is selected.
 (B)エポキシ樹脂としては、硬化して接着作用を有するものであれば特に限定されず、例えば、エポキシ樹脂ハンドブック(新保正樹編、日刊工業新聞社)に記載されるエポキシ樹脂を広く使用することができる。具体的には、例えば、ビスフェノールA型エポキシ等の二官能エポキシ樹脂、フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂を使用することができる。また、多官能エポキシ樹脂、グリシジルアミン型エポキシ樹脂、複素環含有エポキシ樹脂又は脂環式エポキシ樹脂等、一般に知られているものを適用することができる。 (B) The epoxy resin is not particularly limited as long as it is cured and has an adhesive action. For example, a wide range of epoxy resins described in the epoxy resin handbook (edited by Masaki Shinbo, Nikkan Kogyo Shimbun) are used. Can do. Specifically, for example, bifunctional epoxy resins such as bisphenol A type epoxy, novolac type epoxy resins such as phenol novolac type epoxy resin and cresol novolac type epoxy resin, and trisphenolmethane type epoxy resin can be used. Moreover, what is generally known, such as a polyfunctional epoxy resin, a glycidyl amine type epoxy resin, a heterocyclic ring-containing epoxy resin, or an alicyclic epoxy resin, can be applied.
 ビスフェノールA型エポキシ樹脂としては、ジャパンエポキシレジン(株)製エピコート807,815,825,827,828,834,1001,1004,1007,1009、ダウケミカル社製DER-330,301,361、東都化成(株)製YD8125,YDF8170等が挙げられる。フェノールノボラック型エポキシ樹脂としては、ジャパンエポキシレジン(株)製エピコート152,154、日本化薬(株)製EPPN-201、ダウケミカル社製DEN-438等が挙げられる。また、o-クレゾールノボラック型エポキシ樹脂としては、日本化薬(株)製EOCN-102S,103S,104S,1012,1025,1027、東都化成(株)製YDCN701,702,703,704等が挙げられる。多官能エポキシ樹脂としては、ジャパンエポキシレジン(株)製E1032-H60、チバスペシャリティーケミカルズ(株)製アラルダイト0163、ナガセケムテックス(株)製デナコールEX-611,614,614B,622,512,521,421,411,321等が挙げられる。アミン型エポキシ樹脂としては、ジャパンエポキシレジン(株)製エピコート604、東都化成(株)製YH-434、三菱ガス化学(株)製TETRAD-X,TETRAD-C、住友化学(株)製ELM-120等が挙げられる。複素環含有エポキシ樹脂としては、チバスペシャリティーケミカルズ(株)製アラルダイトPT810等、UCC社製ERL4234,4299,4221,4206等が挙げられる。これらのエポキシ樹脂は、単独で又は2種類以上を組み合わせて使用することができる。 As the bisphenol A type epoxy resin, Epicoat 807, 815, 825, 827, 828, 834, 1001, 1004, 1007, 1009 manufactured by Japan Epoxy Resin Co., Ltd., DER-330, 301, 361 manufactured by Dow Chemical Co., Ltd. Examples thereof include YD8125, YDF8170, and the like. Examples of the phenol novolac type epoxy resin include Epicoat 152 and 154 manufactured by Japan Epoxy Resin Co., Ltd., EPPN-201 manufactured by Nippon Kayaku Co., Ltd., and DEN-438 manufactured by Dow Chemical Company. Examples of the o-cresol novolak type epoxy resin include EOCN-102S, 103S, 104S, 1012, 1025, 1027 manufactured by Nippon Kayaku Co., Ltd., YDCN701, 702, 703, 704 manufactured by Toto Kasei Co., Ltd. . As the polyfunctional epoxy resin, E1032-H60 manufactured by Japan Epoxy Resin Co., Ltd., Araldite 0163 manufactured by Ciba Specialty Chemicals Co., Ltd., Denacol EX-611, 614, 614B, 622, 512, 521 manufactured by Nagase ChemteX Corporation. , 421, 411, 321 and the like. As the amine type epoxy resin, Epicoat 604 manufactured by Japan Epoxy Resin Co., Ltd., YH-434 manufactured by Tohto Kasei Co., Ltd., TETRAD-X, TETRAD-C manufactured by Mitsubishi Gas Chemical Co., Ltd., ELM- manufactured by Sumitomo Chemical Co., Ltd. 120 etc. are mentioned. Examples of the heterocyclic ring-containing epoxy resin include Araldite PT810 manufactured by Ciba Specialty Chemicals Co., Ltd., ERL4234, 4299, 4221, 4206 manufactured by UCC, and the like. These epoxy resins can be used alone or in combination of two or more.
 また、本発明においては、高接着力を付与するためには、ビスフェノールA型エポキシ樹脂及びフェノールノボラック型エポキシ樹脂を用いることが好ましい。 In the present invention, it is preferable to use a bisphenol A type epoxy resin and a phenol novolac type epoxy resin in order to impart a high adhesive strength.
 本発明に係る接着剤組成物における(B)成分の含有量は、(A)成分100質量部に対して5~500質量部であることが好ましく、10~400質量部とすることが好ましく、40~300質量部とすることがより好ましい。(B)成分の含有量が上記の範囲にあると、フィルム状に形成した接着剤層の弾性率及び成型時のフロー性抑制が十分確保でき、高温での取り扱い性を良好にできる。 The content of the component (B) in the adhesive composition according to the present invention is preferably 5 to 500 parts by weight, and preferably 10 to 400 parts by weight with respect to 100 parts by weight of the component (A). More preferred is 40 to 300 parts by mass. When content of (B) component exists in said range, the elasticity modulus of the adhesive bond layer formed in the film form and the flow property suppression at the time of shaping | molding can fully be ensured, and the handleability in high temperature can be made favorable.
 (C)フェノール系エポキシ樹脂硬化剤は、エポキシ樹脂と組み合わせることによって、高温高圧下において耐衝撃性が優れ、厳しい熱吸湿下においても充分な接着物性を保持することを可能とする。 (C) When combined with an epoxy resin, the phenolic epoxy resin curing agent has excellent impact resistance under high temperature and high pressure, and can maintain sufficient adhesive properties even under severe thermal moisture absorption.
 (C)成分としては、例えば、フェノールノボラック樹脂、ビスフェノールAノボラック樹脂又はクレゾールノボラック樹脂等のフェノール樹脂が挙げられる。より具体的には、例えば、DIC(株)製、商品名:フェノライトLF4871、フェノライトLF2822、フェノライトTD-2090、フェノライトTD-2149、フェノライトVH-4150及びフェノライトVH4170が挙げられる。これらは単独で又は2種類以上を組み合わせて使用することができる。 Examples of the component (C) include phenol resins such as phenol novolak resin, bisphenol A novolak resin, and cresol novolak resin. More specifically, for example, trade names: Phenolite LF4871, Phenolite LF2822, Phenolite TD-2090, Phenolite TD-2149, Phenolite VH-4150, and Phenolite VH4170 are available from DIC Corporation. These can be used alone or in combination of two or more.
 本発明に係る接着剤組成物における(C)成分の含有量は、吸湿時の耐電食性を付与する観点から、(B)成分のエポキシ基に対する(C)成分のフェノール性水酸基の当量比が0.5~1.5となることが好ましく、0.8~1.2となることがより好ましい。かかる当量比で(C)成分を含有させることにより、エポキシ樹脂の硬化(橋かけ)を十分なレベルまで進行させることができ、硬化物のガラス転移温度を十分高めることがより確実にできる。これにより、硬化した接着剤層の耐湿性及び高温での接続信頼性を十分確保でき、その結果、吸湿時の耐電食性がより確実に向上する。 The content of the component (C) in the adhesive composition according to the present invention is such that the equivalent ratio of the phenolic hydroxyl group of the component (C) to the epoxy group of the component (B) is 0 from the viewpoint of imparting electric corrosion resistance during moisture absorption. 0.5 to 1.5 is preferable, and 0.8 to 1.2 is more preferable. By containing the component (C) at such an equivalent ratio, the curing (crosslinking) of the epoxy resin can proceed to a sufficient level, and the glass transition temperature of the cured product can be sufficiently increased. Thereby, the moisture resistance of the cured adhesive layer and the connection reliability at a high temperature can be sufficiently ensured, and as a result, the electric corrosion resistance at the time of moisture absorption is more reliably improved.
 (D)放射線重合性化合物としては、放射線の照射により架橋し得る化合物が挙げられる。(D)成分の具体例としては、例えば、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールペンタアクリレート、トリメチロールプロパントリアクリレート、イソシアヌル酸EO変性トリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールテトラアクリレート、ジシクロペンテニルオキシエチルアクリレート、2,2-ビス〔4-(メタクリロキシ・ジエトキシ)フェニル〕プロパン等のアクリレート又はメタクリレートが挙げられる。これらの化合物は、単独で又は2種類以上を組み合わせて使用することができる。また、新中村工業化学株式会社製:A-DPH、日立化成工業株式会社製:FA-512AS、FA-513AS等の市販品を用いることができる。 (D) Examples of the radiation-polymerizable compound include compounds that can be cross-linked by irradiation with radiation. Specific examples of the component (D) include, for example, pentaerythritol triacrylate, dipentaerythritol hexaacrylate, dipentaerythritol pentaacrylate, trimethylolpropane triacrylate, isocyanuric acid EO-modified triacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol. Examples thereof include acrylates or methacrylates such as tetraacrylate, dicyclopentenyloxyethyl acrylate, and 2,2-bis [4- (methacryloxy · diethoxy) phenyl] propane. These compounds can be used alone or in combination of two or more. Commercial products such as Shin-Nakamura Industrial Chemical Co., Ltd .: A-DPH, Hitachi Chemical Co., Ltd .: FA-512AS, FA-513AS can be used.
 本発明に係る接着剤組成物における(D)成分の配合量は、(A)成分100質量部に対して10~200質量部が好ましい。係る配合量が10質量部以上であると、紫外線等の放射線照射による放射線重合性化合物の重合反応を十分に進めることができ、高温圧着時の流動性を抑制することができる。一方、配合量が200質量部を超えると、架橋が起こりすぎ、圧着に必要な流動性が得られにくくなるので好ましくない。上記配合量は、15~150質量部がより好ましく、20~100質量部が特に好ましい。 The compounding amount of the component (D) in the adhesive composition according to the present invention is preferably 10 to 200 parts by mass with respect to 100 parts by mass of the component (A). When the blending amount is 10 parts by mass or more, the polymerization reaction of the radiation-polymerizable compound by irradiation with radiation such as ultraviolet rays can be sufficiently advanced, and the fluidity at the time of high-temperature pressure bonding can be suppressed. On the other hand, if the blending amount exceeds 200 parts by mass, cross-linking occurs excessively, and it becomes difficult to obtain the fluidity necessary for pressure bonding. The blending amount is more preferably 15 to 150 parts by weight, and particularly preferably 20 to 100 parts by weight.
 (E)光開始剤としては、放射線の照射により上記(D)成分を硬化させ得る化合物が挙げられる。(E)成分の具体例としては、4,4’-ジエチルアミノベンゾフェノン、4,4’-ジメチルアミノベンゾフェノン等のベンゾフェノン類、1-ヒドロキシ-シクロヘキシルフェニルケトン、2-メチル-1[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1等のケトン類及びビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドが挙げられる。これらの中でも、溶媒への溶解性や熱時の安定性の観点から、チバスペシャリティーケミカルズ(株)製Irg-184、Irg-819が好ましい。また、光開始剤は、1種類単独で、又は2種類以上を組み合わせて用いることができる。 (E) The photoinitiator includes a compound capable of curing the component (D) by irradiation with radiation. Specific examples of the component (E) include benzophenones such as 4,4′-diethylaminobenzophenone and 4,4′-dimethylaminobenzophenone, 1-hydroxy-cyclohexyl phenyl ketone, 2-methyl-1 [4- (methylthio) Phenyl] -2-morpholinopropan-1-one, ketones such as 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, and bis (2,4,6-trimethyl) Benzoyl) -phenylphosphine oxide. Among these, Irg-184 and Irg-819 manufactured by Ciba Specialty Chemicals are preferable from the viewpoint of solubility in a solvent and stability during heating. Moreover, a photoinitiator can be used individually by 1 type or in combination of 2 or more types.
 本発明に係る接着剤組成物における(E)成分の配合量は、(A)成分100質量部に対して0.1~30質量部であることが好ましい。係る配合量が0.1質量部より小さいと、未反応の(D)成分が残存しやすくなる。この場合、高温圧着時にボイドが多くなり、埋込性に悪影響を与える傾向にある。一方、上記配合量が30質量部を超えると、重合反応によって分子量を十分に増加させることが困難となり、低分子量成分が多く存在する傾向にある。この場合、低分子量成分が熱時の流動性に影響を及ぼす可能性がある。上記配合量は、0.5~20質量部がより好ましく、1~10質量部が特に好ましい。 In the adhesive composition according to the present invention, the amount of component (E) is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of component (A). If the blending amount is less than 0.1 parts by mass, the unreacted component (D) tends to remain. In this case, voids increase at the time of high-temperature pressure bonding, and the embedding property tends to be adversely affected. On the other hand, when the blending amount exceeds 30 parts by mass, it is difficult to sufficiently increase the molecular weight by the polymerization reaction, and there is a tendency that many low molecular weight components exist. In this case, the low molecular weight component may affect the fluidity during heating. The blending amount is more preferably 0.5 to 20 parts by mass, and particularly preferably 1 to 10 parts by mass.
 (F)硬化促進剤としては、(B)エポキシ樹脂と(C)フェノール系エポキシ樹脂硬化剤との反応を促進する化合物が挙げられる。(F)成分としては、例えば、イミダゾール類、ジシアンジアミド誘導体、ジカルボン酸ジヒドラジド、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、2-エチル-4-メチルイミダゾールテトラフェニルボレート及び1,8-ジアザビシクロ(5,4,0)ウンデセン-7-テトラフェニルボレートが挙げられる。これらの中でも、イミダゾール類が好ましい。これらは1種を単独で又は2種以上を組み合わせて用いることができる。 (F) The curing accelerator includes a compound that accelerates the reaction between (B) the epoxy resin and (C) the phenolic epoxy resin curing agent. Examples of the component (F) include imidazoles, dicyandiamide derivatives, dicarboxylic acid dihydrazide, triphenylphosphine, tetraphenylphosphonium tetraphenylborate, 2-ethyl-4-methylimidazoletetraphenylborate and 1,8-diazabicyclo (5,5). 4,0) undecene-7-tetraphenylborate. Among these, imidazoles are preferable. These can be used individually by 1 type or in combination of 2 or more types.
 本発明に係る接着剤組成物における(F)成分の含有量は、硬化性と保存安定性とを両立する観点から、(B)成分及び(C)成分の合計100質量部に対して、0.1~20質量部が好ましく、0.1~10質量部がより好ましく、0.2~5重量部がさらに好ましい。 The content of the component (F) in the adhesive composition according to the present invention is 0 with respect to a total of 100 parts by mass of the component (B) and the component (C) from the viewpoint of achieving both curability and storage stability. 0.1 to 20 parts by weight is preferable, 0.1 to 10 parts by weight is more preferable, and 0.2 to 5 parts by weight is even more preferable.
 本発明に係る接着剤組成物には、可とう性や耐リフロークラック性を向上させる目的で、(G)エポキシ樹脂と相溶性がある上記(A)成分以外の高分子量樹脂を配合することができる。このような(G)成分としては、(A)成分と非相溶になるものが信頼性向上の観点で好ましく、例えば、フェノキシ樹脂、高分子量エポキシ樹脂及び超高分子量エポキシ樹脂が挙げられる。これらは、単独で又は2種類以上を組み合わせて使用することができる。 For the purpose of improving flexibility and reflow crack resistance, the adhesive composition according to the present invention may be blended with a high molecular weight resin other than the component (A) that is compatible with the epoxy resin (G). it can. As such (G) component, what becomes incompatible with (A) component is preferable from a viewpoint of a reliability improvement, for example, a phenoxy resin, a high molecular weight epoxy resin, and an ultra high molecular weight epoxy resin are mentioned. These can be used alone or in combination of two or more.
 互いに相溶する(A)成分と(B)エポキシ樹脂とを用いる場合、上記の(G)成分を配合して(B)エポキシ樹脂を(G)成分とより相溶させることにより、結果的に(B)エポキシ樹脂と(A)成分とを非相溶にすることが可能となる場合がある。このような作用によって、可とう性や耐リフロークラック性をより向上させることができる。 When using the (A) component and the (B) epoxy resin that are compatible with each other, the above (G) component is blended to make the (B) epoxy resin more compatible with the (G) component. (B) It may be possible to make the epoxy resin and the component (A) incompatible with each other. By such an action, flexibility and reflow crack resistance can be further improved.
 (G)成分の配合量は、接着剤層のガラス転移温度(Tg)を確保する観点から、(B)及び(C)成分の合計100質量部に対して、40質量部以下とすることが好ましい。 (G) The compounding quantity of a component shall be 40 mass parts or less with respect to a total of 100 mass parts of (B) and (C) component from a viewpoint of ensuring the glass transition temperature (Tg) of an adhesive bond layer. preferable.
 本発明に係る接着剤組成物には、形成される接着剤層の取り扱い性向上、熱伝導性向上、溶融粘度の調整及びチキソトロピック性付与を目的として、無機フィラーを添加することができる。無機フィラーとしては、特に制限はなく、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、ホウ酸アルミウィスカ、窒化ほう素、結晶性シリカ及び非晶性シリカが挙げられる。これらのフィラーは単独で又は2種類以上を組み合わせて使用することができる。また、フィラーの形状は特に制限されない。 In the adhesive composition according to the present invention, an inorganic filler can be added for the purpose of improving the handleability of the formed adhesive layer, improving the thermal conductivity, adjusting the melt viscosity, and imparting thixotropic properties. The inorganic filler is not particularly limited, and examples thereof include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, and aluminum borate whisker. , Boron nitride, crystalline silica and amorphous silica. These fillers can be used alone or in combination of two or more. Further, the shape of the filler is not particularly limited.
 上記のフィラーの中でも、熱伝導性向上のためには、酸化アルミニウム、窒化アルミニウム、窒化ほう素、結晶性シリカ、非晶性シリカ等が好ましい。また、溶融粘度の調整やチキソトロピック性の付与の目的には、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、結晶性シリカ、非晶性シリカ等が好ましい。さらには、ムライト、コージェライト等の複合酸化物、モンモリロナイト、スメクタイト等の粘土鉱物を用いることもできる。また、フィルムの熱時流動性向上のためには、ナノフィラーを用いることがより好ましい。 Among the above fillers, aluminum oxide, aluminum nitride, boron nitride, crystalline silica, amorphous silica, and the like are preferable for improving thermal conductivity. For the purpose of adjusting melt viscosity and imparting thixotropic properties, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, crystallinity Silica, amorphous silica and the like are preferable. Furthermore, complex oxides such as mullite and cordierite, and clay minerals such as montmorillonite and smectite can also be used. Moreover, it is more preferable to use a nanofiller in order to improve the hot fluidity of the film.
 無機フィラーの配合量は、接着剤組成物全量100質量部に対して1~100質量部が好ましい。係る配合量が1質量部未満であると、添加効果が十分に得られない傾向があり、100質量部を超えると、接着剤層の貯蔵弾性率の上昇、接着性の低下、ボイド残存による電気特性の低下等の問題が発生しやすくなる傾向がある。 The compounding amount of the inorganic filler is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the total amount of the adhesive composition. If the blending amount is less than 1 part by mass, the effect of addition tends not to be sufficiently obtained. If it exceeds 100 parts by mass, the storage elastic modulus of the adhesive layer is increased, the adhesiveness is lowered, and the electricity due to voids remains. There is a tendency that problems such as deterioration of characteristics tend to occur.
 また、本発明に係る接着剤組成物には、異種材料間の界面結合を良くするために、各種カップリング剤を添加することができる。カップリング剤としては、例えば、シラン系、チタン系及びアルミニウム系が挙げられる。 In addition, various coupling agents can be added to the adhesive composition according to the present invention in order to improve interfacial bonding between different materials. Examples of the coupling agent include silane, titanium, and aluminum.
 上記シラン系カップリング剤としては、例えば、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、3-アミノプロピルメチルジエトキシシラン、3-ウレイドプロピルトリエトキシシラン及び3-ウレイドプロピルトリメトキシシランが挙げられる。これらは、単独で又は2種類以上を組み合わせて使用することができる。また、日本ユニカー株式会社製A-189、A-1160等の市販品を用いることもできる。 Examples of the silane coupling agent include γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, and 3-aminopropylmethyl. Examples include diethoxysilane, 3-ureidopropyltriethoxysilane and 3-ureidopropyltrimethoxysilane. These can be used alone or in combination of two or more. Commercial products such as A-189 and A-1160 manufactured by Nippon Unicar Co., Ltd. can also be used.
 上記カップリング剤の配合量は、添加効果や耐熱性及びコストの面から、(A)成分100質量部に対して0.01~10質量部とするのが好ましい。 The blending amount of the coupling agent is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of component (A), from the viewpoint of the effect of addition, heat resistance and cost.
 さらに、本発明に係る接着剤組成物には、イオン性不純物を吸着して、吸湿時の絶縁信頼性を向上させる目的で、イオン捕捉剤をさらに添加することができる。このようなイオン捕捉剤としては、例えば、トリアジンチオール化合物、ビスフェノール系還元剤等の、銅がイオン化して溶け出すのを防止するため銅害防止剤として知られる化合物、及び、ジルコニウム系、アンチモンビスマス系マグネシウムアルミニウム化合物等の無機イオン吸着剤が挙げられる。 Furthermore, an ion scavenger can be further added to the adhesive composition according to the present invention for the purpose of adsorbing ionic impurities and improving the insulation reliability during moisture absorption. Examples of such ion-trapping agents include triazine thiol compounds and bisphenol-based reducing agents, such as compounds known as copper damage inhibitors to prevent copper ionization and dissolution, and zirconium-based and antimony bismuth-based agents. An inorganic ion adsorbent such as a magnesium aluminum compound is included.
 上記イオン捕捉剤の配合量は、添加効果や耐熱性及びコスト等の点から、(A)成分100質量部に対して0.1~10質量部とするのが好ましい。 The compounding amount of the ion scavenger is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the component (A) from the viewpoint of the effect of addition, heat resistance, cost, and the like.
 また、接着剤組成物には、本発明の効果を阻害しない程度であれば導電粒子を添加して、異方導電性接着フィルム(ACF)とすることができるが、導電粒子を含有させずに非導電性接着フィルム(NCF)とすることが好ましい。 In addition, conductive particles can be added to the adhesive composition as long as the effect of the present invention is not impaired, and an anisotropic conductive adhesive film (ACF) can be obtained. A non-conductive adhesive film (NCF) is preferred.
 接着剤層2は、上述した本発明に係る接着剤組成物を溶剤に溶解若しくは分散してワニスとし、このワニスを支持基材3上に塗布し、加熱により溶剤を除去することによって形成することができる。或いは、上記ワニスを保護フィルム(以下、場合により「離型シート」という)1上に塗布し、加熱により溶剤を除去することによって接着層2を形成した後、支持基材3を積層することができる。 The adhesive layer 2 is formed by dissolving or dispersing the above-described adhesive composition according to the present invention in a solvent to form a varnish, applying the varnish on the support substrate 3, and removing the solvent by heating. Can do. Alternatively, the support varnish 3 may be laminated after the varnish is applied onto a protective film (hereinafter sometimes referred to as “release sheet”) 1 and the adhesive layer 2 is formed by removing the solvent by heating. it can.
 用いる溶剤は、特に限定されないが、接着剤層形成時の揮発性等を沸点から考慮して決めることが好ましい。具体的には、メタノール、エタノール、2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール、メチルエチルケトン、アセトン、メチルイソブチルケトン、トルエン、キシレン等の比較的低沸点の溶媒は接着剤層形成時に接着剤層の硬化が進みにくい点で好ましい。また、塗工性を向上させる目的で、ジメチルアセトアミド、ジメチルホルムアミド、N-メチルピロリドン、シクロヘキサノン等の比較例高沸点の溶媒を使用することが好ましい。これらの溶媒は、単独で又は2種以上を組み合わせて使用することができる。 The solvent to be used is not particularly limited, but it is preferable to determine the volatility at the time of forming the adhesive layer from the boiling point. Specifically, solvents with relatively low boiling points such as methanol, ethanol, 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, methyl ethyl ketone, acetone, methyl isobutyl ketone, toluene, xylene are bonded when the adhesive layer is formed. It is preferable in that the curing of the agent layer is difficult to proceed. For the purpose of improving the coatability, it is preferable to use a solvent having a high boiling point such as dimethylacetamide, dimethylformamide, N-methylpyrrolidone, cyclohexanone and the like. These solvents can be used alone or in combination of two or more.
 支持基材3としては、放射線透過性を有するものであれば公知のものを使用することができる。支持基材3としては、ポリテトラフルオロエチレンフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム等のプラスチックフィルムが挙げられる。また、支持基材3は、上記の材料から選ばれる2種以上が混合されたもの、又は、上記のフィルムが複層化されたものでもよい。 As the support substrate 3, a known material can be used as long as it has radiation transparency. Examples of the supporting substrate 3 include plastic films such as a polytetrafluoroethylene film, a polyethylene film, a polypropylene film, and a polymethylpentene film. Further, the support base 3 may be a mixture of two or more selected from the above materials, or a multilayer of the above film.
 支持基材3の厚みは、特に制限はないが、5~250μmが好ましい。厚みが5μmより薄いと、半導体ウエハの研削(バックグラインド)時に支持基材が切れる可能性があり、250μmより厚いと経済的でなくなるため好ましくない。 The thickness of the support substrate 3 is not particularly limited, but is preferably 5 to 250 μm. If the thickness is less than 5 μm, the support substrate may be cut during grinding (back grinding) of the semiconductor wafer, and if it is more than 250 μm, it is not economical, which is not preferable.
 支持基材3は、光透過性が高いことが好ましく、具体的には、500~800nmの波長域における最小光透過率が10%以上であることが好ましい。 The support substrate 3 preferably has high light transmittance, and specifically, the minimum light transmittance in the wavelength region of 500 to 800 nm is preferably 10% or more.
 支持基材3上には、例えば、粘着剤層を一層設けることができる。粘着剤層を構成する粘着剤としては、例えば、主モノマーとして2-エチルヘキシルアクリレート及びメチルメタクリレートを用い、官能基モノマーとしてヒドロキシエチルアクリレート及びアクリル酸を用いた溶液重合法により合成されるアクリル共重合体を使用することができる。 For example, a single pressure-sensitive adhesive layer can be provided on the support substrate 3. Examples of the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer include an acrylic copolymer synthesized by a solution polymerization method using 2-ethylhexyl acrylate and methyl methacrylate as main monomers and hydroxyethyl acrylate and acrylic acid as functional group monomers. Can be used.
 保護フィルム1としては、例えば、ポリエチレンテレフタレート等の耐熱性及び耐溶剤性を有する重合体フィルムを用いることができる。市販のものとしては、例えば、帝人デュポンフィルム株式会社製の「A-31」等のポリエチレンテレフタレートフィルムが挙げられる。保護フィルムは、厚みが10~100μmであることが好ましく、30~75μmであることがより好ましく、35~50μmであることが特に好ましい。この厚みが10μm未満では塗工の際、保護フィルムが破れる傾向があり、100μmを超えると廉価性に劣る傾向がある。 As the protective film 1, for example, a polymer film having heat resistance and solvent resistance such as polyethylene terephthalate can be used. Examples of commercially available products include polyethylene terephthalate films such as “A-31” manufactured by Teijin DuPont Films. The protective film preferably has a thickness of 10 to 100 μm, more preferably 30 to 75 μm, and particularly preferably 35 to 50 μm. If the thickness is less than 10 μm, the protective film tends to be broken during coating, and if it exceeds 100 μm, the cost tends to be inferior.
 上記ワニスを支持基材又は保護フィルム上に塗布する方法としては、ナイフコート法、ロールコート法、スプレーコート法、グラビアコート法、バーコート法、カーテンコート法等、一般に周知の方法が挙げられる。 Examples of methods for applying the varnish on the support substrate or the protective film include generally known methods such as knife coating, roll coating, spray coating, gravure coating, bar coating, and curtain coating.
 加熱により溶剤を除去するときの温度条件は70~150℃程度が好ましい。 The temperature condition for removing the solvent by heating is preferably about 70 to 150 ° C.
 接着剤層2の厚みは、特に制限はないが、3~200μmが好ましい。厚みが3μmより小さいと、応力緩和効果が乏しくなる傾向があり、200μmより厚いと経済的でなくなる上に、半導体装置の小型化の要求に応えることが困難となる。 The thickness of the adhesive layer 2 is not particularly limited but is preferably 3 to 200 μm. If the thickness is smaller than 3 μm, the stress relaxation effect tends to be poor. If the thickness is larger than 200 μm, it is not economical and it becomes difficult to meet the demand for downsizing of the semiconductor device.
 また、フリップチップボンディング時の埋込性をより一層向上する観点から、接着剤層2の5%重量減少温度は、180℃以上であることが好ましく、200~350℃であることがより好ましい。 Further, from the viewpoint of further improving the embedding property at the time of flip chip bonding, the 5% weight reduction temperature of the adhesive layer 2 is preferably 180 ° C. or more, and more preferably 200 to 350 ° C.
 上述した回路部材接続用接着剤シート10は、相対向しハンダ接合される回路電極を有する回路部材と半導体素子との間又は半導体素子同士の間に介在させ、回路部材と半導体素子又は半導体素子同士を接着するために用いることができる。この場合、回路部材と半導体素子又は半導体素子同士を熱圧着することにより、ボイド発生を抑制しつつ十分な接着力で接着することができる。これにより、接続信頼性に優れた接続体を得ることができる。 The above-described adhesive sheet 10 for connecting a circuit member is interposed between a circuit member and a semiconductor element having circuit electrodes which are opposed to each other and solder-bonded, or between semiconductor elements, and the circuit member and the semiconductor elements or the semiconductor elements are interleaved. Can be used for bonding. In this case, the circuit member and the semiconductor element or the semiconductor elements can be bonded with a sufficient adhesive force while suppressing generation of voids by thermocompression bonding. Thereby, the connection body excellent in connection reliability can be obtained.
 次に、回路部材接続用接着剤シート10を用いて半導体装置を製造する方法について説明する。 Next, a method for manufacturing a semiconductor device using the adhesive sheet 10 for connecting circuit members will be described.
 図2~図6は、本発明に係る半導体装置の製造方法の好適な一実施形態を説明するための模式断面図である。本実施形態の半導体装置の製造方法は、
(a)主面の一方に複数の回路電極を有する半導体ウエハを準備し、該半導体ウエハの回路電極が設けられている側に、上述した本発明に係る回路部材接続用接着剤シートの接着剤層を貼付ける工程と、
(b)半導体ウエハの回路電極が設けられている側とは反対側を研削して半導体ウエハを薄化する工程と、
(c)接着剤層に放射線を照射してから支持基材を除去する工程と、
(d)薄化した半導体ウエハ及び放射線を照射した接着剤層をダイシングしてフィルム状接着剤付半導体素子に個片化する工程と、
(e)フィルム状接着剤付半導体素子と半導体素子搭載用支持部材とをフィルム状接着剤付半導体素子のフィルム状接着剤を介して接着する工程と、
を備える。以下、図面を参照しながら、各工程について説明する。
2 to 6 are schematic cross-sectional views for explaining a preferred embodiment of a method for manufacturing a semiconductor device according to the present invention. The manufacturing method of the semiconductor device of this embodiment is as follows:
(A) A semiconductor wafer having a plurality of circuit electrodes on one of the main surfaces is prepared, and the adhesive for the above-described adhesive sheet for connecting circuit members according to the present invention is provided on the side of the semiconductor wafer where the circuit electrodes are provided. A step of applying a layer;
(B) a step of grinding the opposite side of the semiconductor wafer to the side where the circuit electrodes are provided to thin the semiconductor wafer;
(C) removing the support substrate after irradiating the adhesive layer with radiation;
(D) a step of dicing the thinned semiconductor wafer and the adhesive layer irradiated with radiation into individual semiconductor elements with a film adhesive;
(E) a step of bonding the semiconductor element with a film adhesive and the semiconductor element mounting support member through the film adhesive of the semiconductor element with a film adhesive;
Is provided. Hereinafter, each process will be described with reference to the drawings.
 (a)工程
 先ず、接着剤シート10を所定の装置に配置し、保護フィルム1を剥がす。続いて、主面の一方に複数の回路電極20を有する半導体ウエハAを準備し、半導体ウエハAの回路電極が設けられている側に接着剤層2を貼付け、支持基材3/接着剤層2/半導体ウエハAが積層された積層体を得る(図2を参照)。回路電極20には、ハンダ接合用のハンダバンプを設けられている。なお、回路電極20にハンダバンプを設けず、半導体素子搭載用支持部材の回路電極にハンダバンプを設けることもできる。
(A) Process First, the adhesive sheet 10 is arrange | positioned to a predetermined apparatus, and the protective film 1 is peeled off. Subsequently, a semiconductor wafer A having a plurality of circuit electrodes 20 on one of the main surfaces is prepared, the adhesive layer 2 is pasted on the side of the semiconductor wafer A on which the circuit electrodes are provided, and the support substrate 3 / adhesive layer 2 / A laminated body in which the semiconductor wafers A are laminated is obtained (see FIG. 2). The circuit electrode 20 is provided with solder bumps for solder bonding. It is also possible to provide solder bumps on the circuit electrodes of the semiconductor element mounting support member without providing the circuit electrodes 20 with solder bumps.
(b)工程
 次に、図3(a)に示されるように、半導体ウエハAの回路電極20が設けられている側とは反対側をグラインダー4によって研削し、半導体ウエハを薄化する。半導体ウエハの厚みは、例えば、10μm~300μmとすることができる。半導体装置の小型化、薄型化の観点から、半導体ウエハの厚みを20μm~100μmとすることが好ましい。なお、本実施形態においては支持基材3がバックグラインドテープとして機能しているが、支持基材3にバックグラインドテープを貼付けて半導体ウエハの研削を行うこともできる。
(B) Process Next, as shown in FIG. 3A, the side of the semiconductor wafer A opposite to the side where the circuit electrodes 20 are provided is ground by the grinder 4 to thin the semiconductor wafer. The thickness of the semiconductor wafer can be, for example, 10 μm to 300 μm. From the viewpoint of miniaturization and thinning of the semiconductor device, the thickness of the semiconductor wafer is preferably 20 μm to 100 μm. In this embodiment, the support base material 3 functions as a back grind tape, but the back grind tape can be attached to the support base material 3 to grind the semiconductor wafer.
(c)工程
 図3(b)に示されるように、接着剤層2に支持基材3側から放射線を照射することにより接着剤層2を硬化させ、接着剤層2と支持基材3との間の接着力を低下させる。ここで、使用される放射線としては、例えば、紫外線、電子線及び赤外線が挙げられる。本実施形態においては、波長300~800nmの放射線を用いることが好ましく、その照射条件としては、照度:5~300mW/cm2で上記アクリルモノマー等の(D)成分が重合する程度の照射量300~1000mJとなるように照射することが好ましい。
(C) Process As FIG.3 (b) shows, the adhesive bond layer 2 is hardened by irradiating the adhesive bond layer 2 from the support base material 3 side, and the adhesive bond layer 2, the support base material 3, and Reduce the adhesive strength between. Here, examples of the radiation used include ultraviolet rays, electron beams, and infrared rays. In the present embodiment, it is preferable to use radiation having a wavelength of 300 to 800 nm. The irradiation condition is such that the irradiation amount is such that the (D) component such as the acrylic monomer is polymerized at an illuminance of 5 to 300 mW / cm 2. Irradiation is preferably performed so as to be ˜1000 mJ.
(d)工程
 次に、図4(a)に示されるように、積層体の半導体ウエハAにダイシングテープ5を貼付け、これを所定の装置に配置して支持基材3を剥がす。このとき、接着剤層2に放射線が照射されていることにより、支持基材3を容易に剥がすことができる。支持基材3を剥離した後、図4(b)に示されるように、半導体ウエハA及び接着剤層2をダイシングソウ6によりダイシングする。こうして、半導体ウエハAは複数の半導体素子A’に分割され、接着剤層2は複数のフィルム状接着剤2aに分割される。
(D) Process Next, as FIG.4 (a) shows, the dicing tape 5 is affixed on the semiconductor wafer A of a laminated body, this is arrange | positioned to a predetermined apparatus, and the support base material 3 is peeled off. At this time, the support base material 3 can be easily peeled off because the adhesive layer 2 is irradiated with radiation. After the support substrate 3 is peeled off, the semiconductor wafer A and the adhesive layer 2 are diced with a dicing saw 6 as shown in FIG. Thus, the semiconductor wafer A is divided into a plurality of semiconductor elements A ′, and the adhesive layer 2 is divided into a plurality of film adhesives 2a.
 続いて、ダイシングテープ5をエキスパンド(拡張)することにより、上記ダイシングにより得られた各半導体素子A’を互いに離間させつつ、ダイシングテープ5側からニードルで突き上げられた半導体素子A’及びフィルム状接着剤2aからなるフィルム状接着剤付半導体素子12を吸引コレット7で吸引してピックアップする。 Subsequently, by expanding (expanding) the dicing tape 5, the semiconductor elements A ′ obtained by the dicing tape 5 are pushed up with a needle while the semiconductor elements A ′ obtained by the dicing are separated from each other, and film-like adhesion is performed. The film-like adhesive-attached semiconductor element 12 made of the agent 2a is sucked and picked up by the suction collet 7.
(e)工程
 次に、図6に示されるように、フィルム状接着剤2aが付着した半導体素子A’の回路電極20と、半導体素子搭載用支持部材8の回路電極22とを位置合わせし、フィルム状接着剤付半導体素子12と半導体素子搭載用支持部材8とを熱圧着する。この熱圧着により、回路電極20と回路電極22とが電気的に接続されるとともに、半導体素子A’と半導体素子搭載用支持部材8との間にフィルム状接着剤2aの硬化物が形成される。
(E) Process Next, as shown in FIG. 6, the circuit electrode 20 of the semiconductor element A ′ to which the film adhesive 2 a is attached and the circuit electrode 22 of the semiconductor element mounting support member 8 are aligned, The semiconductor element with film adhesive 12 and the semiconductor element mounting support member 8 are thermocompression bonded. By this thermocompression bonding, the circuit electrode 20 and the circuit electrode 22 are electrically connected, and a cured product of the film adhesive 2a is formed between the semiconductor element A ′ and the semiconductor element mounting support member 8. .
 また、回路電極20或いは回路電極22にハンダバンプが設けられている場合、熱圧着により、回路電極20と回路電極22とがハンダ接合により電気的且つ機械的に接続される。 When the circuit electrode 20 or the circuit electrode 22 is provided with solder bumps, the circuit electrode 20 and the circuit electrode 22 are electrically and mechanically connected by solder bonding by thermocompression bonding.
 熱圧着時の温度は、ハンダ接合、接着剤の硬化の観点から、200℃以上であることが好ましく、220~260℃であることがより好ましい。熱圧着時間は、1~20秒とすることができる。熱圧着の圧力は、0.1~5MPaとすることができる。 The temperature at the time of thermocompression bonding is preferably 200 ° C. or higher, more preferably 220 to 260 ° C., from the viewpoint of solder bonding and adhesive curing. The thermocompression bonding time can be 1 to 20 seconds. The pressure for thermocompression bonding can be 0.1 to 5 MPa.
 以上の工程を経て、半導体装置30が得られる。本実施形態の半導体装置の製造方法では、本発明に係る回路部材接続用接着剤シートを用いることにより、上記(a)工程では、剥離やボイドの発生を十分抑制でき、上記(b)工程ではウエハを破損やクラックの発生を十分防止しつつ研削することができ、上記(e)工程では、ボイドの発生を十分抑制しつつ半導体素子と半導体素子搭載用部材とを良好に接着することができる。これにより、半導体装置30は接続信頼性に優れたものになり得る。また、本実施形態の半導体装置の製造方法によれば、そのような半導体装置を歩留りよく製造することができる。 The semiconductor device 30 is obtained through the above steps. In the manufacturing method of the semiconductor device according to the present embodiment, by using the adhesive sheet for connecting circuit members according to the present invention, in the step (a), generation of peeling and voids can be sufficiently suppressed, and in the step (b) The wafer can be ground while sufficiently preventing the occurrence of breakage and cracks, and in the step (e), the semiconductor element and the semiconductor element mounting member can be satisfactorily bonded while sufficiently suppressing the generation of voids. . Thereby, the semiconductor device 30 can be excellent in connection reliability. Further, according to the method for manufacturing a semiconductor device of this embodiment, such a semiconductor device can be manufactured with a high yield.
 以下、実施例及び比較例を挙げて本発明をより具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to these examples.
(実施例1)
 まず、シクロヘキサノンに、「HTR-860P-3」(ナガセケムテックス(株)製商品名、グリシジル基含有アクリルゴム、重量平均分子量80万、Tg-7℃)100質量部、「1032-H60」(ジャパンエポキシレジン(株)製商品名、高純度特殊多官能エポキシ樹脂、エポキシ当量169)80質量部、「LA-3018」(DIC(株)製商品名、アミノ基含有トリアジン変性クレゾールノボラック樹脂、エポキシ当量151)70質量部、「A-DPH」(新中村化学工業(株)製商品名、ジペンタエリスリトールヘキサアクリレート)30質量部、硬化促進剤としてイミダゾール化合物「2PZ-CN」(四国化成(株)製商品名)1.5質量部、光開始剤として「Irg-184」(チバスペシャリティーケミカルズ(株)製商品名)1.5質量部を加えて攪拌混合し、さらに真空脱気することにより、接着剤ワニスを得た。
Example 1
First, 100 parts by mass of “HTR-860P-3” (trade name, manufactured by Nagase ChemteX Corp., acrylic rubber containing glycidyl group, weight average molecular weight 800,000, Tg−7 ° C.), “1032-H60” (cyclohexanone) Japan Epoxy Resin Co., Ltd. trade name, high-purity special polyfunctional epoxy resin, epoxy equivalent 169) 80 parts by mass, “LA-3018” (DIC Corporation trade name, amino group-containing triazine-modified cresol novolak resin, epoxy Equivalent 151) 70 parts by mass, “A-DPH” (trade name, manufactured by Shin-Nakamura Chemical Co., Ltd., dipentaerythritol hexaacrylate), imidazole compound “2PZ-CN” (Shikoku Chemical Co., Ltd.) as a curing accelerator ) Product name) 1.5 parts by weight, “Irg-184” as photoinitiator (Ciba Specialty Chemicals) In addition, trade name) 1.5 parts by mass manufactured by Corporation) was stirred and mixed by further vacuum degassing to obtain an adhesive varnish.
 次に、上記接着剤ワニスを、保護フィルムである表面離型処理ポリエチレンテレフタレート(帝人デュポンフィルム株式会社製、テイジンテトロンフィルム:A-31、厚さ50μm)上に乾燥後の厚みが30μmとなるように塗布し、100℃で30分間加熱乾燥して接着剤層を形成した。次いで、上記接着剤層上に、支持基材(ロンシール社製、軟質ポリオレフィンフィルム:POF-120A、厚さ100μm)をラミネートすることにより保護フィルム(表面離型処理ポリエチレンテレフタレート)、接着剤層及び支持基材からなる回路部材接続用接着剤シートを得た。 Next, the adhesive varnish is dried on a surface release-treated polyethylene terephthalate (Teijin DuPont Film Co., Ltd., Teijin Tetron Film: A-31, thickness 50 μm) as a protective film so that the thickness after drying becomes 30 μm. And then dried by heating at 100 ° C. for 30 minutes to form an adhesive layer. Next, a protective substrate (surface release-treated polyethylene terephthalate), an adhesive layer, and a support are laminated on the adhesive layer by laminating a support base material (manufactured by Ron Seal, soft polyolefin film: POF-120A, thickness 100 μm). The adhesive sheet for circuit member connection which consists of a base material was obtained.
(実施例2)
 接着剤ワニスの調製における「A-DPH」を「FA-512AS」(日立化成工業(株)製商品名、ジシクロペンテニルオキシエチルアクリレート)に変更した以外は、実施例1と同様にして、回路部材接続用接着剤シートを得た。
(Example 2)
A circuit was prepared in the same manner as in Example 1, except that “A-DPH” in the preparation of the adhesive varnish was changed to “FA-512AS” (trade name, manufactured by Hitachi Chemical Co., Ltd., dicyclopentenyloxyethyl acrylate). An adhesive sheet for member connection was obtained.
(実施例3)
 接着剤ワニスの調製における「A-DPH」を「BPE-200」(新中村化学工業(株)製商品名、2,2-ビス[4-(メタクリロキシ・ジエトキシ)フェニル]プロパン)に変更した以外は、実施例1と同様にして、回路部材接続用接着剤シートを得た。
(Example 3)
Other than changing “A-DPH” in preparation of adhesive varnish to “BPE-200” (trade name, 2,2-bis [4- (methacryloxy-diethoxy) phenyl] propane, manufactured by Shin-Nakamura Chemical Co., Ltd.) In the same manner as in Example 1, an adhesive sheet for connecting circuit members was obtained.
(実施例4)
 実施例1の作製に用いた支持基材を、粘着剤層付き支持基材である下記バックグラインド(BG)テープAに変更して、回路部材接続用接着剤シートを得た。
(BGテープA)
 まず、主モノマーとして2-エチルヘキシルアクリレートとメチルメタクリレートを用い官能基モノマーとしてヒドロキシエチルアクリレートとアクリル酸を用い、溶液重合法によりアクリル共重合体を合成した。得られたアクリル共重合体の重量平均分子量は40万、ガラス転移温度は-38℃であった。次いで、アクリル共重合体100質量部に対し、多官能イソシアネート架橋剤(日本ポリウレタン工業株式会社製、商品名:コローネートHL)10質量部を配合して粘着剤ワニスを調製し、ポリオレフィンフィルム(オカモト株式会社製、商品名:WNH-2110、厚さ100μm)上に乾燥時の粘着剤層の厚さが10μmになるよう塗工乾燥した。さらに、シリコーン系離型剤を塗布したニ軸延伸ポリエステルフィルム(帝人デュポンフィルム株式会社製、商品名:A3171、厚さ25μm)を粘着剤面にラミネートした。この粘着剤層付きフィルムを室温で1週間放置し十分にエージングを行った。エージング後の粘着剤層付きフィルムからニ軸延伸ポリエステルフィルムを剥がしたものをBGテープAとした。
Example 4
The support base material used for preparation of Example 1 was changed to the following back grind (BG) tape A which is a support base material with an adhesive layer, and the adhesive sheet for circuit member connection was obtained.
(BG tape A)
First, an acrylic copolymer was synthesized by a solution polymerization method using 2-ethylhexyl acrylate and methyl methacrylate as main monomers and hydroxyethyl acrylate and acrylic acid as functional group monomers. The resulting acrylic copolymer had a weight average molecular weight of 400,000 and a glass transition temperature of −38 ° C. Next, an adhesive varnish was prepared by blending 10 parts by mass of a polyfunctional isocyanate crosslinking agent (trade name: Colonate HL, manufactured by Nippon Polyurethane Industry Co., Ltd.) with respect to 100 parts by mass of the acrylic copolymer, and polyolefin film (Okamoto Co., Ltd.) The product was dried on a product (trade name: WNH-2110, thickness: 100 μm) so that the thickness of the pressure-sensitive adhesive layer when dried was 10 μm. Furthermore, a biaxially stretched polyester film (made by Teijin DuPont Films, trade name: A3171, thickness 25 μm) coated with a silicone release agent was laminated on the adhesive surface. The film with the pressure-sensitive adhesive layer was allowed to stand at room temperature for 1 week and sufficiently aged. BG tape A was obtained by removing the biaxially stretched polyester film from the film with an adhesive layer after aging.
 上記接着剤層上に、BGテープAを粘着剤層が接着剤層と接触するようにラミネートすることにより、保護フィルム、接着剤層、BGテープAからなる回路部材接続用接着剤シートを得た。 By laminating BG tape A on the adhesive layer so that the pressure-sensitive adhesive layer is in contact with the adhesive layer, an adhesive sheet for connecting a circuit member comprising a protective film, an adhesive layer, and BG tape A was obtained. .
(比較例1)
 「A-DPH」を配合しなかった以外は、実施例1と同様にして、回路部材接続用接着剤シートを得た。
(Comparative Example 1)
An adhesive sheet for connecting circuit members was obtained in the same manner as in Example 1 except that “A-DPH” was not blended.
(比較例2)
 「Irg-184」を配合しなかった以外は、実施例1と同様にして、回路部材接続用接着剤シートを得た。
(Comparative Example 2)
An adhesive sheet for connecting circuit members was obtained in the same manner as in Example 1 except that “Irg-184” was not blended.
(比較例3)
 「1032-H60」及び「LA-3018」を配合しなかった以外は、実施例1と同様にして、回路部材接続用接着剤シートを得た。
(Comparative Example 3)
An adhesive sheet for connecting circuit members was obtained in the same manner as in Example 1 except that “1032-H60” and “LA-3018” were not blended.
(比較例4)
 支持基材を実施例4で用いたBGテープAに変更した以外は、比較例2と同様にして、回路部材接続用接着剤シートを得た。
(Comparative Example 4)
A circuit member connecting adhesive sheet was obtained in the same manner as in Comparative Example 2 except that the supporting base material was changed to the BG tape A used in Example 4.
[回路部材接続用接着剤シートの評価]
 上記で得られた回路部材接続用接着剤シートについて、下記の試験手順にしたがって、ウエハ貼付性、ウエハ裏面研削性及び埋め込み性を評価した。結果を表2に示す。
[Evaluation of adhesive sheet for connecting circuit members]
About the adhesive sheet for circuit member connection obtained above, according to the following test procedure, wafer sticking property, wafer back surface grindability, and embedding property were evaluated. The results are shown in Table 2.
<ウエハ貼付性>
 支持台上に載せたシリコンウエハ(6インチ径、厚さ625μm)の回路電極が設けられている面に、回路部材接続用接着剤シートを、保護シートを除き接着剤層をシリコンウエハ側にしてラミネート条件(温度80℃、線圧0.5~2kgf/cm、送り速度0.5~5m/分)で加圧することにより積層した。このときの接着剤層の貼付状態を目視及び顕微鏡観察で視察し、下記の基準に基づいてウエハ貼付性を評価した。
A:剥離、ボイドが観察されない。
B:剥離、ボイドが観察される。
<Wafer adhesion>
On the surface of the silicon wafer (6 inch diameter, thickness 625 μm) placed on the support table, the circuit sheet connecting adhesive sheet is placed on the surface of the silicon wafer side except for the protective sheet. Lamination was performed by pressurization under laminating conditions (temperature 80 ° C., linear pressure 0.5-2 kgf / cm, feed rate 0.5-5 m / min). The adhesive state of the adhesive layer at this time was inspected by visual observation and microscopic observation, and the wafer adhesiveness was evaluated based on the following criteria.
A: Peeling and voids are not observed.
B: Peeling and voids are observed.
<ウエハ裏面研削性>
 上記と同様にして回路部材接続用接着剤シートとシリコンウエハ(厚み625μm)との積層体を作製し、これをバックグラインダーに配置し、厚みが280μmとなるまでシリコンウエハの裏面を研削(バックグラインド)した。研削したウエハを目視及び顕微鏡観察で視察し、下記の基準に基づいてウエハ裏面研削性を評価した。
A:ウエハの破損及びマイクロクラックの発生がない。
B:ウエハの破損及びマイクロクラックの発生がある。
<Wafer backside grindability>
In the same manner as described above, a laminate of an adhesive sheet for connecting circuit members and a silicon wafer (thickness: 625 μm) was prepared, and this was placed on a back grinder, and the back surface of the silicon wafer was ground until the thickness reached 280 μm (back grinding) )did. The ground wafer was inspected visually and under a microscope, and the wafer backside grindability was evaluated based on the following criteria.
A: There is no breakage of the wafer and generation of microcracks.
B: The wafer is broken and microcracks are generated.
<埋込性>
 金ワイヤーバンプ(レベリング済み、バンプ高さ30μm、184バンプ)付きチップ(10mm角、厚み280μm)を、バンプ面を上に向けて仮圧着装置のステージ上に置いた。次に、保護フィルムを剥離した回路部材接続用接着剤シートを支持基材ごと11mm角に切断し、これを接着層側がバンプ面に向くようにしてチップに被せ、さらに、シリコーン製熱伝導性カバーフィルムを載せて、80℃、1MPaで加熱、加圧を行った。
<Embedment>
A chip (10 mm square, thickness 280 μm) with gold wire bumps (leveled, bump height 30 μm, 184 bumps) was placed on the stage of the temporary pressure bonding apparatus with the bump surface facing up. Next, the adhesive sheet for connecting circuit members from which the protective film has been peeled is cut into 11 mm squares together with the supporting base material, and this is covered with a chip so that the adhesive layer side faces the bump surface, and further, a heat conductive cover made of silicone The film was placed and heated and pressurized at 80 ° C. and 1 MPa.
 加熱加圧後、接着剤層から支持基材を剥がし、接着剤層に対して紫外線を用いて照度15mW/cm2で500mJの露光を行い、接着剤付きチップを得た。次に、得られた接着剤付きチップを、Ni/AuめっきCu回路プリント基板と位置合わせをし、次いで、250℃、5MPa、10秒の加熱、加圧を行った。こうして得られた半導体装置について、ボイド状況を超音波顕微鏡で視察し、下記の基準に基づいて埋込性を評価した。
A:ボイドがほとんどなく、ボイドが埋込面積の10%未満である。
B:ボイドが多く存在し、ボイドが埋込面積の10%以上である。
After heating and pressing, the support substrate was peeled off from the adhesive layer, and the adhesive layer was exposed to 500 mJ at an illuminance of 15 mW / cm 2 using ultraviolet rays to obtain a chip with an adhesive. Next, the obtained chip with adhesive was aligned with a Ni / Au plated Cu circuit printed circuit board, and then heated and pressurized at 250 ° C., 5 MPa, and 10 seconds. About the semiconductor device obtained in this way, the void situation was observed with the ultrasonic microscope, and embedding property was evaluated based on the following reference | standard.
A: There are almost no voids and the voids are less than 10% of the embedded area.
B: Many voids exist, and the voids are 10% or more of the embedded area.
<支持基材剥離性>
 上記ウエハ裏面研削性の評価サンプルを、照度:20mW/cm2、露光量:500mJの条件で紫外線照射し、その後、回路部材接続用接着剤シートの支持基材(又はBGテープ)を5mm/秒の速度で剥離した。剥離した後の支持基材(又はBGテープ)と回路部材接続用接着剤付きウエハの表面を目視及び顕微鏡観察で視察し、下記の基準に基づいて支持基材剥離性を評価した。
A:支持基材(又はBGテープ)が接着剤層から剥離でき、接着剤層とウエハの剥離が無い。
B:支持基材(又はBGテープ)が接着剤層から一部剥離できず、一部接着剤層ごとウエハから剥離してしまう。(接着剤層のウエハからの剥離面積が30%未満)
C:支持基材(又はBGテープ)が接着剤層から剥離できず、接着剤層ごとウエハから剥離してしまう。(接着剤層のウエハからの剥離面積が30%以上)
<Supporting substrate peelability>
The wafer back surface grindability evaluation sample was irradiated with ultraviolet rays under the conditions of illuminance: 20 mW / cm 2 and exposure amount: 500 mJ, and then the support substrate (or BG tape) of the adhesive sheet for connecting circuit members was 5 mm / second. It peeled at the speed of. The support substrate (or BG tape) after peeling and the surface of the wafer with the adhesive for connecting circuit members were inspected visually and under a microscope, and the support substrate peelability was evaluated based on the following criteria.
A: The supporting substrate (or BG tape) can be peeled from the adhesive layer, and there is no peeling of the adhesive layer and the wafer.
B: A support base material (or BG tape) cannot partly peel from an adhesive layer, and part of the adhesive layer is peeled off from the wafer. (Peeling area of adhesive layer from wafer is less than 30%)
C: The supporting substrate (or BG tape) cannot be peeled off from the adhesive layer, and the entire adhesive layer is peeled off from the wafer. (Peeling area of adhesive layer from wafer is 30% or more)
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 1…保護フィルム、2…接着剤層、3…支持基材、4…グラインダー、5…ダイシングテープ、6…ダイシングソウ、7…吸引コレット、8…半導体素子搭載用支持部材、10…回路部材接続用接着剤シート、12…フィルム状接着剤付半導体素子、20…回路電極、30…半導体装置、A…半導体ウエハ、B…放射線。 DESCRIPTION OF SYMBOLS 1 ... Protective film, 2 ... Adhesive layer, 3 ... Support base material, 4 ... Grinder, 5 ... Dicing tape, 6 ... Dicing saw, 7 ... Suction collet, 8 ... Support member for mounting semiconductor elements, 10 ... Connection of circuit members Adhesive sheet for sheet, 12 ... semiconductor element with film adhesive, 20 ... circuit electrode, 30 ... semiconductor device, A ... semiconductor wafer, B ... radiation.

Claims (4)

  1.  相対向する回路部材を接続するための回路部材接続用接着剤シートであって、
     支持基材と、該支持基材上に設けられた接着剤組成物からなる接着剤層と、を備え、
     前記接着剤組成物が、
     (A)重量平均分子量が10万以上である高分子量成分と、
     (B)エポキシ樹脂と、
     (C)フェノール系エポキシ樹脂硬化剤と、
     (D)放射線重合性化合物と、
     (E)光開始剤と、
     (F)硬化促進剤と、
    を含む、回路部材接続用接着剤シート。
    A circuit member connecting adhesive sheet for connecting circuit members facing each other,
    A support substrate, and an adhesive layer made of an adhesive composition provided on the support substrate,
    The adhesive composition is
    (A) a high molecular weight component having a weight average molecular weight of 100,000 or more;
    (B) an epoxy resin;
    (C) a phenolic epoxy resin curing agent;
    (D) a radiation polymerizable compound;
    (E) a photoinitiator;
    (F) a curing accelerator;
    An adhesive sheet for connecting circuit members.
  2.  前記接着剤組成物が、前記(A)成分を100質量部と、前記(B)成分を5~500質量部と、前記(D)成分を5~100質量部と、前記(E)成分を0.1~20質量部と、前記(F)成分を0.1~20質量部とを含み、
     前記(B)成分のエポキシ樹脂のエポキシ基に対する前記(C)成分のフェノール性水酸基の当量比が0.5~1.5である、請求項1記載の回路部材接続用接着剤シート。
    The adhesive composition comprises 100 parts by weight of the component (A), 5 to 500 parts by weight of the component (B), 5 to 100 parts by weight of the component (D), and the component (E). 0.1 to 20 parts by mass and 0.1 to 20 parts by mass of the component (F),
    The adhesive sheet for connecting circuit members according to claim 1, wherein the equivalent ratio of the phenolic hydroxyl group of the component (C) to the epoxy group of the epoxy resin of the component (B) is 0.5 to 1.5.
  3.  前記(A)成分が、グリシジル基を有する反復単位を0.5~6質量%含有するグリシジル基含有(メタ)アクリル共重合体である、請求項1又は2記載の回路部材接続用接着剤シート。 The adhesive sheet for connecting circuit members according to claim 1 or 2, wherein the component (A) is a glycidyl group-containing (meth) acrylic copolymer containing 0.5 to 6% by mass of repeating units having a glycidyl group. .
  4.  主面の一方に複数の回路電極を有する半導体ウエハを準備し、該半導体ウエハの前記回路電極が設けられている側に、請求項1~3のいずれか一項に記載の回路部材接続用接着剤シートの接着剤層を貼付ける工程と、
     前記半導体ウエハの前記回路電極が設けられている側とは反対側を研削して前記半導体ウエハを薄化する工程と、
     前記接着剤層に放射線を照射する工程と、
     前記薄化した半導体ウエハ及び前記放射線が照射された接着剤層をダイシングしてフィルム状接着剤付半導体素子に個片化する工程と、
     前記フィルム状接着剤付半導体素子と半導体素子搭載用支持部材とを前記フィルム状接着剤付半導体素子のフィルム状接着剤を介して接着する工程と、
    を備える、半導体装置の製造方法。
    A bonding member for connecting a circuit member according to any one of claims 1 to 3, wherein a semiconductor wafer having a plurality of circuit electrodes is prepared on one of the main surfaces, and the side of the semiconductor wafer on which the circuit electrodes are provided. The step of applying the adhesive layer of the adhesive sheet;
    Grinding the opposite side of the semiconductor wafer from the side where the circuit electrodes are provided to thin the semiconductor wafer;
    Irradiating the adhesive layer with radiation;
    Dicing the thinned semiconductor wafer and the adhesive layer irradiated with the radiation into individual semiconductor elements with a film adhesive; and
    Bonding the semiconductor element with a film adhesive and a support member for mounting a semiconductor element via the film adhesive of the semiconductor element with a film adhesive; and
    A method for manufacturing a semiconductor device.
PCT/JP2010/057604 2009-05-26 2010-04-28 Adhesive sheet for connecting circuit member, and method for manufacturing semiconductor device WO2010137443A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009126531 2009-05-26
JP2009-126531 2009-05-26

Publications (1)

Publication Number Publication Date
WO2010137443A1 true WO2010137443A1 (en) 2010-12-02

Family

ID=43222558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057604 WO2010137443A1 (en) 2009-05-26 2010-04-28 Adhesive sheet for connecting circuit member, and method for manufacturing semiconductor device

Country Status (2)

Country Link
JP (1) JP5477144B2 (en)
WO (1) WO2010137443A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119594A (en) * 2010-12-03 2012-06-21 Disco Abrasive Syst Ltd Processing method of plate-like object
WO2015098949A1 (en) * 2013-12-26 2015-07-02 日立化成株式会社 Film for temporary fixing, film sheet for temporary fixing and semiconductor device
JP2016102215A (en) * 2015-12-18 2016-06-02 大日本印刷株式会社 Adhesive composition and adhesive film using the same
DE102015112804B4 (en) 2014-08-04 2019-05-16 Infineon Technologies Ag Source-down semiconductor device and method for its formation

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5754072B2 (en) * 2010-02-25 2015-07-22 日立化成株式会社 Adhesive composition, adhesive member sheet for connecting circuit members, and method for manufacturing semiconductor device
EP2671249A4 (en) * 2011-02-01 2015-10-07 Henkel IP & Holding GmbH Pre- cut wafer applied underfill film
JP5648514B2 (en) * 2011-02-08 2015-01-07 日立化成株式会社 Photosensitive adhesive composition, adhesive pattern, semiconductor wafer with adhesive layer, and manufacturing method of semiconductor device.
US20140044957A1 (en) * 2011-07-15 2014-02-13 Nitto Denko Corporation Production method for electronic component and pressure-sensitive adhesive sheet to be used in the production method
JP5942389B2 (en) 2011-11-09 2016-06-29 ブラザー工業株式会社 sewing machine
JP2013099455A (en) 2011-11-09 2013-05-23 Brother Ind Ltd Sewing machine
US10190017B2 (en) 2014-03-28 2019-01-29 Lintec Corporation Protective film-forming film and method of manufacturing semiconductor chip with protective film
KR102012789B1 (en) * 2016-03-28 2019-08-21 주식회사 엘지화학 Semiconductor device
JP7375987B2 (en) 2021-06-17 2023-11-08 株式会社村田製作所 substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028734A (en) * 2003-07-11 2005-02-03 Nitto Denko Corp Laminated sheet
JP2005120206A (en) * 2003-10-16 2005-05-12 Sumitomo Bakelite Co Ltd Adhesive film for semiconductor, dicing film, and semiconductor device
JP2008101183A (en) * 2006-09-20 2008-05-01 Hitachi Chem Co Ltd Pressure-sensitive adhesive sheet, semiconductor device produced by using the same and method for producing the semiconductor device
JP2009027054A (en) * 2007-07-23 2009-02-05 Lintec Corp Manufacturing method for semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252321A (en) * 1999-03-03 2000-09-14 Hitachi Chem Co Ltd Manufacture of electronic part
JP2005235530A (en) * 2004-02-18 2005-09-02 Hitachi Chem Co Ltd Circuit connection material
JP4776188B2 (en) * 2004-08-03 2011-09-21 古河電気工業株式会社 Semiconductor device manufacturing method and wafer processing tape
JP5109239B2 (en) * 2005-07-05 2012-12-26 日立化成工業株式会社 Adhesive sheet, method for producing adhesive sheet, and method for producing semiconductor device
JP2008103700A (en) * 2006-09-19 2008-05-01 Hitachi Chem Co Ltd Multi-layered die bond sheet, semiconductor device with semiconductor adhesive film, semiconductor device, and method of manufacturing semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028734A (en) * 2003-07-11 2005-02-03 Nitto Denko Corp Laminated sheet
JP2005120206A (en) * 2003-10-16 2005-05-12 Sumitomo Bakelite Co Ltd Adhesive film for semiconductor, dicing film, and semiconductor device
JP2008101183A (en) * 2006-09-20 2008-05-01 Hitachi Chem Co Ltd Pressure-sensitive adhesive sheet, semiconductor device produced by using the same and method for producing the semiconductor device
JP2009027054A (en) * 2007-07-23 2009-02-05 Lintec Corp Manufacturing method for semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119594A (en) * 2010-12-03 2012-06-21 Disco Abrasive Syst Ltd Processing method of plate-like object
WO2015098949A1 (en) * 2013-12-26 2015-07-02 日立化成株式会社 Film for temporary fixing, film sheet for temporary fixing and semiconductor device
CN105849215A (en) * 2013-12-26 2016-08-10 日立化成株式会社 Film for temporary fixing, film sheet for temporary fixing and aemiconductor device
JPWO2015098949A1 (en) * 2013-12-26 2017-03-23 日立化成株式会社 Temporary fixing film, temporary fixing film sheet, and semiconductor device
CN105849215B (en) * 2013-12-26 2019-09-03 日立化成株式会社 It is fixed temporarily with film, is fixed temporarily with film sheet and semiconductor device
US10550295B2 (en) 2013-12-26 2020-02-04 Hitachi Chemical Company, Ltd. Film for temporary fixing, film sheet for temporary fixing and semiconductor device
DE102015112804B4 (en) 2014-08-04 2019-05-16 Infineon Technologies Ag Source-down semiconductor device and method for its formation
JP2016102215A (en) * 2015-12-18 2016-06-02 大日本印刷株式会社 Adhesive composition and adhesive film using the same

Also Published As

Publication number Publication date
JP5477144B2 (en) 2014-04-23
JP2011009709A (en) 2011-01-13

Similar Documents

Publication Publication Date Title
JP5477144B2 (en) Adhesive sheet for connecting circuit members and method for manufacturing semiconductor device
KR100991940B1 (en) Adhesive bonding sheet
JP4766200B2 (en) Adhesive composition and method for manufacturing semiconductor device
JP5499516B2 (en) Adhesive composition, circuit member connecting adhesive sheet, and method for manufacturing semiconductor device
JP2008101183A (en) Pressure-sensitive adhesive sheet, semiconductor device produced by using the same and method for producing the semiconductor device
JP2011140617A (en) Adhesive composition for forming underfill, adhesive sheet for forming underfill, and method for manufacturing semiconductor device
JP2013004872A (en) Method of manufacturing semiconductor device, film glue, and adhesive sheet
JP5866851B2 (en) Semiconductor device manufacturing method, film adhesive, and adhesive sheet
JP4957064B2 (en) Semiconductor device and manufacturing method thereof
JP5532575B2 (en) Adhesive sheet
JP5003090B2 (en) Adhesive film and semiconductor device using the same
JP2011165761A (en) Method of manufacturing semiconductor-device and adhesive sheet for circuit-member connection
JP5754072B2 (en) Adhesive composition, adhesive member sheet for connecting circuit members, and method for manufacturing semiconductor device
JP2009209345A (en) Pressure-sensitive adhesive sheet
JP5544927B2 (en) Adhesive composition, circuit member connecting adhesive sheet, and method for manufacturing semiconductor device
JP6662074B2 (en) Adhesive film
JP2012184288A (en) Adhesive for circuit connection, adhesive sheet for circuit connection, and method for producing semiconductor device
WO2020136904A1 (en) Adhesive film, integrated dicing/die bonding film, and method for producing semiconductor package
JP5805925B2 (en) Die bonding film and semiconductor device using the same
WO2022149582A1 (en) Film-like adhesive, integrated dicing/die bonding film, semiconductor device and method for producing same
WO2023152837A1 (en) Film-form adhesive, dicing and die-bonding two-in-one film, semiconductor device, and method for manufacturing same
JP5589500B2 (en) Adhesive film, dicing tape integrated adhesive film, and semiconductor device manufacturing method
TW202248391A (en) Adhesive for semiconductor, adhesive sheet for semiconductor, and method for manufacturing semiconductor device
JPWO2020136903A1 (en) Manufacturing method of semiconductor devices, film-like adhesives and dicing / die bonding integrated film
JP2014007426A (en) Circuit member connection adhesive sheet and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780400

Country of ref document: EP

Kind code of ref document: A1