WO2010137391A1 - 流体圧力センサ - Google Patents

流体圧力センサ Download PDF

Info

Publication number
WO2010137391A1
WO2010137391A1 PCT/JP2010/054868 JP2010054868W WO2010137391A1 WO 2010137391 A1 WO2010137391 A1 WO 2010137391A1 JP 2010054868 W JP2010054868 W JP 2010054868W WO 2010137391 A1 WO2010137391 A1 WO 2010137391A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric element
pressure
fluid
tube
tip
Prior art date
Application number
PCT/JP2010/054868
Other languages
English (en)
French (fr)
Inventor
尊三 佐藤
了至 安藤
紀一郎 富岡
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2010137391A1 publication Critical patent/WO2010137391A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0001Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/08Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of piezoelectric devices, i.e. electric circuits therefor

Definitions

  • the present invention relates to a fluid pressure sensor in which the fluid to be measured does not stay, the occurrence of contamination is suppressed, and the diameter of the pipe through which the fluid to be measured flows can be freely selected. .
  • a pressure sensor used for measuring the pressure of a fluid such as gas or liquid flowing in a pipe
  • a semiconductor diaphragm type, a capacitance type, an elastic diaphragm type, a piezoelectric type or the like is generally used as a pressure sensor used for measuring the pressure of a fluid such as gas or liquid flowing in a pipe.
  • These conventional pressure sensors are usually provided with an introduction hole or introduction pipe for introducing a fluid to be measured, called a pressure guiding portion, into the sensor (Patent Documents 1 and 2).
  • the conventional pressure sensor has a common drawback that it is difficult to attach to a narrow tube.
  • a thin tube with a tube diameter of 1/4 inch or 3/8 inch is used, it is difficult to separately install a conventional pressure sensor without using a connecting tube. It is necessary to connect the tubes together.
  • a dead space is always generated, and staying also occurs in the dead space, which may cause contamination.
  • the present invention provides a fluid pressure sensor in which the fluid to be measured does not stay, the occurrence of contamination is suppressed, and the diameter of the pipe through which the fluid to be measured flows can be freely selected. This is what I wanted.
  • the fluid pressure sensor according to the present invention is a pressure sensor that includes a tube through which fluid can flow and a pressure-sensitive portion having a plate-like piezoelectric element, and senses the pressure of the fluid flowing inside the tube.
  • the tube is made of an elastically deformable material and has a recess formed on the outer surface thereof so that the tube thickness is reduced.
  • the pressure-sensitive portion is formed by the piezoelectric element from the side peripheral surface of the tip. In order to receive the pressure of the fluid, a tip portion thereof is in contact with an outer surface of the tube in the vicinity of the concave portion.
  • the pipe through which the fluid to be measured flows is made of an elastically deformable material and has a recess formed on its outer surface so that the pipe thickness is thin.
  • the concave portion expands and contracts under the pressure of the fluid flowing inside, and its vicinity elastically deforms. Then, the pressure is transmitted to the tip of the pressure-sensitive portion in contact with the outer surface of the tube in the vicinity of the concave portion, and the piezoelectric element provided in the pressure-sensitive portion is moved from the side peripheral surface of the tip to the pressure. In response, the pressure of the fluid can be sensed.
  • the pressure-sensitive portion receives pressure from the vibration surface of the piezoelectric element because the pressure-sensitive portion receives pressure from the side peripheral surface of the tip of the piezoelectric element when the tip portion contacts the outer surface of the tube.
  • the tube may be a thin tube, and its diameter can be freely set. It can be selected appropriately.
  • the pressure applied in the contour direction of the piezoelectric element can be derived by measuring the operating frequency fluctuation amount.
  • the piezoelectric element is a crystal resonator, a frequency of about 7 digits can be easily measured, and the measurement accuracy of the pressure acting on this can be 10 ⁇ 7 or more.
  • the vibration surface of the piezoelectric element is not used to receive pressure, the stress generated without affecting the vibration characteristics can be measured. Also, the vibration surface of the piezoelectric element is weak in mechanical strength, whereas the mechanical strength in the contour direction is very strong, so the pressure sensitivity is higher than that of the conventional pressure sensor receiving pressure from the vibration surface of the piezoelectric element. The load-bearing capacity of the part is greatly increased, and the pressure resistance is extremely excellent.
  • the piezoelectric element is preferably a crystal resonator because a highly accurate oscillation frequency can be stably obtained.
  • the pressure-sensitive part includes a housing in which the piezoelectric element can be stored in an airtight state in its internal space, and a head portion facing the side peripheral surface at the tip of the piezoelectric element is a thin film. Preferably used.
  • the piezoelectric element When the pressure is applied to the side peripheral surface of the tip of the piezoelectric element, the pressure is not sufficiently transmitted if the piezoelectric element moves. For this reason, in order to prevent the piezoelectric element from moving, the piezoelectric element has a disk shape in which an orientation flat (hereinafter referred to as an orientation flat) is formed at the base end thereof, and the base end is held by the base end. It is preferable to be held on a table.
  • an orientation flat hereinafter referred to as an orientation flat
  • the piezoelectric element can be housed in an airtight state together with a thin-film-like seal member provided facing the side peripheral surface at the tip of the piezoelectric element, and the seal member.
  • a housing body that constitutes a container, and the housing body is provided with a slit, the tip of the piezoelectric element protrudes from the slit, and the sealing member covers the slit.
  • the slit can prevent the piezoelectric element from moving together with the holding base. And it is easy to keep the internal space of the housing airtight.
  • the seal member can be easily deformed, can easily transmit pressure without loss, has a strength that does not easily break even if it comes into contact with the sharp edge of the piezoelectric element, and can maintain the inside of the housing airtight.
  • a metal thin film is preferable because it is easy.
  • the pressure-sensitive part configured as described above has a piezoelectric element sealed in a housing and is not directly affected by changes in the external environment, so it can ensure reliability over a long period of time.
  • the pressure-sensitive part may have a simpler configuration, and examples of such a pressure-sensitive part include those having a cap member fitted to the tip of the piezoelectric element.
  • a housing capable of accommodating the piezoelectric element in an airtight state is provided in its internal space, and the head of the housing
  • the portion has a pressing portion at the tip thereof, and a tube having an inside communicating with the internal space of the housing is provided, and a rod-like body having a base end fixed to the cap member is provided in the tube. It is preferable that it is inserted.
  • the fluid to be measured does not stay in the pipe, and the occurrence of contamination is also suppressed.
  • the tube may be a thin tube, and the diameter thereof can be freely set.
  • the front view (a) and side view (b) of the fluid pressure sensor which concern on the 1st Embodiment of this invention (a pipe
  • the front view (a) (a pipe part is a sectional view) and a perspective view (b) of a fluid pressure sensor concerning a 4th embodiment of the present invention.
  • the typical top view (a) and side view (b) of the fluid pressure sensor which concern on other embodiment.
  • the perspective view which shows the case where the sealing member in 1st Embodiment is a case-like thing (before attachment (a) and after attachment (b)).
  • the fluid pressure sensor 1 includes a tube 2 through which a fluid can flow and a pressure sensing unit 3 having a plate-like piezoelectric element 31. It is provided and senses the pressure of the fluid flowing inside the pipe 2.
  • the pipe 2 has a recess 21 formed on its outer surface so that the thickness of the pipe 2 is reduced, as shown in FIG. It is.
  • the concave portion 21 has an annular shape, and is configured such that the tip 3 a of the pressure-sensitive portion 3 contacts the convex portion 22 surrounded by the concave portion 21.
  • the size of the recess 21 is, for example, that the tube 2 has an inner diameter of 4.35 mm, an outer diameter of 6.35 mm, and a tube thickness of 1 mm.
  • W1 is 12 mm
  • W2 is 16 to 18 mm
  • H1 is 2 mm.
  • H2 is 6 to 8 mm.
  • the tube 2 has an inner diameter of 7.53 mm, an outer diameter of 9.53 mm, and a tube thickness of 1 mm, and W1 is 12 mm, W2 is 16 to 20 mm, and when H1 is 4 mm, H2 is 8 to 8 mm. 12 mm.
  • the inner surface of the tube 2 and the top of the convex portion 22 are flat and have no irregularities.
  • the tip 3a of the pressure-sensitive portion 3 is configured to contact the convex portion 22 having a thick tube thickness, the tube 2 is damaged even when pressed by the stiff and sharp tip 31a of the piezoelectric element 31. Hateful.
  • the elastically deformable material constituting the tube 2 is preferably a material with high chemical resistance, such as polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene.
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • Fluorine resins such as hexafluoropropylene copolymer (FEP) and tetrafluoroethylene-ethylene copolymer (ETFE) are preferably used.
  • the pressure-sensitive part 3 can accommodate the piezoelectric element 31 in a plate-like piezoelectric element 31 and its internal space in an airtight state, and is opposed to the side peripheral surface of the tip 31 a of the piezoelectric element 31.
  • a housing 33 having a head made of a seal member 32.
  • the plate-like piezoelectric element 31 is, for example, an AT-cut 9 MHz convex crystal resonator in which a disk-shaped crystal piece 311 having an orientation flat is sandwiched between two electrode plates 312a and 312b.
  • the end 31b is supported by being inserted into the slits 3131 of the elastic supports 313a and b with slits, and the base end thereof is fixed to the holding base 314 using an adhesive or the like.
  • pressure is applied to the side peripheral surface, the pressure is transmitted as it is in the vertical direction and is compressed and deformed to bend, but it is installed so as not to move in the horizontal direction or the front-rear direction.
  • Thickness-sliding vibrators such as AT-cut vibrators are compatible with high frequency bands, and have high oscillation frequency stability and reliability against changes in the external environment in high frequency bands.
  • the holding table 314 is fixed to the base 331b using an adhesive or the like.
  • the elastic supports 313a, b with slits are made of a conductive material such as metal, and support the piezoelectric element 31 so as to be in contact with the electrode plates 312a, 3b, and also serve as lead wires.
  • the housing 33 includes a seal member 32 and a housing body 331 that forms a container that can accommodate the piezoelectric element 31 in an airtight state in the internal space.
  • the seal member 32 is a thin film that deforms in response to a change in pressure, and is made of a metal thin film such as SUS having a thickness of about 10 to 30 ⁇ m, for example.
  • the seal member 32 and the side peripheral surface of the tip 31a of the crystal resonator 31 have a stroke of about 0.1 to 0.3 mm. A slight pressure is applied to the side peripheral surface of the tip 31a of the crystal resonator 31 in contact with the side peripheral surface of the tip 31a.
  • the housing main body 331 is made of, for example, metal, and has a slit 332 at the head thereof.
  • the tip 31a of the piezoelectric element 31 protrudes from the slit 332 by about 0.1 to 0.2 mm.
  • a seal member 32 is fixed so as to cover 332. In order to fix and seal the seal member 32 to the housing body 331, an adhesive is used or resistance welding is performed in a dry atmosphere.
  • the housing main body 331 is divided into an upper portion provided with a slit 332 and a base 331b provided with a lead wire 333, which are similarly sealed.
  • the inner space of the housing 33 is filled with an inert gas such as N 2 gas in a dry state, and is configured so that the electrode plates 312a, 3b, etc. formed by depositing gold on the base material do not corrode. ing.
  • an inert gas such as N 2 gas in a dry state
  • the housing 33 in the present embodiment is made of a conductive material such as metal and includes lead wires 333a and b integrally formed with the housing body at the bottom thereof.
  • the lead wires 333a, b are in electrical communication with the slit elastic supports 313a, b, and can transmit the voltage generated in the piezoelectric element 31 to the outside as an output signal.
  • the concave portion 21 and the convex portion 22 are elastically deformed according to the pressure
  • Pressure is applied to the side peripheral surface of the tip 31 a of the piezoelectric element 31 through the seal member 32.
  • the piezoelectric element 31 is compressed and deformed and bends and stress is generated, the oscillation frequency is changed, a voltage corresponding to the oscillation frequency is generated, and the electric signals are sent to the elastic supports 313a and b with slits and the lead wire 333a. , B is transmitted to the outside as an output signal.
  • the tolerance of the pressure received from the side peripheral surface of the tip 31a of the crystal resonator 31 can be determined by optimizing the direction and size of the holding base 314, the orientation flat, and the dimensions of the elastic supports 313a, b with slits.
  • an apparatus having a configuration as shown in FIG. 4 is assembled, and a fluid is caused to flow through the tube 2 made of a PFA tube having an outer diameter of 8 mm ⁇ an inner diameter of 6 mm.
  • the change in the oscillation frequency of the pressure unit 3 was measured, and the set value in the pressure calibrator was compared with the measured value in the frequency counter. The results are shown in FIG.
  • the pressure of the fluid flowing in the pipe 2 and the oscillation frequency of the pressure sensing unit 3 have a linear function relationship, and the fluid pressure is accurately sensed. confirmed.
  • the pipe 2 in which the fluid to be measured flows is made of an elastically deformable material, and the pipe thickness is thin on the outer surface thereof. Since it has the recessed part 21 formed so that it may become, the recessed part 21 receives the pressure of the fluid which flows through an inside, and is expanded-contracted, and the recessed part 21 and the convex part 22 elastically deform. And the said pressure is transmitted to the front-end
  • the pressure of the fluid can be sensed. For this reason, no introduction hole or introduction pipe for introducing the fluid in the pipe 2 into the pressure sensing part 3 is required, and the inner surface of the pipe 2 through which the fluid to be measured flows is flat and has no irregularities. There is no space. Therefore, the fluid does not stay in the pipe 2 and no contamination derived from a fluid residue or the like is generated. In addition, the inside of the tube 2 can be easily cleaned.
  • the pressure-sensitive portion 3 receives pressure from the side peripheral surface of the tip 31a of the piezoelectric element 31 by contacting the tip portion 3a with the convex portion 22 formed on the outer surface of the tube 2.
  • the tube 2 may be a thin tube, and its diameter can be freely set.
  • the pipe 2 having a diameter suitable for the pipe to which the pressure sensor 1 is connected can be appropriately selected.
  • the vibration surface of the piezoelectric element is not used to receive pressure by receiving pressure from the side peripheral surface of the tip 31a of the piezoelectric element 31 through the seal member 32, the vibration characteristics are not affected. The resulting stress can be measured. Furthermore, the vibration surface of the piezoelectric element is weak in mechanical strength, whereas the mechanical strength in the contour direction is very strong, so that the pressure-sensitive part is lower than the conventional pressure sensor that receives pressure from the vibration surface of the piezoelectric element. The load-bearing capacity of No. 3 is greatly increased, and the pressure resistance is extremely excellent. If the relationship between the frequency change and the pressure is examined in advance, the pressure can be derived from the frequency change.
  • a slit 332 is provided at the head of the housing body 331, and the tip 31 a of the piezoelectric element 31 protrudes from the slit 332, and the seal member 32 is fixed so as to cover the slit 332.
  • the piezoelectric element 31 can be prevented from moving together with the holding base 314, and the internal space of the housing 33 can be kept airtight. Easy.
  • the metal thin film can be easily deformed, so that pressure is not easily lost and is easily transmitted to the side peripheral surface of the tip 31a of the piezoelectric element 31, Since the strength is high, even if it comes into contact with the sharp tip 31a of the piezoelectric element 31, it is not easily damaged, and it is easy to keep the inside of the housing 33 airtight.
  • the piezoelectric element 31 is sealed in the housing 44 and is not directly influenced by changes in the external environment, the long-term reliability of the fluid pressure sensor 1 can be ensured.
  • the pressure-sensitive part 3 in the first embodiment can be used for a long period of time, if it can be used for a short period of time, the crystal unit 31 is airtight in the housing 44 as shown in FIG. It does not have to be accommodated.
  • a cap member 5 made of metal or plastic is fitted to the tip 31 a of the crystal resonator 31, and the side peripheral surface of the tip 31 a of the crystal resonator 31 is interposed via the cap member 5. The pressure is applied.
  • the cap member 5 is provided with a groove 51 for fitting to the tip 31a of the crystal resonator 31, and a hole 52 is provided in the head.
  • a cap member 5 is provided as a pressure acting part.
  • the pressure sensitive part 3 according to the second embodiment is provided.
  • a housing 44 capable of accommodating the piezoelectric element 31 in an airtight state is provided in its internal space. Is provided with a tube 62 having a pressing portion 61 at its tip and communicating with the interior space of the housing 44.
  • the tube 62 has a base end fixed to the cap member 5.
  • the body 63 is inserted.
  • the rod-like body 63 can slide in the tube 62.
  • the pipe 62 and the casing 44 are resistance-welded, and an O-ring 64 is provided between the pressing portion 61 and the pipe 62, so that the internal space of the casing 44 is kept airtight.
  • the cap member 5 has a hole 52 in the head, but the base end of the rod-like body 63 is screwed into the hole 52 and fixed.
  • the pressure is transmitted to the cap member 5 via the rod-like body 63 and further applied to the side peripheral surface of the tip 31 a of the piezoelectric element 31 via the cap member 5.
  • the recess 21 is formed so as to surround the outer peripheral surface of the tube 2, and a tubular frame body 23 that fits the tube 2 is provided so as to cover the recess 21. ing.
  • a hole 231 into which the casing 33 of the pressure-sensitive part 3 can be inserted is formed in the frame body 23, and the pressure-sensitive part 3 inserted into the hole 231 has a sealing member 32 interposed through the contact plate 24. 2 is in contact with.
  • the present invention is not limited to the above embodiment.
  • the pressure sensing unit 3 includes an oscillation circuit, a CPU, a memory, an A / D converter, a D / A in addition to the input unit 34 and the display 35 as shown in FIG.
  • An arithmetic processing unit (not shown) including a converter or the like may be provided integrally.
  • the piezoelectric element 31 may be any element as long as the oscillation frequency changes depending on the pressure received.
  • the piezoelectric element 31 is not limited to a crystal resonator, and a material other than quartz such as ceramics is used as a piezoelectric body. It may be a thing.
  • the seal member 32 may be any member as long as it is elastically deformed in response to a change in pressure, and is not limited to a metal thin film, but may be made of another material such as carbon, a diaphragm, Bellows may be used.
  • the seal member 32 may be a case-like one having an opening on one surface, and may be attached so as to be covered from the head of the housing body 331.
  • the holding base 314 may be formed with a groove for fitting to the base end 31 b of the crystal unit 31, or may be integrally formed with the housing body 331.
  • the pressure sensing unit 3 may include a temperature sensor to correct the effect of temperature.
  • the pressure-sensitive part 3 in the present invention has a very excellent characteristic due to the pressure-to-operating frequency variation characteristic in the contour direction of the crystal unit 31.
  • an error factor of the operation (1) Changes due to climate, (2) influence of initial distortion of the head of the housing 44, (3) influence of frequency change due to deterioration of the crystal unit 31, and (4) sensitivity error due to different pressure acting directions. It is done.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

 測定対象である流体が滞留せず、コンタミの発生も抑制され、かつ、その内部を測定対象の流体が流れる管の径を自由に選択することができる流体圧力センサを提供する。内部を流体が流通可能な管と板状の圧電素子を有する感圧部とを備え、前記管の内部を流れる流体の圧力を感知する圧力センサであって、前記管は、弾性変形可能な材料からなり、その外表面に管厚が薄くなるよう形成された凹部を有しており、前記感圧部は、前記圧電素子がその先端の側周面から前記流体の圧力を受けるように、その先端部が前記凹部の近傍において前記管の外表面と接しているようにした。

Description

流体圧力センサ
 この発明は、測定対象である流体が滞留せず、コンタミの発生も抑制され、かつ、その内部を測定対象の流体が流れる管の径を自由に選択することができる流体圧力センサに関するものである。
 従来、管内を流れる気体や液体等の流体の圧力を測定するために使用される圧力センサとしては、半導体ダイヤフラム型、静電容量型、弾性体ダイヤフラム型、圧電型等が一般的に用いられる。これら従来の圧力センサには、通常、導圧部と称される測定対象の流体をセンサ内に導き入れるための導入孔又は導入管が設けられている(特許文献1、特許文献2)。
 しかしながら、測定対象の流体が粘性を有する液体である場合、これらの導入孔等が詰まりやすく、また、これらの導入孔等で液体が滞留して残渣等に由来する付着物が発生し、当該付着物が剥がれおちて管内を下流に流れ、この付着物により下流が汚染(コンタミ)されることがある。また、ダイヤフラム型の圧力センサの場合、ダイヤフラムの保持機構の凹凸に起因して、センサ内に滞留が発生することもある。
 更に、従来の圧力センサは細管に取り付けることが困難であるという共通した欠点を有する。例えば、チューブ径1/4インチや3/8インチ程度の細いチューブが使用された場合は、別途、接続用の管を用いずに従来の圧力センサを設置することは困難であり、異なる径の管同士を接続する必要が生じる。しかしながら、異なる径の管同士を接続すると必ずデッドスペースが生じ、このデッドスペースにおいても滞留が発生しコンタミの原因となる可能性がある。
 先行技術文献
   特許文献1 特開2000-74767
   特許文献2 特開2001-116638
 そこで本発明は、測定対象である流体が滞留せず、コンタミの発生も抑制され、かつ、その内部を測定対象の流体が流れる管の径を自由に選択することができる流体圧力センサを提供すべく図ったものである。
 すなわち本発明に係る流体圧力センサは、内部を流体が流通可能な管と板状の圧電素子を有する感圧部とを備え、前記管の内部を流れる流体の圧力を感知する圧力センサであって、前記管は、弾性変形可能な材料からなり、その外表面に管厚が薄くなるよう形成された凹部を有しており、前記感圧部は、前記圧電素子がその先端の側周面から前記流体の圧力を受けるように、その先端部が前記凹部の近傍において前記管の外表面と接していることを特徴とする。
 このようなものであれば、その内部を測定対象である流体が流れる管は、弾性変形可能な材料からなり、その外表面に管厚が薄くなるよう形成された凹部を有しているので、前記凹部は内部を流れる流体の圧力を受けて伸縮し、その近傍が弾性変形する。そして、前記凹部の近傍において前記管の外表面と接している前記感圧部の先端部には当該圧力が伝わり、前記感圧部に備わった前記圧電素子がその先端の側周面から当該圧力を受けて、前記流体の圧力を感知することができる。このため、管2内の流体を感圧部3内に導入する導入穴や導入管は不要であり、測定対象である流体が流れる管の内表面は平坦であって凹凸がないので、デッドスペースが生じない。しかして、測定対象である流体は前記管内で滞留せず、流体の残渣等に由来するコンタミも発生しない。加えて、前記管内の洗浄も容易となる。
 また、前記感圧部は、その先端部と前記管の外表面とが接することにより、前記圧電素子の先端の側周面から圧力を受けるものであるので、圧電素子の振動面から圧力を受ける従来の圧力センサに比べて、取り付けに要するスペースが少なくて済み、前記管が細管であってもよく、その径を自由に設定することができるため、接続対象の管に適合する径の管を適宜選択することができる。
 そして、圧電素子の輪郭方向に未知の圧力をかけた場合、動作周波数変動量を計測すれば、圧電素子の輪郭方向に加えられた圧力を導き出すことができる。しかも、圧電素子が水晶振動子である場合、7桁程度の周波数が容易に計測できるので、これに作用する圧力の計測精度を10-7以上とすることも可能である。
 また、従来からある天秤に比し、高分解能であることはもちろんのこと、更に高安定度と高精度化が容易に得られる。
 更に、本発明では、圧力を受けるために圧電素子の振動面を使用していないので、振動特性に影響を与えずに生じた応力を測定することができる。また、圧電素子の振動面は機械的強度が弱いのに対して、輪郭方向の機械的強度は非常に強いので、圧電素子の振動面から圧力を受ける従来の圧力センサに比べて、前記感圧部の耐加重が大幅に増加し、極めて優れた耐圧性を有するものとなる。
 前記圧電素子は、精度の高い発振周波数が安定して得られることより、水晶振動子であるのが好ましい。
 前記感圧部としては、その内部空間に前記圧電素子を気密状態で収容可能であり、前記圧電素子の先端の側周面に対向する頭部が薄膜状である筐体を備えているものが好適に用いられる。
 前記圧電素子の先端の側周面に圧力が加わった際に、前記圧電素子が移動してしまうと圧力が充分に伝わらない。このため、前記圧電素子が移動することを防ぐために、前記圧電素子は、その基端にオリエンテーションフラット(以下、オリフラという。)が形成されている円盤状のものであって、当該基端が保持台に保持されていることが好ましい。
 前記筐体としては、例えば、前記圧電素子の先端の側周面に対向して設けられた薄膜状のシール部材と、前記シール部材とともに、その内部空間に前記圧電素子を気密状態で収容可能な容器を構成する筐体本体と、から構成され、前記筐体本体には、スリットが設けられていて、前記スリットから前記圧電素子の先端が突出しており、前記スリットを覆うように前記シール部材が取り付けられているものが挙げられる。このようなものであれば、前記シール部材を介して前記圧電素子の先端の側周面に圧力が加わった際に、前記圧電素子が移動することを、前記スリットが前記保持台とともに防ぐことができ、かつ、前記筐体の内部空間を気密に保つことが容易である。
 前記シール部材は、容易に変形可能で圧力が損失せずに伝わり易く、前記圧電素子の鋭利な端縁と接触しても破損しにくい強度を有し、筐体内部を気密に維持することが容易であることより、金属薄膜であるのが好ましい。
 上述の構成の感圧部は、圧電素子が筐体内に密閉してあり、外部環境の変化による影響を直接受けないので、長期にわたり信頼性を確保することができるが、短期間使用できればよい場合、前記感圧部はより簡易な構成であってもよく、このような感圧部としては、前記圧電素子の先端に嵌合されたキャップ部材を備えているものが挙げられる。
 前記感圧部を長期にわたる使用にも耐えうる耐候性に優れたものとするためには、その内部空間に前記圧電素子を気密状態で収容可能な筐体を備えており、前記筐体の頭部には、その先端に押圧部を有し、内部が筐体の内部空間と連通している管が設けてあり、前記管内にはその基端が前記キャップ部材に固定されている棒状体が挿入されているようにすることが好ましい。
 このように本発明によれば、測定対象である流体は管内で滞留せず、コンタミの発生も抑制される。また、前記管は細管であってもよく、その径を自由に設定することができる。
本発明の第1の実施形態に係る流体圧力センサの正面図(a)及び側面図(b)(管部分は断面図)。 同実施形態における管の平面図(a)及び断面図(b)。 同実施形態における感圧部の正面図(a)、平面図(b)及び側面図(c)。 同実施形態に係る流体圧力センサの性能を評価するための装置の構成図。 流体圧力と発振周波数との関係を示すグラフ。 本発明の第2の実施形態における感圧部の正面図(a)及びキャップ部材の側面図(b)。 本発明の第3の実施形態における感圧部の正面図(a)及び押圧部近傍の断面図(b)。 本発明の第4の実施形態に係る流体圧力センサの正面図(a)(管部分は断面図)及び斜視図(b)。 他の実施形態に係る流体圧力センサの模式的平面図(a)及び側面図(b)。 第1の実施形態におけるシール部材がケース状のものである場合を示す斜視図(取り付け前(a)及び取り付け後(b))。
<第1の実施形態>
 以下に、本発明の第1の実施形態を、図面を参照して説明する。
 本実施形態に係る流体圧力センサ1は、図1、図2及び図3に示すように、内部を流体が流通可能な管2と、板状の圧電素子31を有する感圧部3と、を備えており、管2の内部を流れる流体の圧力を感知するものである。
 以下に各部を説明する。管2は、その内部を流体が流通可能なものであって、弾性変形可能な材料からなり、図2に示すように、その外表面に管厚が薄くなるよう形成された凹部21を有するものである。本実施形態において凹部21は環状をなしており、凹部21に囲まれた凸部22に感圧部3の先端3aが接するように構成してある。凹部21の大きさは、例えば、管2が内径4.35mm、外径6.35mm、管厚1mmであり、W1が12mmである場合は、W2が16~18mmであり、H1が2mmである場合は、H2が6~8mmである。また、管2が内径7.53mm、外径9.53mm、管厚1mmであり、W1が12mmである場合は、W2が16~20mmであり、H1が4mmである場合は、H2が8~12mmである。管2の内表面及び凸部22の頭頂は平坦であり凹凸は形成されていない。
 なお、感圧部3の先端3aが、管厚が厚い凸部22に接するように構成してあることにより、圧電素子31の堅硬で鋭利な先端31aにより押圧されても管2が損傷を受けにくい。
 管2を構成する弾性変形可能な材料としては、耐薬品性の高い材料が好ましく、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-エチレン共重合体(ETFE)等のフッ素樹脂が好適に用いられる。
 感圧部3は、図3に示すように、板状の圧電素子31と、その内部空間に圧電素子31を気密状態で収容可能であり、圧電素子31の先端31aの側周面に対向する頭部がシール部材32からなる筐体33と、を備えている。
 板状の圧電素子31は、例えば、オリフラが形成された円盤状の水晶片311が2枚の電極板312a、bで挟まれてなるATカット9MHzコンベックス形状水晶振動子であって、オリフラを基端31bとし、その両側端がスリット付き弾性支持体313a、bのスリット3131に挿入されることにより支持され、その基端が保持台314に接着剤等を用いて固着されており、先端31aの側周面に圧力を受けた場合には、縦方向には圧力がそのまま伝わり圧縮変形して撓むが、横方向や前後方向には移動しないように設置されている。
 ATカット振動子等の厚みすべり振動子は、高い周波数帯に適合し、高い周波数帯において、外部環境の変化に対する発振周波数安定度及び信頼性が高い。
 なお、保持台314はベース331bに接着剤等を用いて固着されている。また、スリット付き弾性支持体313a、bは金属等の導電性材料からなり、電極板312a、bと接するように圧電素子31を支持しており、リード線を兼ねている。
 筐体33は、シール部材32と、その内部空間に圧電素子31を気密状態で収容可能な容器を構成する筐体本体331と、から構成されるものである。
 シール部材32は、圧力変化に応じて変形する薄膜状のものであって、例えば、10~30μm程度の厚さを有するSUS等の金属薄膜からなるものである。初期状態において、シール部材32と水晶振動子31の先端31aの側周面とは0.1~0.3mm程度のストロークを有するが、一旦使用した後は、シール部材32が水晶振動子31の先端31aの側周面に接し、水晶振動子31の先端31aの側周面に僅かな圧力がかかった状態となる。
 筐体本体331は、例えば、金属等からなり、その頭部にはスリット332が設けられていて、スリット332からは圧電素子31の先端31aが0.1~0.2mm程度突出しており、スリット332を覆うようにシール部材32が固着してある。シール部材32を筐体本体331に固着して封止するには、乾燥雰囲気下において、接着剤を使用したり、抵抗溶接したりする。なお、筐体本体331は、スリット332が設けられた上部と、リード線333が設けられたベース331bとに分けられるが、これらも同様にして封止される。
 筐体33の内部空間には、Nガス等の不活性ガスが乾燥した状態で封入されており、基材に金蒸着が施されてなる電極板312a、b等が腐食しないように構成されている。
 本実施形態における筐体33は、金属等の導電性材料からなり、その底部に筐体本体と一体成形されたリード線333a、bを備えている。リード線333a、bはスリット付き弾性支持体313a、bと電気的に連絡しており、圧電素子31で発生した電圧を出力信号として外部に発信することができる。
 本実施形態に係る流体圧力センサ1は、接続対象の管に管2を接続し、管2内を測定対象の流体が流れると、その圧力に応じて凹部21及び凸部22が弾性変形し、シール部材32を介して圧電素子31の先端31aの側周面に圧力が加わる。そして、圧電素子31が圧縮変形し撓み、応力が生じると、その発振周波数が変化して、当該発振周波数に応じた電圧が生じ、その電気信号をスリット付き弾性支持体313a、b及びリード線333a、bを介して出力信号として外部に発信する。
 そして、保持台314、オリフラの方向と寸法、スリット付き弾性支持体313a、bの寸法の適正化により、水晶振動子31の先端31aの側周面から受ける圧力の許容範囲を定めることができる。
 本実施形態に係る流体圧力センサ1の性能を評価するために、図4に示すような構成の装置を組み立てて、外径8mm×内径6mmのPFAチユーブからなる管2内に流体を流し、感圧部3の発振周波数の変化を測定し、圧力校正器における設定値と周波数カウンタにおける測定値とを比較した。結果は図5に示した。
 図5に示すように、流体圧力センサ1では、管2内を流れる流体の圧力と感圧部3の発振周波数とは一次関数の関係にあり、流体の圧力は正確に感知されていることが確認された。
 したがって、このように構成した本実施形態に係る流体圧力センサ1によれば、その内部を測定対象である流体が流れる管2は、弾性変形可能な材料からなり、その外表面に管厚が薄くなるよう形成された凹部21を有しているので、凹部21は内部を流れる流体の圧力を受けて伸縮し、凹部21及び凸部22が弾性変形する。そして、凸部22において管2の外表面と接している感圧部3の先端部3aに当該圧力が伝わり、感圧部3に備わった圧電素子31がその先端31aの側周面から当該圧力を受けて、流体の圧力を感知することができる。このため、管2内の流体を感圧部3内に導入する導入穴や導入管は不要であり、測定対象である流体が流れる管2の内表面は平坦であって凹凸がないので、デッドスペースが生じない。しかして、前記流体は管2内で滞留せず、流体の残渣等に由来するコンタミも発生しない。加えて、管2内の洗浄も容易となる。
 また、感圧部3は、その先端部3aと管2の外表面に形成された凸部22とが接することにより、圧電素子31の先端31aの側周面から圧力を受けるものであるので、圧電素子31の振動面から圧力を受ける従来の圧力センサに比べて、取り付けに要するスペースが少なくて済み、管2が細管であってもよく、その径を自由に設定することができため、流体圧力センサ1の接続対象である管に適合する径の管2を適宜選択することができる。
 また、圧電素子31の先端31aの側周面からシール部材32を介して圧力を受けることにより、圧力を受けるために圧電素子の振動面を使用していないので、振動特性に影響を与えずに生じた応力を測定することができる。更に、圧電素子の振動面は機械的強度が弱いのに対して、輪郭方向の機械的強度は非常に強いので、圧電素子の振動面から圧力を受ける従来の圧力センサに比べて、感圧部3の耐加重が大幅に増加し、極めて優れた耐圧性を有するものとなる。そして、予め周波数変化と圧力との関係を予め調べておけば、周波数変化から圧力を導き出すことができる。
 更に、本実施形態では管2に感圧部3から流体の導入管等が挿入されていないので、管2をフッ素樹脂から構成した場合はフッ素樹脂の耐薬品性を充分に発揮することができる。
 また、圧電素子31としてATカット9MHzコンベックス形状水晶振動子を用いることにより、精度の高い発振周波数を安定して得ることができる。
 更に、筐体本体331の頭部には、スリット332が設けられていて、スリット332から圧電素子31の先端31aが突出しており、スリット332を覆うようにシール部材32が固着してあるので、圧電素子31にその先端31aの側周面から圧力が加わった際に、圧電素子31が移動するのを保持台314とともに防ぐことができ、かつ、筐体33の内部空間を気密に保つことが容易である。
 更に、シール部材32としてSUS等からなる金属薄膜を用いることより、当該金属薄膜は容易に変形可能であるので圧力が損失せずに圧電素子31の先端31aの側周面に伝わり易く、また、強度が高いので圧電素子31の鋭利な先端31aと接触しても破損しにくく、更に、筐体33内部を気密に維持することが容易である。
 更に、圧電素子31が筐体44内に密閉してあり、外部環境の変化による影響を直接受けないので、流体圧力センサ1の長期にわたる信頼性を確保することができる。
<第2の実施形態>
 以下に、本発明の第2の実施形態を、図面を参照して説明する。なお、以下においては第1の実施形態と異なる構成を採る部分を中心に説明し、第1の実施形態と同じ構成を採る部分については説明を省略する。
 第1の実施形態における感圧部3は長期間にわたる使用が可能なものであるが、短期間使用できればよい場合は、図6に示すように、水晶振動子31が筐体44に気密状態で収容されていなくてもよい。そして、本実施形態では、水晶振動子31の先端31aには、金属製又はプラスチック製のキャップ部材5が嵌合しあり、キャップ部材5を介して水晶振動子31の先端31aの側周面に圧力が加わるように構成してある。
 キャップ部材5には、水晶振動子31の先端31aに嵌合するための溝51が設けられてあり、また、頭部には孔52が設けてある。
<第3の実施形態>
 第2の実施形態における感圧部3には、圧力作用部としてキャップ部材5が設けられているが、第3の実施形態においては、このような第2の実施形態に係る感圧部3を、長期にわたる使用にも耐えられるようにするために、図7に示すように、その内部空間に圧電素子31を気密状態で収容可能な筐体44を備えており、筐体44の頭部には、その先端に押圧部61を有し、内部が筐体44の内部空間と連通している管62が設けてあり、管62内にはその基端がキャップ部材5に固定されている棒状体63が挿入されている。棒状体63は管62内を摺動可能である。
 管62と筐体44とは抵抗溶接され、押圧部61と管62との間にはOリング64が設けられていることにより、筐体44の内部空間は気密状態に保たれている。
 キャップ部材5には、頭部に孔52が設けてあるが、棒状体63の基端が孔52にネジ込み固定されている。そして、押圧部61に圧力が加わった場合、当該圧力は、棒状体63を介してキャップ部材5に伝達され、更にキャップ部材5を介して圧電素子31の先端31aの側周面に加わる。
<第4の実施形態>
 第4の実施形態では、図8に示すように、凹部21が管2の外側周面を取り囲むように形成され、凹部21を覆うように管2と嵌合する管状の枠体23が設けられている。そして、枠体23には感圧部3の筐体33を挿入可能な孔231が形成されており、当該孔231に挿入した感圧部3はそのシール部材32が当たり板24を介して管2と接するように構成してある。このような管2内を測定対象の流体が流れると、その圧力に応じて凹部21が弾性変形し、当たり板24及びシール部材32を介して圧電素子31の先端31aの側周面に当該圧力が加わる。
 なお、本発明は前記実施形態に限られるものではない。
 例えば、本発明に係る流体圧力センサは、感圧部3が、図9に示すように、入力手段34、ディスプレイ35に加えて、発振回路、CPUやメモリ、A/D変換器、D/A変換器等からなる演算処理部(図示しない。)を一体的に備えていてもよい。
 また、圧電素子31は受ける圧力により発振振動数が変化するものであればいずれのものであってもよく、水晶振動子に限定されず、圧電体としてセラミックス等の水晶以外の材料が用いられたものであってもよい。
 更に、シール部材32は圧力の変化に応じて弾性変形するものであればいずれのものであってもよく、金属薄膜に限定されず、カーボン等の他の材料からなるものや、又は、ダイヤフラム、ベローズが用いられてもよい。
 更に、図10に示すように、シール部材32が1面が開口したケース状のものであって、筐体本体331の頭部からかぶせるように取り付けられるものであってもよい。
 また、保持台314には水晶振動子31の基端31bに嵌合するための溝が形成されていてもよく、また、筐体本体331と一体成形されていてもよい。
 更に、水晶振動子は温度による影響を受けるので、感圧部3は温度による影響を補正するために温度センサを備えていてもよい。
 本発明における感圧部3は、水晶振動子31の輪郭方向の圧力対動作周波数変動特性による大変優れた特性を持つが、動作の誤差要因としては、(1)大気中で計測する場合は、気候による変化、(2)筐体44の頭部の初期歪みの影響、(3)水晶振動子31の劣化による周波数変化等の影響、(4)圧力作用方向が異なるための感度誤差、が考えられる。
 (1)については、過去の周波数基準としての気候による水晶振動子周波数安定度を把握しておくことにより、大気中の条件を設定して計測誤差の限界値を設定することができ、簡易計測に容易に使用することができる。
 (2)については、もし、バラツキが発生したとしても、輪郭方向の圧力対動作周波数変動特性の直線性が優れているために直線性のある範囲内での感度は不変で、計測時の周波数-圧力換算プログラムの選択のみで対応できる。
 (3)については、5~10MHz帯の周波数帯を選ぶことにより高い安定性・精度も得られるし、水晶振動子31を気密状態下に置くことにより、更に安定度、精度向上を図ることができる。更に、ある一定の期間使用後の校正により、更に精度向上を図ることが可能である。
 (4)については、圧力を加える方向を変えると、圧力と周波数変化量との関係は僅かに変化するが、このような圧力作用方向による感度の差異は、周波数を圧力に換算するプログラムを修正することにより調整することができる。また、シール部材32が水晶振動子31の先端31aの側周面に接することにより加わる僅かな圧力は同様に周波数調整により修正することができる。
 その他、前述した実施形態や変形実施形態の一部又は全部を適宜組み合わせてもよく、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。

Claims (7)

  1.  内部を流体が流通可能な管と板状の圧電素子を有する感圧部とを備え、前記管の内部を流れる流体の圧力を感知する圧力センサであって、
     前記管は、弾性変形可能な材料からなり、その外表面に管厚が薄くなるよう形成された凹部を有しており、
     前記感圧部は、前記圧電素子がその先端の側周面から前記流体の圧力を受けるように、その先端部が前記凹部の近傍において前記管の外表面と接している
    ことを特徴とする流体圧力センサ。
  2.  前記圧電素子は、水晶振動子である
    請求項1記載の流体圧力センサ。
  3.  前記感圧部は、その内部空間に前記圧電素子を気密状態で収容可能であり、前記圧電素子の先端の側周面に対向する頭部が薄膜状である筐体を備えている
    請求項1記載の流体圧力センサ。
  4.  前記感圧部は、前記圧電素子の先端に嵌合されたキャップ部材を備えている
    請求項1記載の流体圧力センサ。
  5.  前記圧電素子は、その基端にオリエンテーションフラットが形成されている円盤状のものであって、当該基端が保持台に保持されている
    請求項3又は4記載の流体圧力センサ。
  6.  前記筐体が、
     前記圧電素子の先端の側周面に対向して設けられた薄膜状のシール部材と、
     前記シール部材とともに、その内部空間に前記圧電素子を気密状態で収容可能な容器を構成する筐体本体と、から構成され、
     前記筐体本体には、スリットが設けられていて、前記スリットから前記圧電素子の先端が突出しており、前記スリットを覆うように前記シール部材が取り付けられている
    請求項3記載の流体圧力センサ。
  7.  その内部空間に前記圧電素子を気密状態で収容可能な筐体を備えており、
     前記筐体の頭部には、その先端に押圧部を有し、内部が筐体の内部空間と連通している管が設けてあり、前記管内にはその基端が前記キャップ部材に固定されている棒状体が挿入されている
    請求項4記載の流体圧力センサ。
PCT/JP2010/054868 2009-05-29 2010-03-19 流体圧力センサ WO2010137391A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-131033 2009-05-29
JP2009131033A JP2010276534A (ja) 2009-05-29 2009-05-29 流体圧力センサ

Publications (1)

Publication Number Publication Date
WO2010137391A1 true WO2010137391A1 (ja) 2010-12-02

Family

ID=43222514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054868 WO2010137391A1 (ja) 2009-05-29 2010-03-19 流体圧力センサ

Country Status (3)

Country Link
JP (1) JP2010276534A (ja)
KR (1) KR20120022776A (ja)
WO (1) WO2010137391A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6632902B2 (ja) * 2016-02-03 2020-01-22 サーパス工業株式会社 圧力検出装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3274828A (en) * 1963-08-27 1966-09-27 Charles F Pulvari Force sensor
US4703216A (en) * 1985-09-12 1987-10-27 Corbett James P Oscillating crystal transducer systems
JP2002228533A (ja) * 2001-02-01 2002-08-14 Matsushita Electric Ind Co Ltd 計測装置、および計測システム
JP2002340716A (ja) * 2001-04-25 2002-11-27 Oertli-Instrumente Ag 圧力測定システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3274828A (en) * 1963-08-27 1966-09-27 Charles F Pulvari Force sensor
US4703216A (en) * 1985-09-12 1987-10-27 Corbett James P Oscillating crystal transducer systems
JP2002228533A (ja) * 2001-02-01 2002-08-14 Matsushita Electric Ind Co Ltd 計測装置、および計測システム
JP2002340716A (ja) * 2001-04-25 2002-11-27 Oertli-Instrumente Ag 圧力測定システム

Also Published As

Publication number Publication date
KR20120022776A (ko) 2012-03-12
JP2010276534A (ja) 2010-12-09

Similar Documents

Publication Publication Date Title
JP3431606B2 (ja) 圧力センサ
US6205861B1 (en) Transducer having temperature compensation
JP4014006B2 (ja) 圧力センサ
US8091431B2 (en) Pressure sensor
CN101545815B (zh) 压力传感器及其制造方法
US5209121A (en) Pressure sensor
US7895896B2 (en) Pressure sensor
KR20170017801A (ko) 밀폐형 압력 센서
JP2010019826A (ja) 圧力センサ
EP0221467A1 (en) Vibrating type transducer
KR20110134308A (ko) 밀폐형 압력 감지 장치
US20120031189A1 (en) Pressure sensor
US11162860B2 (en) Vacuum-resistant pressure sensing device
JP2001033332A (ja) 相対圧センサ
KR101305775B1 (ko) 유량 측정 장치 및 유체 압력 측정 장치
WO2010137391A1 (ja) 流体圧力センサ
JP5712674B2 (ja) 力検出器収容ケース、力測定器
US6955089B2 (en) Pressure sensor
JP4414746B2 (ja) 静電容量型圧力センサ
DK2098845T3 (en) Ceramic pressure sensor
JP2010276532A (ja) 応力センサ
JP4648625B2 (ja) 渦流量計
CN106525328B (zh) 密闭压力传感器
JP2018132433A (ja) 圧力変化測定装置、高度測定装置、及び圧力変化測定方法
JP2012058063A (ja) 圧力センサー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780348

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117024301

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780348

Country of ref document: EP

Kind code of ref document: A1