WO2010137078A1 - 冷凍サイクル装置、空気調和装置 - Google Patents

冷凍サイクル装置、空気調和装置 Download PDF

Info

Publication number
WO2010137078A1
WO2010137078A1 PCT/JP2009/002377 JP2009002377W WO2010137078A1 WO 2010137078 A1 WO2010137078 A1 WO 2010137078A1 JP 2009002377 W JP2009002377 W JP 2009002377W WO 2010137078 A1 WO2010137078 A1 WO 2010137078A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat medium
heat exchanger
medium
refrigerant
Prior art date
Application number
PCT/JP2009/002377
Other languages
English (en)
French (fr)
Inventor
高山啓輔
島津裕輔
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US13/318,749 priority Critical patent/US8800319B2/en
Priority to JP2011515754A priority patent/JP5183804B2/ja
Priority to PCT/JP2009/002377 priority patent/WO2010137078A1/ja
Priority to EP09845146.1A priority patent/EP2437005B1/en
Priority to CN200980159565.1A priority patent/CN102449411B/zh
Publication of WO2010137078A1 publication Critical patent/WO2010137078A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers

Definitions

  • the present invention relates to a refrigerating cycle apparatus used in addition to an air conditioner such as a building multi air conditioner or an air conditioner, a refrigerating apparatus, and the like.
  • each indoor unit can individually perform a cooling operation and a heating operation, for example, a heat source cycle including a heating first auxiliary heat exchanger, a cooling first auxiliary heat exchanger,
  • a multi-room air-conditioning apparatus including a heating use-side refrigerant cycle and a cooling use-side refrigerant cycle has been proposed (see, for example, Patent Document 1).
  • a part of the refrigerant discharged from the cooling refrigerant transfer device is circulated to the third auxiliary heat exchanger for cooling to use the heating side
  • the refrigerant discharged from the heating refrigerant transfer device is circulated through the fourth auxiliary heat exchanger for cooling to exchange heat with each other, whereby the cooling operation is also performed in the heating-side refrigerant cycle.
  • a heat source cycle including a first auxiliary heat exchanger and a second auxiliary heat exchanger, a first usage side refrigerant cycle that is a secondary side cycle, and a second usage side refrigerant cycle are provided.
  • a room air conditioner has been proposed (see, for example, Patent Document 2).
  • the heat source side refrigerant is evaporated in both the first auxiliary heat exchanger and the second auxiliary heat exchanger, and the first use side refrigerant cycle and the second use side refrigerant cycle are used. Both are in cooling operation.
  • the heat source side refrigerant is condensed in both of the two auxiliary heat exchangers.
  • JP-A-6-82110 (FIG. 1 and others)
  • JP-A-6-337138 (FIG. 1 and others)
  • the temperatures of the use-side refrigerants discharged from the first refrigerant transfer device and the second refrigerant transfer device and supplied to the plurality of use-side heat exchangers are different from each other, and are larger than the refrigerant inlet temperatures of the plurality of indoor heat exchangers.
  • In order to raise the use-side refrigerant temperature in the first auxiliary heat exchanger it is necessary to increase the output of the heat source device by increasing the speed of the compressor in the heat source device.
  • the side refrigerant is heated excessively. As a result, there is a problem that the user's comfort is deteriorated by not saving energy or heating excessively. Therefore, as in Patent Document 2, it is necessary to store two indoor heat exchangers connected to the first usage-side refrigerant cycle and the second usage-side refrigerant cycle in one cooling / heating free indoor unit. There was a problem of increasing the size.
  • the usage-side refrigerant circuit is configured as an example described in Patent Document 1,
  • the following problems are concerned. For example, since only a part of the refrigerant discharged from the refrigerant conveyance device contributes to heat exchange, it is not effective in reducing the difference between the plurality of usage-side refrigerant temperatures.
  • the use side refrigerant circuit on the side where heat is exchanged by bypassing a part of the use side refrigerant the heat exchanged use side refrigerant returns to the auxiliary heat exchanger without circulating to the indoor unit.
  • the high-temperature use-side refrigerant returns during heating and the low-temperature use-side refrigerant returns during cooling, there is a problem that the heat exchange efficiency of the auxiliary heat exchanger decreases.
  • the present invention has been made to solve the above-described problems, and a plurality of indoor units that are a plurality of use side heat exchangers by heating or cooling a heat medium in a plurality of heat exchangers between heat mediums.
  • the heat medium flowing out from a plurality of heat exchangers between heat exchangers exchanges heat to make the heat medium outlet temperature substantially uniform, thereby reducing energy waste and efficient refrigeration cycle.
  • the object is to obtain a device. It is another object of the present invention to obtain a small air conditioner that can easily adjust the load of a plurality of indoor units.
  • the refrigeration cycle apparatus is A plurality of user-side heat exchangers; A first heat exchanger related to heat medium in which one is connected to each heat medium inlet of the use side heat exchanger by piping and the other is connected to each heat medium outlet of the use side heat exchanger; A second heat exchanger related to heat medium in which one is connected to each heat medium inlet of the use side heat exchanger by piping, and the other is connected to each heat medium outlet of the use side heat exchanger; 1st inflow channel which is provided in each heat carrier inflow side of said use side heat exchanger, and connects said 1st heat exchanger between heat media and a heat carrier inflow mouth of said use side heat exchanger And a plurality of first heat medium flow switching devices that switch a second inflow side flow path that connects the second heat exchanger related to heat medium and the heat medium inlet of the use side heat exchanger, A first outflow channel that is provided on each heat medium outflow side of the use side heat exchanger and connects the first heat exchanger related to heat medium and
  • a plurality of second heat medium flow switching devices for switching between the second heat exchanger related to heat medium and a second outlet flow path connecting the heat medium outlet of the use side heat exchanger; , A first heat medium delivery device that causes the heat medium to flow through the first inflow side flow path connecting the first heat exchanger related to heat medium and the use side heat exchanger; A second heat medium delivery device that causes the heat medium to flow through the second inflow side flow path connecting the second heat exchanger between heat medium and the use side heat exchanger; The flow rate of the heat medium that is provided between the heat medium outlet of the first heat medium flow switching device and the heat medium flow inlet of the second heat medium flow switching device and flows to the use side heat exchanger, respectively.
  • a plurality of heat medium flow control units for controlling Connected to the first heat exchanger related to heat medium and the second heat exchanger related to heat medium, and supplies hot or cold to the first heat exchanger related to heat medium and the second heat exchanger related to heat medium
  • a heat source device for heating or cooling the heat medium flowing from the first heat exchanger related to heat medium and the second heat exchanger related to heat medium to the user side heat exchanger,
  • a first heat medium inlet port connected to the first heat exchanger related to heat medium and into which the heat medium flows, and a second heat input pipe connected to the second heat exchanger related to the heat medium and flowing in the heat medium.
  • a plurality of first heat medium flow switching devices having a medium inlet, the heat medium flowing in from the first heat medium inlet and the second heat medium inlet flowing into the use side heat exchanger; A first heat medium outlet and a second heat medium outlet that flow out through the first heat medium outlet and the first heat medium outlet flowing from the first heat medium inlet to the first heat medium outlet.
  • the heat medium and the second heat medium flowing in from the second heat medium inlet are mixed to exchange heat
  • the first heat medium outlet An auxiliary heat exchanger that flows out from the second heat medium outlet
  • a bypass pipe for bypassing the auxiliary heat exchanger and an on-off valve provided in the bypass pipe are used to cause the heat medium to flow out from the first heat exchanger related to heat medium or the second heat exchanger related to heat medium, respectively.
  • a circulation circuit connected to either one of the heat medium outlets.
  • the heat medium flowing out from the first heat exchanger related to heat medium and the heat medium flowing out from the second heat exchanger related to heat medium are heat-exchanged by the auxiliary heat exchanger. Even if a temperature difference occurs in the heat medium flowing out from the exchanger, the temperature of the heat medium flowing into the plurality of use side heat exchangers can be made substantially uniform. Therefore, an efficient and easy-to-use refrigeration cycle apparatus that does not waste energy can be obtained. In addition, it is possible to obtain an air conditioner that can easily adjust the load of the indoor unit and easily obtain the comfort of the user.
  • FIG. 1 is an overall circuit diagram according to a first embodiment of the present invention. It is a figure which shows another form of the heat-medium side circuit based on Embodiment 1 of this invention. It is a figure which shows another form of the refrigerant
  • FIG. 1 It is a figure which shows the temperature change of a refrigerant
  • FIG. It is a figure which shows the temperature change of a refrigerant
  • FIG. It is a figure which shows the temperature change of a refrigerant
  • FIG. It is a figure which shows the change of air blowing temperature when the heat-medium entrance temperature falls with the utilization side heat exchanger which heats based on this Embodiment 1.
  • FIG. It is a figure which shows the change of air blowing temperature when the heat-medium inlet temperature rises with the utilization side heat exchanger to cool according to this Embodiment 1.
  • FIG. It is a heat medium side circuit diagram of the refrigerating cycle device based on this Embodiment 4.
  • FIG. 1 is a system circuit diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus according to the first embodiment includes a compressor 10, a four-way valve 11 that is a refrigerant flow switching device, a heat source side heat exchanger 12, heat exchangers 14 a and 14 b, and an expansion valve such as an electronic expansion valve.
  • the apparatuses 15a and 15b and the accumulator 16 are connected by piping to constitute a refrigeration cycle circuit.
  • the heat exchanger related to heat medium 14a corresponds to a first heat exchanger related to heat medium.
  • the heat exchanger related to heat medium 14b corresponds to a second heat exchanger related to heat medium.
  • heat exchangers between heat mediums 14a and 14b use side heat exchangers 30a, 30b, 30c and 30d
  • pumps 31a and 31b which are heat medium delivery devices, heat medium flow switching devices 34a, 34b, 34c and 34d, 35a, 35b, 35c, 35d and heat medium flow control devices 36a, 36b, 36c, 36d are connected by piping to form a heat medium circulation circuit.
  • the pump 31a corresponds to a first heat medium delivery device.
  • the pump 31b corresponds to a second heat medium delivery device.
  • the heat medium flow switching devices 34a, 34b, 34c, and 34d correspond to the first heat medium flow switching device.
  • the heat medium flow switching devices 35a, 35b, 35c, and 35d correspond to the second heat medium flow switching device.
  • the heat medium flow control devices 36a, 36b, 36c, and 36d correspond to the heat medium flow control unit.
  • the number of indoor units 2 (use side heat exchangers 30) is four in Embodiment 1, the number of indoor units 2 (use side heat exchangers 30) is arbitrary.
  • the compressor 10, the four-way valve 11, the heat source side heat exchanger 12 and the accumulator 16 are accommodated in the heat source unit 1 (outdoor unit).
  • the heat source unit 1 also accommodates a control device 50 that regulates control of the entire refrigeration cycle apparatus.
  • the use side heat exchangers 30a, 30b, 30c, and 30d are accommodated in the indoor units 2a, 2b, 2c, and 2d, respectively.
  • the heat exchangers 14a and 14b and the expansion devices 15a and 15b are accommodated in the heat medium relay unit 3 (branch unit) that is also a heat medium branch unit.
  • the heat medium flow switching devices 34a, 34b, 34c, 34d, 35a, 35b, 35c, 35d and the heat medium flow control devices 36a, 36b, 36c, 36d are also accommodated in the heat medium converter 3.
  • each of the heat medium converter 3 and the indoor units 2a, 2b, 2c, 2d (each of the use side heat exchangers 30a, 30b, 30c, 30d) is a heat medium pipe through which a safe heat medium such as water or antifreeze liquid flows. 5 is connected. That is, each of the heat medium converter 3 and each of the indoor units 2a, 2b, 2c, and 2d (each of the use side heat exchangers 30a, 30b, 30c, and 30d) is connected by one heat medium path.
  • the compressor 10 pressurizes and discharges (sends out) the sucked refrigerant.
  • the four-way valve 11 serving as the refrigerant flow switching device performs switching of the valve corresponding to the operation mode related to air conditioning based on an instruction from the control device 50 so that the refrigerant path is switched.
  • all cooling operations operation when all the operating indoor units 2 perform cooling (including dehumidification, the same applies hereinafter)
  • cooling main operation cooling and heating are performed
  • operation when cooling is the main operation when cooling is the main
  • heating operation operation when all the operating indoor units 2 are heating
  • heating main operation When the indoor unit 2 that performs cooling and heating is present at the same time, the circulation path is switched depending on the operation when heating is mainly performed).
  • the heat source side heat exchanger 12 includes, for example, a heat transfer tube through which the refrigerant passes and fins (not shown) for increasing the heat transfer area between the refrigerant flowing through the heat transfer tube and the outside air. Exchange heat with (outside air). For example, it functions as an evaporator during the heating only operation or during the heating main operation, and evaporates the refrigerant to be gasified. On the other hand, it functions as a condenser or a gas cooler (hereinafter referred to as a condenser) during a cooling only operation or a cooling main operation. In some cases, the gas may not be completely gasified or liquefied, but may be in a two-phase mixed state of gas and liquid (gas-liquid two-phase refrigerant).
  • the heat exchangers 14a and 14b have a heat transfer section that allows the refrigerant to pass therethrough and a heat transfer section that allows the heat medium to pass therethrough, and allows heat exchange between the medium using the refrigerant and the heat medium.
  • the heat exchanger related to heat medium 14a functions as an evaporator in the cooling only operation and the heating main operation, and cools the heat medium by absorbing heat into the refrigerant.
  • it functions as a condenser in all heating operation and cooling main operation, and heats the heat medium by dissipating heat to the refrigerant.
  • the heat exchanger related to heat medium 14b functions as an evaporator in the cooling only operation and the cooling main operation, and functions as a condenser in the heating only operation and the heating main operation.
  • the expansion devices 15a and 15b such as electronic expansion valves decompress the refrigerant by adjusting the refrigerant flow rate.
  • the accumulator 16 has a function of storing excessive refrigerant in the refrigeration cycle circuit and preventing the compressor 10 from being damaged due to a large amount of refrigerant liquid returning to the compressor 10.
  • Pumps 31a and 31b which are heat medium delivery devices, apply pressure to circulate the heat medium.
  • the flow volume (discharge flow volume) which sends out a thermal medium can be changed by changing the rotation speed of the motor (not shown) incorporated in a fixed range.
  • the use side heat exchangers 30a, 30b, 30c, and 30d respectively exchange heat between the heat medium and the air in the air-conditioned space by the indoor units 2a, 2b, 2c, and 2d, and heat or cool the air in the air-conditioned space. .
  • the heat medium flow switching devices 34a, 34b, 34c, and 34d such as three-way switching valves are connected to the heat medium inlets of the use side heat exchangers 30a, 30b, 30c, and 30d, respectively.
  • the flow path is switched on the inlet side (heat medium inflow side) of the exchangers 30a, 30b, 30c, and 30d.
  • the heat medium flow switching devices 35a, 35b, 35c, and 35d such as three-way switching valves are connected to the heat medium outflow side of the use side heat exchangers 30a, 30b, 30c, and 30d, respectively.
  • the flow path is switched on the outlet side (heat medium outflow side) of the side heat exchangers 30a, 30b, 30c, and 30d.
  • These switching devices pass either the heat medium flowing through the heat exchanger related to heat medium 14a or the heat medium flowing through the heat exchanger related to heat medium 14b to the use side heat exchangers 30a, 30b, 30c, 30d. Switching is performed.
  • the heat medium flow control devices 36a, 36b, 36c, and 36d which are two-way flow control valves, adjust the flow rate of the heat medium flowing into the use side heat exchangers 30a, 30b, 30c, and 30d, respectively.
  • the operation of the refrigeration cycle apparatus in each operation mode will be described based on the flow of the refrigerant and the heat medium.
  • the level of the pressure in the refrigeration cycle circuit or the like is not determined by the relationship with the reference pressure, but is a relative pressure that can be achieved by the compression of the compressor 10, the refrigerant flow control of the expansion devices 15a, 15b, etc. As high pressure and low pressure. The same applies to the temperature level.
  • the refrigerant flow in the refrigeration cycle circuit will be described.
  • the refrigerant sucked into the compressor 10 is compressed and discharged as a high-pressure gas refrigerant.
  • the refrigerant exiting the compressor 10 flows through the four-way valve 11 to the heat source side heat exchanger 12 that functions as a condenser.
  • the high-pressure gas refrigerant is condensed by heat exchange with the outside air while passing through the heat source side heat exchanger 12, flows out as a high-pressure liquid refrigerant, and flows into the heat medium relay 3 through the refrigerant pipe 4. .
  • the refrigerant that has flowed into the heat medium relay unit 3 expands by adjusting the opening degree of the expansion device 15a, and the low-temperature and low-pressure gas-liquid two-phase refrigerant flows into the heat exchanger related to heat medium 14a. Since the heat exchanger related to heat medium 14a functions as an evaporator for the refrigerant, the refrigerant passing through the heat exchanger related to heat medium 14a cools the heat medium to be heat exchanged (absorbs heat from the heat medium). In the heat exchanger related to heat medium 14a, the refrigerant is not completely vaporized and flows out as a gas-liquid two-phase refrigerant. At this time, the expansion device 15b is fully opened to prevent pressure loss.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant further flows into the heat exchanger related to heat medium 14b.
  • the heat medium is cooled and flows out as a gas refrigerant in the heat exchanger related to heat medium 14b.
  • the gas refrigerant that has flowed out passes through the refrigerant pipe 4 and flows out of the heat medium relay unit 3.
  • the refrigerant flowing into the heat source device 1 is sucked into the compressor 10 again via the four-way valve 11 and the accumulator 16.
  • the heat medium is cooled by heat exchange with the refrigerant in the heat exchangers 14a and 14b.
  • the heat medium cooled in the heat exchanger related to heat medium 14a is sucked by the pump 31a and sent out to the first heat medium flow path 61a.
  • the heat medium cooled by the heat exchanger related to heat medium 14b is sucked by the pump 31b and sent out to the second heat medium flow path 61b.
  • the heat medium sent out to the first heat medium flow path 61 a flows into one inlet of the auxiliary heat exchanger 32.
  • the heat medium sent to the second heat medium flow path 61b flows into the other inlet of the auxiliary heat exchanger 32. Detailed effects of the auxiliary heat exchanger 32 will be described later.
  • the opening / closing device 33a is closed and the opening / closing device 33b is opened.
  • the heat medium in the first heat medium flow path 61a and the second heat medium flow path 61b is switched by the heat medium flow switching devices 34a, 34b, 34c, and 34d, and the use side heat exchangers 30a, 30b, Flows into 30c and 30d.
  • the flow paths of the heat medium flow switching devices 34a, 34b, 34c, and 34d are set such that the heat medium in the first heat medium flow path 61a flows into the use side heat exchangers 30a and 30b, for example.
  • the heat medium in the heat medium flow path 61b is caused to flow into the use side heat exchangers 30c and 30d.
  • the ability should be about half.
  • the cooling capacity of the indoor units 2a, 2b, 2c, 2d can be determined by the control device 50, for example.
  • the heat medium flow switching devices 34a and 34b allow the heat medium in the first heat medium flow path 61a to pass therethrough.
  • the heat medium flow switching devices 34c and 34d allow the heat medium in the second heat medium flow path 61b to pass therethrough.
  • the heat medium that has passed through the heat medium flow switching devices 34a, 34b, 34c, and 34d has a flow rate that flows into the use side heat exchangers 30a, 30b, 30c, and 30d by the heat medium flow control devices 36a, 36b, 36c, and 36d. Adjusted.
  • the opening degree of the heat medium flow control devices 36a, 36b, 36c, 36d so that the heat medium temperature difference between the inlet and outlet of the use side heat exchangers 30a, 30b, 30c, 30d is constant, Regardless of the size or load of the use side heat exchangers 30a, 30b, 30c, 30d, the flow rate of the heat medium flowing into the use side heat exchangers 30a, 30b, 30c, 30d is adjusted. can do.
  • the heat medium flow control valve 36 is fully closed.
  • the heat medium flowing out from the use side heat exchangers 30a, 30b, 30c, 30d passes through the heat medium flow switching devices 35a, 35b, 35c, 35d.
  • the heat medium flow switching devices 35a and 35b allow the heat medium flowing out to the first heat medium flow path 62a to pass therethrough.
  • the heat medium flow switching devices 35c and 35d allow the heat medium flowing out to the second heat medium flow path 62b to pass therethrough.
  • the refrigerant flow in the refrigeration cycle circuit will be described.
  • the refrigerant sucked into the compressor 10 is compressed and discharged as a high-pressure gas refrigerant.
  • the refrigerant exiting the compressor 10 flows through the four-way valve 11 and further flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the gas refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 14b. Since the heat exchanger related to heat medium 14b functions as a condenser for the refrigerant, the refrigerant passing through the heat exchanger related to heat medium 14b heats the heat medium to be heat exchanged (dissipates heat to the heat medium). In the heat exchanger related to heat medium 14b, the gas-liquid two-phase refrigerant flows out without being completely liquefied.
  • the high-temperature and high-pressure gas-liquid two-phase refrigerant further flows into the intermediate heat exchanger 14a.
  • the expansion device 15b is fully opened to prevent pressure loss.
  • the heat medium is heated and flows out as a liquid refrigerant in the heat exchanger related to heat medium 14a.
  • the liquid refrigerant that has flowed out is decompressed by the expansion device 15a and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the low-temperature and low-pressure refrigerant passes through the refrigerant pipe 4 and flows out of the heat medium relay unit 3.
  • the refrigerant that has flowed into the heat source unit 1 flows into the heat source side heat exchanger 12 and evaporates by exchanging heat with air, and flows out as a gas refrigerant or a gas-liquid two-phase refrigerant.
  • the evaporated refrigerant is sucked into the compressor 10 again via the four-way valve 11 and the accumulator 16.
  • the heat medium is heated by heat exchange with the refrigerant in the heat exchangers 14a and 14b.
  • the heat medium heated in the heat exchanger related to heat medium 14a is sucked by the pump 31a and sent out to the first heat medium flow path 61a.
  • the heat medium heated by the heat exchanger related to heat medium 14b is sucked by the pump 31b and sent out to the second heat medium flow path 61b.
  • the heat medium sent out to the first heat medium flow path 61 a flows into one inlet of the auxiliary heat exchanger 32.
  • the heat medium sent out to the second heat medium flow path 61 b flows into the other inlet of the auxiliary heat exchanger 32.
  • Detailed effects of the auxiliary heat exchanger 32 will be described later.
  • the opening / closing device 33a is closed and the opening / closing device 33b is opened.
  • the heat medium in the first heat medium flow path 61a and the second heat medium flow path 61b is switched by the heat medium flow switching devices 34a, 34b, 34c, and 34d, and the use side heat exchangers 30a, 30b, Flows into 30c and 30d.
  • the flow paths of the heat medium flow switching devices 34a, 34b, 34c, and 34d are set such that the heat medium in the first heat medium flow path 61a flows into the use side heat exchangers 30a and 30b, for example.
  • the heat medium in the heat medium flow path 61b is caused to flow into the use side heat exchangers 30c and 30d.
  • the ability should be about half.
  • the heating capacity of the indoor units 2a, 2b, 2c, 2d can be determined by the control device 50, for example.
  • the heat medium flow switching devices 34a and 34b allow the heat medium in the first heat medium flow path 61a to pass therethrough.
  • the heat medium flow switching devices 34c and 34d allow the heat medium in the second heat medium flow path 61b to pass therethrough.
  • the heat medium that has passed through the heat medium flow switching devices 34a, 34b, 34c, and 34d has a flow rate that flows into the use side heat exchangers 30a, 30b, 30c, and 30d by the heat medium flow control devices 36a, 36b, 36c, and 36d. Adjusted.
  • the opening degree of the heat medium flow control devices 36a, 36b, 36c, 36d so that the heat medium temperature difference between the inlet and outlet of the use side heat exchangers 30a, 30b, 30c, 30d is constant, Regardless of the size or load of the use side heat exchangers 30a, 30b, 30c, 30d, the flow rate of the heat medium flowing into the use side heat exchangers 30a, 30b, 30c, 30d is adjusted. can do.
  • the heat medium flow control valve 36 is fully closed.
  • the heat medium flowing out from the use side heat exchangers 30a, 30b, 30c, 30d passes through the heat medium flow switching devices 35a, 35b, 35c, 35d.
  • the heat medium flow switching devices 35a and 35b allow the heat medium flowing out to the first heat medium flow path 62a to pass therethrough.
  • the heat medium flow switching devices 35c and 35d allow the heat medium flowing out to the second heat medium flow path 62b to pass therethrough.
  • the refrigerant flow in the refrigeration cycle circuit will be described.
  • the refrigerant sucked into the compressor 10 is compressed and discharged as a high-pressure gas refrigerant.
  • the refrigerant exiting the compressor 10 flows through the four-way valve 11 to the heat source side heat exchanger 12 that functions as a condenser.
  • the high-pressure gas refrigerant is condensed by heat exchange with the outside air while passing through the heat source side heat exchanger 12, but is not completely liquefied and flows out as a high-pressure gas-liquid two-phase refrigerant. And flows into the heat medium relay 3.
  • the refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 14a.
  • the expansion device 15a is fully opened so that no pressure loss occurs. Since the heat exchanger related to heat medium 14a functions as a condenser for the refrigerant, the refrigerant passing through the heat exchanger related to heat medium 14a heats and liquefies the heat medium to be heat exchanged (dissipates heat to the heat medium). To do).
  • the liquefied refrigerant is decompressed by the expansion device 15b and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the low-temperature and low-pressure refrigerant flows into the heat exchanger related to heat medium 14b. Since the heat exchanger related to heat medium 14b functions as an evaporator for the refrigerant, the refrigerant passing through the heat exchanger related to heat medium 14b cools and gasifies the heat medium to be heat exchanged (from the heat medium). Endothermic).
  • the gas refrigerant that has flowed out passes through the refrigerant pipe 4 and flows out of the heat medium relay unit 3.
  • the refrigerant flowing into the heat source device 1 is sucked into the compressor 10 again via the four-way valve 11 and the accumulator 16.
  • the heat medium is heated by heat exchange with the refrigerant in the intermediate heat exchanger 14a.
  • the heat medium heated by the heat exchanger related to heat medium 14a is sucked by the pump 31a and sent out to the first heat medium flow path 61a.
  • the heat medium is cooled by heat exchange with the refrigerant.
  • the heat medium heated by the heat exchanger related to heat medium 14b is sucked by the pump 31b and sent out to the second heat medium flow path 61b.
  • the switchgear 33b is closed and the switchgear 33a is opened, so that the heated heat medium bypasses the auxiliary heat exchanger 32. This prevents heat exchange between the cooled heat medium and the heated heat medium.
  • the heat medium in the first heat medium flow path 61a and the heat medium in the second heat medium flow path 61b are switched by the heat medium flow switching devices 34a, 34b, 34c, and 34d, and the use side heat exchanger 30a. , 30b, 30c, 30d.
  • the flow paths of the heat medium flow switching devices 34a, 34b, 34c, and 34d are, for example, if the indoor units 2a, 2b, and 2c are in cooling operation and the indoor unit 2d is in heating operation.
  • the heat medium in the second heat medium flow path 61b passes through the heat medium flow switching devices 34a, 34b, 34c, and the cooled heat medium flows into the use side heat exchangers 30a, 30b, 30c.
  • the heated heat medium is caused to flow into the use-side heat exchanger 30d so that the heat medium in the first heat medium flow path 61a passes through the heat medium flow switching device 34d.
  • the control device 50 determines whether the indoor units 2a, 2b, 2c, 2d are in the cooling operation or the heating operation.
  • the flow of the heat medium flow switching devices 34a, 34b, 34c, 34d can be determined. Switch the road.
  • the heat medium that has passed through the heat medium flow switching devices 34a, 34b, 34c, 34d has a flow rate that flows into the use side heat exchangers 30a, 30b, 30c, 30d by the heat medium flow control valves 36a, 36b, 36c, 36d. Adjusted.
  • the opening degree of the heat medium flow control devices 36a, 36b, 36c, 36d so that the heat medium temperature difference between the inlet and outlet of the use side heat exchangers 30a, 30b, 30c, 30d is constant, Regardless of the size or load of the use side heat exchangers 30a, 30b, 30c, 30d, the flow rate of the heat medium flowing into the use side heat exchangers 30a, 30b, 30c, 30d is adjusted. can do.
  • the heat medium flow control valve 36 is fully closed.
  • the heat medium flowing out from the use side heat exchangers 30a, 30b, 30c, 30d passes through the heat medium flow switching devices 35a, 35b, 35c, 35d.
  • the heat medium flow switching devices 35a, 35b, and 35c allow the heat medium flowing out to the second heat medium flow path 62b to pass therethrough.
  • the heat medium flow switching device 35d allows the heat medium flowing out to the first heat medium flow path 62a to pass therethrough.
  • the refrigerant flow in the refrigeration cycle circuit will be described.
  • the refrigerant sucked into the compressor 10 is compressed and discharged as a high-pressure gas refrigerant.
  • the refrigerant exiting the compressor 10 flows through the four-way valve 11 and further flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the gas refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 14b. Since the heat exchanger related to heat medium 14b functions as a condenser for the refrigerant, the refrigerant passing through the heat exchanger related to heat medium 14b heats and liquefies the heat medium to be heat exchanged (dissipates heat to the heat medium). To do).
  • the high-pressure liquid refrigerant becomes a low-temperature low-pressure gas-liquid two-phase refrigerant by the expansion device 15b and flows into the heat exchanger related to heat medium 14a. Since the heat exchanger related to heat medium 14a functions as an evaporator with respect to the refrigerant, the refrigerant passing through the heat exchanger related to heat medium 14a cools the heat medium to be heat exchanged (and absorbs heat from the heat medium). ) It flows out as a gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant that has flowed out passes through the refrigerant pipe 4 and flows out of the heat medium relay unit 3. At this time, the expansion device 15a is fully opened to prevent pressure loss. The gas-liquid two-phase refrigerant that has flowed out passes through the refrigerant pipe 4 and flows out of the heat medium relay unit 3.
  • the refrigerant that has flowed into the heat source unit 1 flows into the heat source side heat exchanger 12 and evaporates by exchanging heat with air, and flows out as a gas refrigerant or a gas-liquid two-phase refrigerant.
  • the evaporated refrigerant is sucked into the compressor 10 again via the four-way valve 11 and the accumulator 16.
  • the heat medium is cooled by heat exchange with the refrigerant in the intermediate heat exchanger 14a.
  • the heat medium cooled by the heat exchanger related to heat medium 14a is sucked by the pump 31a and sent out to the first heat medium flow path 61a.
  • the heat medium is heated by heat exchange with the refrigerant.
  • the heat medium heated by the heat exchanger related to heat medium 14b is sucked by the pump 31b and sent out to the second heat medium flow path 61b.
  • the switchgear 33b is closed and the switchgear 33a is opened, so that the heated heat medium bypasses the auxiliary heat exchanger 32. This prevents heat exchange between the cooled heat medium and the heated heat medium.
  • the heat medium in the first heat medium flow path 61a and the heat medium in the second heat medium flow path 61b are switched by the heat medium flow switching devices 34a, 34b, 34c, and 34d, and the use side heat exchanger 30a. , 30b, 30c, 30d.
  • the flow paths of the heat medium flow switching devices 34a, 34b, 34c, and 34d are, for example, if the indoor units 2a, 2b, and 2c are in a heating operation and the indoor unit 2d is in a cooling operation.
  • the heated heat medium is caused to flow into the use side heat exchangers 30a, 30b, 30c so that the heat medium in the two heat medium flow paths 61b passes through the heat medium flow switching devices 34a, 34b, 34c.
  • the cooled heat medium is caused to flow into the use-side heat exchanger 30d so that the heat medium in the first heat medium flow path 61a passes through the heat medium flow switching device 34d.
  • the control device 50 determines whether the indoor units 2a, 2b, 2c, 2d are in the cooling operation or the heating operation.
  • the flow of the heat medium flow switching devices 34a, 34b, 34c, 34d can be determined. Switch the road.
  • the heat medium that has passed through the heat medium flow switching devices 34a, 34b, 34c, 34d has a flow rate that flows into the use side heat exchangers 30a, 30b, 30c, 30d by the heat medium flow control valves 36a, 36b, 36c, 36d. Adjusted.
  • the opening degree of the heat medium flow control devices 36a, 36b, 36c, 36d so that the heat medium temperature difference between the inlet and outlet of the use side heat exchangers 30a, 30b, 30c, 30d is constant, Regardless of the size or load of the use side heat exchangers 30a, 30b, 30c, 30d, the flow rate of the heat medium flowing into the use side heat exchangers 30a, 30b, 30c, 30d is adjusted. can do.
  • the heat medium flow control valve 36 is fully closed.
  • the heat medium flowing out from the use side heat exchangers 30a, 30b, 30c, 30d passes through the heat medium flow switching devices 35a, 35b, 35c, 35d.
  • the heat medium flow switching devices 35a, 35b, and 35c allow the heat medium flowing out to the second heat medium flow path 62b to pass therethrough.
  • the heat medium flow switching device 35d allows the heat medium flowing out to the first heat medium flow path 62a to pass therethrough.
  • the refrigeration cycle apparatus according to Embodiment 1 uses both of the heat exchangers 14a and 14b as condensers during the heating operation, and the heat transfer area between the refrigerant and the heat medium.
  • the amount of heat released from the refrigerant to the heat medium can be increased by increasing.
  • the high-temperature refrigerant gas discharged from the compressor 10 is condensed to some extent in the heat exchanger related to heat medium 14b, and then flows into the heat exchanger related to heat medium 14a again.
  • FIG. 7 shows the exchange heat amount and the temperature change of the refrigerant and the heat medium at this time.
  • FIG. 7 shows the temperature change on the refrigerant side and the temperature change of the heat medium in the heat exchangers between heat mediums 14a and 14b.
  • the heat medium inlet temperature is substantially equal.
  • the refrigerant inlet temperature of the heat exchanger related to heat medium 14b is the discharge gas of the compressor 10, it is about 80 ° C., for example. Therefore, in the heat exchanger related to heat medium 14b, the outlet temperature of the heat medium can be raised to the condensation temperature or higher.
  • the refrigerant inlet temperature of the heat exchanger related to heat medium 14a becomes the condensation temperature, and is about 50 ° C., for example. Therefore, the heat medium outlet temperature of the heat exchanger related to heat medium 14a may be lower than the heat medium outlet temperature of the heat exchanger related to heat medium 14b as shown in FIG.
  • the heat medium in the first heat medium flow path 61a flowing out from the heat exchanger related to heat medium 14a flows into the use side heat exchangers 30a and 30b, and flows out from the heat exchanger related to heat medium 14b. It is assumed that the heat medium in the flow path 61b flows into the use side heat exchangers 30c and 30d. Then, the temperature of the heat medium flowing into the use side heat exchangers 30a and 30b becomes lower than that of the use side heat exchangers 30c and 30d. As shown in FIG. 11, when the heat medium inlet temperature of the use side heat exchangers 30a and 30b is lower than a predetermined temperature, the exchange heat amount of the heat medium and air is reduced in the use side heat exchangers 30a and 30b.
  • a refrigerant such as carbon dioxide that is in a supercritical state on the high pressure side does not have a condensation temperature as shown in FIG. For this reason, the difference between the heat medium outlet temperature of the heat exchanger related to heat medium 14a and the heat medium outlet temperature of the heat exchanger related to heat medium 14b becomes large.
  • the refrigeration cycle apparatus uses both the heat exchangers 14a and 14b as the evaporators during the cooling operation, and heat transfer between the refrigerant and the heat medium. By increasing the area, the amount of heat absorbed from the heat medium to the refrigerant can be increased.
  • FIG. 9 shows the exchange heat quantity, the refrigerant, and the temperature change of the heat medium at this time.
  • FIG. 9 shows the temperature change on the refrigerant side and the temperature change of the heat medium in the heat exchangers between heat mediums 14a and 14b.
  • the heat medium inlet temperatures of the heat exchangers 14a and 14b are substantially equal.
  • the refrigerant outlet temperature of the heat exchanger related to heat medium 14a is an evaporation temperature, for example, about 2 ° C.
  • the refrigerant outlet temperature of the heat exchanger related to heat medium 14b becomes superheated gas, and is, for example, about 5 ° C. If there is this superheated gas region, the heat transfer performance deteriorates, and the temperature difference between the heat medium and the refrigerant becomes smaller. Thereby, as shown in FIG. 9, the heat medium outlet temperature of the heat exchanger related to heat medium 14b may be higher than the heat medium outlet temperature of the heat exchanger related to heat medium 14a.
  • the heat medium in the first heat medium flow path 61a flowing out from the heat exchanger related to heat medium 14a flows into the use side heat exchangers 30a and 30b and flows out from the heat exchanger related to heat medium 14b. It is assumed that the heat medium 61b flows into the use side heat exchangers 30c and 30d. Then, the temperature of the heat medium flowing into the use side heat exchangers 30c and 30d becomes higher than that of the use side heat exchangers 30a and 30b. As shown in FIG.
  • the heat medium inlet temperature of the use side heat exchangers 30a, 30b, 30c, and 30d is made substantially uniform by the following method.
  • the auxiliary heat exchanger 32 is provided, one inlet is connected to the discharge port of the pump 31a by piping, the other inlet is connected to the discharge port of the pump 31b, and the use side heat exchanger 30a is connected.
  • 30b, 30c, 30d when the heating operation or the cooling operation is performed, the heat medium flowing through the first heat medium flow path 61a and the second heat medium flow path 61b is heat-exchanged, and the use side heat exchanger
  • the heat medium inlet temperatures 30a, 30b, 30c, and 30d are made substantially uniform.
  • the opening / closing device 33b is closed, the opening / closing device 33a is opened, and the heat medium in the first heat medium passage 61a is circulated to the heat medium bypass pipe 40. Thereby, the auxiliary heat exchanger 32 is bypassed.
  • the switchgear 33b is opened, the switchgear 33a is closed, and the heat medium in the first heat medium flow path 61a flows into the auxiliary heat exchanger 32. Thereby, heat exchange is performed with the heat medium in the second heat medium flow path 61b.
  • the opening / closing devices 33a and 33b and the heat medium bypass pipe 40 are provided in the first heat medium flow path 61a.
  • the same effect can be obtained by providing the switch in the second heat medium flow path 61b as shown in FIG. .
  • FIG. 10 shows a refrigerant circuit diagram in the case where check valves 13a, 13b, 13c, and 13d are provided in the heat source unit 1.
  • the check valves 13a, 13b, 13c, and 13d prevent the back flow of the refrigerant, thereby adjusting the flow of the refrigerant and making the circulation path in the flow of the refrigerant in the heat source unit 1 constant.
  • the heat exchanger related to heat medium 14a functions as an evaporator in the cooling only operation, and absorbs heat from the refrigerant to cool the heat medium. It functions as a condenser in the cooling main operation, heating main operation, and all heating operation, and heats the heat medium by dissipating heat to the refrigerant.
  • the heat exchanger related to heat medium 14b functions as an evaporator in the cooling only operation, the cooling main operation, and the heating main operation. It functions as a condenser in all heating operation.
  • the refrigerant sucked into the compressor 10 is compressed and discharged as a high-pressure gas refrigerant.
  • the refrigerant exiting the compressor 10 flows through the four-way valve 11 to the heat source side heat exchanger 12 that functions as a condenser.
  • the high-pressure gas refrigerant is condensed by heat exchange with the outside air while passing through the heat source side heat exchanger 12, flows out as a high-pressure liquid refrigerant, and flows through the check valve 13a (reverse due to the pressure of the refrigerant). It does not flow to the stop valves 13b and 13c side). Further, it flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the refrigerant sucked into the compressor 10 is compressed and discharged as a high-pressure gas refrigerant.
  • the refrigerant exiting the compressor 10 flows through the four-way valve 11 and the check valve 13b. Furthermore, it flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the refrigerant sucked into the compressor 10 is compressed and discharged as a high-pressure gas refrigerant.
  • the refrigerant exiting the compressor 10 flows through the four-way valve 11 to the heat source side heat exchanger 12 that functions as a condenser.
  • the high-pressure gas refrigerant is condensed by heat exchange with the outside air while passing through the heat source side heat exchanger 12.
  • the gas-liquid two-phase refrigerant flows out from the heat source side heat exchanger 12.
  • the gas-liquid two-phase refrigerant that has flowed out of the heat source side heat exchanger 12 flows through the check valve 13a. Further, it flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the heat exchanger related to heat medium 14b functions as an evaporator for the refrigerant
  • the refrigerant passing through the heat exchanger related to heat medium 14b cools the heat medium to be heat exchanged to become a gas refrigerant (heat It absorbs heat from the medium and flows out.
  • the gas refrigerant flowing out from the heat exchanger related to heat medium 14b passes through the switchgear 24b.
  • the refrigerant that has passed through the expansion device 22 also becomes a low-temperature low-pressure gas-liquid two-phase refrigerant in order to control the opening degree of the expansion device 22, and merges with the gas refrigerant that has passed through the opening / closing device 24b.
  • the refrigerant side circuit of the third embodiment does not depend on the heat medium side circuit, the heat medium side circuit shown in the first embodiment (FIGS. 1 and 2), and the heat shown in the second embodiment. Any of the circuits on the medium side (FIGS. 3 and 4) can be combined.
  • the heat source of the heat source machine is a refrigeration cycle circuit, but various heat sources such as a heater can be used.
  • the heat medium inlet temperature of the use side heat exchangers 30a and 30b it is necessary to increase the output of the heat source unit by, for example, increasing the speed of the compressor 10. Then, in the use side heat exchangers 30c and 30d where the heat medium inlet temperature is originally a predetermined temperature or higher, the heat medium inlet temperature further rises (for example, 50 ° C.), and the indoor unit can be reduced even if the flow rate of the heat medium is decreased. The blowing temperature of 2 may become too high, and the user's comfort is impaired. Moreover, since the heating medium is heated more than necessary, it is not energy saving. For the reasons described above, it is necessary to make the heat medium inlet temperature of the use side heat exchanger substantially uniform for comfort.
  • the opening degree of the heat medium flow control devices 36a, 36b, 36c, 36d is controlled, and the heat medium inlet temperature of the use side heat exchangers 30a, 30b, 30c, 30d
  • the load of the indoor units 2a, 2b, 2c, and 2d can be adjusted by adjusting the temperature difference between the outlet temperatures.
  • the heat medium inlet temperature of the use side heat exchangers 30a, 30b, 30c, and 30d is such that the COP is increased by making the heat medium inlet temperature of the use side heat exchangers 30a, 30b, 30c, and 30d substantially uniform. Since the refrigeration cycle device can be operated with this, it saves energy.
  • the heat medium flow switching devices 35a, 35b, 35c, and 35d correspond to the second heat medium flow switching device.
  • the heat medium flow control devices 36a, 36b, 36c, and 36d correspond to the heat medium flow control unit.
  • the number of usage-side heat exchangers 30 is four, but the number of usage-side heat exchangers 30 is arbitrary.
  • the heat medium in the first heat medium flow path 61a and the second heat medium flow path 61b is switched by the heat medium flow switching devices 34a, 34b, 34c, and 34d, and the use side heat exchangers 30a, 30b, Flows into 30c and 30d.
  • the flow paths of the heat medium flow switching devices 34a, 34b, 34c, and 34d are set such that the heat medium in the first heat medium flow path 61a flows into the use side heat exchangers 30a and 30b, for example.
  • the heat medium in the heat medium flow path 61b is caused to flow into the use side heat exchangers 30c and 30d.
  • the heat medium that has passed through the heat medium flow switching devices 34a, 34b, 34c, and 34d has a flow rate that flows into the use side heat exchangers 30a, 30b, 30c, and 30d by the heat medium flow control devices 36a, 36b, 36c, and 36d. Adjusted.
  • the opening degree of the heat medium flow control devices 36a, 36b, 36c, 36d so that the heat medium temperature difference between the inlet and outlet of the use side heat exchangers 30a, 30b, 30c, 30d is constant, Regardless of the size or load of the use side heat exchangers 30a, 30b, 30c, 30d, the flow rate of the heat medium flowing into the use side heat exchangers 30a, 30b, 30c, 30d is adjusted. can do.
  • the heat medium flow control valve 36 is fully closed.
  • the heat medium flowing out from the use side heat exchangers 30a, 30b, 30c, 30d passes through the heat medium flow switching devices 35a, 35b, 35c, 35d.
  • the heat medium flow switching devices 35a and 35b allow the heat medium flowing out to the first heat medium flow path 62a to pass therethrough.
  • the heat medium flow switching devices 35c and 35d allow the heat medium flowing out to the second heat medium flow path 62b to pass therethrough.
  • the heat media of the use side heat exchangers 30a, 30b, 30c, and 30d can be made substantially uniform. Therefore, it is useful when temperature management of the use side heat exchanger 30 is necessary, such as when refrigerated food.

Abstract

【課題】複数台ある利用側熱交換器の熱媒体入口温度を均一にすることで、冷凍サイクル装置を省エネにする。 【解決手段】複数の利用側熱交換器30、熱媒体間熱交換器14a,14b、熱媒体間熱交換器14aと利用側熱交換器30を接続する流路、熱媒体間熱交換器14bと 利用側熱交換器30を接続する第1熱媒体流路61aと,熱媒体間熱交換器14bと利用側熱交換器30を接続する第2熱媒体流路61b流路を切り替える熱媒体流路切替装置34,35有する熱媒体循環回路と、熱媒体間熱交換器14a,14bで熱媒体を加熱又は冷却する熱源機とを備え、熱媒体間熱交換器14a,14bから流出する熱媒体を熱交換させるための補助熱交換器32を設け、利用側熱交換器30に流入する熱媒体温度を均一にして、冷凍サイクル装置の省エネを図る。

Description

冷凍サイクル装置、空気調和装置
 本発明は、ビル用マルチエアコンやエアコンなどの空気調和装置、冷凍装置ほかに使用する冷凍サイクル装置に関するものである。
ビル用マルチエアコン等に用いられる複数の室内機(利用側熱交換器)を備えた従来の冷凍サイクル装置には、二次側の熱媒体を熱源装置の熱媒体間熱交換器で加熱又は冷却し、この熱媒体を各利用側熱交換器に流通させるものがある。このような冷凍サイクル装置としては、各室内機が冷房運転と暖房運転とを個別に行えるものとして、例えば暖房用第1補助熱交換器、冷房用第1補助熱交換器を具備した熱源サイクルと、暖房用利用側冷媒サイクル、冷房用利用側冷媒サイクルを備えた多室冷暖房装置が提案されている(例えば、特許文献1参照)。二次側サイクルである利用側熱交換器がすべて冷房運転のときは、冷房用冷媒搬送装置から吐出された冷媒の一部を冷房用第3補助熱交換器に流通させて、暖房用利用側冷媒サイクルでは暖房用冷媒搬送装置から吐出された冷媒を冷房用第4補助熱交換器に流通させて互いに熱交換することで、暖房用利用側冷媒サイクルでも冷房運転をしている。
また、他の例として、第1補助熱交換器と第2補助熱交換器を具備した熱源サイクルと、二次側サイクルである第1利用側冷媒サイクル、第2利用側冷媒サイクルを備えた多室冷暖房装置が提案されている(例えば、特許文献2参照)。利用側熱交換器がすべて冷房運転のときは、第1補助熱交換器、第2補助熱交換器の両方で熱源側冷媒を蒸発させて、第1利用側冷媒サイクル、第2利用側冷媒サイクルの両方で冷房運転をしている。また、利用側熱交換器がすべて暖房運転のときには、前記2つの補助熱交換器の両方で熱源側冷媒を凝縮させている。
特開平6-82110号公報(図1他) 特開平6-337138号公報(図1他)
しかしながら、特許文献1に示す従来の冷凍サイクル装置では、全冷房運転をするときに、一次側冷媒と二次側冷媒を熱交換させる補助熱交換器の片方のみを利用するため、一次側冷媒と二次側冷媒間の熱交換量を大きくすることができない。例えば冷房能力を増加させるために、熱交換量を大きくしようとすると、熱源装置にて圧縮機を増速させるなどして熱源装置の出力を増加させる必要があり、省エネにならないという問題があった。
 また、特許文献2に示す従来の冷凍サイクル装置では、利用側熱交換器をすべて暖房運転とした場合、圧縮機から吐出された熱源側冷媒が第2補助熱交換器で凝縮した後、第1補助熱交換器で凝縮している。これによって、第2補助熱交換器には高温の圧縮機吐出ガスが流入するが、第1補助熱交換器には凝縮している熱源側冷媒が流入するため、冷媒の温度が第2補助熱交換器の入口温度よりも低くなる。そのため、第1冷媒搬送装置と第2冷媒搬送装置がそれぞれ吐出して複数の利用側熱交換器に供給される利用側冷媒の温度がそれぞれ異なり、複数の室内熱交換器の冷媒入口温度に大きな差を生ずるという問題があった。第1補助熱交換器にて利用側冷媒温度を上げるためには、熱源装置にて圧縮機を増速させるなどして熱源装置の出力を増加させる必要があり、第2補助熱交換器では利用側冷媒を余分に加熱してしまう。これによって、省エネにならなかったり、余分に加熱したりすることで、利用者の快適性を損なうという問題があった。このため、特許文献2のように、第1利用側冷媒サイクルと第2利用側冷媒サイクルに接続された2つの室内熱交換器を、1つの冷暖自由室内機に納める必要があり、室内機が大型化するという問題があった。
さらに、前記の利用側冷媒温度の差を解消するため、第1利用側冷媒と第2利用側冷媒を熱交換させる場合、利用側冷媒回路を特許文献1に記載された一例の構成にすると、以下の問題点が懸念される。例えば、冷媒搬送装置から吐出された冷媒の一部のみが熱交換に寄与するため、複数の利用側冷媒温度の差を小さくするためには有効でない。さらに、利用側冷媒の一部をバイパスさせて熱交換する側の利用側冷媒回路では、熱交換した利用側冷媒が室内機に循環せずに補助熱交換器に戻ってしまう。このとき、暖房時には高温の利用側冷媒が戻り、冷房時には低温の利用側冷媒が戻るため、補助熱交換器の熱交換効率が低下するという問題を有する。 
本発明は上述のような課題を解決するためになされたものであり、複数の熱媒体間熱交換器にて熱媒体を加熱又は冷却して複数の利用側熱交換器である複数の室内機などに流通させ際に、複数の熱媒体間熱交換器から流出する熱媒体同士を熱交換させて熱媒体出口温度をほぼ均一にすることで、エネルギーの無駄を小さくして効率的な冷凍サイクル装置を得ることを目的とする。また、複数の室内機の負荷調整が容易で小型の空気調和装置を得ることを目的とする。
 本発明に係る冷凍サイクル装置は、
複数の利用側熱交換器と、
一方が前記利用側熱交換器のそれぞれの熱媒体流入口に配管接続され、他方が前記利用側熱交換器のそれぞれの熱媒体流出口に接続された第1の熱媒体間熱交換器と、
一方が前記利用側熱交換器のそれぞれの熱媒体流入口に配管接続され、他方が前記利用側熱交換器のそれぞれの熱媒体流出口に接続された第2の熱媒体間熱交換器と、
 前記利用側熱交換器のそれぞれの熱媒体流入側に設けられ、前記第1の熱媒体間熱交換器と前記利用側熱交換器の熱媒体流入口とを接続する第1の流入側流路、および前記第2の熱媒体間熱交換器と前記利用側熱交換器の熱媒体流入口とを接続する第2の流入側流路を切り替える複数の第1の熱媒体流路切替装置と、
前記利用側熱交換器のそれぞれの熱媒体流出側に設けられ、前記第1の熱媒体間熱交換器と前記利用側熱交換器の熱媒体流出口とを接続する第1の流出側流路、および前記第2の熱媒体間熱交換器と前記利用側熱交換器の熱媒体流出口とを接続する第2の流出側流路とを切り替える複数の第2の熱媒体流路切替装置と、
前記第1の熱媒体間熱交換器と前記利用側熱交換器とを接続する前記第1の流入側流路に熱媒体を流す第1の熱媒体送出装置と、
前記第2の熱媒体間熱交換器と前記利用側熱交換器とを接続する前記第2の流入側流路に熱媒体を流す第2の熱媒体送出装置と、
前記第1の熱媒体流路切替装置の熱媒体流出口から前記第2の熱媒体流路切替装置の熱媒体流入口の間に設けられ、前記利用側熱交換器へそれぞれ流れる熱媒体の流量を制御する複数の熱媒体流量調整部と、
前記第1の熱媒体間熱交換器及び前記第2の熱媒体間熱交換器に接続され前記第1の熱媒体間熱交換器および第2の熱媒体間熱交換器に温熱または冷熱を供給して、前記第1の熱媒体間熱交換器および前記第2の熱媒体間熱交換器から前記利用側熱交換器へ流れる熱媒体を加熱または冷却する熱源装置、
前記第1の熱媒体間熱交換器に配管接続され熱媒体を流入させる第1の熱媒体流入口と前記第2の熱媒体間熱交換器に配管接続され熱媒体を流入させる第2の熱媒体流入口を有し、前記第1の熱媒体流入口と前記第2の熱媒体流入口から流入した熱媒体を前記利用側熱交換器に複数の前記第1の熱媒体流路切替え装置を介して流出させる第1の熱媒体流出口と第2の熱媒体流出口を有するとともに、前記第1の熱媒体流入口から前記第1の熱媒体流出口へ流れる第1の熱媒体と前記第2の熱媒体流入口から前記第2の熱媒体流出口へ流れる第2の熱媒体とを伝熱材を介して熱交換する、または、前記第1の熱媒体流入口から流入した第1の熱媒体と前記第2の熱媒体流入口から流入した第2の熱媒体とを混合して熱交換し前記第1の熱媒体流出口と前記第2の熱媒体流出口から流出させる補助熱交換器と、
前記補助熱交換器をバイパスさせるバイパス配管および前記バイパス配管に設けた開閉弁を、前記第1の熱媒体間熱交換器または前記第2の熱媒体間熱交換器から熱媒体を流出させるそれぞれの熱媒体流出口のいずれか一方に接続させる循環回路、とを備えるものである。
 本発明は、第1の熱媒体間熱交換器から流出する熱媒体と第2の熱媒体間熱交換器から流出する熱媒体を補助熱交換器で熱交換させるので、2つの熱媒体間熱交換器から流出する熱媒体に温度差が生じても、複数の利用側熱交換器に流入する熱媒体の温度をほぼ均一にすることができる。したがって、エネルギーの無駄のない効率的で使いやすい冷凍サイクル装置を得ることができる。また室内機の負荷調整が容易で、利用者の快適性を得やすい空調装置を得ることができる。
本発明の実施の形態1に係る全体回路図である。 本発明の実施の形態1に係る、熱媒体側回路の別の形態を示す図である。 本発明の実施の形態1に係る、冷媒側回路の別の形態を示す図である。 本発明の実施の形態2に係る熱媒体側回路図である。 本発明の実施の形態2に係る、熱媒体側回路の別の形態を示す図である。 本発明の実施の形態3に係る冷媒側回路図である。 本実施の形態1から4に係る、熱媒体流量調整装置の別の形態を示す図である。 本実施の形態1に係る、熱媒体間熱交換器14a,14bで熱媒体を加熱する場合の、冷媒と熱媒体の温度変化を示す図である。 本実施の形態1に係る、熱媒体間熱交換器14a,14bで熱媒体を加熱する場合の、冷媒(超臨界サイクル)と熱媒体の温度変化を示す図である。 本実施の形態1に係る、熱媒体間熱交換器14a,14bで熱媒体を冷却する場合の、冷媒と熱媒体の温度変化を示す図である。 本実施の形態1に係る、暖房する利用側熱交換器で、熱媒体入口温度が低下した場合の、空気吹出し温度の変化を示す図である。 本実施の形態1に係る、冷房する利用側熱交換器で、熱媒体入口温度が上昇した場合の、空気吹出し温度の変化を示す図である。 本実施の形態4に係る、冷凍サイクル装置の熱媒体側回路図である。
実施の形態1.
 図1は、本発明の実施の形態1に係る冷凍サイクル装置のシステム回路図である。本実施の形態1の冷凍サイクル装置は、圧縮機10、冷媒流路切替装置である四方弁11、熱源側熱交換器12、熱媒体間熱交換器14a、14b、電子式膨張弁等の膨張装置15a、15b、並びにアキュムレータ16を配管接続して冷凍サイクル回路を構成している。ここで、熱媒体間熱交換器14aが第1の熱媒体間熱交換器に相当する。熱媒体間熱交換器14bが第2の熱媒体間熱交換器に相当する。
また、熱媒体間熱交換器14a及び14b、利用側熱交換器30a,30b,30c,30d、熱媒体送出装置であるポンプ31a及び31b、熱媒体流路切替装置34a,34b,34c,34d,35a,35b,35c,35d、熱媒体流量調整装置36a,36b,36c,36dを配管接続して熱媒体循環回路を構成している。ここで、ポンプ31aが第1の熱媒体送出装置に相当する。ポンプ31bが第2の熱媒体送出装置に相当する。熱媒体流路切替装置34a,34b,34c,34dが第1の熱媒体流路切替装置に相当する。熱媒体流路切替装置35a,35b,35c,35dが第2の熱媒体流路切替装置に相当する。熱媒体流量調整装置36a,36b,36c,36dが熱媒体流量調整部に相当する。なお、本実施の形態1では室内機2(利用側熱交換器30)の台数を4台としているが、室内機2(利用側熱交換器30)の台数は任意である。
本実施の形態では、圧縮機10、四方弁11、熱源側熱交換器12及びアキュムレータ16を、熱源機1(室外機)の中に収容している。また、熱源機1には、冷凍サイクル装置全体の制御を統制する制御装置50も収容されている。利用側熱交換器30a,30b,30c,30dを、それぞれ各室内機2a,2b,2c,2dに収容している。熱媒体間熱交換器14a,14b、膨張装置15a,15bを、熱媒体分岐ユニットでもある熱媒体変換機3(分岐ユニット)に収容している。また、熱媒体流路切替装置34a,34b,34c,34d,35a,35b,35c,35d、熱媒体流量調整装置36a,36b,36c,36dについても、熱媒体変換機3に収容されている。
また、熱源機1と熱媒体変換機3は冷媒配管4で接続されている。また、熱媒体変換機3と室内機2a,2b,2c,2dのそれぞれ(利用側熱交換器30a,30b,30c,30dのそれぞれ)は水や不凍液等の安全な熱媒体が流れる熱媒体配管5で接続されている。つまり、熱媒体変換機3と室内機2a,2b,2c,2dのそれぞれ(利用側熱交換器30a,30b,30c,30dのそれぞれ)は、1つの熱媒体経路で接続されている。
圧縮機10は吸入した冷媒を加圧して吐出する(送り出す)。また、冷媒流路切替装置となる四方弁11は、制御装置50の指示に基づいて、冷暖房に係る運転モードに対応した弁の切り替えを行い、冷媒の経路が切り替わるようにする。本実施の形態1では、全冷房運転(動作しているすべての室内機2が冷房(除湿も含む。以下、同じ)を行っているときの運転)、冷房主体運転(冷房、暖房を行っている室内機2が同時に存在する場合に、冷房が主となるときの運転)時と、全暖房運転(動作しているすべての室内機2が暖房を行っているときの運転)、暖房主体運転(冷房、暖房を行っている室内機2が同時に存在する場合に、暖房が主となるときの運転)時とによって循環経路が切り替わるようにする。
熱源側熱交換器12は、例えば、冷媒を通過させる伝熱管及びその伝熱管を流れる冷媒と外気との間の伝熱面積を大きくするためのフィン(図示せず)を有し、冷媒と空気(外気)との熱交換を行う。例えば、全暖房運転時、暖房主体運転時では蒸発器として機能し、冷媒を蒸発させてガス(気体)化させる。一方、全冷房運転時、冷房主体運転時においては凝縮器またはガスクーラ(以下では凝縮器とする)として機能する。場合によっては、完全にガス化、液化させず、液体とガスとの二相混合(気液二相冷媒)の状態にすることもある。
熱媒体間熱交換器14a,14bは、冷媒を通過させる伝熱部と熱媒体を通過させる伝熱部とを有し、冷媒と熱媒体とによる媒体間の熱交換を行わせる。本実施の形態1では、熱媒体間熱交換器14aは、全冷房運転、暖房主体運転で蒸発器として機能し、冷媒に吸熱させて熱媒体を冷却する。一方で全暖房運転、冷房主体運転で凝縮器として機能し、冷媒に放熱させて熱媒体を加熱する。熱媒体間熱交換器14bは、全冷房運転、冷房主体運転で蒸発器として機能し、全暖房運転、暖房主体運転において凝縮器として機能する。例えば電子式膨張弁等の膨張装置15a,15bは、冷媒流量を調整することにより冷媒を減圧させる。アキュムレータ16は冷凍サイクル回路中の過剰な冷媒を貯留したり、圧縮機10に冷媒液が多量に戻って圧縮機10が破損したりするのを防止する働きがある。
熱媒体送出装置であるポンプ31a,31bは、熱媒体を循環させるために加圧する。ここで、ポンプ31a,31bについては、内蔵するモータ(図示せず)の回転数を一定の範囲内で変化させることで、熱媒体を送り出す流量(吐出流量)を変化させることができる。また、利用側熱交換器30a,30b,30c,30dは、それぞれ室内機2a,2b,2c,2dで、熱媒体と空調空間の空気とを熱交換させ、空調空間の空気を加熱又は冷却する。
例えば三方切替弁等である熱媒体流路切替装置34a,34b,34c,34dは、それぞれ利用側熱交換器30a,30b,30c,30dの熱媒体流入口に配管接続されており、利用側熱交換器30a,30b,30c,30dの入口側(熱媒体流入側)で流路の切り替えを行う。また、例えば三方切替弁等である熱媒体流路切替装置35a,35b,35c,35dは、それぞれ利用側熱交換器30a,30b,30c,30dの熱媒体流出側に配管接続されており、利用側熱交換器30a,30b,30c,30dの出口側(熱媒体流出側)で流路の切り替えを行う。これらの切替装置は、熱媒体間熱交換器14aを流通する熱媒体と熱媒体間熱交換器14bを流通する熱媒体のどちらかを利用側熱交換器30a,30b,30c,30dに通過させるための切り替えを行うものである。
さらに、例えば二方流量調整弁である熱媒体流量調整装置36a,36b,36c,36dは、それぞれ、利用側熱交換器30a,30b,30c,30dに流入する熱媒体の流量を調整する。
<運転モード>
 続いて、各運転モードにおける冷凍サイクル装置の動作について、冷媒及び熱媒体の流れに基づいて説明する。ここで、冷凍サイクル回路等における圧力の高低については、基準となる圧力との関係により定まるものではなく、圧縮機10の圧縮、膨張装置15a、15b等の冷媒流量制御等によりできる相対的な圧力として高圧、低圧として表すものとする。また、温度の高低についても同様であるものとする。
(全冷房運転)
 まず、冷凍サイクル回路における冷媒の流れについて説明する。熱源機1で、圧縮機10に吸入された冷媒は圧縮され、高圧のガス冷媒として吐出される。圧縮機10を出た冷媒は、四方弁11を経て、凝縮器として機能する熱源側熱交換器12に流れる。高圧のガス冷媒は熱源側熱交換器12内を通過する間に外気との熱交換により凝縮し、高圧の液冷媒となって流出し、冷媒配管4を通って熱媒体変換機3に流入する。
 熱媒体変換機3に流入した冷媒は膨張装置15aの開度を調整することで膨張し、低温低圧の気液二相冷媒が熱媒体間熱交換器14aに流入する。熱媒体間熱交換器14aは冷媒に対して蒸発器として機能するため、熱媒体間熱交換器14aを通過する冷媒は、熱交換対象となる熱媒体を冷却する(熱媒体から吸熱する)。熱媒体間熱交換器14aでは、冷媒は完全には気化せず、気液二相冷媒のまま流出する。このとき膨張装置15bは圧力損失が生じないように全開にしておく。
 低温低圧の気液二相冷媒は、さらに熱媒体間熱交換器14bに流入する。前述のように熱媒体を冷却し、熱媒体間熱交換器14bでガス冷媒となり流出する。流出したガス冷媒は、冷媒配管4を通過して熱媒体変換機3を流出する。
熱源機1に流入した冷媒は、四方弁11、アキュムレータ16を介して再度圧縮機10へ吸い込まれる。
次に、熱媒体循環回路における熱媒体の流れについて説明する。熱媒体は熱媒体間熱交換器14a,14bで冷媒との熱交換により冷却される。熱媒体間熱交換器14aにおいて冷却された熱媒体はポンプ31aにより吸引され、第1熱媒体流路61aに送り出される。また、熱媒体間熱交換器14bで冷却された熱媒体はポンプ31bにより吸引され、第2熱媒体流路61bに送り出される。第1熱媒体流路61aに送り出された熱媒体は、補助熱交換器32の一方の流入口に流入する。第2熱媒体流路61bに送り出された熱媒体は、補助熱交換器32他方の流入口に流入する。補助熱交換器32の詳細な効果は後述する。ことのき、開閉装置33aは閉止して、開閉装置33bは開放する。
第1熱媒体流路61a、第2熱媒体流路61bの熱媒体は、熱媒体流路切替装置34a,34b,34c,34dにより流路を切り替えられて、利用側熱交換器30a,30b,30c,30dに流入する。ここで、熱媒体流路切替装置34a,34b,34c,34dの流路は、例えば第1熱媒体流路61aの熱媒体が利用側熱交換器30a,30bに流入するようにして、第2熱媒体流路61bの熱媒体が利用側熱交換器30c,30dに流入するようにする。このとき、第1熱媒体流路61aの熱媒体が冷房する室内機2a,2bの合計した冷房能力と、第2熱媒体流路61bの熱媒体が冷房する室内機2c,2dの合計した冷房能力が、およそ半分になるようにすればよい。室内機2a,2b,2c,2dの冷房能力は、例えば制御装置50にて判断することができる。上記のような場合、熱媒体流路切替装置34a,34bは、第1熱媒体流路61aの熱媒体が通過するようにする。熱媒体流路切替装置34c,34dは、第2熱媒体流路61bの熱媒体が通過するようにする。
熱媒体流路切替装置34a,34b,34c,34dを通過した熱媒体は、熱媒体流量調整装置36a,36b,36c,36dにより利用側熱交換器30a,30b,30c,30dに流入する流量を調整される。例えば、利用側熱交換器30a,30b,30c,30dの入口と出口の熱媒体温度差が一定になるように熱媒体流量調整装置36a,36b,36c,36dの開度を調整することで、利用側熱交換器30a,30b,30c,30dのそれぞれの大きさが異なったり、負荷が異なったりしても、利用側熱交換器30a,30b,30c,30dに流入する熱媒体の流量を調整することができる。室内機2のうちいずれかを停止させたい場合は、熱媒体流量調整弁36を全閉にする。
利用側熱交換器30a,30b,30c,30dから流出した熱媒体は、熱媒体流路切替装置35a,35b,35c,35dを通過する。このとき、熱媒体流路切替装置35a,35bは、第1熱媒体流路62aに流出する熱媒体が通過するようにする。また、熱媒体流路切替装置35c,35dは、第2熱媒体流路62bに流出する熱媒体が通過するようにする。
(全暖房運転)
まず、冷凍サイクル回路における冷媒の流れについて説明する。熱源機1で、圧縮機10に吸入された冷媒は圧縮され、高圧のガス冷媒として吐出される。圧縮機10を出た冷媒は、四方弁11を流れ、さらに冷媒配管4を通って熱媒体変換機3に流入する。
熱媒体変換機3に流入したガス冷媒は熱媒体間熱交換器14bに流入する。熱媒体間熱交換器14bは冷媒に対して凝縮器として機能するため、熱媒体間熱交換器14bを通過する冷媒は、熱交換対象となる熱媒体を加熱する(熱媒体に放熱する)。熱媒体間熱交換器14bでは、完全には液化せず、気液二相冷媒が流出する。
高温高圧の気液二相冷媒は、さらに熱媒体間熱交換器14aに流入する。このとき膨張装置15bは、圧力損失が生じないように全開にしておく。前述のように熱媒体を加熱し、熱媒体間熱交換器14aで液冷媒となり流出する。流出した液冷媒は、膨張装置15aにより減圧され、低温低圧の気液二相冷媒となる。低温低圧の冷媒は冷媒配管4を通過して熱媒体変換機3を流出する。
熱源機1に流入した冷媒は、熱源側熱交換器12に流入して空気と熱交換することで蒸発し、ガス冷媒もしくは気液二相冷媒で流出する。蒸発した冷媒は、四方弁11、アキュムレータ16を介して再度圧縮機10へ吸い込まれる。
次に、熱媒体循環回路における熱媒体の流れについて説明する。熱媒体は熱媒体間熱交換器14a,14bで冷媒との熱交換により加熱される。熱媒体間熱交換器14aにおいて加熱された熱媒体はポンプ31aにより吸引され、第1熱媒体流路61aに送り出される。また、熱媒体間熱交換器14bで加熱された熱媒体はポンプ31bにより吸引され、第2熱媒体流路61bに送り出される。第1熱媒体流路61aに送り出された熱媒体は、補助熱交換器32の一方の流入口に流入する。第2熱媒体流路61bに送り出された熱媒体は、補助熱交換器32の他方の流入口に流入する。補助熱交換器32の詳細な効果は後述する。ことのき、開閉装置33aは閉止して、開閉装置33bは開放する。
第1熱媒体流路61a、第2熱媒体流路61bの熱媒体は、熱媒体流路切替装置34a,34b,34c,34dにより流路を切り替えられて、利用側熱交換器30a,30b,30c,30dに流入する。ここで、熱媒体流路切替装置34a,34b,34c,34dの流路は、例えば第1熱媒体流路61aの熱媒体が利用側熱交換器30a,30bに流入するようにして、第2熱媒体流路61bの熱媒体が利用側熱交換器30c、30dに流入するようにする。このとき、第1熱媒体流路61aの熱媒体が暖房する室内機2a,2bの合計した暖房能力と、第2熱媒体流路61bの熱媒体が暖房する室内機2c,2dの合計した暖房能力が、およそ半分になるようにすればよい。室内機2a,2b,2c,2dの暖房能力は、例えば制御装置50にて判断することができる。上記のような場合、熱媒体流路切替装置34a,34bは、第1熱媒体流路61aの熱媒体が通過するようにする。熱媒体流路切替装置34c,34dは、第2熱媒体流路61bの熱媒体が通過するようにする。
熱媒体流路切替装置34a,34b,34c,34dを通過した熱媒体は、熱媒体流量調整装置36a,36b,36c,36dにより利用側熱交換器30a,30b,30c,30dに流入する流量を調整される。例えば、利用側熱交換器30a,30b,30c,30dの入口と出口の熱媒体温度差が一定になるように熱媒体流量調整装置36a,36b,36c,36dの開度を調整することで、利用側熱交換器30a,30b,30c,30dのそれぞれの大きさが異なったり、負荷が異なったりしても、利用側熱交換器30a,30b,30c,30dに流入する熱媒体の流量を調整することができる。室内機2のうちいずれかを停止させたい場合は、熱媒体流量調整弁36を全閉にする。
利用側熱交換器30a,30b,30c,30dから流出した熱媒体は、熱媒体流路切替装置35a,35b,35c,35dを通過する。このとき、熱媒体流路切替装置35a,35bは、第1熱媒体流路62aに流出する熱媒体が通過するようにする。また、熱媒体流路切替装置35c,35dは、第2熱媒体流路62bに流出する熱媒体が通過するようにする。
(冷房主体運転)
 まず、冷凍サイクル回路における冷媒の流れについて説明する。熱源機1で、圧縮機10に吸入された冷媒は圧縮され、高圧のガス冷媒として吐出される。圧縮機10を出た冷媒は、四方弁11を経て、凝縮器として機能する熱源側熱交換器12に流れる。高圧のガス冷媒は熱源側熱交換器12内を通過する間に外気との熱交換により凝縮するが、完全に液化せず、高圧の気液二相冷媒となって流出し、冷媒配管4を通って熱媒体変換機3に流入する。
 熱媒体変換機3に流入した冷媒は、熱媒体間熱交換器14aに流入する。このとき、膨張装置15aは圧力損失が生じないように全開にしておく。熱媒体間熱交換器14aは冷媒に対して凝縮器として機能するため、熱媒体間熱交換器14aを通過する冷媒は、熱交換対象となる熱媒体を加熱して液化する(熱媒体に放熱する)。
 液化された冷媒は、膨張装置15bによって減圧され、低温低圧の気液二相冷媒となる。低温低圧の冷媒は、熱媒体間熱交換器14bに流入する。熱媒体間熱交換器14bは冷媒に対して蒸発器として機能するため、熱媒体間熱交換器14bを通過する冷媒は、熱交換対象となる熱媒体を冷却してガス化する(熱媒体から吸熱する)。流出したガス冷媒は、冷媒配管4を通過して熱媒体変換機3を流出する。
熱源機1に流入した冷媒は、四方弁11、アキュムレータ16を介して再度圧縮機10へ吸い込まれる。
次に、熱媒体循環回路における熱媒体の流れについて説明する。熱媒体は熱媒体間熱交換器14aで冷媒との熱交換により加熱される。熱媒体間熱交換器14aで加熱された熱媒体はポンプ31aにより吸引され、第1熱媒体流路61aに送り出される。また、熱媒体間熱交換器14bでは、冷媒との熱交換により熱媒体は冷却される。熱媒体間熱交換器14bで加熱された熱媒体はポンプ31bにより吸引され、第2熱媒体流路61bに送り出される。ことのき、開閉装置33bは閉止して、開閉装置33aは開放することで、加熱された熱媒体は補助熱交換器32をバイパスさせる。これによって、冷却された熱媒体と加熱された熱媒体の熱交換を防止する。
第1熱媒体流路61aの熱媒体と第2熱媒体流路61bの熱媒体は、熱媒体流路切替装置34a,34b,34c,34dにより流路を切り替えられて、利用側熱交換器30a,30b,30c,30dに流入する。ここで、熱媒体流路切替装置34a,34b,34c,34dの流路は、例えば室内機2a,2b,2cが冷房運転をしていて、室内機2dが暖房運転をしていれば、第2熱媒体流路61bの熱媒体が熱媒体流路切替装置34a,34b,34cを通過するようにして、冷却された熱媒体を利用側熱交換器30a,30b,30cに流入させる。また、第1熱媒体流路61aの熱媒体が熱媒体流路切替装置34dを通過するようにして、加熱された熱媒体を利用側熱交換器30dに流入させる。このとき、室内機2a,2b,2c,2dが冷房運転もしくは暖房運転であるかは、例えば制御装置50にて判断することができ、熱媒体流路切替装置34a,34b,34c,34dの流路を切り替える。
熱媒体流路切替装置34a,34b,34c,34dを通過した熱媒体は、熱媒体流量調整弁36a,36b,36c,36dにより利用側熱交換器30a,30b,30c,30dに流入する流量を調整される。例えば、利用側熱交換器30a,30b,30c,30dの入口と出口の熱媒体温度差が一定になるように熱媒体流量調整装置36a,36b,36c,36dの開度を調整することで、利用側熱交換器30a,30b,30c,30dのそれぞれの大きさが異なったり、負荷が異なったりしても、利用側熱交換器30a,30b,30c,30dに流入する熱媒体の流量を調整することができる。室内機2のうちいずれかを停止させたい場合は、熱媒体流量調整弁36を全閉にする。
利用側熱交換器30a,30b,30c,30dから流出した熱媒体は、熱媒体流路切替装置35a,35b,35c,35dを通過する。このとき、熱媒体流路切替装置35a,35b,35cは、第2熱媒体流路62bに流出する熱媒体が通過するようにする。また、熱媒体流路切替装置35dは、第1熱媒体流路62aに流出する熱媒体が通過するようにする。
(暖房主体運転)
まず、冷凍サイクル回路における冷媒の流れについて説明する。熱源機1で、圧縮機10に吸入された冷媒は圧縮され、高圧のガス冷媒として吐出される。圧縮機10を出た冷媒は、四方弁11を流れ、さらに冷媒配管4を通って熱媒体変換機3に流入する。
熱媒体変換機3に流入したガス冷媒は熱媒体間熱交換器14bに流入する。熱媒体間熱交換器14bは冷媒に対して凝縮器として機能するため、熱媒体間熱交換器14bを通過する冷媒は、熱交換対象となる熱媒体を加熱して液化する(熱媒体に放熱する)。
高圧の液冷媒は、膨張装置15bにより低温低圧の気液二相冷媒となり、熱媒体間熱交換器14aに流入する。熱媒体間熱交換器14aは冷媒に対して蒸発器として機能するため、熱媒体間熱交換器14aを通過する冷媒は、熱交換対象となる熱媒体を冷却して(熱媒体から吸熱して)気液二相冷媒として流出する。流出した気液二相冷媒は、冷媒配管4を通過して熱媒体変換機3を流出する。このとき膨張装置15aは圧力損失が生じないように全開にしておく。流出した気液二相冷媒は、冷媒配管4を通過して熱媒体変換機3を流出する。
熱源機1に流入した冷媒は、熱源側熱交換器12に流入して空気と熱交換することで蒸発し、ガス冷媒もしくは気液二相冷媒で流出する。蒸発した冷媒は、四方弁11、アキュムレータ16を介して再度圧縮機10へ吸い込まれる。
次に、熱媒体循環回路における熱媒体の流れについて説明する。熱媒体は熱媒体間熱交換器14aで冷媒との熱交換により冷却される。熱媒体間熱交換器14aで冷却された熱媒体はポンプ31aにより吸引され、第1熱媒体流路61aに送り出される。また、熱媒体間熱交換器14bでは、冷媒との熱交換により熱媒体は加熱される。熱媒体間熱交換器14bで加熱された熱媒体はポンプ31bにより吸引され、第2熱媒体流路61bに送り出される。ことのき、開閉装置33bは閉止して、開閉装置33aは開放することで、加熱された熱媒体は補助熱交換器32をバイパスさせる。これによって、冷却された熱媒体と加熱された熱媒体の熱交換を防止する。
第1熱媒体流路61aの熱媒体と第2熱媒体流路61bの熱媒体は、熱媒体流路切替装置34a,34b,34c,34dにより流路を切り替えられて、利用側熱交換器30a,30b,30c,30dに流入する。ここで、熱媒体流路切替装置34a,34b,34c,34dの流路は、例えば室内機2a,2b,2cが暖房運転をしていて、室内機2dが冷房運転をしていれば、第2熱媒体流路61bの熱媒体が熱媒体流路切替装置34a,34b,34cを通過するようにして、加熱された熱媒体を利用側熱交換器30a,30b,30cに流入させる。また、第1熱媒体流路61aの熱媒体が熱媒体流路切替装置34dを通過するようにして、冷却された熱媒体を利用側熱交換器30dに流入させる。このとき、室内機2a,2b,2c,2dが冷房運転もしくは暖房運転であるかは、例えば制御装置50にて判断することができ、熱媒体流路切替装置34a,34b,34c,34dの流路を切り替える。
熱媒体流路切替装置34a,34b,34c,34dを通過した熱媒体は、熱媒体流量調整弁36a,36b,36c,36dにより利用側熱交換器30a,30b,30c,30dに流入する流量を調整される。例えば、利用側熱交換器30a,30b,30c,30dの入口と出口の熱媒体温度差が一定になるように熱媒体流量調整装置36a,36b,36c,36dの開度を調整することで、利用側熱交換器30a,30b,30c,30dのそれぞれの大きさが異なったり、負荷が異なったりしても、利用側熱交換器30a,30b,30c,30dに流入する熱媒体の流量を調整することができる。室内機2のうちいずれかを停止させたい場合は、熱媒体流量調整弁36を全閉にする。
利用側熱交換器30a,30b,30c,30dから流出した熱媒体は、熱媒体流路切替装置35a,35b,35c,35dを通過する。このとき、熱媒体流路切替装置35a,35b,35cは、第2熱媒体流路62bに流出する熱媒体が通過するようにする。また、熱媒体流路切替装置35dは、第1熱媒体流路62aに流出する熱媒体が通過するようにする。
<熱媒体温度均一方法>
続いて、全暖房運転、全冷房運転を行う際の、利用側熱交換器30の入口熱媒体温度をほぼ均一にする方法について説明する。
上述のように、本実施の形態1に係る冷凍サイクル装置は、全暖房運転のときには熱媒体間熱交換器14a,14bを両方とも凝縮器として利用して、冷媒と熱媒体間の伝熱面積を大きくすることで冷媒から熱媒体への放熱量を大きくすることができる。しかし、圧縮機10から吐出された高温の冷媒ガスは、熱媒体間熱交換器14bにてある程度凝縮された後、熱媒体間熱交換器14aに再び流入する。このときの交換熱量と冷媒、熱媒体の温度変化を図7に示す。
 図7では、熱媒体間熱交換器14a,14bで、冷媒側の温度変化と、熱媒体の温度変化を示している。ここで、熱媒体入口温度はほぼ等しいと仮定している。
 このとき、熱媒体間熱交換器14bの冷媒入口温度は、圧縮機10の吐出ガスであるので、例えば80℃程度である。そのため、熱媒体間熱交換器14bでは熱媒体の出口温度を凝縮温度程度、またはそれ以上まで上昇させることができる。一方で、熱媒体間熱交換器14aの冷媒入口温度は、凝縮温度となるため、例えば50℃程度である。そのため、図7のように熱媒体間熱交換器14bの熱媒体出口温度よりも、熱媒体間熱交換器14aの熱媒体出口温度の方が低くなることがある。
 例えば、熱媒体間熱交換器14aから流出した第1熱媒体流路61aの熱媒体が利用側熱交換器30a,30bに流入して、熱媒体間熱交換器14bから流出した第2熱媒体流路61bの熱媒体が利用側熱交換器30c,30dに流入すると仮定する。すると、利用側熱交換器30a,30bに流入する熱媒体温度は、利用側熱交換器30c,30dよりも低くなる。図11に示すように、利用側熱交換器30a,30bの熱媒体入口温度が所定の温度よりも低下する場合、利用側熱交換器30a,30bでは熱媒体と空気の交換熱量が低下し、室内機2a,2bの吹出し温度が低くなり、利用者の快適性を損なう。また、利用側熱交換器30a,30bに流入する熱媒体温度を所定の温度まで上昇させるため、例えば圧縮機10を増速させるとする。そうすると、利用側熱交換器30c,30dに流入する熱媒体温度が所定の温度より高くなり、熱媒体を加熱し過ぎてしまうため、省エネにならない。 
 また、二酸化炭素など高圧側で超臨界状態となるような冷媒は、図8に示すように凝縮温度を持たず、連続的に温度変化をもたらす。そのため、上述の熱媒体間熱交換器14aの熱媒体出口温度と熱媒体間熱交換器14bの熱媒体出口温度の差は大きくなる。
 また、上述のように本実施の形態1に係る冷凍サイクル装置は、全冷房運転のときには熱媒体間熱交換器14a,14bを両方とも蒸発器として利用して、冷媒と熱媒体間の伝熱面積を大きくすることで熱媒体から冷媒への吸熱量を大きくすることができる。このときの交換熱量と冷媒、熱媒体の温度変化を図9に示す。
 図9では、熱媒体間熱交換器14a,14bで、冷媒側の温度変化と、熱媒体の温度変化を示している。ここで、熱媒体間熱交換器14a,14bの熱媒体入口温度はほぼ等しいと仮定している。
 このとき、熱媒体間熱交換器14aの冷媒出口温度は、蒸発温度であり例えば2℃程度である。一方で熱媒体間熱交換器14bの冷媒出口温度は、過熱ガスとなるため、例えば5℃程度である。この過熱ガスの領域があると、伝熱性能が悪化し、さらに熱媒体と冷媒の温度差が小さくなる。これにより、図9のように熱媒体間熱交換器14aの熱媒体出口温度よりも、熱媒体間熱交換器14bの熱媒体出口温度のほうが高くなることがある。
 熱媒体間熱交換器14aから流出した第1熱媒体流路61aの熱媒体が利用側熱交換器30a,30bに流入して、熱媒体間熱交換器14bから流出した第2熱媒体流路61bの熱媒体が利用側熱交換器30c,30dに流入すると仮定する。すると、利用側熱交換器30c,30dに流入する熱媒体温度は、利用側熱交換器30a,30bよりも高くなる。図12に示すように、利用側熱交換器30c,30dの熱媒体入口温度が所定の温度よりも上昇する場合、利用側熱交換器30c,30dで熱媒体と空気の交換熱量が低下し、室内機2a,2bの吹出し温度が高くなり、利用者の快適性を損なう。また、利用側熱交換器30c,30dに流入する熱媒体温度を所定の温度まで低下させるため、例えば圧縮機10を増速させるとする。そうすると、利用側熱交換器30a,30bに流入する熱媒体温度が所定の温度より低くなり、熱媒体を冷却し過ぎてしまうため、省エネにならない。
 そこで、本実施形態1に係る冷凍サイクル装置では、以下の方法により、利用側熱交換器30a,30b,30c,30dの熱媒体入口温度がほぼ均一になるようにしている。具体的には、補助熱交換器32を具備し、一方の流入口をポンプ31aの吐出口と配管接続し、他方の流入口をポンプ31bの吐出口と配管接続し、利用側熱交換器30a,30b,30c,30dが全暖房運転又は全冷房運転のときに、第1熱媒体流路61aと第2熱媒体流路61bを流通する熱媒体同士を熱交換させて、利用側熱交換器30a,30b,30c,30dの熱媒体入口温度がほぼ均一になるようにしている。
 まず、暖房主体運転、冷房主体運転のときは、開閉装置33bを閉止、開閉装置33aを開放させて、第1熱媒体流路61aの熱媒体を熱媒体バイパス配管40に流通させる。これによって、補助熱交換器32をパイパスさせる。
 次に、全暖房運転、全冷房運転のときは、開閉装置33bを開放、開閉装置33aを閉止させて、第1熱媒体流路61aの熱媒体を補助熱交換器32に流入させる。これによって、第2熱媒体流路61bの熱媒体と熱交換させる。
上記のように、ポンプ31aから吐出された熱媒体とポンプ31bから吐出された熱媒体を熱交換するようにしているので、補助熱交換器32を流出した後の第1熱媒体流路61aと第2熱媒体流路61bの熱媒体温度はほぼ均一になる。ここで、例えば第1熱媒体流路61aの熱媒体が利用側熱交換器30a,30bに流入し、第2熱媒体流路61bの熱媒体が利用側熱交換器30c,30dに流入するとする。
第1熱媒体流路61aを流通する熱媒体は、熱媒体流路切替装置34a,34bを通過して、熱媒体流量調整装置36a,36bにより熱媒体の流量を調整して、利用側熱交換器30a,30bに流入する。また、第2熱媒体流路61bを流通する熱媒体は、熱媒体流路切替装置34c,34dを通過して、熱媒体流量調整装置36c,36dにより熱媒体の流量を調整して、利用側熱交換器30c,30dに流入する。
ここで、熱媒体は水や不凍液などの流体であり、熱媒体流量調整装置36a,36b,36c,36dで熱媒体を減圧しても温度はほとんど低下しない。よって、利用側熱交換器30a,30b,30c,30dの熱媒体入口温度をほぼ均一にすることができる。
また、図1では開閉装置33a,33bと、熱媒体バイパス配管40を第1熱媒体流路61aに設けているが、図2のように第2熱媒体流路61bに設けても効果は等しい。
また、本実施の形態1では、補助熱交換器32をバイパスさせる熱媒体バイパス配管40を、第1熱媒体流路61aもしくは第2熱媒体流路61bの片方に設けている。これによって、第1熱媒体流路61aと第2熱媒体流路61bの両方に補助熱交換器32をバイパスさせる熱媒体バイパス配管40を設ける場合と比較して、熱媒体の配管や開閉装置が増えて回路が複雑になるのを防ぐことが出来る。
以上のように、熱媒体間熱交換器14a,14bから流出する熱媒体の温度差が大きい場合でも、補助熱交換器32で熱媒体を熱交換させることにより、利用側熱交換器30a,30b,30c,30dの熱媒体入口温度をほぼ均一にすることができる。これによって、熱媒体を加熱し過ぎたり、冷却し過ぎたりすることがなくなり、冷凍サイクル装置を省エネにすることができる。
また、図10に熱源機1に逆止弁13a,13b,13c,13dを設けた場合の冷媒回路図を示す。
逆止弁13a,13b,13c,13dは冷媒の逆流を防止することで、冷媒の流れを整え、熱源機1の冷媒の流入出における循環経路を一定にする。熱媒体間熱交換器14aは、全冷房運転では蒸発器として機能し、冷媒に吸熱させて熱媒体を冷却する。冷房主体運転、暖房主体運転、全暖房運転では凝縮器として機能し、冷媒に放熱させて熱媒体を加熱する。熱媒体間熱交換器14bは、全冷房運転、冷房主体運転、暖房主体運転では蒸発器として機能する。全暖房運転では凝縮器として機能する。
(全冷房運転)
熱源機1では、圧縮機10に吸入された冷媒は圧縮され、高圧のガス冷媒として吐出される。圧縮機10を出た冷媒は、四方弁11を経て、凝縮器として機能する熱源側熱交換器12に流れる。高圧のガス冷媒は熱源側熱交換器12内を通過する間に外気との熱交換により凝縮し、高圧の液冷媒となって流出し、逆止弁13aを流れる(冷媒の圧力の関係で逆止弁13b,13c側には流れない)。さらに冷媒配管4を通って熱媒体変換機3に流入する。
 熱媒体変換機3に流入した冷媒は膨張装置15aの開度を調整することで膨張し、低温低圧の気液二相冷媒が熱媒体間熱交換器14aに流入する。熱媒体間熱交換器14aは冷媒に対して蒸発器として機能するため、熱媒体間熱交換器14aを通過する冷媒は、熱交換対象となる熱媒体を冷却する(熱媒体から吸熱する)。熱媒体間熱交換器14aでは、冷媒は完全には気化せず、気液二相冷媒のまま流出する。このとき膨張装置15bは圧力損失が生じないように全開にしておく。
 低温低圧の気液二相冷媒は、さらに熱媒体間熱交換器14bに流入する。前述のように熱媒体を冷却し、熱媒体間熱交換器14bでガス冷媒となり流出する。流出したガス冷媒は、冷媒配管4を通過して熱媒体変換機3を流出する。
熱源機1に流入した冷媒は、逆止弁13dを通過して、さらに四方弁11、アキュムレータ16を介して再度圧縮機10へ吸い込まれる。
(全暖房運転)
熱源機1では、圧縮機10に吸入された冷媒は圧縮され、高圧のガス冷媒として吐出される。圧縮機10を出た冷媒は、四方弁11、逆止弁13bを流れる。さらに、冷媒配管4を通って熱媒体変換機3に流入する。
熱媒体変換機3に流入したガス冷媒は熱媒体間熱交換器14aに流入する。このとき、膨張装置15aは圧力損失が生じないように全開にしておく。熱媒体間熱交換器14aは冷媒に対して凝縮器として機能するため、熱媒体間熱交換器14aを通過する冷媒は、熱交換対象となる熱媒体を加熱する(熱媒体に放熱する)。熱媒体間熱交換器14aでは、完全には液化せず、気液二相冷媒が流出する。
高温高圧の気液二相冷媒は、さらに熱媒体間熱交換器14bに流入する。このとき膨張装置15bは、圧力損失が生じないように全開にしておく。前述のように熱媒体を加熱し、熱媒体間熱交換器14bで液冷媒となり流出する。流出した液冷媒は、膨張装置15cにより減圧され、低温低圧の気液二相冷媒となる。低温低圧の冷媒は冷媒配管4を通過して熱媒体変換機3を流出する。
熱源機1に流入した冷媒は、逆止弁13cを経て、蒸発器として機能する熱源側熱交換器12に流入して空気と熱交換することで蒸発し、ガス冷媒もしくは気液二相冷媒で流出する。蒸発した冷媒は、四方弁11、アキュムレータ16を介して再度圧縮機10へ吸い込まれる。
(冷房主体運転)
熱源機1では、圧縮機10に吸入された冷媒は圧縮され、高圧のガス冷媒として吐出される。圧縮機10を出た冷媒は、四方弁11を経て、凝縮器として機能する熱源側熱交換器12に流れる。高圧のガス冷媒は熱源側熱交換器12内を通過する間に外気との熱交換により凝縮する。ここで、冷房主体運転のときには、熱源側熱交換器12から気液二相冷媒が流出するようにする。熱源側熱交換器12から流出した気液二相冷媒は、逆止弁13aを流れる。さらに冷媒配管4を通って熱媒体変換機3に流入する。
 熱媒体変換機3に流入した冷媒は、熱媒体間熱交換器14aに流入する。このとき、膨張装置15aは圧力損失が生じないように全開にしておく。熱媒体間熱交換器14aは冷媒に対して凝縮器として機能するため、熱媒体間熱交換器14aを通過する冷媒は、熱交換対象となる熱媒体を加熱して液化する(熱媒体に放熱する)。
 液化された冷媒は、膨張装置15bによって減圧され、低温低圧の気液二相冷媒となる。低温低圧の冷媒は、熱媒体間熱交換器14bに流入する。熱媒体間熱交換器14bは冷媒に対して蒸発器として機能するため、熱媒体間熱交換器14bを通過する冷媒は、熱交換対象となる熱媒体を冷却してガス化する(熱媒体から吸熱する)。流出したガス冷媒は、冷媒配管4を通過して熱媒体変換機3を流出する。
熱源機1に流入した冷媒は、四方弁11、アキュムレータ16を介して再度圧縮機10へ吸い込まれる。
(暖房主体運転)
熱源機1では、圧縮機10に吸入された冷媒は圧縮され、高圧のガス冷媒として吐出される。圧縮機10を出た冷媒は、四方弁11、逆止弁13bを流れる。さらに、冷媒配管4を通って熱媒体変換機3に流入する。
熱媒体変換機3に流入したガス冷媒は熱媒体間熱交換器14aに流入する。このとき膨張装置15aは、圧力損失が生じないように全開にしておく。熱媒体間熱交換器14aは冷媒に対して凝縮器として機能するため、熱媒体間熱交換器14aを通過する冷媒は、熱交換対象となる熱媒体を加熱して液化する(熱媒体に放熱する)。
高圧の液冷媒は、膨張装置15bにより低温低圧の気液二相冷媒となり、熱媒体間熱交換器14bに流入する。熱媒体間熱交換器14bは冷媒に対して蒸発器として機能するため、熱媒体間熱交換器14bを通過する冷媒は、熱交換対象となる熱媒体を冷却して(熱媒体から吸熱して)気液二相冷媒として流出する。流出した気液二相冷媒は、冷媒配管4を通過して熱媒体変換機3を流出する。
熱源機1に流入した冷媒は、逆止弁13cを経て、蒸発器として機能する熱源側熱交換器12に流入して空気と熱交換することで蒸発し、ガス冷媒もしくは気液二相冷媒で流出する。蒸発した冷媒は、四方弁11、アキュムレータ16を介して再度圧縮機10へ吸い込まれる。
図10に示すように、熱媒体変換機3で冷媒の流れる方向が全運転条件で一方向となるため、冷暖同時運転の際は、熱媒体間熱交換器14aが常に凝縮器となり、熱媒体間熱交換器14bが常に蒸発器となる。このため、暖房主体運転と冷房主体運転で熱源機1では冷媒の流れが変化するが、熱媒体変換機3では冷媒の流れが変化しない。
上述の冷媒回路では、例えば利用側熱交換器30a,30b,30cが暖房運転をして、利用側熱交換器30dが冷房運転をする暖房主体運転から、利用側熱交換器30b,30c,30dが冷房運転をして、利用側熱交換器30aが暖房運転をする冷房主体運転に切り替わる場合でも、凝縮器と蒸発器が入れ替わることがない。そのため、第1熱媒体流路61aに常に暖房用の暖かい熱媒体が流通し、第2熱媒体流路61bに常に冷房用の冷たい熱媒体が流通するため、熱媒体の流れを止めずに暖房主体運転と冷房主体運転を互いに切り替えることができる。
実施の形態2.
 以上の実施の形態1では、2つの熱媒体間熱交換器を出た熱媒体同士を熱交換するようにしたものであるが、次に熱媒体同士を直接接触させるような場合の、実施の形態2を示す。図3は、このような場合の、熱媒体側の回路図である。
 具体的には、混合器42を具備し、一方の流入口をポンプ31aの吐出口と配管接続し、他方の流入口をポンプ31bの吐出口と配管接続し、利用側熱交換器30a,30b,30c,30dが全暖房運転又は全冷房運転のときに、第1熱媒体流路61aと第2熱媒体流路61bを流通する熱媒体同士を混合させて、利用側熱交換器30a,30b,30c,30dの熱媒体入口温度をほぼ均一にしている。
まず、暖房主体運転、冷房主体運転のときは、開閉装置33d,33eを閉止、開閉装置33cを開放させて、第1熱媒体流路61aの熱媒体を熱媒体バイパス配管41に流通させる。これによって、混合器42をパイパスさせる。
次に、全暖房運転のときは、開閉装置33d,33eを開放、開閉装置33cを閉止させる。すると、ポンプ31aから吐出される第1熱媒体流路61aを流通する熱媒体は混合器42に流入する。また、ポンプ31bから吐出される第2熱媒体流路61bの熱媒体は常に混合器42に流入している。これによって、第1熱媒体流路61aと第2熱媒体流路61bの熱媒体は、混合器42で混合する。
混合して温度が等しくなった熱媒体は、混合器の一方の流出口から開閉装置33eを通過して第1熱媒体流路63aに流入する。他方の流出口から流出した熱媒体は第2熱媒体流路63bに流入する。このとき、第1熱媒体流路63aと第2熱媒体流路63bの熱媒体の温度と圧力はほぼ等しい。
第1熱媒体流路63aの熱媒体と第2熱媒体流路63bの熱媒体は、熱媒体流路切替装置34a,34b,34c,34dにより流路を切り替えられて、利用側熱交換器30a,30b,30c,30dに流入する。ここで、熱媒体流路切替装置34a,34b,34c,34dの流路は、例えば第1熱媒体流路61aの熱媒体が利用側熱交換器30a,30bに流入するようにして、第2熱媒体流路61bの熱媒体が利用側熱交換器30c,30dに流入するようにする。このとき、第1熱媒体流路63aの熱媒体が暖房する室内機2a,2bの合計した暖房能力と、第2熱媒体流路63bの熱媒体が暖房する室内機2c,2dの合計した暖房能力が、およそ半分になるようにすればよい。室内機2a,2b,2c,2dの暖房能力は、例えば制御装置50にて判断することができる。上記のような場合、熱媒体流路切替装置34a,34bは、第1熱媒体流路63aの熱媒体が通過するようにする。熱媒体流路切替装置34c,34dは、第2熱媒体流路63bの熱媒体が通過するようにする。
熱媒体流路切替装置34a,34b,34c,34dを通過した熱媒体は、熱媒体流量調整弁36a,36b,36c,36dにより利用側熱交換器30a,30b,30c,30dに流入する流量を調整される。例えば、利用側熱交換器30a,30b,30c,30dの入口と出口の熱媒体温度差が一定になるように熱媒体流量調整装置36a,36b,36c,36dの開度を調整することで、利用側熱交換器30a,30b,30c,30dのそれぞれの大きさが異なったり、負荷が異なったりしても、利用側熱交換器30a,30b,30c,30dに流入する熱媒体の流量を調整することができる。室内機2のうちいずれかを停止させたい場合は、熱媒体流量調整弁36を全閉にする。
第1熱媒体流路63aを流通する熱媒体は、熱媒体流路切替装置34a,34bを通過して、熱媒体流量調整装置36a,36bにより熱媒体の流量を調整して、利用側熱交換器30a,30bに流入する。また、第2熱媒体流路63bを流通する熱媒体は、熱媒体流路切替装置34c,34dを通過して、熱媒体流量調整装置36c,36dにより熱媒体の流量を調整して、利用側熱交換器30c,30dに流入する。
ここで、熱媒体は水や不凍液などの流体であり、熱媒体流量調整装置36a,36b,36c,36dで熱媒体を減圧しても温度はほとんど低下しない。よって、利用側熱交換器30a,30b,30c,30dの熱媒体入口温度をほぼ均一にすることができる。
利用側熱交換器30a,30b,30c,30dから流出した熱媒体は、熱媒体流路切替装置35a,35b,35c,35dを通過する。このとき、熱媒体流路切替装置35a,35bは、第1熱媒体流路64aに流出する熱媒体が通過するようにする。また、熱媒体流路切替装置35c,35dは、第2熱媒体流路64bに流出する熱媒体が通過するようにする。
また、図3では開閉装置33c,33d,33eと、熱媒体バイパス配管41を第1熱媒体流路61aに設けているが、図4のように第2熱媒体流路61bに設けても効果は等しい。
また、本実施の形態2では、混合器42をバイパスさせる熱媒体バイパス配管40を、第1熱媒体流路61aもしくは第2熱媒体流路61bの片方に設けている。これによって、混合器42をバイパスさせる熱媒体バイパス配管40を第1熱媒体流路61a,第2熱媒体流路61bの両方に設ける場合と比較して、熱媒体の配管や開閉装置が増えて回路が複雑になるのを防ぐことが出来る。
以上のように、熱媒体間熱交換器14a,14bから流出する熱媒体の温度差が大きい場合でも、混合器42で熱媒体を熱交換させることにより、利用側熱交換器30a,30b,30c,30dの熱媒体入口温度をほぼ均一にすることができる。これによって、熱媒体を加熱し過ぎたり、冷却し過ぎたりすることがなくなり、冷凍サイクル装置を省エネにすることができる。
また、全冷房運転でも、実施の形態1と同様に利用側熱交換器30a,30b,30c,30dの熱媒体入口温度をほぼ均一にした効果を得ることができる。
実施の形態3.
 上記の実施の形態1では、熱源機側で冷媒が直列に流れるように熱媒体間熱交換器を配置しているが、次に全暖房運転、全冷房運転の場合に、2つの熱媒体間熱交換器に冷媒が並列に流れるように配置するような場合の、実施の形態3を示す。図5は、このような場合の、熱源側の回路図である。
本実施の形態3では、圧縮機10、四方弁11、熱源側熱交換器12、逆止弁13a,13b,13c,13d及びアキュムレータ16を、熱源機1(室外機)の中に収容している。また、熱源機1には、冷凍サイクル装置全体の制御を統制する制御装置50も収容されている。熱媒体間熱交換器14a,14b、気液分離器20、膨張装置15c,15d,21,22及び開閉装置23a,23b,24a,24bを、熱媒体変換機3に収容している。
気液分離器20は冷媒配管4から流れる冷媒を、ガス化した冷媒(ガス冷媒)と液化した冷媒(液冷媒)とに分離する。開閉装置23a,23b,24a,24bは、冷暖房に係る運転モードに対応して弁の開閉を行い、冷媒の流路を切り替える。
熱媒体間熱交換器14aは、全冷房運転では蒸発器として機能し、冷媒に吸熱させて熱媒体を冷却する。冷房主体運転、暖房主体運転、全暖房運転では凝縮器として機能し、冷媒に放熱させて熱媒体を加熱する。熱媒体間熱交換器14bは、全冷房運転、冷房主体運転、暖房主体運転では蒸発器として機能する。全暖房運転では凝縮器として機能する。
 (全冷房運転)
熱源機1では、圧縮機10に吸入された冷媒は圧縮され、高圧のガス冷媒として吐出される。圧縮機10を出た冷媒は、四方弁11を経て、凝縮器として機能する熱源側熱交換器12に流れる。高圧のガス冷媒は熱源側熱交換器12内で凝縮し、高圧の液冷媒となって流出する。その後逆止弁13aを流れ、冷媒配管4を通って熱媒体変換機3流入する。
熱媒体変換機3に流入した冷媒は気液分離器20を通過する。気液分離器20からは、液冷媒のみが流出する。全冷房運転では開閉装置23a,23bは閉止させて、冷媒が流れないようにする。また、膨張装置22は冷媒が流れないような開度にしておく。膨張装置21を通過した液冷媒は、膨張装置15c,15dを通って減圧され、低温低圧の気液二相冷媒となり、熱媒体間熱交換器14a,14bに流入する。熱媒体間熱交換器14a,14bは冷媒に対して蒸発器として機能するため、熱媒体間熱交換器14a,14bを通過する冷媒は、熱交換対象となる熱媒体を冷却し(熱媒体から吸熱し)、低圧のガス冷媒となって流出する。流出したガス冷媒は、開閉装置24a,24b及び冷媒配管4を通過して熱媒体変換機3を流出する。
熱源機1に流入した冷媒は、逆止弁13dを通過して四方弁11、アキュムレータ16を介して再度圧縮機に吸い込まれる。
(全暖房運転)
熱源機1では、圧縮機10に吸入された冷媒は圧縮され、高圧のガス冷媒として吐出される。圧縮機10を出た冷媒は、四方弁11、逆止弁13bを流れる。さらに冷媒配管4を通って熱媒体変換機3に流入する。
熱媒体変換機3に流入したガス冷媒は気液分離器20を通過する。気液分離器20では、ガス冷媒のみが流出する。ガス冷媒は、開閉装置23a,23bを通って熱媒体間熱交換器14a,14bに流入する。このとき、開閉装置24a,24bは閉止させて、冷媒が流れないようにする。また、膨張装置21は冷媒が流れないような開度にしておく。熱媒体間熱交換器14a,14bは冷媒に対して凝縮器として機能するため、熱媒体間熱交換器14a,14bを通過する冷媒は、熱交換対象となる熱媒体を加熱し(熱媒体に放熱し)、液冷媒となって流出する。
熱媒体間熱交換器14a,14bから流出した冷媒は、膨張装置15c,15d及び22を通過して熱媒体変換機3から流出し、冷媒配管4を通って熱源機1に流入する。このとき、膨張装置15c,15dおよび22の開度を制御することで冷媒の流量を調整して、冷媒を減圧させるため、低温低圧の気液二相冷媒が熱媒体変換機3から流出することになる。
熱源機1に流入した冷媒は、逆止弁13cを経て、熱源側熱交換器12に流入して空気と熱交換することで蒸発し、ガス冷媒もしくは気液二相冷媒で流出する。蒸発した冷媒は、四方弁11、アキュムレータ16を介して再度圧縮機に吸い込まれる。
(冷房主体運転)
熱源機1では、圧縮機10に吸入された冷媒は圧縮され、高圧のガス冷媒として吐出される。圧縮機10を出た冷媒は、四方弁11を経て、凝縮器として機能する熱源側熱交換器12に流れる。高圧のガス冷媒は熱源側熱交換器12内を通過する間に外気との熱交換により凝縮する。ここで、冷房主体運転のときには、熱源側熱交換器12から気液二相冷媒が流出するようにする。熱源側熱交換器12から流出した気液二相冷媒は、逆止弁13aを流れる。さらに冷媒配管4を通って熱媒体変換機3に流入する。
熱媒体変換機3に流入した気液二相冷媒は、気液分離器20でガス冷媒と液冷媒に分離される。気液分離器20で分離したガス冷媒は、開閉装置23aを通過して熱媒体間熱交換器14aに流入する。熱媒体間熱交換器14aは冷媒に対して凝縮器として機能するため、熱媒体間熱交換器14aを通過する冷媒は、熱交換対象となる熱媒体を加熱して液化する(熱媒体に放熱する)。熱媒体間熱交換器14aを流出した液冷媒は、膨張装置15cを通過する。ここで、膨張装置15cの開度を制御し、熱媒体間熱交換器14aを通過する冷媒の流量を調整する。
一方、気液分離器20で分離した液冷媒は、膨張装置21を通過して、膨張装置15cを通過する液冷媒と合流し、膨張装置15dを通過して熱媒体間熱交換器14bに流入する。ここで、膨張装置15dの開度を制御し、冷媒の流量を調整することで冷媒を減圧させるため、低温低圧の気液二相冷媒が熱媒体間熱交換器14bに流入する。熱媒体間熱交換器14bは冷媒に対して蒸発器として機能するため、熱媒体間熱交換器14bを通過する冷媒は、熱交換対象となる熱媒体を冷却してガス化する(熱媒体から吸熱する)。ここで、膨張装置21は全開にしておく。膨張装置22は冷媒が流れないような開度にしておく。また、開閉装置24a,23bは閉止させる。開閉装置24bを通過した冷媒は、冷媒配管4を通過して熱媒体変換機3を流出する。
熱源機1に流入した冷媒は、逆止弁13dを通過して四方弁11、アキュムレータ16を介して再度圧縮機に吸い込まれる。
(暖房主体運転)
熱源機1では、圧縮機10に吸入された冷媒は圧縮され、高圧のガス冷媒として吐出される。圧縮機10を出た冷媒は、四方弁11、逆止弁13bを流れる。さらに冷媒配管4を通って熱媒体変換機3に流入する。
熱媒体変換機3に流入した冷媒は、気液分離器20を通過する。気液分離器20を通過したガス冷媒は、開閉装置23aを通過して熱媒体間熱交換器14aに流入する。熱媒体間熱交換器14aは冷媒に対して凝縮器として機能するため、熱媒体間熱交換器14aを通過する冷媒は、熱交換対象となる熱媒体を加熱して液化する(熱媒体に放熱する)。熱媒体間熱交換器14aを流出した液冷媒は、膨張装置15cを通過する。ここで、膨張装置15cの開度を制御し、熱媒体間熱交換器14aを通過する冷媒の流量を調整する。膨張装置21は冷媒が流れないような開度にしておく。
膨張装置15cを通過した冷媒は、さらに膨張装置15dと22を通過する。膨張装置15dを通過した冷媒は熱媒体間熱交換器14bに流入する。ここで、膨張装置15dの開度を制御し、冷媒の流量を調整することで冷媒を減圧させるため、低温低圧の気液二相冷媒が熱媒体間熱交換器14bに流入する。熱媒体間熱交換器14bは冷媒に対して蒸発器として機能するため、熱媒体間熱交換器14bを通過する冷媒は、熱交換対象となる熱媒体を冷却してガス冷媒となって(熱媒体から吸熱して)流出する。熱媒体間熱交換器14bから流出したガス冷媒は開閉装置24bを通過する。一方、膨張装置22を通過した冷媒も、膨張装置22の開度を制御するため、低温低圧の気液二相冷媒となり、開閉装置24bを通過したガス冷媒と合流する。そのため、より乾き度の大きい低温低圧の冷媒となる。合流した冷媒は、冷媒配管4を通過して熱媒体変換機3を流出する。ここで、開閉装置23b,24aは閉止し、冷媒が流れないようにする。
熱源機1に流入した冷媒は、熱源側熱交換器12に流入して空気と熱交換することで蒸発し、ガス冷媒もしくは気液二相冷媒で流出する。蒸発した冷媒は、四方弁11、アキュムレータ16を介して再度圧縮機10へ吸い込まれる。
以上のように、熱源側回路で熱媒体間熱交換器14a,14bを並列になるように配置すると、全暖房運転のときに熱媒体間熱交換器14a、14bの両方に高温のガス冷媒が流入する。そのため、熱媒体間熱交換器14a,14bの両方で高温の冷媒と熱媒体が熱交換することができるので、熱媒体間熱交換器14a,14bの両方の熱媒体出口温度を高くすることができる。また、全冷房運転のときに熱媒体間熱交換器14a,14bの両方に同じ乾き度の気液二相冷媒を流入させることができるため、熱媒体間熱交換器14a,14bの両方の熱媒体出口温度を低くすることができる。また、全暖房運転、全冷房運転ともに、熱媒体間熱交換器14a,14bに流入する冷媒流量を、熱媒体変換機3に流入する全冷媒流量のおよそ半分にできるので、冷媒の圧力損失を低減することができる。さらに、冷暖同時運転のとき、熱媒体間熱交換器14a,14bに流入する冷媒の流量を別々に制御することができるため、凝縮器として機能する熱媒体間熱交換器14aで冷媒が熱媒体に放熱する熱量と、蒸発器として機能する熱媒体間熱交換器14bで冷媒が熱媒体から吸熱する熱量を制御しやすくなる。
ここで、膨張装置15c,15dの開度は、全暖房運転のとき熱媒体間熱交換器14a,14bの冷媒出口の過冷却度を調整するように制御し、全冷房運転のとき熱媒体間熱交換器14a,14bの冷媒出口の過熱度を調整するように制御する。このとき、熱媒体間熱交換器14aと14bに流入する熱媒体の温度や流量の差が大きくなると、熱媒体間熱交換器14aと14bでの交換熱量の差が大きくなる。その結果、熱媒体間熱交換器14aの熱媒体出口温度と熱媒体間熱交換器14bの熱媒体出口温度の差が大きくなることがある。
そこで、実施の形態1に示したように、2つの熱媒体間熱交換器から流出した熱媒体を互いに熱交換させることによって、2つの熱媒体間熱交換器の熱媒体出口温度をほぼ均一にすることができる。または、実施の形態2に示したように、2つの熱媒体間熱交換器から流出した熱媒体を接触させて混合することで、2つの熱媒体間熱交換器の熱媒体出口温度をほぼ均一にすることができる。以上より、利用側熱交換器30a,30b,30c,30dの熱媒体入口温度をほぼ均一にすることができる。
また、本実施の形態3の冷媒側回路は、熱媒体側回路に依存せず、実施の形態1で示した熱媒体側の回路(図1、図2)、実施の形態2で示した熱媒体側の回路(図3、図4)のいずれでも組み合わせることができる。
また、本実施の形態1から3の熱媒体側回路には、各室内機2に流入する熱媒体流量を熱媒体流量調整装置36a,36b,36c,36dで調整している。この代わりに、図6に示すように、利用側熱交換器30aを熱媒体がバイパスするためのバイパス配管43を設け、例えば三方弁である熱媒体流量調整装置36aを前記パイパス配管43と利用側熱交換器30aの熱媒体出口に設置してもよい。この場合、バイパス配管43を流れる熱媒体の流量を調整することで、利用側熱交換器30aに流入する熱媒体流量を調整することができる。
また、本実施の形態1から3では熱源機の熱源を冷凍サイクル回路としたが、ヒータ等の種々の熱源を用いることが可能である。
また、熱媒体温度をほぼ均一にすることで、以下の理由で利用者にとって快適性が向上する。ここで、利用側熱交換器30a,30b,30c,30dが暖房運転をしていて、例えば利用側熱交換器30a,30bの熱媒体温度入口温度が所定の温度より低く、利用側熱交換器30a,30b,30c,30dの熱媒体入口温度の差が大きいとする。
前記のように、利用側熱交換器30の負荷調整は、熱媒体流量調整装置36を制御して、熱媒体の流量を調整して利用側熱交換器30の熱媒体入口温度と出口温度の差を調整することによって行っている。ところが、利用側熱交換器30a,30bの熱媒体入口温度が所定の温度(例えば45℃)よりも低い場合(例えば40℃)、利用側熱交換器30a,30bで、熱媒体と空気の温度差が小さくなる。そのため、熱媒体流量調整装置36a,36bの開度を全開としても、室内機2a,2bが要求する負荷を満たせず、利用者にとって快適性が損なわれる。
一方で、利用側熱交換器30a,30bの熱媒体入口温度を所定の温度にするためには、例えば圧縮機10を増速させるなどして熱源機の出力を増加させる必要がある。すると、元々熱媒体入口温度が所定の温度かそれより高い利用側熱交換器30c,30dでは、さらに熱媒体入口温度が上昇し(例えば50℃)、熱媒体の流量を減少させても室内機2の吹出し温度が高くなりすぎる場合があり、利用者の快適性が損なわれる。また、熱媒体を必要以上に加熱するため、省エネでない。以上のような理由で、快適性のためには利用側熱交換器の熱媒体入口温度をほぼ均一にする必要がある。
例えば装置として、利用側熱交換器30a,30b,30c,30dが部屋ごとに分かれて設置されているとする。このとき、冷凍サイクル装置は全暖房運転とする。利用側熱交換器30a,30b,30c,30dに流入する熱媒体の流量は、室内機2a,2b,2c,2dの負荷により、熱媒体流量調整弁36a,36b,36c,36dにて調整する。ここで、利用側熱交換器30a,30b,30c,30dの熱媒体入口温度を所定の温度にほぼ均一にすることで、利用側熱交換器30a,30b,30c,30dの大きさが異なったり、各部屋の負荷が異なったりしても、熱媒体流量調整装置36a,36b,36c,36dの開度を制御して、利用側熱交換器30a,30b,30c,30dの熱媒体入口温度と出口温度の温度差を調整することで、室内機2a,2b,2c,2dの負荷調整をすることができる。これによって、利用者の快適性を得ることができる。また、利用側熱交換器30a,30b,30c,30dの熱媒体入口温度をほぼ均一にすることで、COPが高くなるような利用側熱交換器30a,30b,30c,30dの熱媒体入口温度で冷凍サイクル装置を運転できるため、省エネとなる。
実施の形態4.
 図13は、本発明の実施の形態4に係る冷凍サイクル装置のシステム回路図である。本実施の形態4の冷凍サイクル装置は、第1の熱源媒体配管70a、第2の熱源媒体配管70bを備えている。第1の熱源媒体配管70aには、第1の熱源媒体を流通させる。第2の熱源媒体配管70bには、第2の熱源媒体を流通させる。ここで、第1の熱源媒体と第2の熱源媒体は、同一であっても、異なってもよい。また、熱源媒体は例えば水やブライン、蒸気、冷媒など媒体の種類は流体であれば何でもよい。
 また、熱媒体間熱交換器14a及び14b、利用側熱交換器30a,30b,30c,30d、熱媒体送出装置であるポンプ31a及び31b、熱媒体流路切替装置34a,34b,34c,34d,35a,35b,35c,35d、熱媒体流量調整装置36a,36b,36c,36dを配管接続して熱媒体循環回路を構成している。ここで、ポンプ31aが第1の熱媒体送出装置に相当する。ポンプ31bが第2の熱媒体送出装置に相当する。熱媒体流路切替装置34a,34b,34c,34dが第1の熱媒体流路切替装置に相当する。熱媒体流路切替装置35a,35b,35c,35dが第2の熱媒体流路切替装置に相当する。熱媒体流量調整装置36a,36b,36c,36dが熱媒体流量調整部に相当する。なお、本実施の形態4では利用側熱交換器30の台数を4台としているが、利用側熱交換器30の台数は任意である。
 利用側熱交換器30は、例えば熱媒体を通過させる伝熱管及びその伝熱管を流れる熱媒体と空気との間の伝熱面積を大きくするためのフィン(図示せず)を有し、熱媒体と空気との熱交換を行う。
 本実施の形態4では、熱媒体間熱交換器14a,14bを、熱媒体分岐ユニットでもある熱媒体変換機3(分岐ユニット)に収容している。また、熱媒体流路切替装置34a,34b,34c,34d,35a,35b,35c,35d、熱媒体流量調整装置36a,36b,36c,36dについても、熱媒体変換機3に収容されている。
 熱媒体変換機3と利用側熱交換器30a,30b,30c,30dのそれぞれは水や不凍液等の安全な熱媒体が流れる熱媒体配管5で接続されている。つまり、熱媒体変換機3と利用側熱交換器30a,30b,30c,30dのそれぞれは、1つの熱媒体経路で接続されている。
 熱媒体間熱交換器14a,14bは、熱源媒体を通過させる伝熱部と熱媒体を通過させる伝熱部とを有し、熱源媒体と熱媒体とによる媒体間の熱交換を行わせる。本実施の形態4では、熱媒体間熱交換器14aでは、第1の熱源媒体により熱媒体を加熱又は冷却する。熱媒体間熱交換器14bでは、第2の熱源媒体により熱媒体を加熱又は冷却する。
 補助熱交換器32は、熱媒体を通過させる伝熱部を有し、第1熱媒体流路61aと第2熱媒体流路61bを流通する熱媒体間の熱交換を行わせる。一方の流入口をポンプ31aの吐出口と配管接続し、他方の流入口をポンプ31bの吐出口と配管接続している。第1熱媒体配管61a側の流路には、補助熱交換器32をバイパスさせる熱媒体バイパス配管40と、開閉装置33a,33bが備えられている。
 例えば、第1の熱源媒体が熱媒体間熱交換器14aで熱媒体を冷却し、第2の熱源媒体が熱媒体間熱交換器14bで熱媒体を冷却し、第1の熱源媒体の熱媒体間熱交換器14aの入口温度(例えば2℃)よりも第2の熱源媒体の熱媒体間熱交換器14bの入口温度(例えば5℃)の方が高い場合がある。
 このとき、熱媒体間熱交換器14aの熱媒体出口温度(例えば7℃)よりも、熱媒体間熱交換器14bの熱媒体出口温度(例えば10℃)の方が高くなる。
 本実施の形態4では、利用側熱交換器30a,30b,30c,30dの熱媒体入口温度をほぼ均一にするため、補助熱交換器32を備えている。このとき、開閉装置33aを閉止し、開閉装置33bを開放する。すると、補助熱交換器32で熱媒体間で熱交換し、例えば第1熱媒体流路61aと61bの熱媒体の流量がほぼ同じであれば、補助熱交換器33の熱媒体出口温度は、第1熱媒体流路61a,61b共に、熱媒体間熱交換器14aと14bの熱媒体出口温度のおよそ平均値(例えば8.5℃)となる。
第1熱媒体流路61a、第2熱媒体流路61bの熱媒体は、熱媒体流路切替装置34a,34b,34c,34dにより流路を切り替えられて、利用側熱交換器30a,30b,30c,30dに流入する。ここで、熱媒体流路切替装置34a,34b,34c,34dの流路は、例えば第1熱媒体流路61aの熱媒体が利用側熱交換器30a,30bに流入するようにして、第2熱媒体流路61bの熱媒体が利用側熱交換器30c,30dに流入するようにする。上記のような場合、熱媒体流路切替装置34a,34bは、第1熱媒体流路61aの熱媒体が通過するようにする。熱媒体流路切替装置34c,34dは、第1熱媒体流路61bの熱媒体が通過するようにする。
熱媒体流路切替装置34a,34b,34c,34dを通過した熱媒体は、熱媒体流量調整装置36a,36b,36c,36dにより利用側熱交換器30a,30b,30c,30dに流入する流量を調整される。例えば、利用側熱交換器30a,30b,30c,30dの入口と出口の熱媒体温度差が一定になるように熱媒体流量調整装置36a,36b,36c,36dの開度を調整することで、利用側熱交換器30a,30b,30c,30dのそれぞれの大きさが異なったり、負荷が異なったりしても、利用側熱交換器30a,30b,30c,30dに流入する熱媒体の流量を調整することができる。利用側熱交換器30のうちいずれかを停止させたい場合は、熱媒体流量調整弁36を全閉にする。
利用側熱交換器30a,30b,30c,30dから流出した熱媒体は、熱媒体流路切替装置35a,35b,35c,35dを通過する。このとき、熱媒体流路切替装置35a,35bは、第1熱媒体流路62aに流出する熱媒体が通過するようにする。また、熱媒体流路切替装置35c,35dは、第2熱媒体流路62bに流出する熱媒体が通過するようにする。
上記のように、補助熱交換器33で、第1熱媒体流路61aと62bの熱媒体温度が均一になるようにしている。また、熱媒体流量調整装置36a,36b,36c,36dで熱媒体の流量を調整しても、水や不凍液等は減圧による温度変化がほとんどないため、利用側熱交換器30a,30b,30c,30dの入口温度はほぼ均一になる。
以上のように、補助熱交換器32で熱媒体間で熱交換しているため、熱源媒体70aと70bの温度差が大きい場合でも、利用側熱交換器30a,30b,30c,30dの熱媒体入口温度をほぼ均一にすることができる。よって、食品を冷蔵する場合など、利用側熱交換器30の温度管理が必要な場合に有用である。
 以上説明したように、本発明は、二次媒体として水や不凍液等の熱媒体を使用する冷凍サイクル装置及び冷凍サイクル装置に関して有用である。
 1 熱源機(室外機)、2a,2b,2c,2d 室内機、3 熱媒体変換機、4 冷媒配管、5 熱媒体配管、10 圧縮機、11 四方弁(冷媒流路切替装置)、12 熱源側熱交換器、13a,13b,13c,13d 逆止弁、14a,14b 熱媒体間熱交換器、15a,15b,15c,15d 膨張装置、16 アキュムレータ、20 気液分離器、21,22 膨張装置、23a,23b,24a,24b 開閉装置、30a,30b,30c,30d 利用側熱交換器、31a,31b ポンプ(熱媒体送出装置)、32 補助熱交換器、33a,33b,33c,33d 開閉装置、34a,34b,34c,34d 熱媒体流路切替装置、35a,35b,35c,35d 熱媒体流路切替装置、36a,36b,36c,36d 熱媒体流量調整装置、40,41 熱媒体バイパス配管、42 混合器、43 熱媒体バイパス配管、50 制御装置、61a,62a,63a,64a 第1熱媒体流路、61b,62b,63b,64b 第2熱媒体流路、70a 第1熱源媒体配管、70b 第2熱源媒体配管。
 

Claims (7)

  1. 複数の利用側熱交換器と、
    一方が前記利用側熱交換器のそれぞれの熱媒体流入口に配管接続され、他方が前記利用側熱交換器のそれぞれの熱媒体流出口に接続された第1の熱媒体間熱交換器と、
    一方が前記利用側熱交換器のそれぞれの熱媒体流入口に配管接続され、他方が前記利用側熱交換器のそれぞれの熱媒体流出口に接続された第2の熱媒体間熱交換器と、
     前記利用側熱交換器のそれぞれの熱媒体流入側に設けられ、前記第1の熱媒体間熱交換器と前記利用側熱交換器の熱媒体流入口とを接続する第1の流入側流路、および前記第2の熱媒体間熱交換器と前記利用側熱交換器の熱媒体流入口とを接続する第2の流入側流路とを切り替える複数の第1の熱媒体流路切替装置と、
    前記利用側熱交換器のそれぞれの熱媒体流出側に設けられ、前記第1の熱媒体間熱交換器と前記利用側熱交換器の熱媒体流出口とを接続する第1の流出側流路、および前記第2の熱媒体間熱交換器と前記利用側熱交換器の熱媒体流出口とを接続する第2の流出側流路とを切り替える複数の第2の熱媒体流路切替装置と、
    前記第1の熱媒体間熱交換器と前記利用側熱交換器とを接続する前記第1の流入側流路に熱媒体を流す第1の熱媒体送出装置と、
    前記第2の熱媒体間熱交換器と前記利用側熱交換器とを接続する前記第2の流入側流路に熱媒体を流す第2の熱媒体送出装置と、
    前記第1の熱媒体流路切替装置の熱媒体流出口から前記第2の熱媒体流路切替装置の熱媒体流入口の間に設けられ、前記利用側熱交換器へそれぞれ流れる熱媒体の流量を制御する複数の熱媒体流量調整部と、
    前記第1の熱媒体間熱交換器及び前記第2の熱媒体間熱交換器に接続され前記第1の熱媒体間熱交換器および第2の熱媒体間熱交換器に温熱または冷熱を供給して、前記第1の熱媒体間熱交換器および前記第2の熱媒体間熱交換器から前記利用側熱交換器へ流れる熱媒体を加熱または冷却する熱源装置、
    前記第1の熱媒体間熱交換器に配管接続され熱媒体を流入させる第1の熱媒体流入口と前記第2の熱媒体間熱交換器に配管接続され熱媒体を流入させる第2の熱媒体流入口を有し、前記第1の熱媒体流入口と前記第2の熱媒体流入口から流入した熱媒体を前記利用側熱交換器に複数の前記第1の熱媒体流路切替え装置を介して流出させる第1の熱媒体流出口と第2の熱媒体流出口を有するとともに、前記第1の熱媒体流入口から前記第1の熱媒体流出口へ流れる第1の熱媒体と前記第2の熱媒体流入口から前記第2の熱媒体流出口へ流れる第2の熱媒体とを伝熱材を介して熱交換する、または、前記第1の熱媒体流入口から流入した第1の熱媒体と前記第2の熱媒体流入口から流入した第2の熱媒体とを混合して熱交換し前記第1の熱媒体流出口と前記第2の熱媒体流出口から流出させる補助熱交換器と、
    前記補助熱交換器をバイパスさせるバイパス配管および前記バイパス配管に設けた開閉弁を、前記第1の熱媒体間熱交換器または前記第2の熱媒体間熱交換器から熱媒体を流出させるそれぞれの熱媒体流出口のいずれか一方に接続させる循環回路、とを備える冷凍サイクル装置。
  2.  前記補助熱交換器は、
     前記第1の熱媒体流入口から流入した熱媒体と前記第2の熱媒体流入口から流入した熱媒体とを直接接触させ、混合することを特徴とする請求項1に記載の冷凍サイクル装置。
  3. 前記熱源装置は、
    圧縮機、熱源側熱交換器、冷媒の圧力を調整する少なくとも1つの膨張装置、前記第1の熱媒体間熱交換器の冷媒側流路、及び前記第2の熱媒体間熱交換器の冷媒側流路を配管接続した冷凍サイクル回路を備えたことを特徴とする請求項1および請求項2のいずれか一項に記載の冷凍サイクル装置。
  4.  前記熱源装置は、
     前記第1の熱媒体間熱交換器の冷媒側流路と前記第2の熱媒体間熱交換器の冷媒側流路が直列となるように前記第1の熱媒体間熱交換器の冷媒流出口と前記第2の熱媒体間熱交換器の冷媒流入口を接続し、前記第1の熱媒体間熱交換器と前記第2の熱媒体間熱交換器を接続する冷媒流路に膨張装置を設けたことを特徴とする請求項1~3のいずれか一項に記載の冷凍サイクル装置。
  5.  前記熱源装置は、
    圧縮機、熱源側熱交換器、を収納する熱源機と、
    前記第1の熱媒体間熱交換器、前記第2の熱媒体間熱交換器、前記熱媒体間熱交換器のいずれかをバイパスする冷媒回路を収納する熱媒体変換機と、
    を備えることを特徴とする請求項1~3のいずれか一項に記載の冷凍サイクル装置。
  6.  前記熱源装置は、
     二酸化炭素など超臨界サイクルを形成する冷媒を含むことを特徴とする請求項1~5のいずれか一項に記載の冷凍サイクル装置。
  7. 複数の利用側熱交換器、
    一方が前記利用側熱交換器のそれぞれの熱媒体流入口に配管接続され、他方が前記利用側熱交換器のそれぞれの熱媒体流出口に接続された第1の熱媒体間熱交換器、
     一方が前記利用側熱交換器のそれぞれの熱媒体流入口に配管接続され、他方が前記利用側熱交換器のそれぞれの熱媒体流出口に接続された第2の熱媒体間熱交換器、
     前記利用側熱交換器のそれぞれの熱媒体流入側に設けられ、前記第1の熱媒体間熱交換器と前記利用側熱交換器の熱媒体流入口とを接続する第1の流入側流路と、前記第2の熱媒体間熱交換器と前記利用側熱交換器の熱媒体流入口とを接続する第2の流入側流路とを切り替える複数の第1の熱媒体流路切替装置、
     前記利用側熱交換器のそれぞれの熱媒体流出側に設けられ、前記第1の熱媒体間熱交換器と前記利用側熱交換器の熱媒体流出口とを接続する第1の流出側流路と、前記第2の熱媒体間熱交換器と前記利用側熱交換器の熱媒体流出口とを接続する第2の流出側流路とを切り替える複数の第2の熱媒体流路切替装置、
     前記第1の熱媒体間熱交換器と前記利用側熱交換器とを接続する前記第1の流入側流路に熱媒体を流す第1の熱媒体送出装置、
     前記第2の熱媒体間熱交換器と前記利用側熱交換器とを接続する前記第2の流入側流路に熱媒体を流す第2の熱媒体送出装置、
     前記第1の熱媒体流路切替装置の熱媒体流出口から前記第2の熱媒体流路切替装置の熱媒体流入口の間に設けられ、前記利用側熱交換器へ流れる熱媒体の流量を制御する複数の熱媒体流量調整部、
    前記第1の熱媒体間熱交換器に配管接続され前記第1の熱媒体熱交換器に熱源媒体を供給して、前記第1の熱媒体間熱交換器から前記利用側熱交換器へ流れる熱媒体を加熱または冷却する第1の熱源媒体流路、
    前記第2の熱媒体間熱交換器に配管接続され前記第2の熱媒体熱交換器に熱源媒体を供給して、前記第2の熱媒体間熱交換器から前記利用側熱交換器へ流れる熱媒体を加熱または冷却する第2の熱源媒体流路、
     一方の熱媒体流入口が前記第1の熱媒体間熱交換器の熱媒体流出口に配管接続され、一方の熱媒体流出口が前記利用側熱交換器のそれぞれの熱媒体流入口に配管接続され、他方の熱媒体流入口が前記第2の熱媒体間熱交換器の熱媒体流出口に配管接続され、他方の熱媒体流出口が前記利用側熱交換器のそれぞれの熱媒体流入口に配管接続された補助熱交換器と、
    前記補助熱交換器をバイパスさせるバイパス配管および前記バイパス配管に設けた開閉弁を、前記第1の熱媒体間熱交換器または前記第2の熱媒体間熱交換器から熱媒体を流出させるそれぞれの熱媒体流出口のいずれか一方に接続させる循環回路、とを備える冷凍サイクル装置。
PCT/JP2009/002377 2009-05-29 2009-05-29 冷凍サイクル装置、空気調和装置 WO2010137078A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/318,749 US8800319B2 (en) 2009-05-29 2009-05-29 Refrigerating cycle device used in an air conditioning apparatus, a refrigerating device and the like
JP2011515754A JP5183804B2 (ja) 2009-05-29 2009-05-29 冷凍サイクル装置、空気調和装置
PCT/JP2009/002377 WO2010137078A1 (ja) 2009-05-29 2009-05-29 冷凍サイクル装置、空気調和装置
EP09845146.1A EP2437005B1 (en) 2009-05-29 2009-05-29 Refrigeration cycle device and air-conditioning device
CN200980159565.1A CN102449411B (zh) 2009-05-29 2009-05-29 冷冻循环装置、空调装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/002377 WO2010137078A1 (ja) 2009-05-29 2009-05-29 冷凍サイクル装置、空気調和装置

Publications (1)

Publication Number Publication Date
WO2010137078A1 true WO2010137078A1 (ja) 2010-12-02

Family

ID=43222225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002377 WO2010137078A1 (ja) 2009-05-29 2009-05-29 冷凍サイクル装置、空気調和装置

Country Status (5)

Country Link
US (1) US8800319B2 (ja)
EP (1) EP2437005B1 (ja)
JP (1) JP5183804B2 (ja)
CN (1) CN102449411B (ja)
WO (1) WO2010137078A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022528077A (ja) * 2019-03-27 2022-06-08 エルジー エレクトロニクス インコーポレイティド 空気調和装置
JP7378685B1 (ja) 2023-01-20 2023-11-13 三菱電機株式会社 冷凍サイクル装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101212698B1 (ko) * 2010-11-01 2013-03-13 엘지전자 주식회사 히트 펌프식 급탕장치
KR101203579B1 (ko) 2010-11-05 2012-11-21 엘지전자 주식회사 공조 겸용 급탕 장치 및 그 운전방법
US9441851B2 (en) * 2010-12-09 2016-09-13 Mitsubishi Electric Corporation Air-conditioning apparatus
JP5717873B2 (ja) * 2011-11-18 2015-05-13 三菱電機株式会社 空気調和装置
DE102012008878A1 (de) 2012-05-02 2013-11-07 Man Truck & Bus Ag Kreislaufsystem für ein Nutzfahrzeug
JP6088753B2 (ja) * 2012-06-13 2017-03-01 サンデンホールディングス株式会社 車両用空気調和装置
CN103615829A (zh) * 2013-10-29 2014-03-05 大连葆光节能空调设备厂 二氧化碳热泵余热回收系统
WO2015132951A1 (ja) * 2014-03-07 2015-09-11 三菱電機株式会社 冷凍装置
GB2563119B (en) * 2015-10-26 2020-09-23 Mitsubishi Electric Corp Air-conditioning apparatus
US11358438B2 (en) * 2017-08-08 2022-06-14 Hangzhou Sanhua Research Institute Co., Ltd. Automotive air conditioning system
JP7387322B2 (ja) * 2019-07-29 2023-11-28 サンデン株式会社 車両用空気調和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284241A (ja) * 1985-10-04 1987-04-17 Yanmar Diesel Engine Co Ltd ヒ−トポンプシステムの制御装置
JPS6463763A (en) * 1987-09-04 1989-03-09 Hitachi Ltd Ice heat accumulation type heat recovery device
JPH0682110A (ja) 1992-09-01 1994-03-22 Matsushita Refrig Co Ltd 多室冷暖房装置
JPH06337138A (ja) 1993-05-27 1994-12-06 Matsushita Refrig Co Ltd 多室冷暖房装置
JP2004053069A (ja) * 2002-07-17 2004-02-19 Fuji Electric Retail Systems Co Ltd 冷媒回路、およびそれを用いた自動販売機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5044172A (en) * 1987-10-30 1991-09-03 Takenaka Corporation Air conditioning apparatus
JP2705031B2 (ja) 1989-06-13 1998-01-26 松下冷機株式会社 多室式空気調和機
JP2705033B2 (ja) 1989-08-25 1998-01-26 松下冷機株式会社 多室式空気調和機
JPH1062020A (ja) * 1996-08-22 1998-03-06 Matsushita Refrig Co Ltd 蓄熱式空気調和機
JPH10267494A (ja) 1997-03-25 1998-10-09 Mitsubishi Electric Corp 冷却装置
CN1224810C (zh) * 2002-03-18 2005-10-26 大金工业株式会社 空调装置的压力调整装置及具有压力调整装置的空调装置
JP4123829B2 (ja) * 2002-05-28 2008-07-23 三菱電機株式会社 冷凍サイクル装置
JP2005106404A (ja) 2003-09-30 2005-04-21 Sanyo Electric Co Ltd 加熱冷却システム
TWI332073B (en) 2004-02-12 2010-10-21 Sanyo Electric Co Heating/cooling system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284241A (ja) * 1985-10-04 1987-04-17 Yanmar Diesel Engine Co Ltd ヒ−トポンプシステムの制御装置
JPS6463763A (en) * 1987-09-04 1989-03-09 Hitachi Ltd Ice heat accumulation type heat recovery device
JPH0682110A (ja) 1992-09-01 1994-03-22 Matsushita Refrig Co Ltd 多室冷暖房装置
JPH06337138A (ja) 1993-05-27 1994-12-06 Matsushita Refrig Co Ltd 多室冷暖房装置
JP2004053069A (ja) * 2002-07-17 2004-02-19 Fuji Electric Retail Systems Co Ltd 冷媒回路、およびそれを用いた自動販売機

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022528077A (ja) * 2019-03-27 2022-06-08 エルジー エレクトロニクス インコーポレイティド 空気調和装置
US11578898B2 (en) 2019-03-27 2023-02-14 Lg Electronics Inc. Air conditioning apparatus
JP7378685B1 (ja) 2023-01-20 2023-11-13 三菱電機株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
CN102449411B (zh) 2014-01-29
EP2437005B1 (en) 2019-04-17
CN102449411A (zh) 2012-05-09
US8800319B2 (en) 2014-08-12
US20120060551A1 (en) 2012-03-15
EP2437005A1 (en) 2012-04-04
EP2437005A4 (en) 2018-03-28
JP5183804B2 (ja) 2013-04-17
JPWO2010137078A1 (ja) 2012-11-12

Similar Documents

Publication Publication Date Title
JP5183804B2 (ja) 冷凍サイクル装置、空気調和装置
KR100810870B1 (ko) 급탕장치
JP5460701B2 (ja) 空気調和装置
US9593872B2 (en) Heat pump
JP5642278B2 (ja) 空気調和装置
JP5279919B2 (ja) 空気調和装置
JP5784117B2 (ja) 空気調和装置
JP5377653B2 (ja) 空気調和装置
WO2012104891A1 (ja) 空気調和装置
JP5595521B2 (ja) ヒートポンプ装置
JP5490245B2 (ja) 空気調和装置
WO2011030429A1 (ja) 空気調和装置
WO2011033652A1 (ja) 空気調和装置
JP2006292313A (ja) 地中熱利用装置
JP2004003801A (ja) 二酸化炭素を冷媒として用いた冷凍装置
WO2014132433A1 (ja) 空気調和装置
WO2011052049A1 (ja) 空気調和装置
JP6576603B1 (ja) 空気調和装置
JP5312681B2 (ja) 空気調和装置
JP5752135B2 (ja) 空気調和装置
WO2011030420A1 (ja) 空気調和装置
KR20130081437A (ko) 캐스케이드 히트펌프 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159565.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845146

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011515754

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13318749

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009845146

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE