WO2010135973A1 - 用于太阳能电池的透明导电基板 - Google Patents

用于太阳能电池的透明导电基板 Download PDF

Info

Publication number
WO2010135973A1
WO2010135973A1 PCT/CN2010/073108 CN2010073108W WO2010135973A1 WO 2010135973 A1 WO2010135973 A1 WO 2010135973A1 CN 2010073108 W CN2010073108 W CN 2010073108W WO 2010135973 A1 WO2010135973 A1 WO 2010135973A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide layer
fluorine
tin oxide
transparent conductive
doped tin
Prior art date
Application number
PCT/CN2010/073108
Other languages
English (en)
French (fr)
Inventor
白京华
王杏娟
Original Assignee
中国南玻集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国南玻集团股份有限公司 filed Critical 中国南玻集团股份有限公司
Publication of WO2010135973A1 publication Critical patent/WO2010135973A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a transparent conductive substrate for a solar cell, and more particularly to a transparent conductive substrate for a solar cell in which a transparent conductive film is deposited on a transparent substrate.
  • Solar energy is an energy source that is formed by the fusion of hydrogen from the sun.
  • the energy released on its surface is approximately 3.8 ⁇ 10 20 MW if converted into electrical energy.
  • About 30% of the energy reaching the Earth is reflected into the universe, and the remaining 70% of the energy is received by the Earth.
  • the energy that the sun illuminates the earth for one hour is equivalent to the total energy consumed by the world for one year.
  • the nuclear fusion reaction inside the sun can last for several billion to tens of billions of years. It can be considered as an inexhaustible source of energy for human beings.
  • solar energy does not contain harmful substances and does not emit carbon dioxide. It can be seen that solar energy has the characteristics of huge energy, non-exhaustion and cleanness. As a future energy source, it is an ideal clean energy source.
  • solar energy use such as heat utilization, lighting, and electricity.
  • the use of heat is to convert solar energy into heat energy for use in water heaters, hot and cold air conditioning systems, etc.; use sunlight to illuminate the interior, or use sunlight to introduce sunlight into the basement; the application of electricity mainly uses the heat of the sun. And light energy.
  • the technology for converting solar radiant energy into electrical energy by a conversion device is called solar photovoltaic power generation technology, and the photoelectric conversion device is usually photoelectrically converted by utilizing the photovoltaic effect principle of a semiconductor device, and is therefore also called solar photovoltaic technology.
  • Solar cells are devices that use the principle of photoelectric conversion to convert solar radiation into electrical energy through semiconductor materials. In order to maximize the use of solar radiation, it is necessary to maximize the photoelectric conversion efficiency of solar cells.
  • Silicon-based thin film solar cells mainly including amorphous silicon ( ⁇ -Si: H) batteries, microcrystalline silicon ( ⁇ c-Si : H ) battery and amorphous / microcrystalline laminate ( micromorph ) Battery.
  • ⁇ -Si: H amorphous silicon
  • ⁇ c-Si : H microcrystalline silicon
  • micromorph / microcrystalline laminate micromorph / microcrystalline laminate
  • the optical bandwidth of ⁇ c-Si : H is about 1.1eV, and its absorption coefficient is higher in the long-wave direction, at 300nm ⁇ In the wavelength range of 1200 nm, it can absorb infrared long-wavelength regions, which makes the solar spectrum better utilized.
  • a transparent conductive substrate for a solar cell used as a transparent electrode in a solar cell can be obtained by depositing a transparent conductive film on a substrate having good light transmittance, and generally a material having good light transmittance such as glass can be used as a transparent film. Substrate.
  • a transparent conductive substrate for a solar cell it is required not only to have good electrical conductivity but also to increase the amount of light reaching the photoelectric conversion layer in order to increase the conversion efficiency of sunlight, which requires a transparent conductive film material having a high light transmittance.
  • a transparent conductive substrate for a solar cell comprising a transparent substrate and a silicon oxide layer sequentially superimposed on the transparent substrate, a fluorine-doped tin oxide layer, and a metal oxide layer optimized for light transmittance.
  • the fluorine-doped tin oxide layer is doped with fluorine from a side adjacent to the silicon oxide layer.
  • the fluorine concentration on the surface of the fluorine-doped tin oxide layer opposite to the transparent substrate is 2 mol % to 4 with respect to tin oxide. Mol %; or the fluorine-doped tin oxide layer has a thickness of 400 nm to 599 nm; or the fluorine-doped tin oxide layer resistance is 7 ⁇ / ⁇ to 15 ⁇ / ⁇ .
  • the fluorine concentration on the surface of the fluorine-doped tin oxide layer opposite to the transparent substrate is 2.5 mol% to 3 with respect to tin oxide. Mol %; or the fluorine-doped tin oxide layer has a thickness of 500 nm to 599 nm; or the fluorine-doped tin oxide layer resistance is 9 ⁇ / ⁇ to 11 ⁇ / ⁇ .
  • the fluorine-doped tin oxide layer has a light transmittance in a wavelength range of 300 nm to 1200 nm > 81 %; or haze is 10% to 30%.
  • the fluorine-doped tin oxide layer has a fluorine doping concentration of 1 mol% on the side adjacent to the silicon oxide layer.
  • the metal oxide layer of the optimized light transmittance has a refractive index greater than 2.0.
  • the metal oxide is one or more selected from the group consisting of titanium oxide, indium oxide, and zinc oxide.
  • the metal oxide layer of the optimized light transmittance has a thickness of 21 to 40 nm.
  • the surface of the metal oxide layer with optimized light transmittance opposite to the fluorine-doped tin oxide layer is a textured structure of irregularities.
  • the metal oxide layer By doping fluorine in the tin oxide layer and depositing a metal oxide layer that optimizes light transmittance thereon, the metal oxide layer utilizes various optical interference effects of the film to achieve a balance between solar absorption and reflection, thereby Optimizing the light transmittance can be used to optimize the light transmittance of the transparent conductive substrate of the solar cell with good electrical conductivity.
  • FIG. 1 is a schematic cross-sectional view of a transparent conductive substrate for a solar cell according to an embodiment.
  • the transparent conductive substrate for a solar cell in the following embodiments includes a transparent substrate, a silicon oxide layer sequentially superposed on the transparent substrate, a fluorine-doped tin oxide layer, and a metal oxide layer optimized for light transmittance.
  • fluorine is doped incrementally from the side adjacent to the silicon oxide.
  • a metal oxide layer having optimized light transmittance is deposited on the fluorine-doped tin oxide layer.
  • FIG. 1 Shown is a cross-sectional view of a transparent conductive substrate for a solar cell of an embodiment.
  • the transparent conductive substrate for a solar cell includes a transparent substrate 10, a silicon oxide layer 20, and a fluorine-doped tin oxide layer 30 which are sequentially stacked. And a metal oxide layer 40 that optimizes light transmittance.
  • the transparent substrate 10 is usually made of glass having good light transmittance. From 300nm to 1200nm In the wavelength range, the refractive index of glass is usually 1.5 to 1.7. In this embodiment, soda lime glass having a refractive index of 1.52 is used as a transparent substrate of a transparent conductive substrate for a solar cell.
  • the refractive index of silicon oxide is 1.45 to 1.65, which is followed by glass as a transparent substrate.
  • the refractive index is very close. If the fluorine-doped tin oxide layer 30 is deposited directly on the transparent substrate 10 as a transparent conductive electrode, the refractive index of the tin oxide is 1.8 to 2.5 relative to the transparent substrate. To be large, the reflection of incident sunlight interferes with the occurrence of color irregularities. Therefore, a silicon oxide layer 20 and a silicon oxide layer 20 are provided between the ladder-incremented fluorine-doped tin oxide layer 30 and the transparent substrate 10. It acts as a transparent film to suppress the occurrence of iridescent phenomena that appear as reflective interference colors.
  • the silicon oxide layer 20 may also be present in the form of a gradient coating with the fluorine-doped tin oxide layer 30. Silicon oxide layer 20 The presence of the alkali metal cation on the transparent substrate 10 can be further inhibited from diffusing into the stepwise incremental fluorine-doped tin oxide layer 30.
  • the thickness of the silicon oxide layer 20 is 10 nm to 50 nm, preferably 30 ⁇ . 40nm.
  • the fluorine-doped tin oxide layer 30 if the film thickness is large and fluorine is uniformly doped, the fluorine-doped tin oxide layer 30 The absorption of near-infrared light is increased, and it is apparent that this is not suitable for use as a transparent conductive film used for a transparent conductive substrate for a solar cell. Therefore, a step-by-step incremental fluorine-doping scheme is used to prepare a thin film, and a stepwise increment of fluorine-doped tin oxide layer is used.
  • an optimized light transmittance metal oxide layer deposited on the stepwise incremented fluorine-doped tin oxide layer 30 is provided. It has a high-quality suede structure, and a high haze value is obtained.
  • the thickness of the fluorine-doped tin oxide layer 30 in the step increment cannot be too small, so the fluorine-doped tin oxide layer 30
  • the thickness control is stricter. Since the proportional concentration of fluorine is increased in the deposition process of the film, it is required to have at least two coating heads, so the thickness of the film can be ensured.
  • fluorine-doped tin oxide layer The thickness of 30 is preferably controlled in the range of 400 nm to 599 nm, and the thickness is preferably in the range of 500 nm to 599 nm.
  • fluorine-doped tin oxide layer 40 that is, fluorine-doped tin oxide (FTO)
  • FTO fluorine-doped tin oxide
  • the film is a polycrystalline structure that maintains the rutile structure of the undoped tin oxide film, and fluorine doping generally does not cause a change in lattice constant.
  • the fluorine atom occupies the oxygen ion position in the form of a substitute ion. Since it does not conform to stoichiometry, it generates excess electrons. This electron is weakly bound and can move freely in the crystal to form freedom. Carrier.
  • the role of the dopant fluorine is to replace the position of the partial oxygen in the tin oxide film structure network, forming n Type doping, the amount of fluorine doping directly affects the structure and properties of the film.
  • each doped fluorine can provide a carrier, and the resistivity of the film decreases as the amount of fluorine doping increases;
  • the increasing amount of impurities increases the concentration of tin oxide Fermi into the conduction band, forming a degenerate semiconductor with high conductivity; but when the amount of doped fluorine continues to increase, some of the doped ions are no longer replaced.
  • the form replaces the oxygen in the lattice, but appears in the lattice gap position. This part of the doping ions does not provide carriers.
  • the doping ions themselves are also a lattice defect there are carriers. Strong scattering, too high concentration, will seriously affect the mobility of electrons and deteriorate conductivity.
  • the transmittance of the coated glass decreases as the fluorine content in the film increases. This is because as the fluorine in the film increases, the free carrier concentration of the film increases, so that the free carrier absorption of the photon increases, resulting in a decrease in light transmittance.
  • the increase in fluorine in the film makes the surface of the film rougher, which is also an important cause of the decrease in light transmittance. So, for The FTO film is more effective in obtaining a film by using a step-incremented fluorine-doped structure.
  • the atomic coordination number and the doping atom content model of the crystal structure can be established, and the FTO can be theoretically derived.
  • Theoretical calculation The optimum doping content of fluorine in the FTO is 2.5 mol%, and the fluorine-doped tin oxide layer in the product is considered in consideration of the influence of the experimental conditions.
  • the fluorine concentration on the surface of the FTO film on the opposite side of the transparent substrate 10 is from 2 mol % to 4 mol % with respect to tin oxide. Preferably 2.5 mol% to 3 mol % .
  • the fluorine-doped tin oxide layer has a low resistance of 7 ⁇ / ⁇ to 15 ⁇ / ⁇ , and more preferably 9 ⁇ / ⁇ to 11 ⁇ / ⁇ .
  • the crystallite size of the fluorine-doped tin oxide layer 30 which is stepwise increased in this fluorine concentration is large, so that the metal oxide layer of the optimized light transmittance deposited thereon is 40
  • the surface has a large degree of unevenness, so that the film has a large haze, and the haze value is more than 10%, preferably between 10% and 30%.
  • the light transmittance in the wavelength range of 1200 nm is > 81%, preferably, the light transmittance is > 85%.
  • the FTO starting from the adjacent silicon oxide layer 20 The film layer has a fluorine-doped content which is increased in steps.
  • the concentration of fluorine in the fluorine-doped tin oxide layer 30 is not easily too low, and the gradient-incremented fluorine concentration described in the present embodiment is about 1 mol% on the side adjacent to the silicon oxide layer 20. From this side, the concentration of fluorine doping increases.
  • the high refractive index transparent metal oxide may be, for example, one or more of titanium oxide, indium oxide, and zinc oxide.
  • Optimized light transmittance of the metal oxide layer 40 It may be a single layer structure of any of the above metal oxides, or may be a single layer structure formed by mixing a plurality of the above oxides, or may be an optimized light transmittance metal oxide formed by laminating a plurality of different metal oxide sublayers.
  • Object layer 40 .
  • the metal oxide layer 40 which optimizes the light transmittance is not necessarily too thick, and usually has a thickness of 10 nm to 50 nm, preferably 21 nm to 40 nm.
  • High refractive index optimized light transmittance metal oxide layer 40 The side opposite to the fluorine-doped tin oxide layer 30 is preferably a pile-concave structure, and the pile-concave structure can further increase the amount of sunlight reaching the photoelectric conversion layer.
  • a structure having high electrical conductivity and high transparency to solar radiation is a necessary feature. Improving the conductivity of the film by doping fluorine in tin oxide, by sequentially superposing on a transparent substrate A silicon oxide layer 20 on the 10th and a stepwise incremented fluorine-doped tin oxide layer 30, and a metal oxide layer having optimized light transmittance is deposited on the step-by-step fluorine-doped tin oxide layer 30. To improve the light transmission property of the film, the amount of light reaching the photoelectric conversion layer is increased, and iridescence caused by reflection or transmission of light from the transparent substrate 10 is suppressed. Optimized light transmittance of the metal oxide layer 40 Using the various optical interference effects of the film, a balance is achieved between solar absorption and reflection to optimize light transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Description

用于太阳能电池的透明导电基板 技术领域
本发明涉及用于太阳能电池的透明导电基板,尤其是在透明基板上沉积透明导电性薄膜的太阳能电池用透明导电基板。
背景技术
太阳能是由太阳的氢经过核聚变而成的一种能源。在它的表面所释放出的能量如果换算成电能则大约为 3.8 × 10 20 MW 。到达地球的能量中约 30% 反射到宇宙,剩下的 70% 的能量被地球接收。太阳照射地球一个小时的能量相当于世界一年的总消费能量。而太阳内部的这种核聚变反应,可以维持几十亿至上百亿年的时间,对于人类来说几乎可以认为是取之不尽用之不竭的能源。另外,太阳能不含有害物质,不会排出二氧化碳。可见太阳能具有能量巨大、非枯竭、清洁的特点,作为未来的能源是一种非常理想的清洁能源。
太阳能的利用形式有多种多样,如热利用、照明、电力等。热利用就是将太阳能转换为热能,供热水器、冷热空调系统等使用;利用太阳光给室内照明,或通过光导纤维将太阳光引入地下室等进行照明;在电力方面的应用主要是利用太阳的热能和光能。伴随着世界能源需求的日益增大,利用可再生的太阳能,实现无污染、无公害的干净的能源世界,这对于目前世界上大多数国家来说都具有非常大的吸引力。通过转换装置把太阳辐射能转换成电能利用的技术称为太阳能光发电技术,光电转换装置通常是利用半导体器件的光伏效应原理进行光电转换的,因此又称太阳能光伏技术。太阳能电池是利用光电转换原理使太阳的辐射光通过半导体物质转变为电能的一种器件,为了最大限度地使用太阳辐射,必须最大可能地提高太阳能电池的光电转换效率。
硅基薄膜太阳能电池,主要包括非晶硅(α -Si : H )电池,微晶硅(μ c-Si : H )电池以及非晶 / 微晶叠层( micromorph )电池。对于薄膜太阳能电池来说,增加光在电池中的利用率即提高太阳能电池的光电转换效率是最重要的一点,这就要求增加光在太阳能电池功能层的光程。α -Si : H 的光学带宽为 1.7eV 左右,其吸收系数在短波方向较高;而μ c-Si : H 的光学带宽约为 1.1eV ,其吸收系数在长波方向较高,在 300nm ~ 1200nm 的波长范围内,能吸收到红外长波区域,这就使太阳光谱能得到更好利用。
此外,在太阳能电池中作为透明电极使用的用于太阳能电池的透明导电基板可以通过在透光性良好的基板上沉积透明导电性薄膜来得到,通常可以选用透光性良好的材料例如玻璃作为透明基板。作为用于太阳能电池的透明导电基板不仅需要具有良好的导电性能,更需要为了提高太阳光的转换效率而增多到达光电转换层的光量,这就需要透明导电薄膜材料具有很高的透光率。
技术问题
有鉴于此,有必要提供一种提高透光率的用于太阳能电池的透明导电基板。
技术解决方案
一种用于太阳能电池的透明导电基板,包括透明基底及依次叠加在所述透明基底上的氧化硅层、掺氟的氧化锡层和优化透光率的金属氧化物层。
优选地,所述掺氟的氧化锡层为从邻接所述氧化硅层的一侧梯次增量地掺杂氟。
优选地,所述掺氟的氧化锡层中与所述透明基底相反一侧的表面氟浓度相对氧化锡为 2 mol % ~ 4 mol % ;或所述掺氟的氧化锡层的厚度为 400nm ~ 599nm ;或掺氟的氧化锡层面电阻为 7 Ω / □~ 15 Ω / □。
优选地,所述掺氟的氧化锡层中与所述透明基底相反一侧的表面氟浓度相对氧化锡为 2.5mol% ~ 3 mol % ;或所述掺氟的氧化锡层的厚度为 500nm ~ 599nm ;或掺氟的氧化锡层面电阻为 9 Ω / □~ 11 Ω / □。
优选地,所述掺氟的氧化锡层在 300nm ~ 1200nm 的波长范围内的透光率> 81 %;或雾度为 10 %~ 30 %。
优选地,所述掺氟的氧化锡层的掺氟浓度在邻接氧化硅层一侧为 1mol% 。
优选地,所述优化透光率的金属氧化物层的折射率大于 2.0 。
优选地,所述金属氧化物为氧化钛、氧化铟和氧化锌中的一种或两种以上。
优选地,所述优化透光率的金属氧化物层的厚度为 21 ~ 40nm 。
优选地,所述优化透光率的金属氧化物层与所述掺氟的氧化锡层相反一侧的表面为凹凸的绒面结构。
有益效果
通过在氧化锡层中掺杂氟并在之上沉积优化透光率的金属氧化物层,金属氧化物层利用薄膜的各种光学干涉效应,在太阳能吸收和反射之间达到一种平衡,从而优化透光率,可以使用于太阳能电池的透明导电基板具有良好的导电性能的同时优化薄膜的透光率。
附图说明
图 1 为一实施例的用于太阳能电池的透明导电基板的截面示意图。
本发明的最佳实施方式
以下实施方式中的用于太阳能电池的透明导电基板,包括透明基底及依次叠加在所述透明基底上的氧化硅层、掺氟的氧化锡层和优化透光率的金属氧化物层。其中,掺氟的氧化锡层中为从邻接氧化硅一侧梯次增量地掺杂氟。在掺杂氟的氧化锡层上沉积有优化透光率的金属氧化物层。通过在氧化锡层中掺杂氟并在之上沉积优化透光率的金属氧化物层,可以使用于太阳能电池的透明导电基板具有良好的导电性能的同时优化薄膜的透光率。
如图 1 所示,其为一实施例的用于太阳能电池的透明导电基板的截面图。用于太阳能电池的透明导电基板包括依次叠加的透明基底 10 、氧化硅层 20 、掺氟的氧化锡层 30 及优化透光率的金属氧化物层 40 。
透明基底 10 通常采用透光性良好的玻璃。在 300nm ~ 1200nm 的波长范围内,玻璃的折射率通常为 1.5 ~ 1.7 。本实施例中,采用折射率为 1.52 的钠钙玻璃作为太阳能电池透明导电基板透明基底。
氧化硅的折射率为 1.45 ~ 1.65 ,这跟用玻璃作为透明基底 10 的折射率很接近,如果直接在透明基底 10 上沉积掺氟的氧化锡层 30 作为透明导电性电极,则会因为氧化锡的折射率为 1.8 ~ 2.5 相对透明基底 10 要大而引起入射的太阳光的反射干扰色的不规则性的发生。因此,在梯次增量掺氟氧化锡层 30 和透明基底 10 之间设有氧化硅层 20 ,氧化硅层 20 作为透明薄膜以抑制反射干扰色出现的虹彩现象的发生。氧化硅层 20 还可以与掺氟的氧化锡层 30 形成梯度涂层的形式存在。氧化硅层 20 的存在可以进一步抑制透明基底 10 上碱金属阳离子向梯次增量掺氟的氧化锡层 30 扩散。氧化硅层 20 的厚度为 10nm ~ 50nm ,优选为 30 ~ 40nm 。
在掺氟的氧化锡层 30 中,如果膜层厚度较大且氟为均匀掺杂,则掺氟的氧化锡层 30 对近红外光的吸收会增大,显然这不适合作为太阳能电池用透明导电基板使用的透明导电性薄膜来使用。所以采用梯次增量掺氟的方案来制备薄膜,将梯次增量掺氟的氧化锡层 30 通过改变掺杂氟的浓度来减少膜层对近红外光的吸收,同时要尽量消除薄膜沉积时的残留应力,增加附着力,梯次增量掺氟的氧化锡层 30 的厚度也不能太大。另外,为了得到充分的光散射效果,使沉积在梯次增量掺氟的氧化锡层 30 上的优化透光率的金属氧化物层 40 具有优质的绒面凹凸结构,得到高的雾度值,梯次增量掺氟的氧化锡层 30 的厚度不能太小,所以掺氟的氧化锡层 30 的厚度控制比较严格。而由于在薄膜的沉积过程中,氟的比例浓度是梯次增加的,这就要求具有至少两个镀膜头,所以薄膜的厚度可以得到保障。经过理论分析及多次实验,掺氟的氧化锡层 30 的厚度控制在 400nm ~ 599nm 的范围较佳,厚度在 500nm ~ 599nm 则更好。
对于在梯次增量掺氟的氧化锡层中的掺杂量,必须具有合适的值才能对提高电导率和透光率产生效果,过多或过少的掺杂都会使薄膜的电阻增大或透光性减小而且性能不稳定。考虑到掺杂氟的氧化锡层 40 ,即掺氟氧化锡( FTO )薄膜为多晶结构,保持着非掺杂氧化锡薄膜的金红石结构,掺氟通常不会引起晶格常数的变化。在掺氟氧化锡薄膜中氟原子以替位离子的形式占据氧离子位置,由于不符合化学计量,产生多余的电子,这种电子受到的束缚作用很弱,能够在晶体中自由运动,形成自由载流子。用氟对氧化锡进行掺杂,掺杂剂氟的作用是取代氧化锡薄膜结构网络中部分氧的位置,形成 n 型掺杂,氟掺杂量的多少会直接影响着薄膜的结构和性能。在较大锡氟比下(即氟掺杂量较小),每个掺杂的氟都能提供一个载流子,薄膜电阻率随着氟掺杂量的增加而减小;随着氟掺杂量的不断增加,高浓度掺杂使氧化锡费米能级进入导带,形成导电率很高的简并半导体;但是当掺杂的氟量继续增加后,部分掺杂离子不再以替代形式取代晶格中氧的位子,而是出现在了晶格间隙位子,这部分掺杂离子不提供载流子,另一方面由于掺杂离子本身也是一种晶格缺陷,对载流子有较强的散射作用,浓度过高,会严重影响电子的迁移率,恶化导电性。
但是,对氧化锡进行氟掺杂后,镀膜玻璃的透光率随薄膜中氟含量的增加而减小。这是由于随薄膜中氟的增加,薄膜的自由载流子浓度增加,使得光子的自由载流子吸收增加,导致透光率减小。另外,薄膜中氟的增加使得薄膜表面更粗糙,也是引起透光率减小的一个重要的原因。所以,对于 FTO 薄膜,采用梯次增量掺氟的结构来得到薄膜效果更佳。
从氧化锡薄膜的晶体结构出发,建立晶体结构原子配位数和掺杂原子含量模型,可以在理论上推导出 FTO 薄膜中具有最佳导电性能的氟掺杂含量的表达式。理论计算 FTO 中氟的最佳掺杂含量为 2.5mol% ,考虑到实验条件的影响,在产品中对所述掺氟的氧化锡层 30 中与透明基底 10 相反一侧的 FTO 膜表面的氟浓度相对氧化锡为 2mol % ~ 4 mol % 。优选 2.5mol% ~ 3 mol % 。在这个氟浓度内,掺氟的氧化锡层面电阻较低,可达到 7 Ω / □~ 15 Ω / □,更好能达到 9 Ω / □~ 11 Ω / □。而且在这个氟浓度下梯次增量掺氟的氧化锡层 30 的微晶尺寸较大,使得在其上沉积的优化透光率的金属氧化物层 40 的表面凹凸程度也较大,从而薄膜具有大的雾度,从值上表现雾度值大于 10 %,最好在 10 %~ 30 %之间。梯次增量掺氟的氧化锡层 30 在 300nm ~ 1200nm 的波长范围内的透光率> 81 %,优选地,透光率> 85 %。而从邻接氧化硅层 20 开始的 FTO 膜层,其掺氟的含量为梯次增加。考虑到氟离子浓度在 FTO 各层中的不同而产生的渗透现象以及为了保证 FTO 膜与基底相反一侧表面的氟浓度,在邻接氧化硅层 20 的掺氟的氧化锡层 30 中氟的浓度不易过低,本实施例中所述的梯次增量掺氟浓度在邻接氧化硅层 20 一侧约为 1mol% 。从该侧开始掺氟浓度梯次增加。
优化透光率的金属氧化物层 40 采用折射率大于 2.0 的高折射率透明金属氧化物,例如可以为氧化钛、氧化铟和氧化锌中的一种或两种以上。优化透光率的金属氧化物层 40 可以是上述某种金属氧化物的单层结构,也可以是上述多种氧化物混合形成的单层结构,还可以是多个不同的金属氧化物子层层叠形成的优化透光率的金属氧化物层 40 。优化透光率的金属氧化物层 40 不必太厚,通常的厚度为 10nm ~ 50nm ,优选为 21nm ~ 40nm 。高折射率的优化透光率的金属氧化物层 40 与掺氟的氧化锡层 30 相反的一侧优选为绒面凹凸结构,采用该绒面凹凸结构可以进一步地增加太阳光到达光电转换层的光量。
对于优质的用于太阳能电池的透明导电基板,具有高电导率且对太阳辐射具有高透明度的结构是其必要的特点。通过在氧化锡中掺杂氟来提高薄膜的导电性能,而通过依次叠加在透明基底 10 上的氧化硅层 20 及梯次增量掺氟的氧化锡层 30 ,在所述的梯次增量掺氟的氧化锡层 30 上沉积有优化透光率的金属氧化物层 40 来提高薄膜的透光性能,使得到达光电转换层的光量有所增加,并且会抑制光从透明基体 10 上反射或透射产生的虹彩现象。优化透光率的金属氧化物层 40 利用薄膜的各种光学干涉效应,在太阳能吸收和反射之间达到一种平衡,从而优化透光率。
以上所述实施例仅表达了本发明的几种实施例,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
本发明的实施方式
工业实用性
序列表自由内容

Claims (1)

1 .一种用于太阳能电池的透明导电基板,包括透明基底,其特征在于,所述的用于太阳能电池的透明导电基板还包括依次叠加在所述透明基底上的氧化硅层、掺氟的氧化锡层及优化透光率的金属氧化物层。
2 .根据权利要求 1 所述的用于太阳能电池的透明导电基板,其特征在于,所述掺氟的氧化锡层为从邻接所述氧化硅层的一侧梯次增量地掺杂氟。
3 .根据权利要求 1 或 2 所述的用于太阳能电池的透明导电基板,其特征在于,所述掺氟的氧化锡层中与所述透明基底相反一侧的表面氟浓度相对氧化锡为 2 mol % ~ 4 mol % ;或所述掺氟的氧化锡层的厚度为 400nm ~ 599nm ;或掺氟的氧化锡层面电阻为 7 Ω / □~ 15 Ω / □。
4 .根据权利要求 1 或 2 所述的用于太阳能电池的透明导电基板,其特征在于,所述掺氟的氧化锡层中与所述透明基底相反一侧的表面氟浓度相对氧化锡为 2.5mol% ~ 3 mol % ;或所述掺氟的氧化锡层的厚度为 500nm ~ 599nm ;或掺氟的氧化锡层面电阻为 9 Ω / □~ 11 Ω / □。
5 .根据权利要求 1 所述的用于太阳能电池的透明导电基板,其特征在于,所述掺氟的氧化锡层在 300nm ~ 1200nm 的波长范围内的透光率> 81 %;或雾度为 10 %~ 30 %。
6 .根据权利要求 1 或 2 所述的用于太阳能电池的透明导电基板,其特征在于,所述掺氟的氧化锡层的掺氟浓度在邻接氧化硅层一侧为 1mol% 。
7 .根据权利要求 1 所述的用于太阳能电池的透明导电基板,其特征在于,所述优化透光率的金属氧化物层的折射率大于 2.0 。
8 .根据权利要求 1 或 2 或 7 所述的用于太阳能电池的透明导电基板,其特征在于,所述金属氧化物为氧化钛、氧化铟和氧化锌中的一种或两种以上。
9 .根据权利要求 1 或 2 或 7 所述的用于太阳能电池的透明导电基板,其特征在于,所述优化透光率的金属氧化物层的厚度为 21 ~ 40nm 。
10 .根据权利要求 1 所述的用于太阳能电池的透明导电基板,其特征在于,所述优化透光率的金属氧化物层与所述掺氟的氧化锡层相反一侧的表面为凹凸的绒面结构。
PCT/CN2010/073108 2009-05-27 2010-05-24 用于太阳能电池的透明导电基板 WO2010135973A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910107738.7 2009-05-27
CNA2009101077387A CN101567396A (zh) 2009-05-27 2009-05-27 用于太阳能电池的透明导电基板

Publications (1)

Publication Number Publication Date
WO2010135973A1 true WO2010135973A1 (zh) 2010-12-02

Family

ID=41283468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/073108 WO2010135973A1 (zh) 2009-05-27 2010-05-24 用于太阳能电池的透明导电基板

Country Status (2)

Country Link
CN (1) CN101567396A (zh)
WO (1) WO2010135973A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104253165A (zh) * 2013-06-27 2014-12-31 海洋王照明科技股份有限公司 太阳能电池器件及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102867858A (zh) * 2011-07-08 2013-01-09 亚树科技股份有限公司 具有良好雾度及导电度的导电基板
CN102950829B (zh) * 2011-08-30 2015-07-08 中国南玻集团股份有限公司 导电玻璃及其制备方法
KR101293647B1 (ko) * 2012-07-27 2013-08-13 삼성코닝정밀소재 주식회사 투명 전도성 산화물 박막 기판, 그 제조방법, 이를 포함하는 유기전계발광소자 및 광전지
US20140311573A1 (en) * 2013-03-12 2014-10-23 Ppg Industries Ohio, Inc. Solar Cell With Selectively Doped Conductive Oxide Layer And Method Of Making The Same
CN104451610B (zh) * 2014-11-24 2016-09-07 辽宁大学 氟掺杂二氧化锡透明导电薄膜的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040069992A1 (en) * 2002-10-11 2004-04-15 Highlink Technology Corporation Optoelectronic unit and transparent conductive substrate of the same
CN101244894A (zh) * 2007-02-14 2008-08-20 北京行者多媒体科技有限公司 优质氧化锡的形成方法
CN101253634A (zh) * 2005-08-30 2008-08-27 皮尔金顿集团有限公司 用于太阳能电池的优化透光率的镀膜玻璃制品及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040069992A1 (en) * 2002-10-11 2004-04-15 Highlink Technology Corporation Optoelectronic unit and transparent conductive substrate of the same
CN101253634A (zh) * 2005-08-30 2008-08-27 皮尔金顿集团有限公司 用于太阳能电池的优化透光率的镀膜玻璃制品及其制造方法
CN101244894A (zh) * 2007-02-14 2008-08-20 北京行者多媒体科技有限公司 优质氧化锡的形成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104253165A (zh) * 2013-06-27 2014-12-31 海洋王照明科技股份有限公司 太阳能电池器件及其制备方法

Also Published As

Publication number Publication date
CN101567396A (zh) 2009-10-28

Similar Documents

Publication Publication Date Title
US20090194165A1 (en) Ultra-high current density cadmium telluride photovoltaic modules
TWI379427B (en) Transparent solar cell module
US20080308145A1 (en) Front electrode including transparent conductive coating on etched glass substrate for use in photovoltaic device and method of making same
WO2010135973A1 (zh) 用于太阳能电池的透明导电基板
Shin et al. Semi-transparent photovoltaics using ultra-thin Cu (In, Ga) Se2 absorber layers prepared by single-stage co-evaporation
EP2156477A1 (en) Front electrode including pyrolytic transparent conductive coating on textured glass substrate for use in photovoltaic device and method of making same
WO2008030364A2 (en) Solar cell with antireflective coating comprising metal fluoride and/or silica and method of making same
US8354586B2 (en) Transparent conductor film stack with cadmium stannate, corresponding photovoltaic device, and method of making same
CN101777598A (zh) 透明型太阳能电池模块及其制造方法
US20120060891A1 (en) Photovoltaic device
Meillaud et al. Realization of high efficiency micromorph tandem silicon solar cells on glass and plastic substrates: Issues and potential
CN110970562A (zh) 一种钙钛矿/晶硅叠层太阳能电池及其制备方法
WO2010111970A1 (zh) 太阳能电池用透明导电基板
JP2011035396A (ja) 太陽電池基板及び太陽電池基板の製造方法
CN107946393A (zh) 基于SnTe作为背电极缓冲层的CdTe薄膜太阳能电池及其制备方法
US20100154881A1 (en) Transparent solar cell module and method of fabricating the same
CN106847941B (zh) 一种碲化镉薄膜太阳能电池及其制备方法
WO2023010933A1 (zh) 一种钙钛矿电池及光伏组件
US20090277500A1 (en) Transparent solar cell module
US20110180130A1 (en) Highly-conductive and textured front transparent electrode for a-si thin-film solar cells, and/or method of making the same
JP5469298B2 (ja) 光電変換装置用透明導電膜、及びその製造方法
Oyama et al. Requirements for TCO substrate in Si-based thin film solar cells-toward tandem
CN114242799A (zh) 一种用于太阳能电池的彩色盖板玻璃
KR102241098B1 (ko) 수소화된 p-i-n층을 포함하는 반투명 비정질 실리콘 박막 태양전지 및 이의 제조방법
JP2012129475A (ja) 薄膜太陽電池用透明導電膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780054

Country of ref document: EP

Kind code of ref document: A1