WO2010135852A1 - 适于在线应用的毛细管电池芯片、装置和方法 - Google Patents

适于在线应用的毛细管电池芯片、装置和方法 Download PDF

Info

Publication number
WO2010135852A1
WO2010135852A1 PCT/CN2009/000597 CN2009000597W WO2010135852A1 WO 2010135852 A1 WO2010135852 A1 WO 2010135852A1 CN 2009000597 W CN2009000597 W CN 2009000597W WO 2010135852 A1 WO2010135852 A1 WO 2010135852A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
capillary electrophoresis
cell
separation
channel
Prior art date
Application number
PCT/CN2009/000597
Other languages
English (en)
French (fr)
Inventor
郭旻
杨宏伟
蔡浩原
格里布·贺伯特
卓越
Original Assignee
西门子公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西门子公司 filed Critical 西门子公司
Priority to PCT/CN2009/000597 priority Critical patent/WO2010135852A1/zh
Publication of WO2010135852A1 publication Critical patent/WO2010135852A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44743Introducing samples

Definitions

  • the present invention relates to capillary electrophoresis (CE) technology, and more particularly to a capillary electrophoresis chip, apparatus and method suitable for online applications.
  • CE capillary electrophoresis
  • Capillary electrophoresis is an effective analytical method. Compared with traditional gel electrophoresis and high performance liquid chromatography (HPLC), capillary electrophoresis has the characteristics of high performance, simple composition and wide application range.
  • Automated sampling equipment has evolved into laboratory equipment for online monitoring. The main problems with this type of equipment are complex (desktop-based equipment, sample preparation is necessary), time-consuming (tens of minutes to more than an hour), and the use of very high voltages, the above problems limit its real-time monitoring And control applications.
  • Capillary electrophoresis is an effective method for the biological analysis of DNA, proteins, peptides and even microorganisms. So far, in order to make traditional capillary electrophoresis an online method, many efforts have been made in the industry. For example, attempts have been made to connect capillary electrophoresis to an automated sampling device for online use. Although the test results are good, the long analysis time and high voltage (usually higher than 10kv) make it unsuitable for online analysis, providing information used by real-time controllers.
  • Chip-based capillary electrophoresis is a recently developed method based on microfabrication technology. By applying an appropriate electric field or pressure, the sample injection of the capillary electrophoresis chip (CE chip) can be well controlled, and therefore, a shorter separation channel can be applied than conventional capillary electrophoresis.
  • CE chip capillary electrophoresis chip
  • a CE chip device that is directly coupled to a dialysis probe is provided in U.S. Patent Application Serial No. US20050248763A1.
  • the pressure acts to introduce the sample into the microchannel, and the electric field acts to introduce the labeling reagent into the microchannel.
  • the sample Under high pressure, for example, the sample is in the fermentor, the sample will continue to flow out of the dialysis membrane onto the chip, which has a large impact on the results of the measurement.
  • the inventors have found in research and experiments that the common problem existing in the above prior art is that the sample has a certain interference to the separation system when introducing the microchannel, thereby affecting the components in the sample to varying degrees. The result and efficiency of the separation.
  • the present invention provides a capillary electrophoresis chip suitable for online applications that reduces the effect of the sample on the separation system.
  • the present invention provides a capillary electrophoresis apparatus suitable for online applications, comprising the above capillary electrophoresis chip.
  • the present invention provides a capillary electrophoresis method suitable for on-line applications in which analytes in a sample are separated using the capillary electrophoresis apparatus described above.
  • the thin tube for the dry storage line of the present invention includes: the sample cell 31 1 , the explosive material can be. 31 2, ⁇ W, a pool 313 and a sample waste tank 314; an injection passage 322 communicating with the sample tank 311 and the injection waste tank 312, respectively; a separation passage 323 communicating with the separation tank 313 and the sample waste pool 314, respectively, and The injection channel 322 is in cross-connect; and a detection zone 331 disposed along the separation channel 323 and located adjacent to the sample waste pool 314; the capillary electrophoresis chip further comprising: a sample inlet 301 for loading a sample; a sample outlet 302, for discharging the sample overflowed in the sample cell 311; a sample channel 321, through which the sample loaded from the sample inlet 301 flows into the sample cell 31 1 .
  • the sample outlet 302 is externally ported, and the other end is in communication with the sample cell 311 through a drain port; the height of the drain port from the bottom of the sample cell 311 is lower than the height of the sample cell 311.
  • the capillary electrophoresis chip further includes: a reagent inlet 901 for loading a reagent, and a reagent loaded from the reagent inlet 901 flows into the sample cell 311 through the sample channel 321 .
  • the capillary electrophoresis chip further includes a mixer 902 located on the sample channel 321 to thoroughly mix the sample loaded from the sample inlet 301 with the reagent loaded from the reagent inlet 901.
  • the capillary electrophoresis apparatus suitable for online application provided by the present invention comprises: the capillary electrophoresis chip described above; a high voltage power supply 601 having an output end inserted into the separation cell 313 and the sample waste pool 314 of the capillary electrophoresis chip through a pair of electrodes 403, 404, respectively. Inserting another pair of electrodes 401, 402 into the sample cell 311 of the capillary electrophoresis chip and the injecting waste pool 312, respectively; a detector 602 for separating the sample analytes of the detection zone 331 on the capillary electrophoresis chip Test.
  • the detector 602 is installed at a position close to the detection area 331; or is installed at a position away from the detection area 331 or connected to the detection area 331 by an optical fiber.
  • the capillary electrophoresis apparatus further includes: a waste pump 603 connected to the sample outlet 302 directly or through a conduit for discharging the sample in the sample outlet 302.
  • the capillary electrophoresis method suitable for online application provided by the present invention includes:
  • a sample inlet dedicated to loading a sample is added to the capillary electrophoresis chip, and a sample channel is set between the sample inlet and the sample cell, and ⁇ , ⁇ is added.
  • the sample cell the sample of the product
  • the product outlet effectively avoids the influence of the loaded sample on the separation channel on the capillary electrophoresis chip, avoiding interference of bubbles, pressure and sample viscosity.
  • the design of the present invention uses the injection channel and the separation channel to communicate with each other, so that the capillary electrophoresis chip of the present invention is suitable for various injection modes, and is not limited to a single injection mode.
  • the capillary electrophoresis chip of the present invention has a simple structure, which makes it more reliable and less costly.
  • the capillary electrophoresis chip of the present invention has a smaller size, making it easier to integrate into an automated system.
  • Figure 1 is a schematic diagram of conventional capillary electrophoresis
  • FIG. 2 is a schematic diagram showing the composition of two parts of a capillary electrophoresis chip according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic structural view of a top portion of a capillary electrophoresis chip according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic view showing the assembly of a capillary electrophoresis chip according to Embodiment 1 of the present invention.
  • FIG. 5 is a cross-sectional view showing a sample inlet and a sample outlet of a capillary electrophoresis chip according to Embodiment 1 of the present invention, wherein (a) is a cross-sectional view when the sample cell is empty, and (b) is a cross-sectional view when the sample is loaded in the sample cell;
  • FIG. 6 is a schematic structural view of a capillary electrophoresis apparatus according to Embodiment 1 of the present invention.
  • FIG. 7 is a flow chart of a capillary electrophoresis method according to Embodiment 1 of the present invention.
  • Figure 8 shows an example of an analysis process performed on a negatively charged analyte, wherein (a) indicates that no electric field is applied to all of the four cells, (b) indicates that an electric field is applied between the sample cell and the injecting waste cell, and (c) indicates Applying an electric field between the separation cell and the separation waste pool;
  • FIG. 9 is a schematic structural view of a top portion of a capillary electrophoresis chip according to Embodiment 2 of the present invention.
  • Figure 10 is a schematic view showing the structure of a capillary electrophoresis apparatus according to a second embodiment of the present invention.
  • Capillary electrophoresis generally refers to a type of liquid phase separation technique that uses a high-pressure field as a driving force and a capillary as a separation channel to separate the components according to the difference in the degree of twist between the components.
  • Figure 1 shows the original of the traditional capillary electrophoresis technique.
  • Reason As shown in FIG. 1, the two electrodes 11 and 12 connected to the high-voltage power source 10 are respectively inserted into a buffer 13 containing a sample and a buffer 14 containing no sample, and both ends of the capillary 15 are also inserted in the buffers 13 and 14, respectively.
  • the different components of the sample in the buffer 13 migrate to the buffer 14 with different electrophoretic enthalpy, and the detection window 16 is disposed at a position close to the buffer 14, and the detection window 16 is passed.
  • the separation of the different components in the sample was tested. '
  • one of the problems with the existing capillary electrophoresis technology is that the sample has a certain influence on the separation system during the injection of the capillary electrophoresis device. Many factors contribute to this effect, for example, either by a sample overflow or by the pressure of the sample loading pushing the separation medium out of the channel. In the application of more advanced capillary electrophoresis chips, this problem is also ubiquitous, and there is currently no literature document that can solve the above problems well.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 2 is a schematic diagram showing the composition of a two-part capillary electrophoresis chip of the first embodiment.
  • the capillary electrophoresis chip of the first embodiment is formed by joining upper and lower portions. The bottom is flatter, and the top contains the components that separate the microchannels, cells, and sample inlets and outlets.
  • FIG. 3 is a schematic structural view of a top portion of a capillary electrophoresis chip according to a first embodiment of the present invention.
  • the upper portion of the capillary electrophoresis chip includes a sample inlet 301, a sample outlet 302, a sample cell 31 1 , an injection waste tank 312, a separation cell 313, a sample waste pool 314, a sample channel 321, an injection channel 322, and separation. Channel 323 and detection area 331.
  • the sample channel 321, the injection channel 322, and the separation channel 323 are micromachined capillaries.
  • the sample cell 311, the infusion waste tank 312, the separation cell 313, and the sample waste cell 314 are externally opened for electrode insertion and may be injected into the separation buffer.
  • the sample inlet 301 is connected to the sample cell 311 through the sample channel 321 .
  • the sample outlet 302 is externally ported, and the other end is communicated with the sample cell 311 through a drain port.
  • the drain port has a specific height from the bottom of the sample cell 311, which is generally lower than the height of the sample cell 311.
  • the sample cell 311 and the injected waste cell 312 are connected by an injection channel 322.
  • the separation cell 313 and the sample waste cell 314 are connected by a separation channel 323.
  • the injection channel 322 and the separation channel 323 are in cross communication.
  • Detection zone 331 is located on separation channel 323 adjacent to sample waste reservoir 314.
  • Fig. 4 is a schematic view showing the assembly of the capillary electrophoresis chip of the first embodiment.
  • four electrodes 401, 402, 403, and 404 are respectively inserted into the sample cell 311, the injecting waste pool 312, the separation cell 313, and the sample waste pool 314 for connection to the output of the high voltage power source.
  • electrodes 401 and 402 are a pair of electrodes
  • electrodes 403 and 404 are a pair of electrodes.
  • the liquid in the sample cell 311 flows into the injection channel 322 by applying an electric field between the electrodes 401 and 402.
  • an electric field between the electrodes 403 and 404 the liquid in the intersection of the injection passage 322 and the separation passage 323 is moved toward the sample waste pool 314.
  • the electrodes 401 and 402 move the sample from the sample cell 311 to the injection waste pool 312, and the electrodes 403 and 404 allow the sample to pass from the intersection of the injection channel 322 and the separation channel 323. Moving to the sample waste pool 314.
  • the electrodes 401 and 402 are not necessary.
  • other methods such as vacuum suction may be employed to introduce the liquid in the sample cell 311 into the intersection of the injection channel 322 and the separation channel 323.
  • FIG. 5 is a cross-sectional view showing the sample inlet and the sample outlet of the capillary electrophoresis chip of the first embodiment, wherein (a) is a cross-sectional view when the sample cell 311 is empty, and (b) is a cross-section when the sample is loaded in the sample cell 311.
  • Figure. As can be seen from (a) of Fig. 5, the sample outlet 302 communicates with the sample cell 311 through the drain port, and the height of the drain port from the bottom of the sample cell 311 is slightly lower than the height of the sample cell 311.
  • Fig. 6 is a schematic structural view of a capillary electrophoresis apparatus of the first embodiment.
  • the capillary electrophoresis apparatus of the first embodiment includes a high voltage power source 601 and a detector 602 in addition to the capillary electrophoresis chip described above.
  • the high voltage power supply has at least one pair of outputs.
  • the output of the high voltage power supply is connected to the electrodes in the four cells to provide an electric field for injection and separation.
  • the detector 602 detects the separation result of each component in the sample passing through the detection zone 331 of the separation channel 323.
  • the detector 602 can be mounted directly adjacent to the detection zone 331, or mounted remotely from the detection zone 331, or the detection zone 331 can be detected by fiber optics.
  • Detector 602 can be an absorbance detector, or a laser induced fluorescence detector.
  • the capillary electrophoresis apparatus may further include a waste pump 603 for discharging the sample of the sample outlet 302.
  • the waste pump 603 may be a syringe pump, a peristaltic pump or a vacuum pump or the like. Waste pump 603 is coupled to sample outlet 302 either directly or through a conduit.
  • Fig. 7 is a flow chart showing the capillary electrophoresis method of the first embodiment.
  • the capillary electrophoresis method of the first embodiment uses the capillary electrophoresis apparatus of the first embodiment.
  • This example is a process for analyzing an analyte in a sample as a negatively charged analyte.
  • the capillary electrophoresis method of this embodiment includes the following steps:
  • step 701 before the measurement is started, the separation medium is filled in the injection channel and the separation channel, and the separation buffer is filled in all the cells.
  • step 702 all electrodes are left unconnected, the sample is loaded into the sample cell, and the waste pump is operated to ensure that the overflow liquid is discharged, keeping the volume of the liquid in the sample cell constant, as shown in (a) of FIG.
  • step 703 the loading of the sample is stopped.
  • step 704 the electrodes in the separation separation tank and the sample waste pool are not connected, the electrodes in the sample pool are grounded, and the electrodes injected into the waste pool are connected to the output end of the high-voltage power source, under the action of the electric field, in the sample pool.
  • the analyte will initially move to the infusion waste tank, as shown in Figure 8(b).
  • step 705 the electrodes in the sample pool and the injecting waste pool are not connected, the electrodes in the separation tank are grounded, and the electrodes in the sample waste pool are connected to the output end of the high-voltage power source, and the injection channel and the separation channel are under the action of the electric field.
  • the sample of the intersection area will move to the separation channel as shown in (c) of FIG. As the sample moves along the separation channel, different analytes in the sample are separated and the detector detects different analytes in the detection zone.
  • step 706 all electrodes are left unconnected, the sample is loaded into the sample cell, and the next measurement is taken.
  • FIG. 7 shows a method for detecting a negatively charged analyte.
  • the steps are basically similar, except that the electrode is connected, and if it is a positively charged analyte, at step 704
  • the electrode of the sample 'cell should be connected to the output of the high-voltage power source, and the electrode injected into the waste pool should be grounded.
  • the electrode of the separation cell should be connected to the output end of the high-voltage power supply, and the electrode of the sample waste pool should be grounded.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the second embodiment is similar to the design of the first embodiment except that: the second embodiment further includes a reagent inlet and a mixer.
  • FIG. 9 is a schematic structural view of the top of a capillary electrophoresis chip according to Embodiment 2 of the present invention.
  • the capillary electrophoresis chip in FIG. 9 includes a sample inlet 301, a sample outlet 302, a sample cell 311, an injection waste tank 312, a separation cell 313, a sample waste pool 314, a sample channel 321, an injection channel 322, a separation channel 323, and a detection zone 331. .
  • the functions of the above sections are the same as those of FIG. 3 and will not be described here.
  • Reagent inlet 901 and mixer 902 are added to Figure 9.
  • Reagent inlet 901 is used to load reagents required for separation, such as labeling reagents.
  • the reagent reagent inlet 901 and the sample inlet 301 loaded sample are thoroughly mixed in the mixer 902 on the sample channel 321 .
  • the mixer 902 is designed in a "bow" shape to allow the reagent and sample to be thoroughly mixed.
  • various mixer designs can be adopted according to specific needs.
  • FIG. 10 is a schematic view showing the structure of a capillary electrophoresis apparatus according to a second embodiment of the present invention.
  • the capillary electrophoresis apparatus of the second embodiment includes a high voltage power supply 601 and a detector 602 in addition to the capillary electrophoresis chip shown in FIG. 9.
  • the high P power supply county has a small pair of fibers, ⁇ .
  • the high source of the source, the ⁇ and the Uq pool are connected by the pole.
  • the detector 602 detects the separation result of each component in the sample passing along the detection zone of the separation channel 323.
  • the detector 602 can be mounted directly adjacent to the detection zone 331, or mounted remotely from the detection zone 331, or the detection zone 331 can be detected by fiber optics.
  • Detector 602 can be an absorbance detector, or a laser induced fluorescence detector.
  • the capillary electrophoresis apparatus may further include a waste pump 603 for discharging the sample of the sample outlet 302.
  • the waste pump 603 may be a syringe pump, a peristaltic pump or a vacuum pump or the like. Waste pump 603 is coupled to sample outlet 302 either directly or through a conduit.
  • capillary electrophoresis method of the second embodiment is substantially the same as the method of the first embodiment, except that While loading the sample through the sample inlet, the reagent is loaded through the reagent inlet, and the loaded sample and reagent are thoroughly mixed in the mixer and flow into the sample cell.
  • the sample inlet, the sample outlet and the sample channel are designed on the capillary electrophoresis chip of the present invention, and the sample loaded at the sample inlet flows into the sample cell through the sample channel, and the overflowed sample passes through the sample cell.
  • the sample outlet is vented, and this design avoids interference with bubbles, pressure, and sample viscosity.
  • the capillary electrophoresis chip of the present invention is simple in structure, making it more reliable and less costly.
  • the capillary electrophoresis chip of the present invention has a smaller size, making it easier to integrate into an automated system.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

适于在线应用的毛细管电泳芯片、 装置和方法
技术领域
本发明毛细管电泳 (CE, Capillary Electrophoresis ) 技术, 特别是涉及一种适于在线 应用的毛细管电泳芯片、 装置和方法。
背景技术
在生物工业过程 (例如发酵) 中, 自动化应用的测量在很大程度上取决于过程参数的测 量, 例如 DNA、 蛋白质、 肽等。 毛细管电泳是有效的分析方法, 与传统凝胶电泳、 高效液相 色谱法 (HPLC) 等技术相比, 毛细管电泳具有高性能、 组成简单、 应用范围广等特点。 自动 采样设备己经发展为实验室设备, 以适用于在线监测。 这类设备的主要问题在于复杂 (基于 桌面的设备, 样品制备是必要的)、 耗时(几十分钟到一个多小时), 并需使用非常高的电压, 以上的问题限制了其在实时监测和控制上的应用。
毛细管电泳是一种对 DNA、 蛋白质、 肽甚至微生物进行生物分析的有效方法。 迄今为止, 为了使传统毛细管电泳作为在线方法, 业界己进行了诸多努力。 比如, 已有尝试将毛细管电 泳连接于用于在线的自动采样设备。 虽然试验结果不错, 但是分析时间之长、 电压之高 (通 常高于 10kv), 使其不适合用于在线分析, 提供实时控制器所使用的信息。
基于芯片的毛细管电泳是最近发展起来的基于微细加工技术的方法。 通过施加适当的电 场或压力, 可以很好地控制毛细管电泳芯片 (CE芯片) 的样品注入, 因此, 与传统毛细管电 泳相比, 可应用更短的分离通道。
Bernd W. Wenclawiak等人在 2006年的 《分析通讯》 (Analytical Letter) 杂志上发表 的文章 《用于微细加工设备的毛细管芯的样品注入 / 片上 CE注入》 (Sample Injection for Capillary Electrophoresis on a Micro Fabricated Device /On Chip CE Injection) ( 39: 3-16 )中介绍了典型的 CE芯片的样品注入方法。 因此, 在更短的分离长度内可获得更高的分 离效率, 更短的时间和更低的电压。 这使得 CE芯片更适用于生物分析。
Vladislav Dolnik等人在 2000年的 《电泳》 (Electrophoresis ) 杂志上的文章 《芯片 上的毛细管电泳》 (Capillary electrophoresis on microchip) (21 , 41-45 ) 和 Joseph Wang 等人在 2002年的 《分析化学》 (Anal. Chem. ) 杂志上发表的文章 《微细加工电泳芯片用于对 葡萄糖、 尿酸、 抗坏血酸和对乙酰氨基酚的即时生物测定》 (Microfabricated electrophoresis chips for simultaneous bioassays of glucose, uric acid, ascorbic acid and acetaminophen ) ( 72, 2514-2518 ) 描述了一些利用 CE芯片分析 DNA、 蛋白质、 肽和葡 萄糖的应用的例子。 基于微片的毛细管电泳作为在线监测方法具有很大潜力。
Yi-hung Lin等人在 2001年的 《色谱期刊》 (Journal of Chromatography) 杂志上发表 的文章 《采用水压抽吸的基于电泳的芯片的流动釆样》 (Flow-through sampling for electrophoresis- based chips using hydrodynamic pumping) (937, 115-125 ) 提供了一种 设备, 用于连续样品载入设计和方法。 一对端口, 即样品入口和出口, 位于样品注入通道的 两端。 这种设计在使用低粘度分离介质时无法很好工作。 载入样品的压力将分离介质推到通 道之外。 而且, 该设计很容易受到样品中的气泡的影响。
Shu-Hui Chen等人在公开号为 US20050248763A1的美国专利申请中提供了一种直接与透 析探针连接的 CE芯片设备。 压力作用将样品引入微通道, 电场作用将标记试剂引入微通道。 在高压下, 例如样品处于发酵罐中, 样品将持续地通过透析膜流出至芯片上, 对测量的结果 有很大影响。
S. Buttenbach和 R,Wi lke在 2005年的 《分析与生物分析化学》 (Anal. Bioanal. Chem) 杂志上发表的文章 《采用水压样品注入于对连续样品流进行测量的毛细管电泳芯片》 (A capi llary electrophoresis chip with hydrodynamic sample injection for measurements from a continuous sample flow) ( 383, 733-737 ) 提供了一种设备, 通过流经止回阔的持 续的样品流注入样品。注入毛细管的样品的体积取决于分离通道中的压力和分离介质的粘度。 该设计不能用于高粘度分离介质, 例如分离 DNA和蛋白质的情况。
发明人在研究和实验中发现, 以上几种现有技术所存在的共同问题在于, 样品在引入微 通道时对分离系统有一定的干扰, 从而在不同程度上影响了对样品中各组分进行分离的结果 和效率。
发朋内容
本发明提供了一种适于在线应用的毛细管电泳芯片, 能够减小样品对分离系统的影响。 本发明提供了一种适于在线应用的毛细管电泳装置, 包含上述毛细管电泳芯片。
本发明提供了一种适于在线应用的毛细管电泳方法, 利用上述毛细管电泳装置对样品中 的分析物进行分离。
本发明搵供的话干存线 用的 细管由. 芯片包括: 样品池 31 1、 炸入 物灿 . 31 2、 ^W, 池 313和样品废物池 314;注入通道 322,分别与所述样品池 311和所述注入废物池 312连通; 分离通道 323, 分别与所述分离池 313与所述样品废物池 314连通、 且与所述注入通道 322 交叉连通; 和检测区 331, 沿所述分离通道 323布置、 且位于所述样品废物池 314附近; 该毛细管电泳芯片还包括: 样品入口 301, 用于载入样品; 样品出口 302, 用于排出样品 池 311中溢出的样品; 样品通道 321, 从所述样品入口 301载入的样品, 通过所述样品通道 321流入所述样品池 31 1。
其中, 所述样品出口 302—端对外幵口, 另一端通过一排泄口与所述样品池 311连通; 所述排泄口距离所述样品池 311底部的高度低于所述样品池 311的高度。
所述的毛细管电泳芯片还包括: 试剂入口 901, 用于载入试剂, 从所述试剂入口 901载 入的试剂通过所述样品通道 321流入所述样品池 311。
所述的毛细管电泳芯片还包括: 混合器 902, 位于所述样品通道 321上, 将从所述样品 入口 301载入的样品与从所述试剂入口 901载入的试剂充分混合。
本发明提供的适于在线应用的毛细管电泳装置包括: 上述的毛细管电泳芯片; 高压电源 601, 其输出端通过一对电极 403, 404分别插入所述毛细管电泳芯片的分离池 313和样品废 物池 314, 通过另一对电极 401, 402分别插入所述毛细管电泳芯片的样品池 311和注入废物 池 312 ; 检测器 602, 用于对所述毛细管电泳芯片上的检测区 331的样品分析物的分离结果进 行检测。
其中, 所述检测器 602安装在靠近检测区 331的位置; 或者安装在远离检测区 331的位 置, 或者与检测区 331通过光纤连接。
所述的毛细管电泳装置还包括: 废物泵 603, 直接或通过管道连接于所述样品出口 302, 用于将所述样品出口 302内的样品排出。
本发明提供的适于在线应用的毛细管电泳方法包括:
在注入通道和分离通道中填充分离介质, 并在样品池、 注入废物池、 分离池和 样品废物 池填充分离缓冲液; 将样品载入样品池, 同时使样品池的溢出液体排出; 停止载入样品后, 利用高压电源在样品池和注入废物池之间施加电场,使样品池中的分析物向注入废物池移动; 停止在样品池和注入废物池之间施加电场, 利用高压电源在分离池和样品废物池之间施加电 场, 使注入通道和分离通道交叉区域的样品移动向样品废物池移动; 利用检测器在检测区对 样品中的不同分析物进行检测。
由上述技术方案可以看出, 在本发明中, 毛细管电泳芯片上增加了专门用于载入样品的 样品入口, 亦样品入口和样品池 间设詈了榉品诵道, 并增加了棑,屮样品池中 ,屮榉品的样 品出口, 有效地避免载入的样品对毛细管电泳芯片上分离通道的影响, 避免气泡、 压力和样 品粘度的干扰。 同时, 本发明釆用注入通道和分离通道交叉连通的设计, 使得本发明的毛细 管电泳芯片适合于多种进样方式, 不局限于单一进样方式。 此外, 本发明的毛细管电泳芯片 结构简单, 使其更可靠和成本更低。 本发明的毛细管电泳芯片具有更小的尺寸, 使其更方便 地集成到自动化系统。
附图说明
下面将通过参照附图详细描述本发明的优选实施例, 使本领域的普通技术人员更清楚本 发明的上述及其它特征和优点, 相同的标号表示相同的部件, 附图中:
图 1是传统毛细管电泳的原理图;
图 2是本发明实施例一的毛细管电泳芯片的两部分组成示意图;
图 3是本发明实施例一的毛细管电泳芯片顶部的结构示意图;
图 4是本发明实施例一的毛细管电泳芯片的装配示意图;
图 5是本发明实施例一的毛细管电泳芯片样品入口和样品出口的剖面图, 其中 (a)是样 品池为空时的剖面图, (b ) 是样品池中载入样品时的剖面图;
图 6是本发明实施例一的毛细管电泳装置的结构示意图;
图 7是本发明实施例一的毛细管电泳方法的流程图;
图 8示出了对负电荷分析物进行的分析过程的一个示例, 其中(a)表示四个池均不施加 电场, (b ) 表示在样品池和注入废物池间施加电场, (c ) 表示在分离池和分离废物池间施加 电场;
图 9是本发明实施例二的毛细管电泳芯片顶部的结构示意图;
图 10是本发明实施例二的毛细管电泳装置的结构示意图。
具体实施方式
为了使本发明的技术方案及优点更加清楚明白, 以下结合附图及实施例, 对本发明进行 进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不用于限定 本发明。
毛细管电泳, 一般是指以高压场为驱动力, 以毛细管为分离通道, 依据样品中各组分之 间的淌度的差异, 而实现分离的一类液相分离技术。 图 1示出了传统的毛细管电泳技术的原 理。 如图 1所示, 连接高压电源 10的两个电极 11和 12分别插入包含样品的缓冲液 13以及 不包含样品的缓冲液 14中, 毛细管 15的两端也分别插入在缓冲液 13和 14中, 在高压电源 10施加的电场作用下, 缓冲液 13中的样品的不同组分以不同的电泳淌度向缓冲液 14迁移, 检测窗口 16设在靠近缓冲液 14的位置,对经过检测窗口 16的样品中的不同组分的分离情况 进行检测。 '
如前所述, 现有的毛细管电泳技术存在的一个问题是毛细管电泳设备在进样时, 样品对 分离系统有一定影响。 很多因素导致这种影响, 比如, 有可能是样品溢出造成的, 也有可能 是载入样品的压力将分离介质推到通道之外造成的。在比较先进的毛细管电泳芯片的应用中, 这个问题也是普遍存在的, 目前并没有文献记载能够很好地解决上述问题。
面对这个技术问题, 发明人经过研究, 提出了较好解决上述问题的新的毛细管电泳芯片 设计。 在此基础上, 又提出了新的毛细管电泳装置和方法的设计, 并在实验中取得良好的效 果。 下面通过两个具体实施例对本发明进行详细阐述。
实施例一:
图 2是实施例一的毛细管电泳芯片的两部分组成示意图。 如图 2所示, 实施例一的毛细 管电泳芯片由上下两部分接合形成。 底部较平坦, 顶部则包含了微通道、 池和样品出入口等 实施分离的各组成部分。
图 3是根据本发明实施例一的毛细管电泳芯片顶部的结构示意图。 从图 3可以看出, 毛 细管电泳芯片的上部分包括样品入口 301、 样品出口 302、 样品池 31 1、 注入废物池 312、 分 离池 313、 样品废物池 314、 样品通道 321、 注入通道 322、 分离通道 323以及检测区 331。
样品通道 321、 注入通道 322和分离通道 323是微细加工的毛细管。
样品池 311、 注入废物池 312、 分离池 313和样品废物池 314对外开口, 以供电极插入, 并可注入分离缓冲液。
样品入口 301通过样品通道 321与样品池 311连接。 样品出口 302—端对外幵口, 另一 端对内通过排泄口与样品池 311连通, 该排泄口距离样品池 311的底部具有一特定的高度, 通常低于样品池 311的高度。
样品池 311和注入废物池 312之间通过注入通道 322连接。分离池 313和样品废物池 314 之间通过分离通道 323连接。 注入通道 322和分离通道 323交叉连通。
检测区 331位于分离通道 323上靠近样品废物池 314的位置。
图 4示出了实施例一的毛细管电泳芯片的装配示意图。 从图 4可以看出, 四个电极 401、 402、 403、 404分别插入样品池 311、 注入废物池 312、 分离池 313和样品废物池 314中, 以 供连接高压电源的输出端。 其中电极 401和 402是一对电极, 电极 403和 404是一对电极。 通过在电极 401和 402间施加电场, 使得样品池 311中的液体流入注入通道 322。 通过在电 极 403和 404间施加电场, 使得注入通道 322和分离通道 323的交叉区域的液体向样品废物 池 314移动。
需要说明的是, 在本实施例中, 使用两对电极, 电极 401和 402使样品从样品池 311向 注入废物池 312移动, 电极 403和 404使样品从注入通道 322和分离通道 323的交叉区域向 样品废物池 314移动。 在实际的应用中, 可以只使用一对电极 403和 404, 而电极 401和 402 并非必需。 在没有电极 401和 402的情况下, 可以采用其他的方法, 比如负压吸引法将样品 池 311中的液体引入注入通道 322和分离通道 323的交叉区域。
图 5示出了实施例一的毛细管电泳芯片样品入口和样品出口的剖面图, 其中 (a)是样品 池 311为空时的剖面图, (b )是样品池 311中载入样品时的剖面图。从图 5的(a)可以看出, 样品出口 302通过排泄口与样品池 311连通, 排泄口距离样品池 311底部的高度略低于样品 池 311的高度。 从图 5的 (b )可以看出, 当样品池 311中的样品高度超过排泄口, 样品将从 该排泄口顺着样品出口 302排出到外部, 从而使得样品池 311内的样品体积保持恒定。 这种 设计特点在于, 当样品载入时, 尤其是连续进样时, 如果载入的样品较多, 可以通过样品出 口 302及时排出, 而避免流到毛细管芯片的其他部分, 影响分离的效果。
图 6是实施例一的毛细管电泳装置的结构示意图。 从图 6可以看出, 实施例一的毛细管 电泳装置除了包括上述毛细管电泳芯片之外, 还包括高压电源 601 和检测器 602。 高压电源 具有至少一对输出。高压电源的输出与四个池中的电极连接, 以提供用于注入和分离的电场。 检测器 602检测沿分离通道 323的检测区 331通过的样品中各组分的分离结果。 检测器 602 可以直接靠近检测区 331安装, 或者远离检测区 331安装, 或者通过光纤对检测区 331进行 检测。 检测器 602可以是吸光度检测器, 或者激光诱导荧光检测器。
此外, 毛细管电泳装置还可以包括废物泵 603, 用于将样品出口 302的样品排出。 废物 泵 603可以是注射泵、 蠕动泵或真空泵等。 废物泵 603直接或通过管道连接于样品出口 302。
图 7是实施例一的毛细管电泳方法的流程图。 实施例一的毛细管电泳方法使用实施例一 的毛细管电泳装置。 本实施例是对样品中分析物是负电荷分析物情况进行分析的过程。 如图 7所示, 本实施例的毛细管电泳方法包含如下步骤:
在步骤 701, 幵始测量之前, 在注入通道和分离通道填充分离介质, 在所有的池填充分 离缓冲液。 在步骤 702, 保持所有电极不连接, 将样品载入样品池, 同时使废物泵工作以保证溢出 液体排出, 保持样品池中的液体体积恒定, 如图 8的 (a) 所示。
在步骤 703, 停止载入样品。
在步骤 704, 保持插入分离池和样品废物池中的电极不连接, 将样品池中的电极接地, 将注入废物池中的电极接高压电源的输出端, 在电场的作用下, 样品池中的分析物将幵始向 注入废物池移动, 如图 8的 (b ) 所示。
在步骤 705, 保持样品池和注入废物池中的电极不连接, 将分离池中的电极接地, 将样 品废物池中的电极接高压电源的输出端, 在电场的作用下, 注入通道和分离通道的交叉区域 的样品将移动至分离通道, 如图 8的 (c )所示。 样品在沿分离通道移动的过程中, 样品中不 同的分析物将被分离, 检测器在检测区对不同的分析物进行检测。
在步骤 706, 保持所有电极不连接, 将样品载入样品池, 幵始下一次测量。
需要说明的是, 图 7示出了对负电荷分析物进行检测的方法, 对于正电荷分析物的情况, 步骤基本类似, 所不同仅在于电极的接法, 如果是正电荷分析物, 在步骤 704中, 应将样品 ' 池的电极接高压电源的输出端, 注入废物池的电极接地; 在步骤 705中, 应将分离池的电极 接高压电源的输出端, 样品废物池的电极接地。
实施例二:
实施例二与实施例一的设计相似, 区别仅在于: 实施例二还包括一个试剂入口和一个混 合器。
图 9是本发明实施例二的毛细管电泳芯片顶部的结构示意图。 图 9中的毛细管电泳芯片 包括的样品入口 301、 样品出口 302、 样品池 311、 注入废物池 312、 分离池 313、 样品废物 池 314、 样品通道 321、 注入通道 322、 分离通道 323和检测区 331。 上述部分的功能与图 3 中的功能相同, 在此不予赘述。
与图 3相比, 图 9中增加了试剂入口 901和混合器 902。 试剂入口 901用于载入分离所 需的试剂, 例如标记试剂。 试剂入口 901载入的标记试剂和样品入口 301载入的样品在样品 通道 321上的混合器 902中充分混合。 在本实施例中, 混合器 902采用 "弓"字形设计, 使 试剂和样品充分混合。 当然, 本领域普通技术人员也可以理解, 在实际应用中, 可以根据具 体的需要采用多种混合器的设计方案。
图 10是本发明实施例二的毛细管电泳装置的结构示意图。 从图 10可以看出, 实施例二 的毛细管电泳装置除了包括图 9所示的毛细管电泳芯片之外, 还包括高压电源 601和检测器 602. 高 P 电源县有 小一对綸,屮。 高 由.源的输,屮与 Uq个池中的由.极连接. 以提 ffiffl干炸入 和分离的电场。 检测器 602检测沿分离通道 323的检测区通过的样品中各组分的分离结果。 检测器 602可以直接靠近检测区 331安装, 或者远离检测区 331安装, 或者通过光纤对检测 区 331进行检测。 检测器 602可以是吸光度检测器, 或者激光诱导荧光检测器。
此外, 毛细管电泳装置还可以包括废物泵 603, 用于将样品出口 302的样品排出。 废物 泵 603可以是注射泵、 蠕动泵或真空泵等。 废物泵 603直接或通过管道连接于样品出口 302。
在此亦不再赘述实施例二的毛细管电泳方法的具体步骤,本领域普通技术人员可以理解, 采用实施例二的毛细管电泳装置的毛细管电泳方法与实施例一的方法大致相同, 所不同仅在 于, 在通过样品入口载入样品的同时, 通过试剂入口载入试剂, 载入的样品和试剂在混合器 中充分混合后流入样品池。
从上述两个具体实施例可以看出, 本发明的毛细管电泳芯片上设计了样品入口、 样品出 口和样品通道, 样品入口载入的样品通过样品通道流入样品池, 溢出的样品通过与样品池连 通的样品出口排出, 这样的设计可以避^ <气泡、 压力和样品粘度的干扰。 并且, 由于釆用注 入通道和分离通道交叉连通的设计, 适用于各种样品注入方法。 本发明的毛细管电泳芯片结 构简单, 使其更可靠和成本更低。 本发明的毛细管电泳芯片具有更小的尺寸, 使其更方便地 集成到自动化系统。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的精神和原 则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保护范围之内。

Claims

1、 一种适于在线应用的毛细管电泳芯片, 包括- 样品池 (311)、 注入废物池 (312)、 分离池 (313) 和样品废物池 (314);
注入通道 (322), 分别与所述样品池 (311) 和所述注入废物池 (312) 连通; 分离通道 (323), 分别与所述分离池 (313) 与所述样品废物池 (314) 连通、 且与所述 注入通道 (322) 交叉连通; 和
检测区 (331), 沿所述分离通道 (323) 布置、 且位于所述样品废物池 (314) 附近; 其特征在于, 还包括:
样品入口 (301), 用于载入样品;
样品出口 (302), 用于排出样品池 (311) 中溢出的样品;
样品通道 (321), 从所述样品入口 (301) 载入的样品, 通过所述样品通道 (321) 流入 所述样品池 (311)。
2、 根据权利要求 1所述的毛细管电泳芯片, 其特征在于, 所述样品出口. (302) 一端对 外开口, 另一端通过一排泄口与所述样品池 (311) 连通;
所述排泄口距离所述样品池 (311) 底部的高度低于所述样品池 (311) 的高度。
3、 根据权利要求 1所述的毛细管电泳芯片, 其特征在于, 还包括: 试剂入口 (901), 用 于载入试剂, 从所述试剂入口 (901) 载入的试剂通过所述样品通道 (321) 流入所述样品池
(311)。
4、 根据权利要求 3所述的毛细管电泳芯片, 其特征在于, 还包括: 混合器 (902), 位于 所述样品通道 (321) 上, 将从所述样品入口 (301)载入的样品与从所述试剂入口 (901)载 入的试剂充分混合。
5、 一种适于在线应用的毛细管电泳装置, 其特征在于, 包括:
如权利要求 1至 4中任一项所述的毛细管电泳芯片;
高压电源 (601), 其输出端通过一对电极 (403, 404) 分别插入所述毛细管电泳芯片的 分离池(313) 和样品废物池 (314), 通过另一对电极 (401, 402) 分别插入所述毛细管电泳 芯片的样品池 (311) 和注入废物池 (312);
检测器(602), 用于对所述毛细管电泳芯片上的检测区 (331) 的样品分析物的分离结果 进行检测。 6、 根据权利要求 5所述的毛细管电泳装置, 其特征在于, 所述检测器 (602 ) 安装在靠 近检测区 (331 ) 的位置; 或者安装在远离检测区 (331 ) 的位置, 或者与检测区 (331 ) 通过 光纤连接。
7、 根据权利要求 6所述的毛细管电泳装置, 其特征在于, 还包括: 废物泵 (603 ), 直接 或通过管道连接于所述样品出口 (302), 用于将所述样品出口 ( 302 ) 内的样品排出。
8、一种适于在线应用的毛细管电泳方法, 利用如权利要求 5至 7中任一项所述的毛细管 电泳装置对样品分析物进行检测, 其特征在于, 包括:
在注入通道和分离通道中填充分离介质, 并在样品池、注入废物池、 分离池和 样品废物 池填充分离缓冲液;
将样品载入样品池, 同时使样品池的溢出液体排出;
停止载入样品后, 利用高压电源在样品池和注入废物池之间施加电场, 使样品池中的分 析物向注入废物池移动;
停止在样品池和注入废物池之间施加电场, 利用高压电源在分离池和样品废物池之间施 加电场, 使注入通道和分离通道交叉区域的样品移动向样品废物池移动;
利用检测器在检测区对样品中的不同分析物进行检测。
PCT/CN2009/000597 2009-05-27 2009-05-27 适于在线应用的毛细管电池芯片、装置和方法 WO2010135852A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/000597 WO2010135852A1 (zh) 2009-05-27 2009-05-27 适于在线应用的毛细管电池芯片、装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/000597 WO2010135852A1 (zh) 2009-05-27 2009-05-27 适于在线应用的毛细管电池芯片、装置和方法

Publications (1)

Publication Number Publication Date
WO2010135852A1 true WO2010135852A1 (zh) 2010-12-02

Family

ID=43222104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000597 WO2010135852A1 (zh) 2009-05-27 2009-05-27 适于在线应用的毛细管电池芯片、装置和方法

Country Status (1)

Country Link
WO (1) WO2010135852A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108008053A (zh) * 2016-12-05 2018-05-08 北京理工大学 一种液相淌度分离装置和控制方法及与液相色谱和质谱联用的接口
CN111089888A (zh) * 2019-12-03 2020-05-01 广州视源电子科技股份有限公司 分析设备、基于微流控芯片的电泳分离方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1472526A (zh) * 2002-07-31 2004-02-04 中国科学院生态环境研究中心 隧道毛细管电泳化学发光检测微流控芯片
US20060008382A1 (en) * 2004-07-06 2006-01-12 Schlumberger Technology Corporation Microfluidic system for chemical analysis
CN1737562A (zh) * 2005-06-27 2006-02-22 浙江大学 微流控芯片毛细管电泳负压进样方法
CN1793890A (zh) * 2006-01-05 2006-06-28 浙江大学 用微型真空泵的微流控芯片负压进样和分离的装置
CN101034064A (zh) * 2006-03-06 2007-09-12 中国科学院理化技术研究所 微流控芯片及其用途
US20070231213A1 (en) * 2006-01-12 2007-10-04 Nanyang Polytechnic Smart nano-integrated system assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1472526A (zh) * 2002-07-31 2004-02-04 中国科学院生态环境研究中心 隧道毛细管电泳化学发光检测微流控芯片
US20060008382A1 (en) * 2004-07-06 2006-01-12 Schlumberger Technology Corporation Microfluidic system for chemical analysis
CN1737562A (zh) * 2005-06-27 2006-02-22 浙江大学 微流控芯片毛细管电泳负压进样方法
CN1793890A (zh) * 2006-01-05 2006-06-28 浙江大学 用微型真空泵的微流控芯片负压进样和分离的装置
US20070231213A1 (en) * 2006-01-12 2007-10-04 Nanyang Polytechnic Smart nano-integrated system assembly
CN101034064A (zh) * 2006-03-06 2007-09-12 中国科学院理化技术研究所 微流控芯片及其用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUN FANG ET AL.: "AHigh-Throughput Continuous Sample Introduction Interface for Microfluidic Chip-based Capillary Electrophoresis Systems.", ANALYTICAL CHEMISTRY, vol. 74, no. 6, 15 March 2002 (2002-03-15), pages 1223 - 1231, XP001115330, DOI: doi:10.1021/ac010925c *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108008053A (zh) * 2016-12-05 2018-05-08 北京理工大学 一种液相淌度分离装置和控制方法及与液相色谱和质谱联用的接口
CN111089888A (zh) * 2019-12-03 2020-05-01 广州视源电子科技股份有限公司 分析设备、基于微流控芯片的电泳分离方法及装置

Similar Documents

Publication Publication Date Title
US9039973B2 (en) Hybrid digital and channel microfluidic devices and methods of use thereof
Giordano et al. On-line sample pre-concentration in microfluidic devices: A review
AU2003228395B2 (en) Methods and apparatus for separation and isolation of components from a biological sample
CN101692047B (zh) 毛细管电泳分离和化学发光检测的微流控芯片
US7037417B2 (en) Mechanical control of fluids in micro-analytical devices
JP6341913B2 (ja) 分析物の電気泳動分離
US8834697B2 (en) Electrophoresis apparatus and a method for electrophoresis
CN102338768A (zh) 试样分析装置和试样分析方法
CN100498272C (zh) 自动液体更换的微流控芯片毛细管电泳分析装置及使用方法
CN1904604A (zh) 一种用于毛细管电泳的微体积试样引入装置及其使用方法
CN106345541A (zh) 一种双相液液萃取与电泳分离集成微流控装置及方法
WO2010135852A1 (zh) 适于在线应用的毛细管电池芯片、装置和方法
Lin et al. Integrated isotachophoretic stacking and gel electrophoresis on a plastic substrate and variations in detection dynamic range
KR101023915B1 (ko) 모세관 전기영동에서 큰 부피 단일 방울 미세추출방법과스위핑 방법을 결합한 시료의 이중 농축 방법과 큰 부피단일 방울 미세 추출을 위한 모세관
US7740748B2 (en) Electrophoresis system and method
WO2001071331A1 (en) Electrophoresis microchip and system
Liu et al. Studying drug–plasma protein interactions by two‐injector microchip electrophoresis frontal analysis
CN101358946B (zh) 阴离子聚合物接枝涂层毛细管及用于蛋白质在线富集分析方法
Liu et al. Microdialysis hollow fiber as a macromolecule trap for on-line coupling of solid phase microextraction and capillary electrophoresis
Chen et al. Combination of flow injection with electrophoresis using capillaries and chips
US8377277B2 (en) System and method for performing microfluidic manipulation
Qi et al. Rapid and efficient isotachophoretic preconcentration in free solution coupled with gel electrophoresis separation on a microchip using a negative pressure sampling technique
JP3835396B2 (ja) マイクロ流体デバイスとそれを用いた分析方法
CN117202979A (zh) 用于高通量毛细管电泳的毛细管之间的鞘通道形成
CN204630976U (zh) 一种用于毛细管电泳的在线固相萃取联用装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09845071

Country of ref document: EP

Kind code of ref document: A1