WO2010134832A1 - Способ получения гранулированного нанесенного металлсодержащего катализатора - Google Patents

Способ получения гранулированного нанесенного металлсодержащего катализатора Download PDF

Info

Publication number
WO2010134832A1
WO2010134832A1 PCT/RU2009/000240 RU2009000240W WO2010134832A1 WO 2010134832 A1 WO2010134832 A1 WO 2010134832A1 RU 2009000240 W RU2009000240 W RU 2009000240W WO 2010134832 A1 WO2010134832 A1 WO 2010134832A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
sol
liquid phase
solid support
catalyst
Prior art date
Application number
PCT/RU2009/000240
Other languages
English (en)
French (fr)
Inventor
Арсений Валерьевич АРТЁМОВ
Юрий Андреевич КРУТЯКОВ
Александр Васильевич ПЕРЕСЛАВЦЕВ
Сергей Александрович ВОЩИНИН
Валерий Александрович ЖИЛЬЦОВ
Original Assignee
Крено Инвест Са
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Крено Инвест Са filed Critical Крено Инвест Са
Priority to PCT/RU2009/000240 priority Critical patent/WO2010134832A1/ru
Publication of WO2010134832A1 publication Critical patent/WO2010134832A1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/061Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/7207A-type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to the chemical industry, in particular to methods for producing granular supported metal-containing catalysts (HMK), which are widely used in chemical and petrochemical processes, in oil refining processes, in solving environmental problems, including catalytic neutralization of automobile exhaust gases.
  • HMK granular supported metal-containing catalysts
  • HMK a mixture of carbon monoxide (II) and hydrogen.
  • synthesis gas obtained as a result of plasma processing of solid waste as a raw material, since the problem of processing solid waste is one of the most acute for the modern ecosystem of almost all developed countries of the world.
  • HMK a Co catalyst supported on AI 2 Oz with a Co content of at least 5% by weight of this HMK.
  • This catalyst may contain two groups of metal additives: the first group includes Fe, Ni, Ru 1 Re, Os or a mixture of two or more of these metals, and the second group includes Li, B, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, La, Ac, Ti, Zr, Ce or Th or a mixture of two or more of these metals (RF Patent Application Ne 2006130871).
  • Known supported catalyst for the Fischer-Tropsch process (RU 2273515), which includes a metal of group VIII, for example, Co, and the metal of group VIII is partially present in the metallic state.
  • Group VIII metal is deposited on a support which is an oxide selected from the group: SiO 2 , AI 2 O 3 , TiO 2 , ZrO 2 , or mixed oxides,
  • SUBSTITUTE SHEET (RULE 26) containing SiO 2 , AI 2 Oz, TiO 2 , ZrO 2 , such as aluminosilicate or physical mixtures of TiO 2 and SiO 2 .
  • the catalyst as a promoter includes a metal component selected from copper, silver, gold, palladium, platinum and / or metal oxides selected from transition metal oxides III to VIII of the Periodic Table and lanthanides.
  • This catalyst can be used in the Fischer-Tropsch process to convert synthesis gas obtained as a result of catalytic reforming of hydrocarbons (including methane) with water vapor, gasification of hydrocarbons, coal gasification and fuel processing to generate energy.
  • the same catalyst can be used in the Fischer-Tropsch process to convert the synthesis gas obtained by plasma processing of solid waste.
  • a supported metal catalyst is used containing Co: Cu: Mn in a ratio of 1: 110: 0.1-5 and optional alkali and alkaline earth metal additives (patent application RF 2000109957 )
  • non-volatile, insoluble or sparingly soluble transition metal compounds or mixtures thereof and / or zirconium and / or alkaline earth elements or mixtures thereof and aluminum thereof are used as an effective Fischer-Tropsch catalyst.
  • a catalyst is used containing nickel oxide and magnesium oxide supported on porous nickel metal (RU 2321457). This catalyst is characterized by high thermal conductivity and exhibits high and stable activity in the production of synthesis gas.
  • applied molybdenum is used as a catalyst for steam reforming.
  • HMK is a method for preparing HMK for the Fischer-Tropsch process (RU 2136366), which involves mixing powders of non-volatile, insoluble or poorly soluble transition metal compounds or mixtures thereof, and / or zirconium, and / or alkaline earth elements or their mixtures and aluminum, or various combinations of all individual and mixed compounds of the above elements and aluminum. After mixing, the powders are placed in the molding device together with the powder components, followed by extraction of the obtained product in the form of a tube with a catalytic layer, drying and calcining it.
  • RU 2136366 Fischer-Tropsch process
  • the catalyst is used in the oxidation of ethane and / or ethylene to acetic acid.
  • HMK for cleaning exhaust gases of engines
  • the catalyst is prepared by applying a catalytically active layer to a porous block carrier (porous acid-resistant ceramic material based on AI 2 O 3 , B 2 Oz, P2O 3 , S ) by spraying an impregnating solution, including soluble metal complexes (platinum, palladium), oxides of alkali, alkaline earth and rare earth metals, oxides of iron, nickel, cobalt and / or manganese.
  • Spraying is carried out in a stream of hot gases passing through a block porous carrier, with simultaneous drying and subsequent heat treatment of the block.
  • the "Cyx" method of producing HMK is implemented in patent RU 2141383, where HMK is used in the process of converting methane and other hydrocarbons with water vapor or carbon dioxide to produce synthesis gas.
  • the catalyst is a catalytic tube with a catalytic layer deposited on the wall.
  • the catalytic layer is obtained by mixing powdered substances consisting of non-volatile, insoluble or sparingly soluble transition metal compounds of the 4th Period of the Periodic Table or mixtures thereof and / or rare earth elements or mixtures thereof and / or platinum metals or their mixtures and aluminum.
  • the catalyst After mixing the powders, they are placed in a molding device permeable to gaseous substances, they are processed in an oxidizing and / or humid atmosphere, followed by extraction of the obtained product in the form of a tube with a catalytic layer, drying and calcining it.
  • the catalyst has high activity and stability.
  • Fibrous material can be used as a carrier in the combined “cyx” and “wet” method of preparing HMK. So in
  • HMKs are prepared by vapor deposition of a buffer layer (e.g., titanium dioxide) onto said fibrous carrier, followed by precipitation from solution onto a buffer layer of an interfacial layer.
  • a buffer layer e.g., titanium dioxide
  • organometallic compounds, halides, carbonyl compounds, acetonates, acetates of the corresponding metals are used.
  • the process is carried out at a temperature of 250 - 800 0 C.
  • the interfacial layer contains a substance selected from the group consisting of nitrides, carbides, halides, metal oxides and coal. This catalyst is widely used in various catalytic processes of petrochemicals and oil refining, including the Fischer-Tropsch process.
  • HMK a method for producing HMK for the synthesis of alcohols and olefins from gas synthesis in the Fischer-Tropsch process.
  • the catalyst may also contain an alkali or alkaline earth metal.
  • the catalyst is prepared by coprecipitation of metal oxalate solutions on a carrier followed by heat treatment of a mixture of oxalates deposited on the carrier (RF patent application 2000109957).
  • HMK HMK
  • the known "wet" method of producing HMK including preliminary heat treatment of the feedstock, impregnation with a solution of salts and drying.
  • heat treatment is carried out at 700 - 85O 0 C in the presence of superheated water vapor, followed by cooling of the feed containing pre-deposited copper compounds in an amount of 2-7 mass%, and in the second and third stages, re-impregnation with chemical additives and drying by known methods are carried out.
  • SUBSTITUTE SHEET (RULE 26) The method uses both pure carbon sorbents and sorbents containing copper compounds.
  • HMK HMK-co-hexadium boride
  • a catalyst RU 2336947
  • the catalyst is prepared by sequentially impregnating the support with solutions of cerium and copper nitrates, followed by thermal reduction of metal salts to the corresponding metals and / or oxides.
  • the same method also provides for the simultaneous treatment of the carrier with cerium and copper nitrates to produce HMK.
  • This catalyst has high activity, selectivity and increased mechanical strength in the process of purification of a hydrogen-containing gas mixture from CO by selective catalytic oxidation of CO with atmospheric oxygen.
  • the catalyst contains metallic copper and / or copper oxide and cerium dioxide supported on a carbon support — a mesoporous graphite-like carbon material of a special structure.
  • HMK with low temperature plasma A known method of activating HMK with low temperature plasma (patent application RF 2004102193).
  • a “cold” microwave plasma is used as a low-temperature plasma, obtained in an Eoyu cavity or on an Eoi wave with rotation symmetry from a pulsed microwave generator and in a total wave H ° with rotation of the plane of polarization from a continuous microwave generator.
  • an oxide W-Mn catalyst supported on SiOh-- is used as the catalyst in this method.
  • Closest to the claimed invention is a method for producing highly dispersed metal support catalysts (RU 2115474), selected as a prototype.
  • the method includes the direct interaction of the carrier and the liquid phase containing the metal component, to obtain a solid carrier containing the sorbed metal component, separating it from the liquid phase (filtering,
  • Metal particles (M 0 ) are obtained from water-soluble salts that make up the initial microemulsion:
  • Sodium or ammonium hypophosphate is used as a reducing agent
  • ethoxyethylated alkyl phenol is used as a surfactant
  • water in oil microemulsion is obtained by mixing two initial microemulsions: a metal salt and a reducing agent.
  • the disadvantages of the prototype is the complexity of the technology for producing supported metal-containing catalysts and, in most cases, the inability to obtain metal-containing catalysts of complex composition, which is associated with the possibility of side reactions in solutions.
  • the technical result achieved by the claimed invention is to simplify the process technology for producing supported metal-containing catalysts and expand the assortment of the resulting catalysts.
  • the technical result is achieved by the interaction of a solid carrier and a liquid phase containing a metal component, with stirring, to obtain a solid carrier containing a sorbed metal component, separating it from the liquid phase, its subsequent heat treatment and, if necessary, molding at elevated temperature, and as the liquid phase using a sol of metal and / or metal particles with a size
  • SUBSTITUTE SHEET (RULE 26) 5 - 200 nm in aqueous, aqueous-organic or organic solutions, the interaction of the solid support and the liquid phase is carried out by heterocoagulation of the sol of metal and / or metal particles by uniformly supplying particles of the solid support to the sol, and the used sol is preactivated in the presence of an inert gas by low-temperature plasma, created by an electric current of 1, 5 - 5.5 kV and a frequency of 0.25 - 0.8 MHz.
  • the undoubted advantage of this method is that it allows you to get HMK containing a complex mixture of metal-containing components in one step - by heterocoagulation of a sol of metal-containing components on a carrier. This greatly simplifies the technology of obtaining HMK.
  • the electrocondensation method produces a sol of copper oxide particles in water.
  • the particle size of the sol is 15 + 5 nm.
  • the sol is stabilized with small amounts of sodium stearate.
  • argon medium a sol is activated by low-temperature plasma created by an electric current of 1.5 kV and a frequency of 0.25 MHz.
  • the sol in the presence of argon bubbles is constantly mixed in a closed loop by a circulation pump. After stirring, the obtained sol is passed through cylindrical granules of zeolite (NaA) and the resulting catalyst CuO / zeolite is heat treated at a temperature of 500-650 0 C.
  • Carbon dioxide reforming is carried out in a column type catalytic reactor with a fixed bed of CuO / zeolite catalyst at a temperature of 28O 0 C. As a result of the reaction, about 63% yield
  • SUBSTITUTE SHEET (RULE 26) gaseous products (including a mixture of carbon monoxide and hydrogen) composition (% vol.):
  • the electrocondensation method produces a sol of particles of nickel and nickel oxide in water.
  • the particle size of the sol is 18 + 5 nm.
  • the sol is stabilized with small amounts of sodium stearate.
  • sol is activated by low-temperature plasma created by an electric current of 5.5 kV and a frequency of 0.8 MHz.
  • the sol in the presence of argon bubbles is constantly mixed in a closed loop by a circulation pump. After stirring, the obtained sol is passed through cylindrical granules of aluminum oxide and heat treatment of the obtained catalyst Ni / NiO / AI 2 O 3 is carried out at a temperature of 500-650 0 C.
  • the steam reforming process is carried out in a column-type catalytic reactor with a fixed catalyst bed at a temperature of 23O 0 C.
  • a mixture of gaseous reaction products including carbon monoxide and hydrogen
  • % vol. . a mixture of gaseous reaction products (including carbon monoxide and hydrogen) of the composition (% vol. .):
  • the electrocondensation method produces a sol of cobalt particles and cobalt oxide in water.
  • the particle size of the sol is 18 + 5 nm.
  • the sol is stabilized with small amounts of sodium stearate.
  • a sol is activated by a low-temperature plasma created by electric current
  • SUBSTITUTE SHEET (RULE 26) voltage of 2.5 kV and a frequency of 0.6 MHz.
  • the sol in the presence of argon bubbles is constantly mixed in a closed loop by a circulation pump. After mixing, the obtained sol is passed through cylindrical granules of zeolite (NaA) and heat treatment of the obtained Co / CoO / NaA catalyst is carried out at a temperature of 500-650 0 C.
  • the Fischer-Tropsch synthesis is carried out in a column-type catalytic reactor in the presence of a cobalt zeolite catalyst (fixed bed) at a temperature of 26O 0 C and a pressure of 15 atm.
  • the feedstock for this stage of the process are three gas streams 1, 2 and 3, the amount of which and the composition are given in the table in FIG. 1. Under these conditions, the hydrocarbon yield in the Fischer-Tropsch process was 520 g / m 3 gas synthesis.
  • the hydrocarbon yield is about 300 kg / h, of which 70% is in the C b - Syu fraction, 29% in the fraction Sc - Ci 8 , 1% - on the fraction C- III + . From the obtained hydrocarbon feedstocks, kerosene and diesel fractions are isolated by conventional methods.
  • the claimed method allows to obtain a wide range of granular HMK, which is a metal-containing component, introduced (deposited) on the inner and outer surface of the carrier.
  • the metal-containing component in this method may be one or more metals, metal oxides, metal carbides, metal sulfides, other metal compounds and / or mixtures thereof.
  • Carriers in this method can be any commonly used catalyst supports: zeolites, aluminosilicates, silica gels, carbon carriers of any form, metal oxides (e.g. AbO 3 , S02, TiOg, ZrOg, etc.), metals or mixtures thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к химической промышленности, в частности к способам получения гранулированных нанесеных металлсодержащих катализаторов (HMK), находящих широкое применение в химических и нефтехимических процессах, в процессах нефтепереработки, в решении проблем охраны окружающей среды, включая процессы каталитической нейтрализации выхлопных газов автомобилей. Упрощение технологии процесса получения нанесенного металлсодержащего катализатора и расширение ассортимента получаемых катализаторов достигается за счет того, что жидкую фазу, представляющую собой золь металлических и/или металлсодержащих частиц размером 5 - 200 нм в водном, водно- органическом или органическом растворе, активируют в присутствии инертного газа низкотемпературной плазмой, создаваемой электрическим током напряжением 1,5 - 5,5 кВ и частотой 0,25 - 0,8 МГц, осуществляют взаимодействие твердого носителя и жидкой фазы гетерокоагуляцией золя металлических и/или металлсодержащих частиц путем равномерной подачи частиц твердого носителя в золь и перемешивания с получением твердого носителя, содержащего сорбированный металлический компонент, отделяют твердый носитель от жидкой фазы и термически обрабатывают.

Description

Способ получения гранулированного нанесенного металлсодержащего катализатора
Изобретение относится к химической промышленности, в частности к способам получения гранулированных нанесеных металлсодержащих катализаторов (HMK), находящих широкое применение в химических и нефтехимических процессах, в процессах нефтепереработки, в решении проблем охраны окружающей среды, включая процессы каталитической нейтрализации выхлопных газов автомобилей.
В настоящее время важной проблемой является получение HMK для реализации процесса Фишера-Тропша, предусматривающего синтез углеводородов и/или кислородсодержащих органических соединений из синтез-газа: смеси оксида углерода (II) и водорода. В частности, это особенно важно для реализации процесса Фишера-Тропша, использующего в качестве исходного сырья синтез-газ, полученный в результате плазменной переработки твердых отходов, поскольку проблема переработки твердых отходов является одной из самых острых для современной экосистемы практически всех развитых стран мира.
Известно использование в качестве HMK для процесса Фишера-Тропша Со-катализатора, нанесенного на AI2Oз с содержанием Со в этом HMK не менее 5% масс. Этот катализатор может содержать две группы металлических добавок: к первой группе относятся Fe, Ni, Ru1 Re, Os или смесь двух или более из указанных металлов, а ко второй группе относятся Li, В, Na, К, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, La, Ac, Ti, Zr, Ce или Th или смесь из двух или более указанных металлов ( Заявка на патент РФ Ne 2006130871 ).
Известен нанесенный катализатор для процесса Фишера-Тропша ( RU 2273515 ), который включает в себя металл VIII группы, например, Со, причем металл VIII группы присутствует отчасти в металлическом состоянии. Металл VIII группы наносят на носитель, который представляет собой оксид, выбранный из группы: SiO2, AI2O3, TiO2, ZrO2, или смешанных оксидов,
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) содержащих SiO2, AI2Oз, TiO2, ZrO2, таких как алюмосиликат или физические смеси TiO2 и SiO2.
Известно использование для процесса Фишера-Тропша катализатора, обладающего повышенной термической проводимостью и высокой селективностью и представляющего собой кобальт, нанесенный на металлический алюминий, дополнительно содержащий добавки оксидов металлов (ZrO2, La2O3, K2O) или металлов (Re, Ru, Pd, Pt) ( RU 2256501).
Известно использование для процесса Фишера-Тропша катализатора, состоящего из смеси MnO2 и ZrO2 (Мп/Zr = 0,05 - 5,00) (заявка на патент РФ 2004103043 ). Катализатор в качестве промотора включает металлический компонент, выбранный из меди, серебра, золота, палладия, платины и/или оксидов металлов, выбранных из оксидов переходных металлов с III по VIII группу Периодической таблицы и лантаноидов. Этот катализатор может быть использован в процессе Фишера-Тропша для превращения синтез-газа, полученного в результате процессов каталитического риформинга углеводородов (в т.ч. метана) с водяным паром, газификации углеводородов, газификации угля и переработки топлива для выработки энергии. Очевидно, что этот же катализатор может быть использован в процессе Фишра-Тропша для превращения синтез-газа, полученного плазменной переработкой твердых отходов.
Для получения спиртов и олефинов из синтез-газа в ходе процесса Фишера-Тропша используют металлсодержащий катализатор на носителе, содержащий Co:Cu:Mn в соотношении 1 :110:0,1-5 и необязательные добавки щелочного и щелочноземельного металла ( заявка патент РФ 2000109957).
В патенте ( RU 2136366 ) в качестве эффективного катализатора Фишера-Тропша используют нелетучие, нерастворимые или малорастворимые соединения переходных металлов или их смесей и/или циркония, и/или щелочноземельных элементов или их смесей и алюминия,
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) или различные сочетания всех индивидуальных и смешанных соединений вышеперечисленных элементов и алюминия.
Для получения HMK для процесса паровой конверсии углеводородов, используют катализатор, содержащий оксид никеля и оксид магния, нанесенные на пористый металлический никель ( RU 2321457 ). Этот катализатор характеризуется высокой теплопроводностью и проявляет высокую и стабильную активность в получении синтез-газа.
В соответствии с другим способом ( заявка на патент РФ 2007126831 )для риформинга с водяным паром в качестве катализатора используют нанесенный молибден.
В настоящее время сууществуют два принципиально различных способа получения HMK: «cyxoй» и «мoкpый».
К числу «cyxиx» способов получения HMK относится способ приготовления HMK для процесса Фишера-Тропша ( RU 2136366 ), который включает смешение порошков нелетучих, нерастворимых или малорастворимых соединений переходных металлов или их смесей, и/или циркония, и/или щелочноземельных элементов или их смесей и алюминия, или различные сочетания всех индивидуальных и смешанных соединений вышеперечисленных элементов и алюминия. После смешения порошки размещают в формовочном устройстве вместе с порошкообразными компонентами с последующим извлечением полученного изделия в виде трубки с каталитическим слоем, его сушкой и прокаливанием.
Известен «cyxoй» способ получения HMK, изложенный в RU 2346741. Этот способ предусматривает:
1) приготовление суспензии одного или нескольких металлических компонентов и частиц носителя из aльфa-AI2O3;
2) распылительную сушку суспензии;
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) 3) кальцинирование высушенной распылением суспензии с получением нанесенной на носитель каталитической композиции.
Катализатор используют в процессе окисления этана и/или этилена до уксусной кислоты.
Известен способ получения HMK для очистки выхлопных газов двигателей (Заявка на патент РФ 2003104602 ), по которому катализатор готовят путем нанесения каталитически активного слоя на блочный пористый носитель (пористый кислотостойкий керамический материал на основе AI2O3, B2Oз, P2O3, SЮг) распылением пропиточного раствора, включающего растворимые комплексы металлов (платина, палладий), оксиды щелочных, щелочноземельных и редкоземельных металлов, оксиды железа, никеля, кобальта и/или марганца. Распыление проводят в токе горячих газов, проходящих через блочный пористый носитель, с одновременной сушкой и последующей термообработкой блока.
«Cyxoй» способ получения HMK реализован в патенте RU 2141383, где HMK используют в процессе конверсии метана и других углеводородов водяным паром или двуокисью углерода для получения синтез-газа. Катализатор представляет собой каталитическую трубку с нанесенным на стенку каталитическим слоем. Каталитический слой получают путем смешивания порошкообразных веществ, состоящих из нелетучих, нерастворимых или малорастворимых соединений переходных металлов 4 периода Периодической таблицы или их смесей и/или редкоземельных элементов или их смесей, и/или платиновых металлов или их смесей и алюминия. После смешения порошков их размещают в формовочном устройстве, проницаемом для газообразных веществ, проводят обработку в окислительной и/или влажной атмосфере с последующим извлечением полученного изделия в виде трубки с каталитическим слоем, его сушкой и прокаливанием. Катализатор имеет высокую активность и стабильность.
В качестве носителя в совмещенном «cyxoм» и «мoкpoм» методе приготовления HMK может быть использован волокнистый материал. Так, в
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) способе ( заявка на патент РФ 2002120794 ) в качестве носителя используют войлок, вату, металлический волокнистый материал. HMK готовят осаждением из паровой фазы буферного слоя (например, диоксида титана) на указанный волокнистый носитель с последующим осаждением из раствора на буферный слой межфазного слоя. Для осаждения из паровой фазы используют металлоорганические соединения, галогениды, карбонильные соединения, ацетонаты, ацетаты соответствующих металлов. Процесс проводят при температуре 250 - 800 0C. Межфазный слой содержит вещество, выбранное из группы, состоящей из нитридов, карбидов, галогенидов, оксидов металлов и угля. Данный катализатор имеет широкое применение в различных каталитических процессах нефтехимии и нефтепереработки, в том числе, и в процессе Фишера-Тропша.
К числу «мoкpыx» методов получения HMK относится способ получения HMK для синтеза спиртов и олефинов из синтез газа в процессе Фишера- Тропша. Этот катализатор содержит Со, Cu и Mn при их соотношении Co:Cu:Mn = 1 : 1-10 : 0,1-5. Катализатор также может содержать щелочной или щелочноземельный металл. Катализатор готовят соосаждением на носителе растворов оксалатов металлов с последующей тепловой обработкой осажденных на носителе смеси оксалатов (заявка на патент РФ 2000109957).
Известен «мoкpый» способ получения HMK ( заявка на патент РФ 2006130871 ), по которому катализатор получают пропиткой носителя (AI2O3) раствором нитрата кобальта с последующим восстановлением соли до металла и/или его оксида при повышенной температуре.
Известен «мoкpый» способ получения HMK ( RU 2099139 ), включающий предварительную термообработку исходного сырья, пропитку раствором солей и сушку. На первой стадии проводят термообработку при 700 - 85O0C в присутствии перегретого водяного пара с последующим охлаждением сырья, содержащего предварительно нанесенные соединения меди в количестве 2 7 масс %, а на второй и третьей стадиях проводят повторную пропитку химическими добавками и сушку известными способами.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) В способе используют как чистые углеродные сорбенты, так и сорбенты, содержащие соединения меди.
Еще одним «мoкpым» способом получения HMK является способ получения кaтaлизaтopa( RU 2336947 ), содержащего металлическую медь и/или оксид меди и ZrОг, нанесенные на углеродный носитель. Катализатор готовят последовательной пропиткой носителя растворами нитратов церия и меди с последующим термическим восстановлением солей металлов до соответствующих металлов и/или оксидов. Этим же способом предусматривается и одновременная обработка носителя нитратами церия и меди для получения HMK. Этот катализатор обладает высокой активностью, селективностью и повышенной механической прочностью в процессе очистки водородсодержащей газовой смеси от СО путем селективного каталитического окисления СО кислородом воздуха. Катализатор содержит металлическую медь и/или оксид меди и диоксид церия, нанесенные на углеродный носитель - мезопористый графитоподобный углеродный материал специальной структуры.
Известен способ активации HMK низкотемпературной плазмой ( заявка на патент РФ 2004102193 ). В соответствии с этим способом в качестве низкотемпературной плазмы используют «xoлoднyю» СВЧ плазму, полученную в резонаторе типа Еою или на волне Еоi с симметрией вращения от импульсного СВЧ генератора и на суммарной волне Hц° с вращением плоскости поляризации от непрерывного СВЧ генератора. В качестве катализатора в этом способе используют оксидный W-Mn катализатор, нанесенный на SiОг-
Наиболее близким к заявленному изобретению является способ получения высокодисперсных катализаторов металл-носитель ( RU 2115474), выбранный в качестве прототипа. Способ включает непосредственное взаимодействие носителя и жидкой фазы, содержащей металлический компонент, с получением твердого носителя, содержащего сорбированный металлический компонент, отделением его от жидкой фазы (фильтрованием,
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) декантацией), его последующей термической обработкой и, при необходимости, формованием при повышенной температуре. В качестве жидкой фазы, содержащей металлический компонент, используют микроэмульсию «вoдa в мacлe»:
частицы металла (M0) - вода - ПАВ - органический растворитель
Частицы металла (M0) получают из водорастворимых солей, входящих в состав исходной микроэмульсии:
соль металла - вода - ПАВ - органический растворитель.
В качестве восстановителя используют гипофосфат натрия или аммония, в качестве ПАВ - этоксиэтилированный алкилфенол, а микроэмульсию «вoдa в мacлe» получают смешением двух исходных микроэмульсий: соли металла и восстановителя. Недостатками прототипа является сложность технологии получения нанесенных металлсодержащих катализаторов и, в большинстве случаев, невозможность получения металлсодержащих катализаторов сложного состава, что связано с возможностью протекания в растворах побочных реакций.
Техническим результатом, достигаемым заявленным изобретением является упрощение технологии процесса получения нанесенных металлсодержащих катализаторов и расширение ассортимента получаемых катализаторов.
Технический результат достигается путем взаимодействия твердого носителя и жидкой фазы, содержащей металлический компонент, при перемешивании с получением твердого носителя, содержащего сорбированный металлический компонент, отделением его от жидкой фазы, его последующей термической обработкой и, при необходимости, формованием при повышенной температуре, причем в качестве жидкой фазы используют золь металлических и/или металлсодержащих частиц с размером
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) 5 - 200 нм в водных, водно-органических или органических растворах, взаимодействие твердого носителя и жидкой фазы проводят гетерокоагуляцией золя металлических и/или металлсодержащих частиц путем равномерной подачи частиц твердого носителя в золь, а используемый золь предварительно активируют в присутствии инертного газа низкотемпературной плазмой, создаваемой электрическим током напряжением 1 ,5 - 5,5 кВ и частотой 0,25 - 0,8 МГц.
Использование гетерокоагуляции на стадии взаимодействия твердого носителя и жидкой фазы позволяет регулировать структуру образующегося HMK, например, объем пустот катализатора, его удельную поверхность и др.
Несомненным преимуществом данного способа является то, что он позволяет получить HMK, содержащий сложную смесь металлсодержащих компонентов, за одну стадию - путем гетерокоагуляции золя металлсодержащих компонентов на носитель. Это значительно упрощает технологию получения HMK.
Способ иллюстрируется следующими примерами.
Пример 1.
Электроконденсационным методом получают золь частиц оксида меди в воде. Размер частиц золя 15 + 5 нм. Золь стабилизируют небольшими добавками стеарата натрия. В среде аргона активируют золь низкотемпературной плазмой, создаваемой электрическим током напряжением 1 ,5 кВ и частотой 0,25 МГц. Золь в присутствии пузырьков аргона постоянно перемешивают в замкнутом контуре циркуляционным насосом. После перемешивания полученный золь пропускают через цилиндрические гранулы цеолита (NaA) и проводят термообработку полученного катализатора СuО/цеолит при температуре 500-650 0C.
Углекислотный риформинг проводят в каталитическом реакторе колонного типа с неподвижным слоем катализатора СuО/цеолит при температуре 28O0C. В результате реакции с выходом около 63% получают
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) газобразные продукты (в том числе смесь оксида углерода и водорода) состава (% объемы.):
диоксид углерода 11 ,1 оксид углерода 37,4 метан 12,6 водород 38,9
Пример 2.
Электроконденсационным методом получают золь частиц никеля и оксида никеля в воде. Размер частиц золя 18 + 5 нм. Золь стабилизируют небольшими добавками стеарата натрия. В среде аргона активируют золь низкотемпературной плазмой, создаваемой электрическим током напряжением 5,5 кВ и частотой 0,8 МГц. Золь в присутствии пузырьков аргона постоянно перемешивают в замкнутом контуре циркуляционным насосом. После перемешивания полученный золь пропускают через цилиндрические гранулы оксида алюминия и проводят термообработку полученного катализатора Ni/NiO/AI2O3 при темпераруте 500-650 0C.
Процесс парового риформинга проводят в каталитическом реакторе колонного типа с неподвижным слоем катализатора при температуре 23O0C. В результате протекания реакций парового риформинга получают с выходом около 75% смесь газообразных продуктов реакции (в т.ч. оксид углерода и водород) состава (% объемн.):
-метан 8,13
-вода 7,07
-оксид углерода 21 ,20
-водород 63,60
Пример 3.
Электроконденсационным методом получают золь частиц кобальта и оксида кобальта в воде. Размер частиц золя 18 + 5 нм. Золь стабилизируют небольшими добавками стеарата натрия. В среде аргона активируют золь низкотемпературной плазмой, создаваемой электрическим током
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) напряжением 2,5 кВ и частотой 0,6 МГц. Золь в присутствии пузырьков аргона постоянно перемешивают в замкнутом контуре циркуляционным насосом. После перемешивания полученный золь пропускают через цилиндрические гранулы цеолита (NaA) и проводят термообработку полученного катализатора Со/СоО/NаА при темпераруте 500-650 0C.
Синтез Фишера-Тропша проводят в каталитическом реакторе колонного типа в присутствии кобальтового цеолитного катализатора (неподвижный слой) при температуре 26O0C и давлении 15 атм. Сырьем для этой стадии процесса являются три газовых потока 1 , 2 и 3, количество которых и состав приведен в таблице на Фиг. 1. При данных условиях выход углеводородов в процессе Фишера-Тропша составил 520 г/м3 синтез газа. При количестве синтез газа 865,2 (0,2089+0,4581 ) = 577,1 м3/ч выход углеводородов составляет около 300 кг/ч, из которых 70% приходится на фракцию Сб - Сю, 29% - на фракцию Сц - Ci8, 1% - на фракцию C-Ш+. Из полученного углеводородного сырья обычными методами выделяют керосиновую и дизельную фракции.
Таким образом, заявленный способ позволяет получать широкую гамму гранулированных HMK, представляющих собой металлсодержащий компонент, введенный (нанесенный) на внутреннюю и внешнюю поверхность носителя. Металлсодержащим компонентом в данном способе могут являться один или несколько металлов, оксидов металлов, карбидов металлов, сульфидов металлов, других соединений металлов и/или их смесей. Носителями в данном способе могут быть любые широко используемые носители катализаторов: цеолиты, алюмосиликаты, силикагели, углеродные носители любых форм, оксиды металлов (например, AbO3, SЮг, ТiОг, ZrОг и др.), металлы или их смеси.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) Таблица
Figure imgf000013_0001
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26)

Claims

Формула изобретения
Способ получения нанесенного металлсодержащего катализатора, по которому жидкую фазу, представляющую собой золь металлических и/или металлсодержащих частиц размером 5 - 200 нм в водном, водно- органическом или органическом растворе, активируют в присутствии инертного газа низкотемпературной плазмой, создаваемой электрическим током напряжением 1 ,5 - 5,5 кВ и частотой 0,25 - 0,8 МГц, осуществляют взаимодействие твердого носителя и жидкой фазы гетерокоагуляцией золя металлических и/или металлсодержащих частиц путем равномерной подачи частиц твердого носителя в золь и перемешивания с получением твердого носителя, содержащего сорбированный металлический компонент, отделяют твердый носитель от жидкой фазы и термически обрабатывают.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26)
PCT/RU2009/000240 2009-05-20 2009-05-20 Способ получения гранулированного нанесенного металлсодержащего катализатора WO2010134832A1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/RU2009/000240 WO2010134832A1 (ru) 2009-05-20 2009-05-20 Способ получения гранулированного нанесенного металлсодержащего катализатора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2009/000240 WO2010134832A1 (ru) 2009-05-20 2009-05-20 Способ получения гранулированного нанесенного металлсодержащего катализатора

Publications (1)

Publication Number Publication Date
WO2010134832A1 true WO2010134832A1 (ru) 2010-11-25

Family

ID=43126350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2009/000240 WO2010134832A1 (ru) 2009-05-20 2009-05-20 Способ получения гранулированного нанесенного металлсодержащего катализатора

Country Status (1)

Country Link
WO (1) WO2010134832A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114015512A (zh) * 2021-11-23 2022-02-08 东北农业大学 一种冷等离子体技术活化催化剂应用于异构化红花籽油的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992011199A1 (en) * 1990-12-24 1992-07-09 British Gas Plc Improved processes for the conversion of methane to synthesis gas
RU2115474C1 (ru) * 1997-02-20 1998-07-20 Институт химии твердого тела и переработки минерального сырья СО РАН Способ получения высокодисперсных катализаторов металл-носитель
JP2008049280A (ja) * 2006-08-25 2008-03-06 National Institute Of Advanced Industrial & Technology 貴金属ナノ粒子担持金属酸化物触媒を用いた低温酸化反応の促進方法
RU2347613C1 (ru) * 2007-09-06 2009-02-27 Некоммерческая организация учреждение Институт проблем химической физики Российской академии наук Плазмохимический способ получения алюмохромового катализатора для дегидрирования углеводородов

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992011199A1 (en) * 1990-12-24 1992-07-09 British Gas Plc Improved processes for the conversion of methane to synthesis gas
RU2115474C1 (ru) * 1997-02-20 1998-07-20 Институт химии твердого тела и переработки минерального сырья СО РАН Способ получения высокодисперсных катализаторов металл-носитель
JP2008049280A (ja) * 2006-08-25 2008-03-06 National Institute Of Advanced Industrial & Technology 貴金属ナノ粒子担持金属酸化物触媒を用いた低温酸化反応の促進方法
RU2347613C1 (ru) * 2007-09-06 2009-02-27 Некоммерческая организация учреждение Институт проблем химической физики Российской академии наук Плазмохимический способ получения алюмохромового катализатора для дегидрирования углеводородов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114015512A (zh) * 2021-11-23 2022-02-08 东北农业大学 一种冷等离子体技术活化催化剂应用于异构化红花籽油的方法

Similar Documents

Publication Publication Date Title
Saada et al. Greener synthesis of dimethyl carbonate using a novel ceria–zirconia oxide/graphene nanocomposite catalyst
WO2002078840A1 (fr) Catalyseur de reformage d'hydrocarbures et procede de preparation du catalyseur, et procede de reformage d'hydrocarbures mettant en oeuvre ledit catalyseur
US7771702B2 (en) Sulfur-tolerant catalysts and related precursors and processes
WO2002038268A1 (fr) Catalyseur de reformage pour hydrocarbures et procede de reformage correspondant
Ajamein et al. Influence of ambient gas on microwave-assisted combustion synthesis of CuO–ZnO–Al2O3 nanocatalyst used in fuel cell grade hydrogen production via methanol steam reforming
KR101437072B1 (ko) 효율적인 이산화탄소 전환 촉매 및 이의 제조 방법
JP2000176287A (ja) メタノ―ル合成用触媒及びメタノ―ルの合成方法
Bhanushali et al. Simultaneous dehydrogenation of 1, 4-butanediol to γ-butyrolactone and hydrogenation of benzaldehyde to benzyl alcohol mediated over competent CeO2–Al2O3 supported Cu as catalyst
WO2012057794A1 (en) Low temperature sulphur dioxide oxidation catalyst for sulfuric acid manufacture
KR100858924B1 (ko) 액화천연가스의 수증기 개질반응에 의한 수소가스 제조용담지 촉매, 그 제조방법 및 상기 담지 촉매를 이용한수소가스 제조방법
US20050276741A1 (en) Method for making hydrogen using a gold containing water-gas shift catalyst
KR101421189B1 (ko) 개선된 이산화탄소 전환촉매
WO2014182020A1 (ko) 이산화탄소 개질반응용 모노리스 촉매, 이의 제조방법 및 이를 이용한 합성가스의 제조방법
Wu et al. Direct oxidation of methane to methanol using CuMoO 4
KR101245484B1 (ko) 수성가스 전환 반응용 촉매와 이 촉매를 이용하여 수성가스전환 반응에 의한 합성가스의 제조방법
WO2010134832A1 (ru) Способ получения гранулированного нанесенного металлсодержащего катализатора
JPH09168740A (ja) 二酸化炭素改質化触媒及びこれを用いた改質化法
KR20080060739A (ko) 촉매가 코팅된 금속 구조체 및 그 제조방법과 이를 이용한 피셔-트롭쉬 반응의 액체연료 제조방법
CN117651610A (zh) 用于甲烷干重整的二维硅酸镍分子筛催化剂的制备方法及该方法制备的用于甲烷干重整的二维硅酸镍分子筛催化剂
Li et al. Heterogeneous Catalysis for Sustainable Energy
Guerrero-Ruiz et al. Effect of the basic function in Co, MgO/C catalysts on the selective oxidation of methane by carbon dioxide
CN113950370A (zh) 用于纯氢生产的催化剂组合物和其制备方法
Marconi et al. Rare Earth Modified Ni-γAlumina Catalysts for CO 2 Recycling into Life Support Consumables and Fuel
JP2019514688A (ja) 三酸化硫黄の転化のための触媒組成物及び水素生成方法
RU2668863C1 (ru) Способ получения синтез-газа из CO2

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844992

Country of ref document: EP

Kind code of ref document: A1