WO2010134167A1 - Abnormality diagnostic apparatus for nox sensor - Google Patents

Abnormality diagnostic apparatus for nox sensor Download PDF

Info

Publication number
WO2010134167A1
WO2010134167A1 PCT/JP2009/059227 JP2009059227W WO2010134167A1 WO 2010134167 A1 WO2010134167 A1 WO 2010134167A1 JP 2009059227 W JP2009059227 W JP 2009059227W WO 2010134167 A1 WO2010134167 A1 WO 2010134167A1
Authority
WO
WIPO (PCT)
Prior art keywords
nox
upstream
passage
nox sensor
concentration
Prior art date
Application number
PCT/JP2009/059227
Other languages
French (fr)
Japanese (ja)
Inventor
小田 富久
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/059227 priority Critical patent/WO2010134167A1/en
Publication of WO2010134167A1 publication Critical patent/WO2010134167A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/008Mounting or arrangement of exhaust sensors in or on exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a NOx sensor abnormality diagnosis device, and more particularly to a device for diagnosing abnormality of a NOx sensor provided in an exhaust passage of an internal combustion engine.
  • a NOx catalyst for purifying NOx (nitrogen oxide) contained in exhaust gas is known as an exhaust purification device disposed in an exhaust system of an internal combustion engine such as a diesel engine.
  • a NOx sensor for detecting the NOx concentration of the exhaust gas is provided on the downstream side of the NOx catalyst.
  • Patent Document 1 describes the NOx sensor abnormality diagnosis of the NOx sensor provided on the downstream side of the selective reduction type NOx catalyst, the exhaust gas NOx concentration upstream of the NOx catalyst and the detected concentration of the NOx sensor during the stop of the addition of the reducing agent to the NOx catalyst. And diagnosing an abnormality in the NOx sensor.
  • the addition of the reducing agent is stopped at the time of diagnosis in order to eliminate the influence of the NOx catalyst arranged on the upstream side of the NOx sensor.
  • one object of the present invention is to provide a NOx sensor abnormality diagnosis device that can prevent deterioration of exhaust emission at the time of diagnosis.
  • An apparatus for diagnosing an abnormality in a NOx sensor provided in an exhaust passage of an internal combustion engine The exhaust passage has an upstream passage, a downstream passage, and an intermediate passage located between the upstream passage and the downstream passage; A forward flow position that connects one end of the upstream passage and the intermediate passage and connects the other end of the intermediate passage and the downstream passage, and one end of the intermediate passage that connects the upstream passage and the other end of the intermediate passage A switching valve that can be switched to a backflow position that connects the downstream passage is provided, In the forward flow direction of the exhaust gas when the switching valve is in the forward flow position, a NOx catalyst is provided upstream of the intermediate passage and the NOx sensor is provided downstream of the intermediate passage, There is provided a NOx sensor abnormality diagnosis device, characterized in that a switching valve control means for switching the switching valve to the backflow position is provided at the time of abnormality diagnosis of the NOx sensor.
  • the exhaust gas flows in the reverse flow direction opposite to the forward flow direction. That is, the exhaust gas flowing through the upstream passage flows into the intermediate passage from the other end of the intermediate passage, and first passes through the NOx sensor and then passes through the NOx catalyst, contrary to the forward flow direction. Then, it flows out from one end of the intermediate passage to the downstream passage. At this time, since the exhaust gas before passing through the NOx catalyst is supplied to the NOx sensor, the influence of the NOx catalyst can be eliminated. On the other hand, NOx in the exhaust gas is purified by the NOx catalyst after passing through the NOx sensor. Thereby, it is possible to prevent the exhaust emission from deteriorating at the time of diagnosis.
  • the NOx catalyst is a selective reduction type NOx catalyst, and an addition valve for adding a reducing agent is provided upstream of the NOx catalyst in the forward flow direction.
  • the addition valve may be provided in the upstream passage, or alternatively in the intermediate passage.
  • an addition valve control means for controlling the addition valve is provided, and the addition valve control means stops the addition of the reducing agent from the addition valve when diagnosing abnormality of the NOx sensor.
  • the diagnostic accuracy can be improved.
  • the NOx catalyst may be an NOx storage reduction catalyst.
  • the intermediate passage is formed in an annular shape where one portion is divided, the intermediate passage is connected to the upstream passage and the downstream passage at the divided portion, and the switching valve is provided at the connection portion.
  • upstream concentration acquisition means for detecting or estimating the NOx concentration of the exhaust gas upstream of the NOx catalyst in the forward flow direction;
  • a determination unit that determines whether the NOx sensor is normal or abnormal by comparing the NOx concentration detected or estimated by the upstream concentration acquisition unit with the NOx concentration detected by the NOx sensor during abnormality diagnosis of the NOx sensor. And are provided.
  • the upstream concentration acquisition means includes at least one of an estimation means for estimating the NOx concentration of the exhaust gas based on an operating state of the internal combustion engine and an upstream NOx sensor for detecting the NOx concentration of the exhaust gas.
  • the upstream concentration acquisition means includes both the estimation means and the upstream NOx sensor
  • the determination unit compares the detected value of the NOx concentration by the NOx sensor, the detected value of the NOx concentration by the upstream NOx sensor, and the estimated value of the NOx concentration by the estimation unit, and compares the NOx sensor, the upstream NOx sensor, and the Judgment is made by distinguishing whether the internal combustion engine is normal or abnormal.
  • the estimation means estimates the NOx concentration from a predetermined map, and when the internal combustion engine is determined to be abnormal by the determination means, at least a detection value of the NOx sensor and a detection value of the upstream NOx sensor Based on one, the map data is modified.
  • an excellent effect is exhibited that it is possible to prevent deterioration of exhaust emission at the time of diagnosis.
  • FIG. 1 is a diagram schematically showing an internal combustion engine according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of a main part when the switching valve is in the backflow position.
  • FIG. 3 is a flowchart of a second example of the abnormality diagnosis process.
  • FIG. 1 schematically shows an internal combustion engine according to an embodiment of the present invention.
  • 1 is a compression ignition type internal combustion engine or diesel engine for automobiles
  • 2 is an intake manifold communicated with an intake port
  • 3 is an exhaust manifold communicated with an exhaust port
  • 4 is a combustion chamber.
  • fuel supplied from a fuel tank (not shown) to the high pressure pump 5 is pumped to the common rail 6 by the high pressure pump 5 and accumulated in a high pressure state.
  • the high pressure fuel in the common rail 6 is transferred from the injector 7 to the combustion chamber. 4 is directly supplied by injection.
  • the exhaust gas from the engine 1 passes through the turbocharger 8 from the exhaust manifold 3 and then flows into the exhaust passage 9 downstream thereof, and after being purified as described later, is discharged to the atmosphere.
  • the turbocharger 8 from the exhaust manifold 3 and then flows into the exhaust passage 9 downstream thereof, and after being purified as described later, is discharged to the atmosphere.
  • EGR devices exhaust purification devices
  • the intake air introduced from the air cleaner 10 into the intake passage 11 passes through the air flow meter 12, the turbocharger 8, the intercooler 13, and the throttle valve 14 in order to reach the intake manifold 2.
  • the air flow meter 12 is a sensor for detecting the intake air amount, and specifically outputs a signal corresponding to the flow rate of the intake air.
  • the throttle valve 14 is an electronically controlled type.
  • an oxidation catalyst 20 that oxidizes and purifies unburned components (especially HC) in the exhaust gas, and particulate matter (PM) in the exhaust gas is collected and removed by combustion.
  • a DPR (Diesel Particulate Reduction) catalyst 22 is provided in series.
  • the exhaust passage 9 includes an upstream passage 91, a downstream passage 93, and an intermediate passage 92 positioned between the upstream passage 91 and the downstream passage 93.
  • the upstream passage 91 and the downstream passage 93 are formed in a straight shape or a straight tube shape, but the intermediate passage 92 is formed in an annular shape, particularly in an annular shape where one portion is divided.
  • the intermediate passage 92 one end 92A and the other end 92B are formed.
  • the intermediate passage 92 is provided with a NOx catalyst for reducing and purifying NOx in the exhaust gas, particularly a selective reduction type NOx catalyst 24.
  • the intermediate passage 92 is connected to the upstream passage 91 and the downstream passage 93 at the part where the intermediate passage 92 is divided. That is, the downstream end (right end) of the upstream passage 91 and the upstream end (left end) of the downstream passage 93 are connected in a coaxial state, and one end 92A and the other end 92B of the intermediate passage 92 are connected to these connecting portions from the orthogonal direction. The As shown in the drawing, these four end portions are connected at the same place, and the upstream passage 91, the intermediate passage 92, and the downstream passage 93 cross each other at right angles.
  • a switching valve 26 is provided at the connection or intersection.
  • the switching valve 26 can be switched between a forward flow position as shown in FIG. 1 and a backflow position as shown in FIG.
  • a butterfly valve that rotates about a rotation axis is used as the switching valve 26. Then, the switching valve 26 is rotated about 90 ° counterclockwise from the forward flow position to the reverse flow position, and is rotated about 90 ° clockwise from the reverse flow position to the forward flow position.
  • the switching valve 26 is an electronic control type, and is controlled by an electronic control unit (hereinafter referred to as ECU) 100 as a control means for controlling the entire engine.
  • ECU electronice control unit
  • the upstream passage 91 is provided with a NOx sensor 30 for detecting the NOx concentration of the exhaust gas.
  • this NOx sensor 30 is referred to as an upstream NOx sensor 30.
  • the upstream passage 91 is provided with an addition valve 40 for adding a reducing agent downstream of the upstream NOx sensor 30.
  • urea is used as the reducing agent, but other reducing agents such as ammonia may be used.
  • the intermediate passage 92 is provided with a NOx sensor 32 for detecting the NOx concentration of the exhaust gas downstream of the NOx catalyst 24 in the forward flow direction of the exhaust gas as shown in FIG.
  • this NOx sensor 32 is referred to as a downstream NOx sensor 32.
  • the downstream NOx sensor 32 is a sensor that is mainly a diagnosis target in the present embodiment.
  • An upstream exhaust temperature sensor 50 and a downstream exhaust temperature sensor 52 for detecting the temperature of the exhaust gas are provided on the upstream and downstream sides of the NOx catalyst 24, respectively.
  • ECU 100 includes a CPU, a ROM, a RAM, an input / output port, a storage device, and the like.
  • the ECU 100 controls the injector 7, the high-pressure pump 5, the throttle valve 14 and the like so that desired engine control is executed based on detection values and the like of various sensors.
  • the ECU 100 also controls the addition valve 40 to control the urea addition amount.
  • the ECU 100 is connected to the air flow meter 12, the upstream NOx sensor 30, the downstream NOx sensor 32, the upstream exhaust temperature sensor 50, and the downstream exhaust temperature sensor 52 as sensors.
  • crank angle sensor 15 and an accelerator opening sensor 16 are connected to the ECU 100.
  • the crank angle sensor 15 outputs a crank pulse signal to the ECU 100 when the crank angle rotates, and the ECU 100 detects the crank angle of the engine 1 based on the crank pulse signal and calculates the rotational speed of the engine 1.
  • the accelerator opening sensor 16 outputs a signal corresponding to the accelerator pedal opening (accelerator opening) operated by the user to the ECU 100.
  • Selective reduction type NOx catalyst (SCR: Selective Catalytic Reduction) 24 is supported by supporting a noble metal such as Pt on the surface of a substrate such as zeolite or alumina, or a transition metal such as Cu on the surface of the substrate by ion exchange. Examples thereof include those obtained by carrying a titania / vanadium catalyst (V 2 O 5 / WO 3 / TiO 2 ) on the surface of the substrate.
  • the selective reduction type NOx catalyst 24 can continuously reduce and purify NOx when the catalyst temperature is in a predetermined operating temperature range (for example, 200 to 400 ° C.) and urea as a reducing agent is added. is there. The added urea is hydrolyzed to produce ammonia, and this ammonia reacts with NOx on the catalyst to reduce NOx.
  • the temperature of the NOx catalyst 24 can be directly detected by a temperature sensor embedded in the catalyst, but in the present embodiment, it is estimated. Specifically, ECU 100 estimates the catalyst temperature based on the exhaust temperatures detected by upstream exhaust temperature sensor 50 and downstream exhaust temperature sensor 52, respectively. Note that the estimation method is not limited to such an example.
  • the switching valve 26 is switched to the forward flow position as shown in FIG. 1 during normal operation, and the exhaust gas flows in the forward flow direction.
  • urea added from the addition valve 40 flows into the intermediate passage 92 from one end 92 ⁇ / b> A of the intermediate passage and is supplied to the NOx catalyst 24.
  • the downstream NOx sensor 32 detects the NOx concentration of the exhaust gas downstream of the NOx catalyst 24, in other words, the exhaust gas discharged from the NOx catalyst 24.
  • the switching valve 26 is switched to the backflow position as shown in FIG. 2, and the exhaust gas flows in the backflow direction. This point will be described in detail later.
  • the amount of urea added from the addition valve 40 is controlled by the ECU 100 so that the detected concentration of the downstream NOx sensor 32 is always below a predetermined value.
  • the downstream NOx sensor 32 can detect ammonia NH 3 in addition to NOx, and outputs a signal corresponding to the total concentration of NOx and ammonia. This also applies to the upstream NOx sensor 30.
  • the NOx catalyst 24 can adsorb ammonia within a predetermined limit determined by the catalyst temperature, and if the urea addition amount is excessive, ammonia that cannot be adsorbed by the NOx catalyst 24 is discharged (so-called ammonia slip). This ammonia slip needs to be prevented because it causes a strange odor.
  • the amount of urea added so that the NOx catalyst 24 can adsorb a predetermined target amount of ammonia that does not cause ammonia slip and the NOx catalyst 24 can sufficiently purify NOx is based on the detected value of the upstream NOx sensor 30 and the like. Determined by.
  • the addition valve 40 is controlled by the ECU 100 so that the determined urea addition amount is added from the addition valve 40.
  • the detected concentration of the downstream NOx sensor 32 increases both when the urea addition amount is insufficient and NOx is discharged from the NOx catalyst 24 and when the urea addition amount is excessive and ammonia is discharged from the NOx catalyst 24. . Therefore, the urea addition amount is controlled so that the detected concentration of the downstream NOx sensor 32 is always below a predetermined value (preferably near zero).
  • the execution / stop of urea addition is controlled according to the catalyst temperature of the NOx catalyst 24. That is, urea addition is executed when the estimated catalyst temperature of the NOx catalyst 24 is within a predetermined operating temperature range (for example, 200 to 400 ° C.), and urea addition is performed when the estimated catalyst temperature of the NOx catalyst 24 is outside the operating temperature range. Stopped.
  • a predetermined operating temperature range for example, 200 to 400 ° C.
  • the DPR catalyst 22 is a kind of diesel particulate filter (Diesel Particulate Filter; DPF), has a filter structure and has a noble metal on the surface, and continuously collects particulate matter collected by the filter using the noble metal. It is a continuous regeneration type that oxidizes (combusts).
  • DPF diesel particulate Filter
  • the DPF is not limited to such a DPR catalyst 22, and any type of DPF can be used.
  • the switching valve 26 is switched to the backflow position as shown in FIG. 2, and the exhaust gas flows in the backflow direction. Further, urea addition from the addition valve 40 is stopped. Exhaust gas that has flowed through the upstream passage 91 flows into the intermediate passage 92 from the other end 92B of the intermediate passage, and first passes through the downstream NOx sensor 32, and then the NOx catalyst 24, contrary to the forward flow direction. Pass through. Then, it flows out from the one end 92 ⁇ / b> A of the intermediate passage to the downstream passage 93 and is discharged to the atmosphere through the downstream passage 93.
  • the exhaust gas before passing through the NOx catalyst 24 flows to the downstream NOx sensor 32, and the same exhaust gas is supplied to the upstream NOx sensor 30 and the downstream NOx sensor 32. Therefore, the NOx concentrations detected by the upstream NOx sensor 30 and the downstream NOx sensor 32 should be equal. Accordingly, the detected concentration of the downstream NOx sensor 32 is compared with the detected concentration of the upstream NOx sensor 30, and normality or abnormality of the downstream NOx sensor 32 is diagnosed.
  • NOx in the exhaust gas at the time of diagnosis is reduced and purified by ammonia already adsorbed on the NOx catalyst 24. That is, when exhaust gas flowing in the reverse flow direction through the intermediate passage 92 passes through the NOx catalyst 24, a reduction reaction occurs between NOx in the exhaust gas and ammonia adsorbed on the NOx catalyst 24, thereby purifying NOx. The Therefore, it is possible to prevent NOx from being released into the atmosphere, and to prevent deterioration of exhaust emission at the time of diagnosis.
  • the downstream NOx sensor 32 can be prevented, and the downstream NOx sensor 32 can be prevented from generating an output corresponding to ammonia generated from urea. Therefore, the diagnostic accuracy can be improved.
  • the NOx concentration of the exhaust gas estimated by the ECU 100 can be used instead of the detected concentration of the upstream NOx sensor 30.
  • the ECU 100 determines the NOx concentration of the exhaust gas upstream of the NOx catalyst 24 in the forward flow direction according to a predetermined map based on the detected values of the parameters representing the engine operating state (for example, the engine rotational speed NE and the accelerator opening degree AC). Specifically, the NOx concentration of the exhaust gas discharged from the combustion chamber 4 of the engine 1 is estimated.
  • downstream detection concentration Cd the NOx concentration detected by the downstream NOx sensor 32
  • upstream detection concentration Cu the NOx concentration detected by the upstream NOx sensor 30
  • upstream estimated concentration Ce the NOx concentration estimated by the ECU 100
  • the comparison target of the downstream detection concentration Cd can be at least one of the upstream detection concentration Cu and the upstream estimated concentration Ce.
  • the concentration difference ⁇ C is equal to or smaller than the predetermined value ⁇ Cs
  • the ECU 100 regards the downstream detection concentration Cd as substantially equal to the upstream detection concentration Cu, and determines that the downstream NOx sensor 32 is normal.
  • the concentration difference ⁇ C is larger than the predetermined value ⁇ Cs
  • the ECU 100 regards the downstream detected concentration Cd as being relatively large from the upstream detected concentration Cu, and determines that the downstream NOx sensor 32 is abnormal.
  • downstream detection concentration Cd the upstream detection concentration Cu, and the upstream estimated concentration Ce are compared with each other, and normality or abnormality of the downstream NOx sensor 32, the upstream NOx sensor 30, and the engine 1 is determined and distinguished. .
  • the downstream detection concentration Cd is compared with both the upstream detection concentration Cu and the upstream estimated concentration Ce, the reliability of abnormality diagnosis of the downstream NOx sensor 32 is improved. For example, if only the downstream detection concentration Cd is compared with the upstream detection concentration Cu, if the downstream detection concentration Cd is greatly deviated from the upstream detection concentration Cu, the downstream NOx sensor 32 is abnormal or the upstream NOx sensor 30 is abnormal. It is not possible to distinguish and specify. According to this example, since the upstream estimated concentration Ce is also added to the comparison target, for example, when the upstream detected concentration Cu and the upstream estimated concentration Ce are substantially equal and only the downstream detected concentration Cd is deviated, the downstream NOx sensor 32. Can be determined as abnormal. In the same manner, the abnormality of the upstream NOx sensor 30 and the engine 1 can be diagnosed. Only one that shows an outlier is diagnosed as abnormal.
  • FIG. 3 shows the procedure of the diagnostic processing according to the second example.
  • the ECU 100 determines whether or not a predetermined condition suitable for making a diagnosis is satisfied. For example, (a) the upstream NOx sensor 30 and the downstream NOx sensor 32 have reached a predetermined activation temperature, (b) the engine 1 is in a steady operation state, and (c) the engine 1 has been warmed up. When all the conditions are satisfied, the condition is satisfied.
  • the ECU 100 detects the element impedances of the upstream NOx sensor 30 and the downstream NOx sensor 32 to obtain the element temperature with respect to the condition (a), and determines whether or not the element temperature has reached a predetermined activation temperature. Further, regarding the condition (b), the ECU 100 determines that the engine 1 is in a steady operation state when, for example, the fluctuation amount of the intake air amount GA detected by the air flow meter 12 is within a predetermined range. Furthermore, regarding condition (c), ECU 100 determines that warm-up of engine 1 has ended when the coolant temperature detected by a water temperature sensor (not shown) is equal to or higher than a predetermined value.
  • the predetermined condition preferably further includes (d) a condition that the estimated catalyst temperature of the NOx catalyst 24 is within a predetermined operating temperature range.
  • ECU100 will be in a standby state, when it is judged that predetermined conditions are not satisfied. On the other hand, when ECU 100 determines that the predetermined condition is satisfied, urea addition from addition valve 40 is stopped in step S102, and switching valve 26 is switched to the backflow position in step S103.
  • step S104 the ECU 100 acquires the downstream detection concentration Cd, the upstream detection concentration Cu, and the upstream estimated concentration Ce.
  • step S105 the ECU 100 calculates the concentration difference between the downstream detection concentration Cd, the upstream detection concentration Cu, and the upstream estimated concentration Ce, that is, the first concentration difference ⁇ C1, the second concentration difference ⁇ C2, and the third concentration difference ⁇ C3 by the following equations. calculate.
  • ⁇ C1
  • ⁇ C2
  • ⁇ C3
  • the ECU 100 compares the first to third concentration differences ⁇ C1 to ⁇ C3 with the first to third predetermined values ⁇ C1s to ⁇ C3s, respectively.
  • step S106 the ECU 100 compares the first concentration difference ⁇ C1 with a first predetermined value ⁇ C1s, and compares the second concentration difference ⁇ C2 with a second predetermined value ⁇ C2s.
  • the ECU 100 determines that only the upstream estimated concentration Ce is the other two. It is assumed that there is a deviation from the two values, that is, the upstream detection concentration Cu and the downstream detection concentration Cd, and the engine 1 is determined to be abnormal in step S107.
  • the ECU 100 corrects or updates the map for calculating the upstream estimated concentration Ce in step S108. That is, since the optimal value of the map data may change from when it is new due to aging, etc., the NOx concentration value actually obtained at present is learned in the map.
  • the values on the map corresponding to the engine parameters (for example, the rotation speed and the accelerator opening) when the upstream estimated concentration Ce is acquired in step S104 are the upstream detection concentration Cu and downstream detection acquired in step S104.
  • the value is replaced with a value based on at least one of the concentrations Cd (either one value or an average value of both).
  • step S106 the ECU 100 compares the first concentration difference ⁇ C1 with the first predetermined value ⁇ C1s in step S109 and compares the third concentration difference ⁇ C3 with The third predetermined value ⁇ C3s is compared.
  • the ECU 100 determines that only the upstream detected concentration Cu is the other two.
  • the upstream NOx sensor 30 is determined to be abnormal in step S110, assuming that there is a deviation from the two values, that is, the upstream estimated concentration Ce and the downstream detected concentration Cd.
  • step S109 the ECU 100 compares the second concentration difference ⁇ C2 with the second predetermined value ⁇ C2s in step S111 and compares the third concentration difference ⁇ C3 with The third predetermined value ⁇ C3s is compared.
  • the ECU 100 determines that only the downstream detected concentration Cd is the other two.
  • the downstream NOx sensor 32 is determined to be abnormal in step S112, assuming that there is a deviation from the two values, that is, the upstream estimated concentration Ce and the upstream detected concentration Cu.
  • ECU 100 determines that all of engine 1, upstream NOx sensor 30, and downstream NOx sensor 32 are normal in step S113.
  • addition valve 40 is provided in the upstream passage 91 in the above embodiment, the addition valve 40 may be provided in the intermediate passage 92 upstream of the NOx catalyst 24 in the forward flow direction.
  • the comparison between the downstream detection concentration and at least one of the upstream detection concentration and the upstream estimated concentration was performed based on the difference between the two in the above embodiment, but the comparison method is not limited to this, for example, based on the ratio between the two. You may go.
  • the internal combustion engine may be other than the compression ignition type, for example, a spark ignition type internal combustion engine, particularly a direct injection lean burn gasoline engine.
  • An NOx storage reduction (NSR: NOx Storage Reduction) catalyst may be used as the NOx catalyst.
  • the NOx storage reduction catalyst stores NOx in the exhaust gas in the form of nitrate when the air-fuel ratio of the exhaust gas supplied thereto is leaner than the stoichiometric air-fuel ratio (that is, an oxygen-excess atmosphere), and the exhaust gas empty When the fuel ratio is the stoichiometric air-fuel ratio or richer (that is, in an oxygen-deficient atmosphere), the stored NOx is released and reduced to N 2 , which has an NOx absorption / release action.
  • the addition valve for adding the reducing agent can be omitted.
  • the exhaust gas flowing in the reverse flow direction in the intermediate passage is supplied to the NOx catalyst after passing through the downstream NOx sensor. Then, NOx in the exhaust gas is stored in the NOx catalyst and purified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

An abnormality diagnostic apparatus for an NOx sensor installed in the exhaust passage of an internal combustion engine.  The exhaust passage comprises an upstream passage, a downstream passage, and an intermediate passage positioned therebetween.  The abnormality diagnostic apparatus comprises a changeover valve changeable between a forward flow position where the upstream passage is connected to one end of the intermediate passage and the other end of the intermediate passage is connected to the downstream passage and a reverse flow position where the upstream passage is connected to the other end of the intermediate passage and one end of the intermediate passage is connected to the downstream passage.  An NOx catalyst is installed on the upstream side of the intermediate passage and the NOx sensor is installed on the downstream side of the intermediate passage in the forward flow direction of exhaust gas when the changeover valve is set at the forward flow position.  When the NOx sensor is diagnosed for abnormality, the changeover valve is changed to the reverse flow position.

Description

NOxセンサの異常診断装置NOx sensor abnormality diagnosis device
 本発明は、NOxセンサの異常診断装置に係り、特に、内燃機関の排気通路に設けられたNOxセンサの異常を診断する装置に関する。 The present invention relates to a NOx sensor abnormality diagnosis device, and more particularly to a device for diagnosing abnormality of a NOx sensor provided in an exhaust passage of an internal combustion engine.
 一般に、ディーゼルエンジン等の内燃機関の排気系に配置される排気浄化装置として、排気ガスに含まれるNOx(窒素酸化物)を浄化するためのNOx触媒が知られている。そして例えば、このNOx触媒によってNOxが浄化されているか否かを検知するため、NOx触媒の下流側に、排気ガスのNOx濃度を検出するNOxセンサが設けられる。 Generally, a NOx catalyst for purifying NOx (nitrogen oxide) contained in exhaust gas is known as an exhaust purification device disposed in an exhaust system of an internal combustion engine such as a diesel engine. For example, in order to detect whether or not NOx is purified by the NOx catalyst, a NOx sensor for detecting the NOx concentration of the exhaust gas is provided on the downstream side of the NOx catalyst.
 一方、自動車の分野では、排気エミッションが悪化した車両の走行を未然に防止するため、車載状態(オンボード)で触媒やセンサの異常を診断することが各国法規等で要請されている。触媒の異常診断については比較的多くの技術が既に存在する。しかしながら、NOx触媒の下流側に設けられたNOxセンサの異常診断についてはそれ程多くの提案がなされていない。特に排ガス規制が厳しくなりつつある現状にあっては、NOxセンサの異常に起因した排気エミッションの悪化を確実に防止する必要がある。 On the other hand, in the field of automobiles, in order to prevent the running of a vehicle whose exhaust emission has deteriorated, it is required by the laws and regulations of each country to diagnose the abnormality of the catalyst or the sensor in the on-board state (onboard). There are already relatively many techniques for diagnosing catalyst abnormalities. However, there are not so many proposals for abnormality diagnosis of the NOx sensor provided on the downstream side of the NOx catalyst. In particular, in the current situation where exhaust gas regulations are becoming stricter, it is necessary to reliably prevent deterioration of exhaust emission due to abnormality of the NOx sensor.
 特許文献1は、選択還元型NOx触媒の下流側に設けられたNOxセンサの異常診断について、NOx触媒への還元剤の添加停止中におけるNOx触媒上流側の排ガスNOx濃度とNOxセンサの検出濃度とを比較して、NOxセンサの異常を診断することを開示している。この技術では、NOxセンサの上流側に配置されたNOx触媒の影響を無くすため、診断時に還元剤の添加を停止している。 Patent Document 1 describes the NOx sensor abnormality diagnosis of the NOx sensor provided on the downstream side of the selective reduction type NOx catalyst, the exhaust gas NOx concentration upstream of the NOx catalyst and the detected concentration of the NOx sensor during the stop of the addition of the reducing agent to the NOx catalyst. And diagnosing an abnormality in the NOx sensor. In this technique, the addition of the reducing agent is stopped at the time of diagnosis in order to eliminate the influence of the NOx catalyst arranged on the upstream side of the NOx sensor.
特開2008-133780号公報JP 2008-133780 A
 しかしながら、この特許文献1に記載の技術によれば、診断時に還元剤の添加が停止されるため、排ガス中のNOxをNOx触媒により浄化することができない。従って、診断時に排気エミッションを悪化させてしまうという問題がある。 However, according to the technique described in Patent Document 1, since the addition of the reducing agent is stopped at the time of diagnosis, NOx in the exhaust gas cannot be purified by the NOx catalyst. Therefore, there is a problem that exhaust emission is deteriorated at the time of diagnosis.
 そこで、本発明はかかる事情に鑑みてなされたものであり、その一の目的は、診断時における排気エミッションの悪化を防止し得るNOxセンサの異常診断装置を提供することにある。 Therefore, the present invention has been made in view of such circumstances, and one object of the present invention is to provide a NOx sensor abnormality diagnosis device that can prevent deterioration of exhaust emission at the time of diagnosis.
 本発明の一形態によれば、
 内燃機関の排気通路に設けられたNOxセンサの異常を診断する装置であって、
 前記排気通路が、上流通路と、下流通路と、前記上流通路および前記下流通路の間に位置された中間通路とを有し、
 前記上流通路と前記中間通路の一端を接続し前記中間通路の他端と前記下流通路を接続する順流位置と、前記上流通路と前記中間通路の他端を接続し前記中間通路の一端と前記下流通路を接続する逆流位置とに切替可能な切替弁を設け、
 前記切替弁が前記順流位置にあるときの排気ガスの順流方向において、前記中間通路の上流側にNOx触媒を設けると共に前記中間通路の下流側に前記NOxセンサを設け、
 前記NOxセンサの異常診断時、前記切替弁を前記逆流位置に切り替える切替弁制御手段を設けた
 ことを特徴とするNOxセンサの異常診断装置が提供される。
According to one aspect of the invention,
An apparatus for diagnosing an abnormality in a NOx sensor provided in an exhaust passage of an internal combustion engine,
The exhaust passage has an upstream passage, a downstream passage, and an intermediate passage located between the upstream passage and the downstream passage;
A forward flow position that connects one end of the upstream passage and the intermediate passage and connects the other end of the intermediate passage and the downstream passage, and one end of the intermediate passage that connects the upstream passage and the other end of the intermediate passage A switching valve that can be switched to a backflow position that connects the downstream passage is provided,
In the forward flow direction of the exhaust gas when the switching valve is in the forward flow position, a NOx catalyst is provided upstream of the intermediate passage and the NOx sensor is provided downstream of the intermediate passage,
There is provided a NOx sensor abnormality diagnosis device, characterized in that a switching valve control means for switching the switching valve to the backflow position is provided at the time of abnormality diagnosis of the NOx sensor.
 異常診断時に切替弁を逆流位置に切り替えると、排気ガスは順流方向とは逆の逆流方向に流される。すなわち、上流通路を流れてきた排気ガスは、中間通路の他端から中間通路に流入し、順流方向のときとは逆に、最初にNOxセンサを通過し、次にNOx触媒を通過する。そして中間通路の一端から下流通路に流出する。このときNOxセンサにはNOx触媒を通過する前の排気ガスが供給されるので、NOx触媒の影響を無くすことができる。他方、排気ガス中のNOxは、NOxセンサ通過後にNOx触媒により浄化される。これにより診断時の排気エミッションの悪化を未然に防止することができる。 時 に If the switching valve is switched to the backflow position at the time of abnormality diagnosis, the exhaust gas flows in the reverse flow direction opposite to the forward flow direction. That is, the exhaust gas flowing through the upstream passage flows into the intermediate passage from the other end of the intermediate passage, and first passes through the NOx sensor and then passes through the NOx catalyst, contrary to the forward flow direction. Then, it flows out from one end of the intermediate passage to the downstream passage. At this time, since the exhaust gas before passing through the NOx catalyst is supplied to the NOx sensor, the influence of the NOx catalyst can be eliminated. On the other hand, NOx in the exhaust gas is purified by the NOx catalyst after passing through the NOx sensor. Thereby, it is possible to prevent the exhaust emission from deteriorating at the time of diagnosis.
 好ましくは、前記NOx触媒が選択還元型NOx触媒からなり、前記順流方向における前記NOx触媒の上流側に、還元剤を添加するための添加弁が設けられる。添加弁は上流通路に設けられてもよく、或いは代替的に中間通路に設けられてもよい。 Preferably, the NOx catalyst is a selective reduction type NOx catalyst, and an addition valve for adding a reducing agent is provided upstream of the NOx catalyst in the forward flow direction. The addition valve may be provided in the upstream passage, or alternatively in the intermediate passage.
 好ましくは、前記添加弁を制御する添加弁制御手段が設けられ、該添加弁制御手段が、前記NOxセンサの異常診断時、前記添加弁からの還元剤の添加を停止させる。 Preferably, an addition valve control means for controlling the addition valve is provided, and the addition valve control means stops the addition of the reducing agent from the addition valve when diagnosing abnormality of the NOx sensor.
 異常診断時に還元剤の添加を停止させることにより、NOxセンサへの還元剤の供給を防止し、NOxセンサが還元剤に対応した出力を発生するのを防止できる。よって診断精度の向上が図れる。 By stopping the addition of the reducing agent at the time of abnormality diagnosis, the supply of the reducing agent to the NOx sensor can be prevented, and the NOx sensor can be prevented from generating an output corresponding to the reducing agent. Therefore, the diagnostic accuracy can be improved.
 代替的に、前記NOx触媒が吸蔵還元型NOx触媒からなってもよい。 Alternatively, the NOx catalyst may be an NOx storage reduction catalyst.
 好ましくは、前記中間通路が、一箇所が分断された環状に形成され、当該分断箇所で前記中間通路が前記上流通路と前記下流通路に接続され、当該接続箇所に前記切替弁が設けられる。 Preferably, the intermediate passage is formed in an annular shape where one portion is divided, the intermediate passage is connected to the upstream passage and the downstream passage at the divided portion, and the switching valve is provided at the connection portion.
 これにより、一つの切替弁による順流方向と逆流方向との切り替えが可能となる。 This makes it possible to switch between the forward flow direction and the reverse flow direction using a single switching valve.
 好ましくは、前記順流方向における前記NOx触媒の上流側の排気ガスのNOx濃度を検出又は推定する上流濃度取得手段と、
 前記NOxセンサの異常診断時、前記上流濃度取得手段によって検出又は推定されたNOx濃度と、前記NOxセンサによって検出されたNOx濃度とを比較して前記NOxセンサが正常か異常かを判定する判定手段とが設けられる。
Preferably, upstream concentration acquisition means for detecting or estimating the NOx concentration of the exhaust gas upstream of the NOx catalyst in the forward flow direction;
A determination unit that determines whether the NOx sensor is normal or abnormal by comparing the NOx concentration detected or estimated by the upstream concentration acquisition unit with the NOx concentration detected by the NOx sensor during abnormality diagnosis of the NOx sensor. And are provided.
 好ましくは、前記上流濃度取得手段が、前記内燃機関の運転状態に基づき排気ガスのNOx濃度を推定する推定手段、および前記排気ガスのNOx濃度を検出する上流NOxセンサの少なくとも一方からなる。 Preferably, the upstream concentration acquisition means includes at least one of an estimation means for estimating the NOx concentration of the exhaust gas based on an operating state of the internal combustion engine and an upstream NOx sensor for detecting the NOx concentration of the exhaust gas.
 好ましくは、前記上流濃度取得手段が前記推定手段及び前記上流NOxセンサの両方からなり、
 前記判定手段が、前記NOxセンサによるNOx濃度の検出値、前記上流NOxセンサによるNOx濃度の検出値及び前記推定手段によるNOx濃度の推定値を比較して、前記NOxセンサ、前記上流NOxセンサ及び前記内燃機関が正常か異常かを区別して判定する。
Preferably, the upstream concentration acquisition means includes both the estimation means and the upstream NOx sensor,
The determination unit compares the detected value of the NOx concentration by the NOx sensor, the detected value of the NOx concentration by the upstream NOx sensor, and the estimated value of the NOx concentration by the estimation unit, and compares the NOx sensor, the upstream NOx sensor, and the Judgment is made by distinguishing whether the internal combustion engine is normal or abnormal.
 好ましくは、前記推定手段が、所定のマップから前記NOx濃度を推定すると共に、前記判定手段によって前記内燃機関が異常と判定されたとき前記NOxセンサの検出値および前記上流NOxセンサの検出値の少なくとも一方に基づいて前記マップのデータを修正する。 Preferably, the estimation means estimates the NOx concentration from a predetermined map, and when the internal combustion engine is determined to be abnormal by the determination means, at least a detection value of the NOx sensor and a detection value of the upstream NOx sensor Based on one, the map data is modified.
 本発明によれば、診断時における排気エミッションの悪化を防止することができるという、優れた効果が発揮される。 According to the present invention, an excellent effect is exhibited that it is possible to prevent deterioration of exhaust emission at the time of diagnosis.
図1は、本発明の実施形態に係る内燃機関を概略的に示す図である。FIG. 1 is a diagram schematically showing an internal combustion engine according to an embodiment of the present invention. 図2は、切替弁が逆流位置にあるときの要部拡大図である。FIG. 2 is an enlarged view of a main part when the switching valve is in the backflow position. 図3は、異常診断処理の第2の例のフローチャートである。FIG. 3 is a flowchart of a second example of the abnormality diagnosis process.
 以下、添付図面を参照して、本発明を実施するための形態を説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.
 図1に、本発明の実施形態に係る内燃機関を概略的に示す。図中1は自動車用の圧縮着火式内燃機関即ちディーゼルエンジンであり、2は吸気ポートに連通されている吸気マニフォルド、3は排気ポートに連通されている排気マニフォルド、4は燃焼室である。本実施形態では、不図示の燃料タンクから高圧ポンプ5に供給された燃料が、高圧ポンプ5によりコモンレール6に圧送されて高圧状態で蓄圧され、このコモンレール6内の高圧燃料がインジェクタ7から燃焼室4内に直接噴射供給される。 FIG. 1 schematically shows an internal combustion engine according to an embodiment of the present invention. In the figure, 1 is a compression ignition type internal combustion engine or diesel engine for automobiles, 2 is an intake manifold communicated with an intake port, 3 is an exhaust manifold communicated with an exhaust port, and 4 is a combustion chamber. In the present embodiment, fuel supplied from a fuel tank (not shown) to the high pressure pump 5 is pumped to the common rail 6 by the high pressure pump 5 and accumulated in a high pressure state. The high pressure fuel in the common rail 6 is transferred from the injector 7 to the combustion chamber. 4 is directly supplied by injection.
 エンジン1からの排気ガスは、排気マニフォルド3からターボチャージャ8を経た後にその下流の排気通路9に流され、後述のように浄化処理された後、大気に排出される。なお、ディーゼルエンジンの形態としてはこのようなコモンレール式燃料噴射装置を備えたものに限らない。またEGR装置などの他の排気浄化デバイスを含むことも任意である。 The exhaust gas from the engine 1 passes through the turbocharger 8 from the exhaust manifold 3 and then flows into the exhaust passage 9 downstream thereof, and after being purified as described later, is discharged to the atmosphere. In addition, as a form of a diesel engine, it is not restricted to the thing provided with such a common rail type fuel injection device. It is also optional to include other exhaust purification devices such as EGR devices.
 他方、エアクリーナ10から吸気通路11内に導入された吸入空気は、エアフローメータ12、ターボチャージャ8、インタークーラ13、スロットルバルブ14を順に通過して吸気マニフォルド2に至る。エアフローメータ12は吸入空気量を検出するためのセンサであり、具体的には吸入空気の流量に応じた信号を出力する。スロットルバルブ14には電子制御式のものが採用されている。 On the other hand, the intake air introduced from the air cleaner 10 into the intake passage 11 passes through the air flow meter 12, the turbocharger 8, the intercooler 13, and the throttle valve 14 in order to reach the intake manifold 2. The air flow meter 12 is a sensor for detecting the intake air amount, and specifically outputs a signal corresponding to the flow rate of the intake air. The throttle valve 14 is an electronically controlled type.
 排気通路9には、上流側から順に、排気ガス中の未燃成分(特にHC)を酸化して浄化する酸化触媒20と、排気ガス中の粒子状物質(PM)を捕集して燃焼除去するDPR(Diesel Particulate Reduction)触媒22とが直列に設けられている。 In the exhaust passage 9, in order from the upstream side, an oxidation catalyst 20 that oxidizes and purifies unburned components (especially HC) in the exhaust gas, and particulate matter (PM) in the exhaust gas is collected and removed by combustion. A DPR (Diesel Particulate Reduction) catalyst 22 is provided in series.
 そしてDPR触媒22の下流側において、排気通路9は、上流通路91と、下流通路93と、これら上流通路91および下流通路93の間に位置された中間通路92とから構成されている。本実施形態において、上流通路91と下流通路93は直線状或いは直管状に形成されているが、中間通路92は環状、特に一箇所が分断された環状に形成されている。そして中間通路92には一端92Aと他端92Bが形成される。中間通路92には、排気ガス中のNOxを還元して浄化するNOx触媒、特に選択還元型NOx触媒24が設けられている。 Further, on the downstream side of the DPR catalyst 22, the exhaust passage 9 includes an upstream passage 91, a downstream passage 93, and an intermediate passage 92 positioned between the upstream passage 91 and the downstream passage 93. In the present embodiment, the upstream passage 91 and the downstream passage 93 are formed in a straight shape or a straight tube shape, but the intermediate passage 92 is formed in an annular shape, particularly in an annular shape where one portion is divided. In the intermediate passage 92, one end 92A and the other end 92B are formed. The intermediate passage 92 is provided with a NOx catalyst for reducing and purifying NOx in the exhaust gas, particularly a selective reduction type NOx catalyst 24.
 中間通路92の分断箇所において、中間通路92は上流通路91と下流通路93に接続される。すなわち、上流通路91の下流端(右端)と下流通路93の上流端(左端)とが同軸状態で接続され、これら接続部に直交方向から中間通路92の一端92Aと他端92Bが接続される。図示するように、これら四つの端部は同一箇所で接続され、上流通路91、中間通路92および下流通路93は互いに直角に交差するようになる。 The intermediate passage 92 is connected to the upstream passage 91 and the downstream passage 93 at the part where the intermediate passage 92 is divided. That is, the downstream end (right end) of the upstream passage 91 and the upstream end (left end) of the downstream passage 93 are connected in a coaxial state, and one end 92A and the other end 92B of the intermediate passage 92 are connected to these connecting portions from the orthogonal direction. The As shown in the drawing, these four end portions are connected at the same place, and the upstream passage 91, the intermediate passage 92, and the downstream passage 93 cross each other at right angles.
 そして当該接続ないし交差箇所には、切替弁26が設けられる。切替弁26は、図1に示すような順流位置と、図2に示すような逆流位置とに切替可能である。 And a switching valve 26 is provided at the connection or intersection. The switching valve 26 can be switched between a forward flow position as shown in FIG. 1 and a backflow position as shown in FIG.
 図1に示すように、切替弁26が順流位置に切り替えられると、上流通路91と中間通路の一端92Aが接続ないし連通され、中間通路の他端92Bと下流通路93が接続ないし連通される。この結果、排気ガスは、矢示するように、上流通路91から中間通路の一端92Aに流入し、中間通路92を流れた後、中間通路の他端92Bから下流通路93に流出する。このような排気ガスの流れ方向を順流方向という。 As shown in FIG. 1, when the switching valve 26 is switched to the forward flow position, the upstream passage 91 and the one end 92A of the intermediate passage are connected or communicated, and the other end 92B of the intermediate passage and the downstream passage 93 are connected or communicated. . As a result, as shown by the arrow, the exhaust gas flows from the upstream passage 91 to the one end 92A of the intermediate passage, flows through the intermediate passage 92, and then flows out from the other end 92B of the intermediate passage to the downstream passage 93. Such a flow direction of the exhaust gas is referred to as a forward flow direction.
 他方、図2に示すように、切替弁26が逆流位置に切り替えられると、上流通路91と中間通路の他端92Bが接続ないし連通され、中間通路の一端92Aと下流通路93が接続ないし連通される。この結果、排気ガスは、矢示するように、上流通路91から中間通路の他端92Bに流入し、中間通路92を順流方向のときとは逆の方向に流れた後、中間通路の一端92Aから下流通路93に流出する。このような排気ガスの流れ方向を逆流方向という。 On the other hand, as shown in FIG. 2, when the switching valve 26 is switched to the backflow position, the upstream passage 91 and the other end 92B of the intermediate passage are connected or communicated, and the one end 92A of the intermediate passage and the downstream passage 93 are connected or communicated. Is done. As a result, as shown by the arrow, the exhaust gas flows from the upstream passage 91 into the other end 92B of the intermediate passage, and flows through the intermediate passage 92 in the direction opposite to that in the forward flow direction. The gas flows out of 92A into the downstream passage 93. Such a flow direction of the exhaust gas is referred to as a reverse flow direction.
 この構成によれば、一つの切替弁26による順流方向と逆流方向との切り替えが可能となり、シンプル、低コスト等の利点を得られる。 According to this configuration, it is possible to switch between the forward flow direction and the reverse flow direction by the single switching valve 26, and advantages such as simplicity and low cost can be obtained.
 本実施形態では、切替弁26として、回転軸を中心に回転するバタフライ弁が用いられる。そして切替弁26は、順流位置から図の反時計回りに約90°回転されて逆流位置となり、逆流位置から時計回りに約90°回転されて順流位置となる。しかしながら、切替弁26の構造、種類等は任意であり、スプール弁などを用いてもよい。切替弁26は電子制御式であり、エンジン全体の制御を司る制御手段としての電子制御ユニット(以下、ECUという)100によって制御される。 In the present embodiment, a butterfly valve that rotates about a rotation axis is used as the switching valve 26. Then, the switching valve 26 is rotated about 90 ° counterclockwise from the forward flow position to the reverse flow position, and is rotated about 90 ° clockwise from the reverse flow position to the forward flow position. However, the structure and type of the switching valve 26 are arbitrary, and a spool valve or the like may be used. The switching valve 26 is an electronic control type, and is controlled by an electronic control unit (hereinafter referred to as ECU) 100 as a control means for controlling the entire engine.
 図1に戻って、上流通路91には、排気ガスのNOx濃度を検出するためのNOxセンサ30が設けられている。以下、このNOxセンサ30を上流NOxセンサ30と称す。また、上流通路91には、上流NOxセンサ30の下流側に、還元剤を添加するための添加弁40が設けられている。本実施形態では還元剤として尿素が用いられるが、他の還元剤、例えばアンモニアを用いることもできる。 Referring back to FIG. 1, the upstream passage 91 is provided with a NOx sensor 30 for detecting the NOx concentration of the exhaust gas. Hereinafter, this NOx sensor 30 is referred to as an upstream NOx sensor 30. The upstream passage 91 is provided with an addition valve 40 for adding a reducing agent downstream of the upstream NOx sensor 30. In this embodiment, urea is used as the reducing agent, but other reducing agents such as ammonia may be used.
 中間通路92には、図1に示すような排気ガスの順流方向におけるNOx触媒24の下流側に、排気ガスのNOx濃度を検出するためのNOxセンサ32が設けられている。以下、このNOxセンサ32を下流NOxセンサ32と称す。この下流NOxセンサ32が本実施形態で主に診断対象となるセンサである。また、NOx触媒24の上下流側には、それぞれ、排気ガスの温度を検出するための上流排気温センサ50および下流排気温センサ52が設けられている。 The intermediate passage 92 is provided with a NOx sensor 32 for detecting the NOx concentration of the exhaust gas downstream of the NOx catalyst 24 in the forward flow direction of the exhaust gas as shown in FIG. Hereinafter, this NOx sensor 32 is referred to as a downstream NOx sensor 32. The downstream NOx sensor 32 is a sensor that is mainly a diagnosis target in the present embodiment. An upstream exhaust temperature sensor 50 and a downstream exhaust temperature sensor 52 for detecting the temperature of the exhaust gas are provided on the upstream and downstream sides of the NOx catalyst 24, respectively.
 ECU100は、CPU、ROM、RAM、入出力ポート、および記憶装置等を含む。ECU100は、各種センサ類の検出値等に基づいて、所望のエンジン制御が実行されるように、インジェクタ7、高圧ポンプ5、スロットルバルブ14等を制御する。またECU100は、尿素添加量を制御すべく添加弁40を制御する。ECU100には、センサ類として、前述のエアフローメータ12、上流NOxセンサ30、下流NOxセンサ32、上流排気温センサ50および下流排気温センサ52が接続される。 ECU 100 includes a CPU, a ROM, a RAM, an input / output port, a storage device, and the like. The ECU 100 controls the injector 7, the high-pressure pump 5, the throttle valve 14 and the like so that desired engine control is executed based on detection values and the like of various sensors. The ECU 100 also controls the addition valve 40 to control the urea addition amount. The ECU 100 is connected to the air flow meter 12, the upstream NOx sensor 30, the downstream NOx sensor 32, the upstream exhaust temperature sensor 50, and the downstream exhaust temperature sensor 52 as sensors.
 またECU100には、クランク角センサ15およびアクセル開度センサ16が接続されている。クランク角センサ15はクランク角の回転時にクランクパルス信号をECU100に出力し、ECU100はそのクランクパルス信号に基づきエンジン1のクランク角を検出すると共に、エンジン1の回転速度を計算する。アクセル開度センサ16は、ユーザによって操作されるアクセルペダルの開度(アクセル開度)に応じた信号をECU100に出力する。 Further, a crank angle sensor 15 and an accelerator opening sensor 16 are connected to the ECU 100. The crank angle sensor 15 outputs a crank pulse signal to the ECU 100 when the crank angle rotates, and the ECU 100 detects the crank angle of the engine 1 based on the crank pulse signal and calculates the rotational speed of the engine 1. The accelerator opening sensor 16 outputs a signal corresponding to the accelerator pedal opening (accelerator opening) operated by the user to the ECU 100.
 選択還元型NOx触媒(SCR: Selective Catalytic Reduction)24は、ゼオライト又はアルミナなどの基材表面にPtなどの貴金属を担持したものや、その基材表面にCu等の遷移金属をイオン交換して担持させたもの、その基材表面にチタニヤ/バナジウム触媒(V/WO/TiO)を担持させたもの等が例示できる。選択還元型NOx触媒24は、その触媒温度が所定の作動温度域(例えば200~400℃)にあり、且つ、還元剤としての尿素が添加されているときにNOxを連続的に還元浄化可能である。添加された尿素は加水分解してアンモニアを生成し、このアンモニアが触媒上でNOxと反応してNOxが還元される。 Selective reduction type NOx catalyst (SCR: Selective Catalytic Reduction) 24 is supported by supporting a noble metal such as Pt on the surface of a substrate such as zeolite or alumina, or a transition metal such as Cu on the surface of the substrate by ion exchange. Examples thereof include those obtained by carrying a titania / vanadium catalyst (V 2 O 5 / WO 3 / TiO 2 ) on the surface of the substrate. The selective reduction type NOx catalyst 24 can continuously reduce and purify NOx when the catalyst temperature is in a predetermined operating temperature range (for example, 200 to 400 ° C.) and urea as a reducing agent is added. is there. The added urea is hydrolyzed to produce ammonia, and this ammonia reacts with NOx on the catalyst to reduce NOx.
 NOx触媒24の温度は、触媒に埋設した温度センサにより直接検出することもできるが、本実施形態ではそれを推定することとしている。具体的には、ECU100が、上流排気温センサ50および下流排気温センサ52によりそれぞれ検出された排気温度に基づき、触媒温度を推定する。なお推定方法はこのような例に限られない。 The temperature of the NOx catalyst 24 can be directly detected by a temperature sensor embedded in the catalyst, but in the present embodiment, it is estimated. Specifically, ECU 100 estimates the catalyst temperature based on the exhaust temperatures detected by upstream exhaust temperature sensor 50 and downstream exhaust temperature sensor 52, respectively. Note that the estimation method is not limited to such an example.
 本実施形態では、通常運転時に切替弁26が図1に示す如き順流位置に切り替えられ、排気ガスは順流方向に流される。このとき、添加弁40から添加された尿素は、中間通路の一端92Aから中間通路92に流入し、NOx触媒24に供給される。また下流NOxセンサ32は、NOx触媒24の下流側の排気ガス、換言すればNOx触媒24から排出された排気ガスのNOx濃度を検出することになる。 In this embodiment, the switching valve 26 is switched to the forward flow position as shown in FIG. 1 during normal operation, and the exhaust gas flows in the forward flow direction. At this time, urea added from the addition valve 40 flows into the intermediate passage 92 from one end 92 </ b> A of the intermediate passage and is supplied to the NOx catalyst 24. Further, the downstream NOx sensor 32 detects the NOx concentration of the exhaust gas downstream of the NOx catalyst 24, in other words, the exhaust gas discharged from the NOx catalyst 24.
 他方、下流NOxセンサ32の異常診断時には、切替弁26は図2に示す如き逆流位置に切り替えられ、排気ガスは逆流方向に流される。この点については後に詳述する。 On the other hand, at the time of abnormality diagnosis of the downstream NOx sensor 32, the switching valve 26 is switched to the backflow position as shown in FIG. 2, and the exhaust gas flows in the backflow direction. This point will be described in detail later.
 通常運転時、添加弁40からの尿素添加量は、下流NOxセンサ32の検出濃度が常に所定値以下となるよう、ECU100によって制御される。ここで下流NOxセンサ32は、NOxのほかアンモニアNHも検知可能であり、NOxおよびアンモニアの合計濃度に対応した信号を出力する。この点は上流NOxセンサ30も同様である。またNOx触媒24は、触媒温度によって定まる所定限度内においてアンモニアを吸着可能であり、尿素添加量が過剰だとNOx触媒24が吸着しきれないアンモニアを排出してしまう(所謂アンモニアスリップ)。このアンモニアスリップは、異臭等の原因となるため防止する必要がある。そこで、アンモニアスリップを生じさせぬ所定の目標量のアンモニアをNOx触媒24に吸着させ、且つNOx触媒24でNOxを十分浄化できるような尿素添加量が、上流NOxセンサ30の検出値等に基づきECU100によって決定される。そしてこの決定された尿素添加量が添加弁40から添加されるよう、添加弁40がECU100によって制御される。 During normal operation, the amount of urea added from the addition valve 40 is controlled by the ECU 100 so that the detected concentration of the downstream NOx sensor 32 is always below a predetermined value. Here, the downstream NOx sensor 32 can detect ammonia NH 3 in addition to NOx, and outputs a signal corresponding to the total concentration of NOx and ammonia. This also applies to the upstream NOx sensor 30. Further, the NOx catalyst 24 can adsorb ammonia within a predetermined limit determined by the catalyst temperature, and if the urea addition amount is excessive, ammonia that cannot be adsorbed by the NOx catalyst 24 is discharged (so-called ammonia slip). This ammonia slip needs to be prevented because it causes a strange odor. Therefore, the amount of urea added so that the NOx catalyst 24 can adsorb a predetermined target amount of ammonia that does not cause ammonia slip and the NOx catalyst 24 can sufficiently purify NOx is based on the detected value of the upstream NOx sensor 30 and the like. Determined by. The addition valve 40 is controlled by the ECU 100 so that the determined urea addition amount is added from the addition valve 40.
 尿素添加量が不足してNOx触媒24からNOxが排出される場合、および尿素添加量が過剰でNOx触媒24からアンモニアが排出される場合の何れにおいても、下流NOxセンサ32の検出濃度が増加する。よって、下流NOxセンサ32の検出濃度が常に所定値以下となるよう(好ましくはゼロ近傍となるよう)、尿素添加量が制御される。 The detected concentration of the downstream NOx sensor 32 increases both when the urea addition amount is insufficient and NOx is discharged from the NOx catalyst 24 and when the urea addition amount is excessive and ammonia is discharged from the NOx catalyst 24. . Therefore, the urea addition amount is controlled so that the detected concentration of the downstream NOx sensor 32 is always below a predetermined value (preferably near zero).
 他方、尿素添加の実行・停止はNOx触媒24の触媒温度に応じて制御される。すなわち、NOx触媒24の推定触媒温度が所定の作動温度域(例えば200~400℃)内にあるとき、尿素添加が実行され、NOx触媒24の推定触媒温度が作動温度域外にあるとき尿素添加が停止される。 On the other hand, the execution / stop of urea addition is controlled according to the catalyst temperature of the NOx catalyst 24. That is, urea addition is executed when the estimated catalyst temperature of the NOx catalyst 24 is within a predetermined operating temperature range (for example, 200 to 400 ° C.), and urea addition is performed when the estimated catalyst temperature of the NOx catalyst 24 is outside the operating temperature range. Stopped.
 なお、DPR触媒22はディーゼルパティキュレートフィルタ(Diesel Particulate Filter;DPF)の一種であり、フィルタ構造であると共に表面に貴金属を有し、フィルタで捕集した粒子状物質を貴金属を利用して連続的に酸化(燃焼)する連続再生式である。DPFとして、このようなDPR触媒22に限らず、あらゆるタイプのDPFが使用可能である。 The DPR catalyst 22 is a kind of diesel particulate filter (Diesel Particulate Filter; DPF), has a filter structure and has a noble metal on the surface, and continuously collects particulate matter collected by the filter using the noble metal. It is a continuous regeneration type that oxidizes (combusts). The DPF is not limited to such a DPR catalyst 22, and any type of DPF can be used.
 次に、下流NOxセンサ32の異常診断について説明する。 Next, the abnormality diagnosis of the downstream NOx sensor 32 will be described.
 前述したように、下流NOxセンサ32の異常診断時、切替弁26は図2に示す如き逆流位置に切り替えられ、排気ガスは逆流方向に流される。また添加弁40からの尿素添加は停止される。上流通路91を流れてきた排気ガスは、中間通路の他端92Bから中間通路92に流入し、順流方向のときとは逆に、最初に下流NOxセンサ32を通過し、次にNOx触媒24を通過する。そして中間通路の一端92Aから下流通路93に流出し、下流通路93を通じて大気に排出される。 As described above, at the time of abnormality diagnosis of the downstream NOx sensor 32, the switching valve 26 is switched to the backflow position as shown in FIG. 2, and the exhaust gas flows in the backflow direction. Further, urea addition from the addition valve 40 is stopped. Exhaust gas that has flowed through the upstream passage 91 flows into the intermediate passage 92 from the other end 92B of the intermediate passage, and first passes through the downstream NOx sensor 32, and then the NOx catalyst 24, contrary to the forward flow direction. Pass through. Then, it flows out from the one end 92 </ b> A of the intermediate passage to the downstream passage 93 and is discharged to the atmosphere through the downstream passage 93.
 このとき下流NOxセンサ32にはNOx触媒24を通過する前の排気ガスが流され、上流NOxセンサ30と下流NOxセンサ32には同一の排気ガスが供給される。よって上流NOxセンサ30と下流NOxセンサ32により検出されるNOx濃度は等しくなる筈である。従って下流NOxセンサ32の検出濃度が上流NOxセンサ30の検出濃度と比較され、下流NOxセンサ32の正常または異常が診断される。 At this time, the exhaust gas before passing through the NOx catalyst 24 flows to the downstream NOx sensor 32, and the same exhaust gas is supplied to the upstream NOx sensor 30 and the downstream NOx sensor 32. Therefore, the NOx concentrations detected by the upstream NOx sensor 30 and the downstream NOx sensor 32 should be equal. Accordingly, the detected concentration of the downstream NOx sensor 32 is compared with the detected concentration of the upstream NOx sensor 30, and normality or abnormality of the downstream NOx sensor 32 is diagnosed.
 また、診断時における排気ガス中のNOxは、NOx触媒24に既に吸着されているアンモニアによって還元浄化される。すなわち、中間通路92を逆流方向に流れる排気ガスがNOx触媒24を通過する際、排気ガス中のNOxと、NOx触媒24に吸着されているアンモニアとの間で還元反応が生じ、NOxが浄化される。よってNOxの大気への放出を防止することができ、診断時の排気エミッションの悪化を未然に防止することができる。 Further, NOx in the exhaust gas at the time of diagnosis is reduced and purified by ammonia already adsorbed on the NOx catalyst 24. That is, when exhaust gas flowing in the reverse flow direction through the intermediate passage 92 passes through the NOx catalyst 24, a reduction reaction occurs between NOx in the exhaust gas and ammonia adsorbed on the NOx catalyst 24, thereby purifying NOx. The Therefore, it is possible to prevent NOx from being released into the atmosphere, and to prevent deterioration of exhaust emission at the time of diagnosis.
 さらに、診断時に尿素添加を停止するので、下流NOxセンサ32への尿素の供給を防止し、下流NOxセンサ32が、尿素から生じたアンモニアに対応した出力を発生するのを防止できる。よって診断精度の向上が図れる。 Furthermore, since urea addition is stopped at the time of diagnosis, the supply of urea to the downstream NOx sensor 32 can be prevented, and the downstream NOx sensor 32 can be prevented from generating an output corresponding to ammonia generated from urea. Therefore, the diagnostic accuracy can be improved.
 ところで、下流NOxセンサ32の検出濃度の比較対象として、上流NOxセンサ30の検出濃度の代わりに、ECU100により推定された排気ガスのNOx濃度を用いることも可能である。この場合、ECU100は、エンジン運転状態を表すパラメータ(例えばエンジン回転速度NE及びアクセル開度AC)の検出値に基づき、所定のマップに従って、順流方向におけるNOx触媒24の上流側の排気ガスのNOx濃度、具体的にはエンジン1の燃焼室4から排出された排気ガスのNOx濃度を推定する。 Incidentally, as a comparison target of the detected concentration of the downstream NOx sensor 32, the NOx concentration of the exhaust gas estimated by the ECU 100 can be used instead of the detected concentration of the upstream NOx sensor 30. In this case, the ECU 100 determines the NOx concentration of the exhaust gas upstream of the NOx catalyst 24 in the forward flow direction according to a predetermined map based on the detected values of the parameters representing the engine operating state (for example, the engine rotational speed NE and the accelerator opening degree AC). Specifically, the NOx concentration of the exhaust gas discharged from the combustion chamber 4 of the engine 1 is estimated.
 以下、下流NOxセンサ32によって検出されたNOx濃度を下流検出濃度Cd、上流NOxセンサ30によって検出されたNOx濃度を上流検出濃度Cu、ECU100によって推定されたNOx濃度を上流推定濃度Ceという。下流検出濃度Cdの比較対象は、上流検出濃度Cuおよび上流推定濃度Ceの少なくとも一方とすることができる。 Hereinafter, the NOx concentration detected by the downstream NOx sensor 32 is referred to as downstream detection concentration Cd, the NOx concentration detected by the upstream NOx sensor 30 is referred to as upstream detection concentration Cu, and the NOx concentration estimated by the ECU 100 is referred to as upstream estimated concentration Ce. The comparison target of the downstream detection concentration Cd can be at least one of the upstream detection concentration Cu and the upstream estimated concentration Ce.
 ここで、具体的な診断処理の第1の例を述べると、ECU100は、切替弁26が逆流位置に切り替えられ且つ添加弁40からの尿素添加が停止されているときの下流検出濃度Cdと、例えば上流検出濃度Cuとを取得し、これらの濃度差ΔC=|Cu-Cd|を算出する。そしてECU100は、濃度差ΔCが所定値ΔCs以下の場合、下流検出濃度Cdを上流検出濃度Cuと略等しいとみなし、下流NOxセンサ32を正常と判定する。他方、ECU100は、濃度差ΔCが所定値ΔCsより大きい場合、下流検出濃度Cdを上流検出濃度Cuから比較的大きくズレているとみなし、下流NOxセンサ32を異常と判定する。 Here, to describe a first example of specific diagnostic processing, the ECU 100 detects the downstream detection concentration Cd when the switching valve 26 is switched to the backflow position and urea addition from the addition valve 40 is stopped, For example, the upstream detection concentration Cu is acquired, and the concentration difference ΔC = | Cu−Cd | is calculated. When the concentration difference ΔC is equal to or smaller than the predetermined value ΔCs, the ECU 100 regards the downstream detection concentration Cd as substantially equal to the upstream detection concentration Cu, and determines that the downstream NOx sensor 32 is normal. On the other hand, when the concentration difference ΔC is larger than the predetermined value ΔCs, the ECU 100 regards the downstream detected concentration Cd as being relatively large from the upstream detected concentration Cu, and determines that the downstream NOx sensor 32 is abnormal.
 次に、診断処理の第2の例を説明する。ここで述べる例では、下流検出濃度Cd、上流検出濃度Cuおよび上流推定濃度Ceの三者が互いに比較され、下流NOxセンサ32、上流NOxセンサ30およびエンジン1の正常または異常が区別して判定される。 Next, a second example of diagnostic processing will be described. In the example described here, the downstream detection concentration Cd, the upstream detection concentration Cu, and the upstream estimated concentration Ce are compared with each other, and normality or abnormality of the downstream NOx sensor 32, the upstream NOx sensor 30, and the engine 1 is determined and distinguished. .
 下流検出濃度Cdが、上流検出濃度Cuおよび上流推定濃度Ceの両者と比較されるので、下流NOxセンサ32の異常診断の信頼性が向上する。例えば下流検出濃度Cdと上流検出濃度Cuの比較だけだと、下流検出濃度Cdが上流検出濃度Cuから大きくズレていた場合に、下流NOxセンサ32が異常なのか、或いは上流NOxセンサ30が異常なのかを区別して特定することができない。この例によれば、上流推定濃度Ceも比較対象に加えられるので、例えば上流検出濃度Cuと上流推定濃度Ceとがほぼ等しく、且つ下流検出濃度Cdのみがズレている場合に、下流NOxセンサ32を異常と判定できる。同じ要領で、上流NOxセンサ30およびエンジン1の異常をも診断することができる。外れた値を示す一つのみを異常と診断するのである。 Since the downstream detection concentration Cd is compared with both the upstream detection concentration Cu and the upstream estimated concentration Ce, the reliability of abnormality diagnosis of the downstream NOx sensor 32 is improved. For example, if only the downstream detection concentration Cd is compared with the upstream detection concentration Cu, if the downstream detection concentration Cd is greatly deviated from the upstream detection concentration Cu, the downstream NOx sensor 32 is abnormal or the upstream NOx sensor 30 is abnormal. It is not possible to distinguish and specify. According to this example, since the upstream estimated concentration Ce is also added to the comparison target, for example, when the upstream detected concentration Cu and the upstream estimated concentration Ce are substantially equal and only the downstream detected concentration Cd is deviated, the downstream NOx sensor 32. Can be determined as abnormal. In the same manner, the abnormality of the upstream NOx sensor 30 and the engine 1 can be diagnosed. Only one that shows an outlier is diagnosed as abnormal.
 結局、下流NOxセンサ32だけでなく、上流NOxセンサ30およびエンジン1の異常をも診断することができる。よって異常診断の幅を拡大することが可能となる。 Eventually, it is possible to diagnose not only the downstream NOx sensor 32 but also the upstream NOx sensor 30 and the engine 1. Therefore, it is possible to expand the range of abnormality diagnosis.
 この第2の例に係る診断処理の手順を図3に示す。まずステップS101において、ECU100は、診断を行うのに適した所定条件が成立しているか否かを判断する。例えば、(a)上流NOxセンサ30および下流NOxセンサ32が所定の活性温度に達している、(b)エンジン1が定常運転状態にある、(c)エンジン1の暖機が終了している、の全ての条件が満たされたとき、条件成立となる。 FIG. 3 shows the procedure of the diagnostic processing according to the second example. First, in step S101, the ECU 100 determines whether or not a predetermined condition suitable for making a diagnosis is satisfied. For example, (a) the upstream NOx sensor 30 and the downstream NOx sensor 32 have reached a predetermined activation temperature, (b) the engine 1 is in a steady operation state, and (c) the engine 1 has been warmed up. When all the conditions are satisfied, the condition is satisfied.
 なお、ECU100は、条件(a)に関し、上流NOxセンサ30および下流NOxセンサ32の素子インピーダンスを検出して素子温度を求め、この素子温度が所定の活性温度に達しているか否かを判断する。またECU100は、条件(b)に関し、例えばエアフローメータ12により検出される吸入空気量GAの所定時間内の変動量が一定範囲内にあるとき、エンジン1が定常運転状態にあると判断する。さらにECU100は、条件(c)に関し、図示しない水温センサにより検出される冷却水温が所定値以上にあるとき、エンジン1の暖機が終了していると判断する。 Note that the ECU 100 detects the element impedances of the upstream NOx sensor 30 and the downstream NOx sensor 32 to obtain the element temperature with respect to the condition (a), and determines whether or not the element temperature has reached a predetermined activation temperature. Further, regarding the condition (b), the ECU 100 determines that the engine 1 is in a steady operation state when, for example, the fluctuation amount of the intake air amount GA detected by the air flow meter 12 is within a predetermined range. Furthermore, regarding condition (c), ECU 100 determines that warm-up of engine 1 has ended when the coolant temperature detected by a water temperature sensor (not shown) is equal to or higher than a predetermined value.
 この所定条件については、さらに、(d)NOx触媒24の推定触媒温度が所定の作動温度域内にある、という条件を含めるのが好ましい。 The predetermined condition preferably further includes (d) a condition that the estimated catalyst temperature of the NOx catalyst 24 is within a predetermined operating temperature range.
 ECU100は、所定条件が成立していないと判断した場合、待機状態となる。他方、ECU100は、所定条件が成立したと判断した場合、ステップS102において添加弁40からの尿素添加を停止し、ステップS103において切替弁26を逆流位置に切り替える。 ECU100 will be in a standby state, when it is judged that predetermined conditions are not satisfied. On the other hand, when ECU 100 determines that the predetermined condition is satisfied, urea addition from addition valve 40 is stopped in step S102, and switching valve 26 is switched to the backflow position in step S103.
 次いでECU100は、ステップS104において、下流検出濃度Cd、上流検出濃度Cuおよび上流推定濃度Ceを取得する。 Next, in step S104, the ECU 100 acquires the downstream detection concentration Cd, the upstream detection concentration Cu, and the upstream estimated concentration Ce.
 この後ステップS105において、ECU100は、これら下流検出濃度Cd、上流検出濃度Cuおよび上流推定濃度Ceの濃度差、即ち第1濃度差ΔC1、第2濃度差ΔC2および第3濃度差ΔC3を次式により算出する。
ΔC1=|Ce-Cu|
ΔC2=|Ce-Cd|
ΔC3=|Cu-Cd|
Thereafter, in step S105, the ECU 100 calculates the concentration difference between the downstream detection concentration Cd, the upstream detection concentration Cu, and the upstream estimated concentration Ce, that is, the first concentration difference ΔC1, the second concentration difference ΔC2, and the third concentration difference ΔC3 by the following equations. calculate.
ΔC1 = | Ce-Cu |
ΔC2 = | Ce−Cd |
ΔC3 = | Cu-Cd |
 次にECU100は、これら第1~第3濃度差ΔC1~ΔC3を第1~第3所定値ΔC1s~ΔC3sとそれぞれ比較する。まずECU100は、ステップS106において、第1濃度差ΔC1を第1所定値ΔC1sと比較し、且つ、第2濃度差ΔC2を第2所定値ΔC2sと比較する。 Next, the ECU 100 compares the first to third concentration differences ΔC1 to ΔC3 with the first to third predetermined values ΔC1s to ΔC3s, respectively. First, in step S106, the ECU 100 compares the first concentration difference ΔC1 with a first predetermined value ΔC1s, and compares the second concentration difference ΔC2 with a second predetermined value ΔC2s.
 第1濃度差ΔC1が第1所定値ΔC1sより大きく、且つ、第2濃度差ΔC2が第2所定値ΔC2sより大きい場合(ΔC1>ΔC1s&ΔC2>ΔC2s)、ECU100は、上流推定濃度Ceのみが他の二つの値即ち上流検出濃度Cuおよび下流検出濃度Cdからズレているとみなし、ステップS107にてエンジン1を異常と判定する。 When the first concentration difference ΔC1 is greater than the first predetermined value ΔC1s and the second concentration difference ΔC2 is greater than the second predetermined value ΔC2s (ΔC1> ΔC1s & ΔC2> ΔC2s), the ECU 100 determines that only the upstream estimated concentration Ce is the other two. It is assumed that there is a deviation from the two values, that is, the upstream detection concentration Cu and the downstream detection concentration Cd, and the engine 1 is determined to be abnormal in step S107.
 エンジン1の異常判定後、ECU100はステップS108において、上流推定濃度Ceを算出するためのマップを修正ないし更新する。即ち、経年変化等によりマップデータの最適値が新品時から変化することもあり得るので、ここでは現状で実際に得られたNOx濃度値がマップに学習される。 After the abnormality determination of the engine 1, the ECU 100 corrects or updates the map for calculating the upstream estimated concentration Ce in step S108. That is, since the optimal value of the map data may change from when it is new due to aging, etc., the NOx concentration value actually obtained at present is learned in the map.
 具体的には、ステップS104で上流推定濃度Ceを取得したときのエンジンパラメータ(例えば回転速度及びアクセル開度)に対応するマップ上の値が、ステップS104で取得された上流検出濃度Cuおよび下流検出濃度Cdの少なくとも一方に基づく値(いずれか一方の値、又は両方の平均値等)に置き換えられる。 Specifically, the values on the map corresponding to the engine parameters (for example, the rotation speed and the accelerator opening) when the upstream estimated concentration Ce is acquired in step S104 are the upstream detection concentration Cu and downstream detection acquired in step S104. The value is replaced with a value based on at least one of the concentrations Cd (either one value or an average value of both).
 他方、ステップS106においてΔC1>ΔC1s且つΔC2>ΔC2sの関係が満たされない場合、ECU100は、ステップS109において、第1濃度差ΔC1と第1所定値ΔC1sとを比較し、且つ、第3濃度差ΔC3と第3所定値ΔC3sとを比較する。 On the other hand, if the relationship of ΔC1> ΔC1s and ΔC2> ΔC2s is not satisfied in step S106, the ECU 100 compares the first concentration difference ΔC1 with the first predetermined value ΔC1s in step S109 and compares the third concentration difference ΔC3 with The third predetermined value ΔC3s is compared.
 第1濃度差ΔC1が第1所定値ΔC1sより大きく、且つ、第3濃度差ΔC3が第3所定値ΔC3sより大きい場合(ΔC1>ΔC1s&ΔC3>ΔC3s)、ECU100は、上流検出濃度Cuのみが他の二つの値即ち上流推定濃度Ceおよび下流検出濃度Cdからズレているとみなし、ステップS110にて、上流NOxセンサ30を異常と判定する。 When the first concentration difference ΔC1 is larger than the first predetermined value ΔC1s and the third concentration difference ΔC3 is larger than the third predetermined value ΔC3s (ΔC1> ΔC1s & ΔC3> ΔC3s), the ECU 100 determines that only the upstream detected concentration Cu is the other two. The upstream NOx sensor 30 is determined to be abnormal in step S110, assuming that there is a deviation from the two values, that is, the upstream estimated concentration Ce and the downstream detected concentration Cd.
 他方、ステップS109においてΔC1>ΔC1s且つΔC3>ΔC3sの関係が満たされない場合、ECU100は、ステップS111において、第2濃度差ΔC2と第2所定値ΔC2sとを比較し、且つ、第3濃度差ΔC3と第3所定値ΔC3sとを比較する。 On the other hand, if the relationship of ΔC1> ΔC1s and ΔC3> ΔC3s is not satisfied in step S109, the ECU 100 compares the second concentration difference ΔC2 with the second predetermined value ΔC2s in step S111 and compares the third concentration difference ΔC3 with The third predetermined value ΔC3s is compared.
 第2濃度差ΔC2が第2所定値ΔC2sより大きく、且つ、第3濃度差ΔC3が第3所定値ΔC3sより大きい場合(ΔC2>ΔC2s&ΔC3>ΔC3s)、ECU100は、下流検出濃度Cdのみが他の二つの値即ち上流推定濃度Ceおよび上流検出濃度Cuからズレているとみなし、ステップS112にて、下流NOxセンサ32を異常と判定する。 When the second concentration difference ΔC2 is larger than the second predetermined value ΔC2s and the third concentration difference ΔC3 is larger than the third predetermined value ΔC3s (ΔC2> ΔC2s & ΔC3> ΔC3s), the ECU 100 determines that only the downstream detected concentration Cd is the other two. The downstream NOx sensor 32 is determined to be abnormal in step S112, assuming that there is a deviation from the two values, that is, the upstream estimated concentration Ce and the upstream detected concentration Cu.
 他方、ステップS111においてΔC2>ΔC2s且つΔC3>ΔC3sの関係が満たされない場合、ECU100は、ステップS113において、エンジン1、上流NOxセンサ30および下流NOxセンサ32のいずれも正常と判定する。 On the other hand, if the relationship of ΔC2> ΔC2s and ΔC3> ΔC3s is not satisfied in step S111, ECU 100 determines that all of engine 1, upstream NOx sensor 30, and downstream NOx sensor 32 are normal in step S113.
 以上、本発明の実施形態について説明したが、本発明は他の実施形態を採ることも可能である。 As mentioned above, although embodiment of this invention was described, this invention can also take other embodiment.
 例えば、前記実施形態では添加弁40を上流通路91に設けたが、順流方向におけるNOx触媒24の上流側の中間通路92に添加弁40を設けてもよい。 For example, although the addition valve 40 is provided in the upstream passage 91 in the above embodiment, the addition valve 40 may be provided in the intermediate passage 92 upstream of the NOx catalyst 24 in the forward flow direction.
 下流検出濃度と、上流検出濃度および上流推定濃度の少なくとも一方との比較に関し、前記実施形態では両者の差に基づいて行ったが、比較方法はこれに限定されず、例えば両者の比に基づいて行ってもよい。内燃機関は、圧縮着火式以外であってもよく、例えば火花点火式内燃機関、特に直噴リーンバーンガソリンエンジンであってもよい。 The comparison between the downstream detection concentration and at least one of the upstream detection concentration and the upstream estimated concentration was performed based on the difference between the two in the above embodiment, but the comparison method is not limited to this, for example, based on the ratio between the two. You may go. The internal combustion engine may be other than the compression ignition type, for example, a spark ignition type internal combustion engine, particularly a direct injection lean burn gasoline engine.
 NOx触媒として吸蔵還元型NOx触媒(NSR: NOx Storage Reduction)を用いてもよい。吸蔵還元型NOx触媒は、これに供給される排気ガスの空燃比が理論空燃比よりリーン(即ち、酸素過剰雰囲気)のときに排気ガス中のNOxを硝酸塩の形で吸蔵し、排気ガスの空燃比が理論空燃比またはこれよりリッチ(即ち、酸素不足雰囲気)のときに吸蔵したNOxを放出しNに還元するという、NOxの吸放出作用を有する。この場合、還元剤を添加する添加弁を省略することも可能である。異常診断時、中間通路を逆流方向に流れる排気ガスは、下流NOxセンサを通過した後にNOx触媒に供給される。そして排気ガス中のNOxがNOx触媒に吸蔵され、浄化される。 An NOx storage reduction (NSR: NOx Storage Reduction) catalyst may be used as the NOx catalyst. The NOx storage reduction catalyst stores NOx in the exhaust gas in the form of nitrate when the air-fuel ratio of the exhaust gas supplied thereto is leaner than the stoichiometric air-fuel ratio (that is, an oxygen-excess atmosphere), and the exhaust gas empty When the fuel ratio is the stoichiometric air-fuel ratio or richer (that is, in an oxygen-deficient atmosphere), the stored NOx is released and reduced to N 2 , which has an NOx absorption / release action. In this case, the addition valve for adding the reducing agent can be omitted. At the time of abnormality diagnosis, the exhaust gas flowing in the reverse flow direction in the intermediate passage is supplied to the NOx catalyst after passing through the downstream NOx sensor. Then, NOx in the exhaust gas is stored in the NOx catalyst and purified.
 本発明の実施形態は前述の実施形態のみに限らず、特許請求の範囲によって規定される本発明の思想に包含されるあらゆる変形例や応用例、均等物が本発明に含まれる。従って本発明は、限定的に解釈されるべきではなく、本発明の思想の範囲内に帰属する他の任意の技術にも適用することが可能である。 The embodiment of the present invention is not limited to the above-described embodiment, and includes all modifications, applications, and equivalents included in the concept of the present invention defined by the claims. Therefore, the present invention should not be construed as being limited, and can be applied to any other technique belonging to the scope of the idea of the present invention.

Claims (9)

  1.  内燃機関の排気通路に設けられたNOxセンサの異常を診断する装置であって、
     前記排気通路が、上流通路と、下流通路と、前記上流通路および前記下流通路の間に位置された中間通路とを有し、
     前記上流通路と前記中間通路の一端を接続し前記中間通路の他端と前記下流通路を接続する順流位置と、前記上流通路と前記中間通路の他端を接続し前記中間通路の一端と前記下流通路を接続する逆流位置とに切替可能な切替弁を設け、
     前記切替弁が前記順流位置にあるときの排気ガスの順流方向において、前記中間通路の上流側にNOx触媒を設けると共に前記中間通路の下流側に前記NOxセンサを設け、
     前記NOxセンサの異常診断時、前記切替弁を前記逆流位置に切り替える切替弁制御手段を設けた
     ことを特徴とするNOxセンサの異常診断装置。
    An apparatus for diagnosing an abnormality in a NOx sensor provided in an exhaust passage of an internal combustion engine,
    The exhaust passage has an upstream passage, a downstream passage, and an intermediate passage located between the upstream passage and the downstream passage;
    A forward flow position that connects one end of the upstream passage and the intermediate passage and connects the other end of the intermediate passage and the downstream passage, and one end of the intermediate passage that connects the upstream passage and the other end of the intermediate passage A switching valve that can be switched to a backflow position that connects the downstream passage is provided,
    In the forward flow direction of the exhaust gas when the switching valve is in the forward flow position, a NOx catalyst is provided upstream of the intermediate passage and the NOx sensor is provided downstream of the intermediate passage,
    A NOx sensor abnormality diagnosis device, comprising: a switching valve control means for switching the switching valve to the backflow position during abnormality diagnosis of the NOx sensor.
  2.  前記NOx触媒が選択還元型NOx触媒からなり、前記順流方向における前記NOx触媒の上流側に、還元剤を添加するための添加弁が設けられる
     ことを特徴とする請求項1に記載のNOxセンサの異常診断装置。
    2. The NOx sensor according to claim 1, wherein the NOx catalyst is a selective reduction type NOx catalyst, and an addition valve for adding a reducing agent is provided upstream of the NOx catalyst in the forward flow direction. Abnormality diagnosis device.
  3.  前記添加弁を制御する添加弁制御手段が設けられ、該添加弁制御手段が、前記NOxセンサの異常診断時、前記添加弁からの還元剤の添加を停止させる
     ことを特徴とする請求項2に記載のNOxセンサの異常診断装置。
    The addition valve control means for controlling the addition valve is provided, and the addition valve control means stops addition of the reducing agent from the addition valve at the time of abnormality diagnosis of the NOx sensor. The abnormality diagnosis device for the NOx sensor as described.
  4.  前記NOx触媒が吸蔵還元型NOx触媒からなる
     ことを特徴とする請求項1に記載のNOxセンサの異常診断装置。
    The abnormality diagnosis apparatus for a NOx sensor according to claim 1, wherein the NOx catalyst is an NOx storage reduction catalyst.
  5.  前記中間通路が、一箇所が分断された環状に形成され、当該分断箇所で前記中間通路が前記上流通路と前記下流通路に接続され、当該接続箇所に前記切替弁が設けられる
     ことを特徴とする請求項1~4のいずれか一項に記載のNOxセンサの異常診断装置。
    The intermediate passage is formed in an annular shape divided at one location, the intermediate passage is connected to the upstream passage and the downstream passage at the division location, and the switching valve is provided at the connection location. The abnormality diagnosis apparatus for a NOx sensor according to any one of claims 1 to 4.
  6.  前記順流方向における前記NOx触媒の上流側の排気ガスのNOx濃度を検出又は推定する上流濃度取得手段と、
     前記NOxセンサの異常診断時、前記上流濃度取得手段によって検出又は推定されたNOx濃度と、前記NOxセンサによって検出されたNOx濃度とを比較して前記NOxセンサが正常か異常かを判定する判定手段とが設けられる
     ことを特徴とする請求項1~5のいずれか一項に記載のNOxセンサの異常診断装置。
    Upstream concentration acquisition means for detecting or estimating the NOx concentration of the exhaust gas upstream of the NOx catalyst in the forward flow direction;
    A determination unit that determines whether the NOx sensor is normal or abnormal by comparing the NOx concentration detected or estimated by the upstream concentration acquisition unit with the NOx concentration detected by the NOx sensor during abnormality diagnosis of the NOx sensor. The NOx sensor abnormality diagnosis device according to any one of claims 1 to 5, wherein the abnormality diagnosis device is provided.
  7.  前記上流濃度取得手段が、前記内燃機関の運転状態に基づき排気ガスのNOx濃度を推定する推定手段、および前記排気ガスのNOx濃度を検出する上流NOxセンサの少なくとも一方からなる
     ことを特徴とする請求項6に記載のNOxセンサの異常診断装置。
    The upstream concentration acquisition means comprises at least one of an estimation means for estimating the NOx concentration of exhaust gas based on an operating state of the internal combustion engine and an upstream NOx sensor for detecting the NOx concentration of the exhaust gas. Item 7. The NOx sensor abnormality diagnosis device according to Item 6.
  8.  前記上流濃度取得手段が前記推定手段及び前記上流NOxセンサの両方からなり、
     前記判定手段が、前記NOxセンサによるNOx濃度の検出値、前記上流NOxセンサによるNOx濃度の検出値及び前記推定手段によるNOx濃度の推定値を比較して、前記NOxセンサ、前記上流NOxセンサ及び前記内燃機関が正常か異常かを区別して判定する
     ことを特徴とする請求項7に記載のNOxセンサの異常診断装置。
    The upstream concentration acquisition means comprises both the estimation means and the upstream NOx sensor;
    The determination unit compares the detected value of the NOx concentration by the NOx sensor, the detected value of the NOx concentration by the upstream NOx sensor, and the estimated value of the NOx concentration by the estimation unit, and compares the NOx sensor, the upstream NOx sensor, and the The NOx sensor abnormality diagnosis device according to claim 7, wherein the determination is made by distinguishing whether the internal combustion engine is normal or abnormal.
  9.  前記推定手段が、所定のマップから前記NOx濃度を推定すると共に、前記判定手段によって前記内燃機関が異常と判定されたとき前記NOxセンサの検出値および前記上流NOxセンサの検出値の少なくとも一方に基づいて前記マップのデータを修正する
     ことを特徴とする請求項8に記載のNOxセンサの異常診断装置。
    The estimating means estimates the NOx concentration from a predetermined map, and based on at least one of the detected value of the NOx sensor and the detected value of the upstream NOx sensor when the internal combustion engine is determined to be abnormal by the determining means. The NOx sensor abnormality diagnosis apparatus according to claim 8, wherein the map data is corrected.
PCT/JP2009/059227 2009-05-19 2009-05-19 Abnormality diagnostic apparatus for nox sensor WO2010134167A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/059227 WO2010134167A1 (en) 2009-05-19 2009-05-19 Abnormality diagnostic apparatus for nox sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/059227 WO2010134167A1 (en) 2009-05-19 2009-05-19 Abnormality diagnostic apparatus for nox sensor

Publications (1)

Publication Number Publication Date
WO2010134167A1 true WO2010134167A1 (en) 2010-11-25

Family

ID=43125867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059227 WO2010134167A1 (en) 2009-05-19 2009-05-19 Abnormality diagnostic apparatus for nox sensor

Country Status (1)

Country Link
WO (1) WO2010134167A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018125844A1 (en) * 2018-10-18 2020-04-23 Denso Corporation Exhaust aftertreatment device and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003120399A (en) * 2001-10-09 2003-04-23 Toyota Motor Corp APPARATUS FOR DETECTING ABNORMALITY OF NOx SENSOR
JP2004124737A (en) * 2002-09-30 2004-04-22 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2004270468A (en) * 2003-03-05 2004-09-30 Mitsubishi Fuso Truck & Bus Corp Abnormality determining device for nox sensor
JP2004279418A (en) * 2003-03-13 2004-10-07 Robert Bosch Gmbh Method of diagnosing nox sensor
JP2008133780A (en) * 2006-11-28 2008-06-12 Toyota Motor Corp Device and method for diagnosing abnormality of nox sensor
JP2008190383A (en) * 2007-02-02 2008-08-21 Bosch Corp Failure diagnostic device and failure diagnostic method for nox sensor
JP2009046992A (en) * 2007-08-13 2009-03-05 Toyota Motor Corp Abnormality diagnostic system of nox sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003120399A (en) * 2001-10-09 2003-04-23 Toyota Motor Corp APPARATUS FOR DETECTING ABNORMALITY OF NOx SENSOR
JP2004124737A (en) * 2002-09-30 2004-04-22 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2004270468A (en) * 2003-03-05 2004-09-30 Mitsubishi Fuso Truck & Bus Corp Abnormality determining device for nox sensor
JP2004279418A (en) * 2003-03-13 2004-10-07 Robert Bosch Gmbh Method of diagnosing nox sensor
JP2008133780A (en) * 2006-11-28 2008-06-12 Toyota Motor Corp Device and method for diagnosing abnormality of nox sensor
JP2008190383A (en) * 2007-02-02 2008-08-21 Bosch Corp Failure diagnostic device and failure diagnostic method for nox sensor
JP2009046992A (en) * 2007-08-13 2009-03-05 Toyota Motor Corp Abnormality diagnostic system of nox sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018125844A1 (en) * 2018-10-18 2020-04-23 Denso Corporation Exhaust aftertreatment device and method

Similar Documents

Publication Publication Date Title
JP4475271B2 (en) NOx sensor abnormality diagnosis device and abnormality diagnosis method
US8307699B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method for NOx sensor
JP4840703B2 (en) Abnormality diagnosis device for exhaust purification system
AU2011342305B2 (en) Device for diagnosing causes of decreases in NOx conversion efficiency
JP6323354B2 (en) Exhaust gas purification device for internal combustion engine
US20090199543A1 (en) Catalyst monitoring system and monitoring method
EP2878782B1 (en) Exhaust purification device of internal combustion engine
JP4513785B2 (en) Exhaust gas purification device for internal combustion engine
WO2018097246A1 (en) Exhaust gas purifying device abnormality diagnosing system
US9180409B2 (en) Method for monitoring the pollutant coversion capacity in an exhaust gas after-treatment system
JP5604953B2 (en) Exhaust gas purification device and control method of exhaust gas purification device
WO2010079621A1 (en) Apparatus for determination of component passing through catalyst, and exhaust gas purification apparatus for internal combustion engine
JP2008303742A (en) Device for diagnosing deterioration of catalyst
JP2012036860A (en) Device for diagnosing catalyst degradation
JP2008240577A (en) Deterioration diagnosis device and deterioration diagnosis method for oxidation catalyst
JP4561656B2 (en) Catalyst temperature estimation device for internal combustion engine
JP4419150B2 (en) NOx catalyst abnormality diagnosis device and abnormality diagnosis method
JP5404600B2 (en) Method and apparatus for controlling the operating state of a catalytic converter in an exhaust pipe of an internal combustion engine
EP3401522B1 (en) Exhaust gas control system for internal combustion engine and method of controlling exhaust gas control system for internal combustion engine
JP2010236458A (en) Deterioration diagnostic device for nox catalyst
JP2012036857A (en) Device for diagnosing catalyst degradation
JP2012036835A (en) Exhaust emission control device
WO2010134167A1 (en) Abnormality diagnostic apparatus for nox sensor
JP6534941B2 (en) Abnormality diagnosis device for exhaust purification mechanism
JP2015014213A (en) Deterioration detection device for selective reduction type catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP