JP2015014213A - Deterioration detection device for selective reduction type catalyst - Google Patents

Deterioration detection device for selective reduction type catalyst Download PDF

Info

Publication number
JP2015014213A
JP2015014213A JP2013139897A JP2013139897A JP2015014213A JP 2015014213 A JP2015014213 A JP 2015014213A JP 2013139897 A JP2013139897 A JP 2013139897A JP 2013139897 A JP2013139897 A JP 2013139897A JP 2015014213 A JP2015014213 A JP 2015014213A
Authority
JP
Japan
Prior art keywords
amount
catalyst
scr catalyst
ammonia
reduction catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013139897A
Other languages
Japanese (ja)
Inventor
晃司 萩原
Koji Hagiwara
晃司 萩原
徹 木所
Toru Kidokoro
徹 木所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013139897A priority Critical patent/JP2015014213A/en
Publication of JP2015014213A publication Critical patent/JP2015014213A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a deterioration detection device for an SCR (Selective Catalytic Reduction)catalyst which is arranged in an exhaust passage downstream of an NSR (NOx Storage Reduction) catalyst, for accurately detecting the deteriorating condition of the SCR catalyst.SOLUTION: The deterioration detection device for the SCR catalyst diagnoses the deterioration of a selective reduction type catalyst under circumstances in which the ammonia adsorption amount of the SCR catalyst is greater than the amount of ammonia which the SCR catalyst in an abnormal condition can absorb, using an integrated value for a NOinflow amount and an integrated value for a NOoutflow amount as parameters when an integrated value for a NOamount flowing into the SCR catalyst reaches a reference NOamount. In this configuration, the deterioration diagnosis of the selective reduction type catalyst is performed under conditions that a difference between the NOeliminating performance of the selective reduction type catalyst in a normal condition and the NOeliminating performance of the selective reduction type catalyst in the abnormal condition is greater, so that the abnormality of the selective reduction type catalyst can be more accurately detected.

Description

本発明は、内燃機関の排気通路に配置される選択還元型触媒の劣化を検出する技術に関し、特に吸蔵還元型触媒より下流に配置される選択還元型触媒の劣化を検出する技術に関する。   The present invention relates to a technique for detecting deterioration of a selective catalytic reduction catalyst disposed in an exhaust passage of an internal combustion engine, and more particularly to a technique for detecting degradation of a selective catalytic reduction catalyst disposed downstream of an occlusion reduction type catalyst.

希薄燃焼運転(リーンバーン運転)される内燃機関の排気を浄化する技術として、選択還元型触媒(SCR(Selective Catalytic Reduction)触媒)を含む排気浄化装置と、
排気浄化装置へ流入する排気にアンモニア(NH)又はアンモニアの前駆体である添加剤を添加する添加弁と、を内燃機関の排気通路に配置する技術が知られている。
As a technology for purifying exhaust gas of an internal combustion engine that is operated with lean burn (lean burn operation), an exhaust purification device including a selective reduction catalyst (SCR (Selective Catalytic Reduction) catalyst),
A technique is known in which an addition valve for adding ammonia (NH 3 ) or an additive that is a precursor of ammonia to an exhaust gas flowing into an exhaust gas purification device is disposed in an exhaust passage of an internal combustion engine.

上記した構成において、排気浄化装置へ流入するNO流入量と排気浄化装置から流出するNO流出量からSCR触媒のNO浄化率を演算し、そのNO浄化率に基づいてSCR触媒の劣化状態を検出又は判定する技術も知られている。 In the above configuration, by calculating the NO X purification rate of the SCR catalyst from the NO X runoff flows out NO X flowing amount flowing into the exhaust purification apparatus from the exhaust purification apparatus, the deterioration of the SCR catalyst based on the NO X purification rate Techniques for detecting or determining the state are also known.

なお、SCR触媒のNO浄化率は、SCR触媒に吸着されているアンモニアの量やSCR触媒へ流入する排気のNO比率(排気中に含まれるNOの量に対してNOの量の割合、又は排気中に含まれるNOとNOの総量に対するNOの量の割合)等によって変化する。 Incidentally, NO X purification rate of the SCR catalyst, the ammonia adsorbed on the SCR catalyst amount and NO 2 ratio of the exhaust gas flowing into the SCR catalyst (the amount of NO 2 with respect to the amount of NO X contained in the exhaust For example, the ratio, or the ratio of the amount of NO 2 to the total amount of NO and NO 2 contained in the exhaust gas).

そこで、SCR触媒のアンモニア吸着量や排気のNO比率をパラメータとしてNO浄化率を補正し、補正後のNO浄化率に基づいてSCR触媒の劣化を検出する技術が提案されている(たとえば、特許文献1を参照)。 Therefore, by correcting the NO X purification rate of NO 2 ratio of the ammonia adsorption amount and the exhaust of the SCR catalyst as a parameter, a technique for detecting deterioration of the SCR catalyst based the NO X purification rate after the correction has been proposed (e.g. , See Patent Document 1).

特開2011−220142号公報JP 2011-220142 A 特開2012−237296号公報JP 2012-237296 A

ところで、添加弁からアンモニア又はアンモニアの前駆体である添加剤をSCR触媒へ供給する構成に対し、SCR触媒の上流に配置された吸蔵還元型触媒(NSR(NOX Storage Reduction)触媒)を配置し、該NSR触媒によりアンモニアを生成させる構成が提
案されている。
By the way, in contrast to the configuration in which ammonia or an additive that is a precursor of ammonia is supplied to the SCR catalyst from the addition valve, a storage reduction type catalyst (NSR (NO X Storage Reduction) catalyst) arranged upstream of the SCR catalyst is arranged. A configuration in which ammonia is generated by the NSR catalyst has been proposed.

本発明の目的は、NSR触媒より下流の排気通路に配置されるSCR触媒の劣化検出装置において、SCR触媒の劣化状態を精度良く検出することにある。   An object of the present invention is to accurately detect a deterioration state of an SCR catalyst in an SCR catalyst deterioration detection device disposed in an exhaust passage downstream of the NSR catalyst.

本発明は、上記した課題を解決するために、以下のような手段を採用した。
すなわち、本発明に係わる選択還元型触媒の劣化検出装置は、
内燃機関の排気通路において吸蔵還元型触媒より下流に配置され、吸蔵還元型触媒によって生成されたアンモニアを吸着し、吸着したアンモニアを還元剤として排気中のNOを還元する選択還元型触媒と、
選択還元型触媒のアンモニア吸着量を取得する取得手段と、
取得手段により取得されたアンモニア吸着量が異常状態の選択還元型触媒の吸着可能な
アンモニアの量である下限値より多くなった場合に、選択還元型触媒の温度と取得手段により取得されたアンモニア吸着量とをパラメータとして、正常状態の選択還元型触媒が浄化することができるNOの量である基準NO量を演算する演算手段と、
取得手段により取得されたアンモニア吸着量が前記下限値より多くなった後に選択還元型触媒へ流入するNOの量であるNO流入量及び選択還元型触媒から流出するNOの量であるNO流出量をそれぞれ積算する積算手段と、
前記積算手段により積算されたNO流入量が基準NO量と等しくなったときのNO流入量の積算値及びNO流出量の積算値に基づいて選択還元型触媒の劣化を診断する診断手段と、
を備えるようにした。
The present invention employs the following means in order to solve the above-described problems.
That is, the degradation detection apparatus for a selective catalytic reduction catalyst according to the present invention is:
A selective reduction catalyst that is disposed downstream of the storage reduction catalyst in the exhaust passage of the internal combustion engine, adsorbs ammonia generated by the storage reduction catalyst, and reduces NO X in the exhaust gas using the adsorbed ammonia as a reducing agent;
Acquisition means for acquiring the ammonia adsorption amount of the selective catalytic reduction catalyst;
When the ammonia adsorption amount acquired by the acquisition means exceeds the lower limit, which is the amount of ammonia that can be adsorbed by the selective reduction catalyst in the abnormal state, the temperature of the selective reduction catalyst and the ammonia adsorption acquired by the acquisition means Calculating means for calculating a reference NO X amount, which is the amount of NO X that can be purified by the selective catalytic reduction catalyst in a normal state, using the amount as a parameter;
NO ammonia adsorption amount obtained by the obtaining unit is the amount of the NO X flowing out from the NO X flow rate and the selective reduction catalyst is the amount of the NO X flowing into the selective reduction catalyst after becoming larger than the lower limit value An integration means for integrating each X outflow amount;
Diagnosis for diagnosing NO X flow rate integrated value and degradation of the selective reduction catalyst based on the integrated value of the NO X runoff when NO X flow rate, which is integrated by the integration means becomes equal to the reference amount of NO X Means,
I was prepared to.

選択還元型触媒(SCR触媒)が異常状態にあるときは正常状態にあるときに比べ、SCR触媒が吸着可能なアンモニアの量が少なくなる。そのため、SCR触媒が異常状態にあるときは正常状態にあるときに比べ、SCR触媒が浄化可能なNOの量が少なくなる。ただし、SCR触媒のアンモニア吸着量が異常状態のSCR触媒の吸着可能なアンモニアの量(以下、「下限値」と称する)より少ないときは、正常状態のSCR触媒が浄化することができるNOの量と異常状態のSCR触媒が浄化することができるNOの量との差が小さくなる。よって、SCR触媒のアンモニア吸着量が前記下限値を上回っているときのNO浄化性能に基づいて、SCR触媒が異常であるか否かを判定することが好ましい。 When the selective reduction catalyst (SCR catalyst) is in an abnormal state, the amount of ammonia that can be adsorbed by the SCR catalyst is smaller than when it is in a normal state. Therefore, when the SCR catalyst is in an abnormal state than when in the normal state, the SCR catalyst is an amount of capable of purifying NO X is reduced. However, when the ammonia adsorption amount of the SCR catalyst is smaller than the amount of ammonia that can be adsorbed by the abnormal SCR catalyst (hereinafter referred to as the “lower limit value”), the NO X that can be purified by the normal SCR catalyst is reduced. The difference between the amount and the amount of NO x that can be purified by the abnormal SCR catalyst is reduced. Therefore, on the basis of the NO X purification performance when the ammonia adsorption amount of SCR catalyst is above the lower limit, it is preferred that the SCR catalyst to determine whether it is abnormal.

また、SCR触媒のアンモニア吸着量が前記下限値を上回っている場合であっても、SCR触媒へ流入するNOの量(NO流入量)が少なければ、正常時のNO浄化性能と異常時にNO浄化性能との差が小さくなる。特に、SCR触媒に吸着されているアンモニアによって浄化することができるNOの量(基準NO量)に対してNO流入量が少ない場合は、正常時のNO浄化性能と異常時のNO浄化性能との差が小さくなる。 Further, even when the ammonia adsorption amount of SCR catalyst is above the lower limit value, the less the amount of the NO X flowing into the SCR catalyst (NO X flowing amount), NO X purification performance and abnormality of the normal sometimes the difference between the NO X purification performance decreases. In particular, when the amount of NO X inflow is smaller than the amount of NO X that can be purified by the ammonia adsorbed on the SCR catalyst (reference NO X amount), the NO X purification performance at normal time and the NO NO at abnormal time The difference with X purification performance becomes small.

上記したような問題に対し、本発明は、SCR触媒のアンモニア吸着量が基準値を上回る状況下において、SCR触媒へ流入するNO量の積算値が基準NO量に達したときのNO流入量の積算値及びNO流出量の積算値をパラメータとしてSCR触媒の劣化を診断する。このような方法によれば、正常状態のSCR触媒のNO浄化性能と異常状態のSCR触媒のNO浄化性能との差が大きくなる条件下においてSCR触媒の劣化診断が行われることになる。そのため、SCR触媒の上流に吸蔵還元型触媒(NSR触媒)が配置される構成においても、SCR触媒の異常をより正確に検出することが可能になる。 To problems as described above, the present invention is, in a situation where the ammonia adsorption amount of the SCR catalyst is above the reference value, NO X when the integrated value of the NO X amount flowing into the SCR catalyst has reached the reference amount of NO X diagnosing the deterioration of the SCR catalyst the integrated value of the integrated value and the NO X outflow of inflow as a parameter. According to this method, so that the deterioration diagnosis of the SCR catalyst is performed under conditions where the difference between the NO X purification performance of the SCR catalyst of the NO X purification performance and the abnormal state of the SCR catalyst in the normal state becomes large. Therefore, even in a configuration in which an occlusion reduction type catalyst (NSR catalyst) is arranged upstream of the SCR catalyst, it is possible to detect an abnormality of the SCR catalyst more accurately.

なお、アンモニア吸着量が前記下限値を上回った時点からNO流入量の積算値が基準NO量に達する時点までの期間において、NSR触媒へ流入する排気の空燃比がリッチにされると、SCR触媒のアンモニア吸着量や下限値が変化してしまう可能性がある。 Note that in the period from when the ammonia adsorption amount exceeds the lower limit value to the point where the integrated value of the NO X flow rate reaches the reference amount of NO X when the air-fuel ratio of the exhaust gas flowing into the NSR catalyst is made rich, There is a possibility that the ammonia adsorption amount and the lower limit of the SCR catalyst will change.

そこで、本発明は、取得手段により取得されたアンモニア吸着量が前記基準値を上回った時点から積算手段により積算されるNO流入量が前記基準NO量と等しくなる時点までの期間は、NSR触媒へ流入する排気の空燃比をリーンに維持する維持手段を更に備えるようにしてもよい。 Therefore, according to the present invention, the period from the time when the ammonia adsorption amount acquired by the acquiring means exceeds the reference value to the time when the NO X inflow amount integrated by the integrating means becomes equal to the reference NO X amount is NSR. You may make it further provide the maintenance means which maintains the air fuel ratio of the exhaust gas which flows into a catalyst lean.

このような構成によれば、前記の期間にSCR触媒のアンモニア吸着量や下限値が変化すること、特にアンモニア吸着量が下限値以下になることを防止することができる。その結果、SCR触媒の劣化検出精度の低下を抑制することができる。   According to such a configuration, it is possible to prevent the ammonia adsorption amount and the lower limit value of the SCR catalyst from changing during the period, and in particular, the ammonia adsorption amount from being lower than the lower limit value. As a result, it is possible to suppress a decrease in the degradation detection accuracy of the SCR catalyst.

本発明によれば、NSR触媒より下流の排気通路に配置されたSCR触媒の劣化検出装置において、SCR触媒の劣化状態を精度良く検出することができる。   According to the present invention, the deterioration state of the SCR catalyst can be accurately detected in the deterioration detection device for the SCR catalyst disposed in the exhaust passage downstream of the NSR catalyst.

本発明を適用する内燃機関とその排気系の概略構成を示す図である。It is a figure which shows schematic structure of the internal combustion engine to which this invention is applied, and its exhaust system. SCR触媒の劣化を検出する際にECUが実行する処理ルーチンを示すフローチャートである。It is a flowchart which shows the processing routine which ECU performs when detecting degradation of an SCR catalyst. SCR触媒の温度とSCR触媒が吸着可能なアンモニアの量との関係を示す図である。It is a figure which shows the relationship between the temperature of a SCR catalyst, and the quantity of ammonia which a SCR catalyst can adsorb | suck. SCR触媒の温度とSCR触媒のNO浄化率との関係を示す図である。Is a graph showing the relationship between the temperature and the NO X purification rate of the SCR catalyst of the SCR catalyst.

以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施形態に記載される構成部品の寸法、材質、形状、相対配置等は、特に記載がない限り発明の技術的範囲をそれらのみに限定する趣旨のものではない。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the present embodiment are not intended to limit the technical scope of the invention to those unless otherwise specified.

図1は、本発明を適用する内燃機関とその排気系の概略構成を示す図である。図1に示す内燃機関1は、希薄燃焼運転可能な火花点火式の内燃機関である。なお、内燃機関1は、希薄燃焼運転される圧縮着火式の内燃機関であってもよい。   FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which the present invention is applied and its exhaust system. An internal combustion engine 1 shown in FIG. 1 is a spark ignition type internal combustion engine capable of a lean combustion operation. The internal combustion engine 1 may be a compression ignition type internal combustion engine that is operated with lean combustion.

内燃機関1は、燃料噴射弁2を備えている。燃料噴射弁2は、吸気通路(たとえば、吸気ポート)へ燃料を噴射する弁装置であってもよく、又は気筒内へ燃料を噴射する弁装置であってもよい。   The internal combustion engine 1 includes a fuel injection valve 2. The fuel injection valve 2 may be a valve device that injects fuel into an intake passage (for example, an intake port), or may be a valve device that injects fuel into a cylinder.

内燃機関1は、排気通路3と接続されている。排気通路3は、内燃機関1の気筒内で燃焼されたガス(排気)が流通する通路である。排気通路3の途中には、第一触媒ケーシング4が配置されている。第一触媒ケーシング4は、アルミナ等のコート層によって被覆されたハニカム構造体と、前記コート層に担持される貴金属(たとえば、白金、パラジウム、又はロジウム等)とから構成される三元触媒を収容する。   The internal combustion engine 1 is connected to the exhaust passage 3. The exhaust passage 3 is a passage through which gas (exhaust gas) combusted in the cylinder of the internal combustion engine 1 flows. A first catalyst casing 4 is disposed in the middle of the exhaust passage 3. The first catalyst casing 4 contains a three-way catalyst composed of a honeycomb structure covered with a coat layer such as alumina and a noble metal (for example, platinum, palladium, rhodium, etc.) supported on the coat layer. To do.

第一触媒ケーシング4より下流の排気通路3には、第二触媒ケーシング5が配置される。第二触媒ケーシング5は、アルミナ等のコート層によって被覆されたハニカム構造体と、コート層に担持される貴金属(白金、パラジウム、ロジウム等)と、コート層に担持されるNO吸蔵剤(アルカリ類、アルカリ土類等)とから構成される吸蔵還元型触媒(NSR触媒)を収容する。 A second catalyst casing 5 is disposed in the exhaust passage 3 downstream of the first catalyst casing 4. The second catalyst casing 5 includes a honeycomb structure covered with a coat layer such as alumina, a noble metal (platinum, palladium, rhodium, etc.) supported on the coat layer, and an NO X storage agent (alkaline) supported on the coat layer. Occlusion, alkaline earth, etc.).

第二触媒ケーシング5より下流の排気通路3には、第三触媒ケーシング6が配置される。第三触媒ケーシング6は、コーディライトやFe−Cr−Al系の耐熱鋼から成るハニカム構造体と、ハニカム構造体を被覆するアルミナ系又はゼオライト系のコート層と、コート層に担持される貴金属(白金やパラジウム等)とから構成される選択還元型触媒(SCR触媒)を収容する。   A third catalyst casing 6 is disposed in the exhaust passage 3 downstream of the second catalyst casing 5. The third catalyst casing 6 includes a honeycomb structure made of cordierite or Fe-Cr-Al heat-resistant steel, an alumina-based or zeolite-based coat layer that covers the honeycomb structure, and a noble metal supported on the coat layer ( A selective reduction catalyst (SCR catalyst) composed of platinum, palladium, or the like) is accommodated.

このように構成された内燃機関1には、ECU7が併設される。ECU7は、CPU、ROM、RAM、バックアップRAM等から構成される電子制御ユニットである。ECU7は、空燃比センサ(A/Fセンサ)8、酸素濃度センサ(Oセンサ)9、第一温度センサ10、第一NOセンサ11、第二NOセンサ12、第二温度センサ13、アクセルポジションセンサ14、クランクポジションセンサ15、及びエアフローメータ16等の各種センサと電気的に接続されている。 The internal combustion engine 1 configured as described above is provided with an ECU 7. The ECU 7 is an electronic control unit that includes a CPU, a ROM, a RAM, a backup RAM, and the like. The ECU 7 includes an air-fuel ratio sensor (A / F sensor) 8, an oxygen concentration sensor (O 2 sensor) 9, a first temperature sensor 10, a first NO X sensor 11, a second NO X sensor 12, a second temperature sensor 13, It is electrically connected to various sensors such as an accelerator position sensor 14, a crank position sensor 15, and an air flow meter 16.

空燃比センサ8は、第一触媒ケーシング4より上流の排気通路3に取り付けられ、第一触媒ケーシング4へ流入する排気の空燃比に相関する電気信号を出力する。酸素濃度センサ9は、第一触媒ケーシング4と第二触媒ケーシング5との間の排気通路3に取り付けられ、第一触媒ケーシング4から流出した排気に含まれる酸素の濃度に相関する電気信号を出力する。第一温度センサ10は、第二触媒ケーシング5と第三触媒ケーシング6との間の排気通路3に取り付けられ、第二触媒ケーシング5から流出する排気の温度に相関する電気信号を出力する。第一NOセンサ11は、第二触媒ケーシング5と第三触媒ケーシング6との間の排気通路3に取り付けられ、第二触媒ケーシング5から流出する排気(第三触媒ケーシング6へ流入する排気)に含まれるNOの量(NO流入量)に相関する電気信号を出力する。第二NOセンサ12は、第三触媒ケーシング6より下流の排気通路3に取り付けられ、第三触媒ケーシング6から流出する排気に含まれるNOの量(NO流出量)に相関する電気信号を出力する。第二温度センサ13は、第三触媒ケーシング6より下流の排気通路3に取り付けられ、第三触媒ケーシング6から流出する排気の温度に相関する電気信号を出力する。アクセルポジションセンサ14は、アクセルペダルの操作量(アクセル開度)に相関する電気信号を出力する。クランクポジションセンサ15は、内燃機関1の出力軸(クランクシャフト)の回転位置に相関する電気信号を出力する。エアフローメータ16は、内燃機関1の気筒内に吸入される空気量(吸入空気量)に相関する電気信号を出力する。 The air-fuel ratio sensor 8 is attached to the exhaust passage 3 upstream from the first catalyst casing 4 and outputs an electrical signal correlated with the air-fuel ratio of the exhaust gas flowing into the first catalyst casing 4. The oxygen concentration sensor 9 is attached to the exhaust passage 3 between the first catalyst casing 4 and the second catalyst casing 5 and outputs an electrical signal correlated with the concentration of oxygen contained in the exhaust gas flowing out from the first catalyst casing 4. To do. The first temperature sensor 10 is attached to the exhaust passage 3 between the second catalyst casing 5 and the third catalyst casing 6, and outputs an electrical signal correlated with the temperature of the exhaust gas flowing out from the second catalyst casing 5. The first NO X sensor 11 is attached to the exhaust passage 3 between the second catalyst casing 5 and the third catalyst casing 6, and exhaust gas flowing out from the second catalyst casing 5 (exhaust gas flowing into the third catalyst casing 6). and it outputs an electrical signal correlated to the amount of NO X (NO X flow rate) included in the. Second NO X sensor 12 is mounted from the third catalyst casing 6 downstream of the exhaust passage 3, an electrical signal correlated to the amount of the NO X contained in the exhaust gas flowing out of the third catalyst casing 6 (NO X outflow) Is output. The second temperature sensor 13 is attached to the exhaust passage 3 downstream from the third catalyst casing 6 and outputs an electrical signal correlated with the temperature of the exhaust gas flowing out from the third catalyst casing 6. The accelerator position sensor 14 outputs an electrical signal that correlates with the amount of operation of the accelerator pedal (accelerator opening). The crank position sensor 15 outputs an electrical signal correlated with the rotational position of the output shaft (crankshaft) of the internal combustion engine 1. The air flow meter 16 outputs an electrical signal correlated with the amount of air taken into the cylinder of the internal combustion engine 1 (intake air amount).

ECU7は、上記した各種センサの出力信号に基づいて、内燃機関1の運転状態を制御する。たとえば、ECU7は、クランクポジションセンサ15の出力信号に基づいて演算される機関回転速度とアクセルポジションセンサ14の出力信号(アクセル開度)とに基づいて混合気の目標空燃比を演算する。ECU7は、目標空燃比とエアフローメータ16の出力信号(吸入空気量)に基づいて燃料噴射弁2の目標燃料噴射量(燃料噴射期間)を演算し、目標燃料噴射量に従って燃料噴射弁2を作動させる。なお、ECU7は、内燃機関1の運転状態が低回転・低負荷領域又は中回転・中負荷領域にある場合等は、目標空燃比を理論空燃比より高いリーン空燃比に設定する。ECU7は、内燃機関1の運転状態が高負荷領域又は高回転領域にある場合は、目標空燃比を理論空燃比又は理論空燃比より低いリッチ空燃比に設定する。このように、内燃機関1の運転状態が低回転・低負荷領域や中回転・中負荷領域(以下、これらの運転領域を「リーン運転領域」と称する)に属するときに、内燃機関1が希薄燃焼運転されることにより、燃料消費量を少なく抑えることができる。また、ECU7は、空燃比センサ8の出力信号が前記目標空燃比と一致するように目標燃料噴射量を補正する空燃比フィードバック制御や、酸素濃度センサ9の出力信号に基づいて空燃比フィードバック制御に使用される補正係数の学習制御等を行う。   The ECU 7 controls the operating state of the internal combustion engine 1 based on the output signals of the various sensors described above. For example, the ECU 7 calculates the target air-fuel ratio of the air-fuel mixture based on the engine speed calculated based on the output signal of the crank position sensor 15 and the output signal (accelerator opening) of the accelerator position sensor 14. The ECU 7 calculates the target fuel injection amount (fuel injection period) of the fuel injection valve 2 based on the target air-fuel ratio and the output signal (intake air amount) of the air flow meter 16, and operates the fuel injection valve 2 according to the target fuel injection amount. Let The ECU 7 sets the target air-fuel ratio to a lean air-fuel ratio that is higher than the stoichiometric air-fuel ratio when the operating state of the internal combustion engine 1 is in the low rotation / low load region or the medium rotation / medium load region. The ECU 7 sets the target air-fuel ratio to a stoichiometric air-fuel ratio or a rich air-fuel ratio lower than the stoichiometric air-fuel ratio when the operating state of the internal combustion engine 1 is in a high load region or a high rotation region. As described above, when the operation state of the internal combustion engine 1 belongs to the low rotation / low load region or the medium rotation / medium load region (hereinafter, these operation regions are referred to as “lean operation regions”), the internal combustion engine 1 is lean. By performing the combustion operation, the fuel consumption can be reduced. Further, the ECU 7 performs air-fuel ratio feedback control for correcting the target fuel injection amount so that the output signal of the air-fuel ratio sensor 8 matches the target air-fuel ratio, and air-fuel ratio feedback control based on the output signal of the oxygen concentration sensor 9. Learning control of the correction coefficient used is performed.

ところで、目標空燃比がリーン空燃比に設定される場合(内燃機関1が希薄燃焼運転される場合)は、第一触媒ケーシング4に収容された三元触媒のNO浄化性能が低くなる。そのため、目標空燃比がリーン空燃比に設定されている場合は、第二触媒ケーシング5のNSR触媒と第三触媒ケーシング6のSCR触媒によって排気中のNOを浄化する必要がある。 Meanwhile, if the target air-fuel ratio is set to a lean air-fuel ratio (when the internal combustion engine 1 is lean-burn operation) is, NO X purifying performance of the three-way catalyst contained in the first catalyst casing 4 is lowered. Therefore, if the target air-fuel ratio is set to a lean air-fuel ratio, it is necessary to purify NO X in the exhaust gas by the NSR catalyst of the second catalyst casing 5 and the SCR catalyst of the third catalyst casing 6.

NSR触媒は、第二触媒ケーシング5へ流入する排気の酸素濃度が高いとき(排気の空燃比がリーンであるとき)は、排気中のNOを吸蔵又は吸着する。NSR触媒は、第二触媒ケーシング5へ流入する排気の酸素濃度が低く、且つ炭化水素(HC)や一酸化炭素(CO)等の還元成分が排気に含まれるとき(排気の空燃比がリッチであるとき)は、該NSR触媒に吸蔵されていたNOを放出し、放出されたNOを窒素(N)に還元させる。 NSR catalyst when the oxygen concentration of the exhaust gas flowing into the second catalyst casing 5 is high (when the air-fuel ratio of the exhaust gas is lean), the the the NO X storage or adsorbed in the exhaust gas. The NSR catalyst has a low oxygen concentration in the exhaust gas flowing into the second catalyst casing 5 and contains a reducing component such as hydrocarbon (HC) or carbon monoxide (CO) (the exhaust air-fuel ratio is rich). When there is, the NO X stored in the NSR catalyst is released, and the released NO X is reduced to nitrogen (N 2 ).

そこで、ECU8は、前記リーン運転領域においては、リッチスパイク処理を周期的に実行する。リッチスパイク処理は、排気中の酸素濃度が低く且つHCやCOの濃度が高く
なるように、燃料噴射量や吸入空気量を調整する処理である。リッチスパイク処理は、NSR触媒のNO吸蔵量が一定量以上になったとき、前回のリッチスパイク処理終了時からの運転時間(好ましくは、目標空燃比がリーン空燃比に設定された運転時間)が一定時間以上になったとき、前回のリッチスパイク処理終了時からの走行距離(好ましくは、目標空燃比がリーン空燃比に設定された走行距離)が一定距離以上になったときに実行されればよい。リッチスパイク処理の具体的な実行方法としては、燃料噴射弁2の燃料噴射量を増加させる処理、又は吸気絞り弁(スロットル弁)の開度を減少させる処理の少なくなくとも一つを実行する方法を用いることができる。なお、燃料噴射弁2が気筒内に直接燃料を噴射する構成においては、気筒の排気行程中に燃料噴射弁2から燃料を噴射させる方法によりリッチスパイク処理が実行されてもよい。
Therefore, the ECU 8 periodically executes rich spike processing in the lean operation region. The rich spike process is a process for adjusting the fuel injection amount and the intake air amount so that the oxygen concentration in the exhaust gas is low and the HC and CO concentrations are high. Rich spike treatment, when the NO X storage amount of the NSR catalyst becomes more than a certain amount, previous rich spike action operating time from the end (preferably, operating time the target air-fuel ratio is set to a lean air-fuel ratio) Is executed when the travel distance from the end of the previous rich spike processing (preferably, the travel distance in which the target air-fuel ratio is set to the lean air-fuel ratio) exceeds the predetermined distance. That's fine. As a specific execution method of the rich spike processing, a method of executing at least one of processing for increasing the fuel injection amount of the fuel injection valve 2 or processing for reducing the opening of the intake throttle valve (throttle valve) is performed. Can be used. In the configuration in which the fuel injection valve 2 directly injects fuel into the cylinder, the rich spike processing may be executed by a method of injecting fuel from the fuel injection valve 2 during the exhaust stroke of the cylinder.

SCR触媒は、排気中に含まれるアンモニア(NH)を吸着する。SCR触媒は、該SCR触媒に吸着されたNHと排気中のNOを反応させることにより、NOを窒素(N)に還元させる。なお、SCR触媒へ供給されるNHは、三元触媒やNSR触媒において生成される。たとえば、リッチスパイク処理が実行された場合に、三元触媒においてNOの一部がNHに還元され、NSR触媒において該NSR触媒から放出されたNOの一部がNHに還元される。その際、NSR触媒において生成されるNHの量は、リッチスパイク処理が実行される間隔や、リッチスパイク処理が実行されるときの空燃比等によって変化する。よって、SCR触媒へNHを供給する場合は、リッチスパイク処理の実行間隔がNHの生成に適した間隔に設定され、又はリッチスパイク処理実行時の空燃比がNHの生成に適した空燃比(たとえば、14.1程度)に設定されればよい。 The SCR catalyst adsorbs ammonia (NH 3 ) contained in the exhaust gas. The SCR catalyst reduces NO X to nitrogen (N 2 ) by reacting NH 3 adsorbed on the SCR catalyst with NO X in the exhaust. Note that NH 3 supplied to the SCR catalyst is generated in a three-way catalyst or an NSR catalyst. For example, if the rich-spike treatment is executed, part of the NO X in the three-way catalyst is reduced to NH 3, part of the NO X released from the NSR catalyst is reduced to NH 3 in the NSR catalyst . At that time, the amount of NH 3 produced in the NSR catalyst varies depending on the interval at which the rich spike process is executed, the air-fuel ratio at the time when the rich spike process is executed, and the like. Therefore, when NH 3 is supplied to the SCR catalyst, the execution interval of the rich spike process is set to an interval suitable for the generation of NH 3 , or the air-fuel ratio at the execution of the rich spike process is an empty space suitable for the generation of NH 3 What is necessary is just to set to an air-fuel ratio (for example, about 14.1).

上記したようにリッチスパイク処理が実行されることにより、内燃機関1が希薄燃焼運転されている場合であっても排気中のNOを浄化することができる。ところで、第三触媒ケーシング6に収容されるSCR触媒の浄化性能が劣化すると、NSR触媒によって浄化されないNOが大気中に排出される可能性がある。そのため、SCR触媒のNO浄化性能が劣化した場合は、SCR触媒の劣化を速やかに検出して、車両の運転者にSCR触媒の修理を促したり、内燃機関1の希薄燃焼運転を禁止したりする必要がある。以下では、本実施例においてSCR触媒の劣化を検出する方法について述べる。 By the rich spike action as described above is performed, it is possible even when the internal combustion engine 1 is lean-burn operation to purify NO X in the exhaust gas. By the way, when the purification performance of the SCR catalyst housed in the third catalyst casing 6 deteriorates, NO X that is not purified by the NSR catalyst may be discharged into the atmosphere. Therefore, if the NO X purification performance of the SCR catalyst is deteriorated, and quickly detect a deterioration of the SCR catalyst, or encourage repair of the SCR catalyst to the driver of the vehicle, or prohibit lean-burn operation of the internal combustion engine 1 There is a need to. Hereinafter, a method for detecting the deterioration of the SCR catalyst in the present embodiment will be described.

SCR触媒が異常状態にあるときは正常状態にあるときに比べ、SCR触媒が吸着可能なアンモニアの量が少なくなる。そのため、SCR触媒が異常状態にあるときは正常状態にあるときに比べ、SCR触媒が浄化することができるNOの量が少なくなる。しかしながら、SCR触媒のアンモニア吸着量が異常状態のSCR触媒の吸着可能なアンモニアの量(下限値)より少ないときは、正常状態のSCR触媒が浄化することができるNOの量と異常状態のSCR触媒が浄化することができるNOの量との差が小さくなる。 When the SCR catalyst is in an abnormal state, the amount of ammonia that can be adsorbed by the SCR catalyst is smaller than when the SCR catalyst is in a normal state. Therefore, when the SCR catalyst is in an abnormal state than when in the normal state, the amount of the NO X capable SCR catalyst to purify decreases. However, when the amount of ammonia adsorbed by the SCR catalyst is smaller than the amount of ammonia that can be adsorbed by the abnormal SCR catalyst (lower limit), the amount of NO X that can be purified by the normal SCR catalyst and the abnormal SCR the difference between the amount of the NO X capable catalyst for purifying decreases.

また、SCR触媒のアンモニア吸着量が前記下限値を上回っている場合であっても、NO流入量が少なければ、正常時のNO浄化性能と異常時にNO浄化性能との差が小さくなる。特に、SCR触媒が正常である場合において、SCR触媒に吸着されているアンモニアによって浄化することができるNOの量(基準NO量)に対してNO流入量が少ない場合は、正常時のNO浄化性能と異常時のNO浄化性能との差が小さくなる。 Further, even when the ammonia adsorption amount of SCR catalyst is above the lower limit value, the less the NO X flow rate, the difference between the NO X purification performance decreases in the NO X purification performance and abnormality of the normal . In particular, when the SCR catalyst is normal, of the NO X which can be purified by ammonia adsorbed on the SCR catalyst amount when NO X flow rate with respect to (a reference amount of NO X) is small, the normal the difference between the NO X purification performance and abnormal of the NO X purification performance decreases.

そこで、本実施例においては、SCR触媒のアンモニア吸着量が前記下限値を上回っている条件下において、NO流入量の積算値が基準NO量に達したときのNO流入量の積算値及びNO流出量の積算値をパラメータとしてSCR触媒の劣化を診断するようにした。 Accordingly, in this embodiment, under conditions of ammonia adsorption amount of SCR catalyst is above the lower limit value, NO X flow rate of the integrated value when the integrated value of the NO X flow rate has reached the reference amount of NO X and the cumulative value of the NO X outflow to diagnose the deterioration of the SCR catalyst as a parameter.

ここで、本実施例においてSCR触媒の劣化を検出する手順について図2に沿って説明する。図2は、ECU7がSCR触媒の劣化を検出する際に実行する処理ルーチンを示すフローチャートである。この処理ルーチンは、予めECU7のROM等に記憶されており、内燃機関1が希薄燃焼運転されている場合にECU7(CPU)によって周期的に実行される。   Here, the procedure for detecting the deterioration of the SCR catalyst in this embodiment will be described with reference to FIG. FIG. 2 is a flowchart showing a processing routine executed when the ECU 7 detects the deterioration of the SCR catalyst. This processing routine is stored in advance in the ROM or the like of the ECU 7, and is periodically executed by the ECU 7 (CPU) when the internal combustion engine 1 is in a lean combustion operation.

図2の処理ルーチンでは、ECU7は、先ずS101の処理において、SCR触媒のアンモニア吸着量を取得する。SCR触媒のアンモニア吸着量は、SCR触媒において浄化されたNOの積算量(言い換えると、SCR触媒においてNOの浄化に消費されたアンモニアの積算量)、及びSCR触媒へ流入するアンモニアの積算量をパラメータとして演算することができる。 In the processing routine of FIG. 2, the ECU 7 first acquires the ammonia adsorption amount of the SCR catalyst in the processing of S101. The ammonia adsorption amount of the SCR catalyst includes the integrated amount of NO X purified by the SCR catalyst (in other words, the integrated amount of ammonia consumed for NO X purification by the SCR catalyst), and the integrated amount of ammonia flowing into the SCR catalyst. Can be calculated as parameters.

SCR触媒において浄化されたNOの積算量は、NO流入量とNO流出量との差を積算することにより求めることができる。SCR触媒へ流入するアンモニアの積算量は、リッチスパイク処理の実行時にSCR触媒へ流入するアンモニアの量を積算することにより求めることができる。リッチスパイク処理の実行時にSCR触媒へ流入するアンモニアの量は、NSR触媒のNO吸蔵量、リッチスパイク処理実行時の空燃比、リッチスパイク処理の実行時間等をパラメータとして演算することができる。 The accumulated amount of NO X purified by the SCR catalyst can be obtained by integrating the difference between the NO X inflow amount and the NO X outflow amount. The integrated amount of ammonia flowing into the SCR catalyst can be obtained by integrating the amount of ammonia flowing into the SCR catalyst when the rich spike process is executed. The amount of ammonia flowing into the SCR catalyst during the execution of the rich spike control can calculate the NO X storage amount of the NSR catalyst, the air-fuel ratio in the rich spike control execution, the execution time of the rich spike processing as a parameter.

また、NOセンサは排気中のNOに加えアンモニアにも反応するため、リッチスパイク処理の実行時にSCR触媒へ流入するアンモニアの量は第一NOセンサ11により測定されてもよい。ここで、リッチスパイク処理が開始された直後は、三元触媒から酸素が放出されるため、NSR触媒へ流入する排気の空燃比が所望のリッチ空燃比より高い理論空燃比近傍の空燃比に維持される。その後、三元触媒に吸蔵されていた酸素が全て放出されると、NSR触媒へ流入する排気の空燃比が所望のリッチ空燃比まで低下する。NSR触媒へ流入する排気の空燃比が理論空燃比近傍の空燃比に維持されているときは、NSR触媒に吸蔵されていたNOの一部が還元されずにNSR触媒から排出される。NSR触媒へ流入する排気の空燃比が所望のリッチ空燃比まで低下した後は、NSR触媒から放出されたNOの一部がアンモニアに還元される。上記したような特性を鑑みると、NSR触媒からNOが排出されるタイミングとアンモニアが排出されるタイミングが異なるため、NSR触媒から排出されるNOの量とアンモニアの量の各々を第一NOセンサ11によって測定することができる。このような方法によって測定されるアンモニアの量を積算すれば、SCR触媒へ流入するNOの積算量を求めることができる。 Further, since the NO X sensor reacts to ammonia in addition to NO X in the exhaust gas, the amount of ammonia flowing into the SCR catalyst when the rich spike process is executed may be measured by the first NO X sensor 11. Here, immediately after the rich spike processing is started, oxygen is released from the three-way catalyst, so the air-fuel ratio of the exhaust gas flowing into the NSR catalyst is maintained at an air-fuel ratio in the vicinity of the stoichiometric air-fuel ratio that is higher than the desired rich air-fuel ratio. Is done. Thereafter, when all the oxygen stored in the three-way catalyst is released, the air-fuel ratio of the exhaust gas flowing into the NSR catalyst is lowered to a desired rich air-fuel ratio. When the air-fuel ratio of the exhaust gas flowing into the NSR catalyst is maintained at an air-fuel ratio in the vicinity of the theoretical air-fuel ratio, a part of the NO X stored in the NSR catalyst is discharged from the NSR catalyst without being reduced. After the air-fuel ratio of the exhaust gas flowing into the NSR catalyst is lowered to a desired rich air-fuel ratio, a part of NO X released from the NSR catalyst is reduced to ammonia. In view of the above-described characteristics, the timing at which NO X is discharged from the NSR catalyst and the timing at which ammonia is discharged are different, so that the amount of NO X and the amount of ammonia discharged from the NSR catalyst are each determined as the first NO. It can be measured by the X sensor 11. If integrating the amount of ammonia to be measured by such a method, it is possible to obtain the integrated amount of the NO X flowing into the SCR catalyst.

上記した方法によりECU7がSCR触媒のアンモニア吸着量を取得することにより、本発明に係わる取得手段が実現される。   The acquisition means according to the present invention is realized by the ECU 7 acquiring the ammonia adsorption amount of the SCR catalyst by the method described above.

S102の処理では、ECU7は、前記S101の処理で取得されたアンモニア吸着量が下限値より多いか否かを判別する。下限値は、異常状態のSCR触媒が吸着可能なアンモニアの量に相当する。ここで、SCR触媒の温度とSCR触媒が吸着可能なアンモニアの量との関係を図3に示す。図3中の実線はSCR触媒が異常であるときに該SCR触媒が吸着可能なアンモニアの量(下限値)を示し、図3中の一点鎖線はSCR触媒が正常であるときに該SCR触媒が吸着可能なアンモニアの量を示す。図3に示すように、SCR触媒が吸着可能なアンモニア量は、SCR触媒の温度に応じて変化する。よって、前記下限値は、SCR触媒の温度をパラメータとして変更されることが望ましい。SCR触媒の温度は内燃機関1の運転状態から推定されてもよいが、第二温度センサ13の出力信号がSCR触媒の温度の相関値として用いられてもよい。   In the process of S102, the ECU 7 determines whether or not the ammonia adsorption amount acquired in the process of S101 is larger than a lower limit value. The lower limit value corresponds to the amount of ammonia that can be adsorbed by the abnormal SCR catalyst. Here, the relationship between the temperature of the SCR catalyst and the amount of ammonia that can be adsorbed by the SCR catalyst is shown in FIG. The solid line in FIG. 3 indicates the amount (lower limit) of ammonia that can be adsorbed by the SCR catalyst when the SCR catalyst is abnormal, and the alternate long and short dash line in FIG. 3 indicates that the SCR catalyst has a normal state when the SCR catalyst is normal. Indicates the amount of ammonia that can be adsorbed. As shown in FIG. 3, the amount of ammonia that can be adsorbed by the SCR catalyst varies according to the temperature of the SCR catalyst. Therefore, it is desirable that the lower limit value be changed using the temperature of the SCR catalyst as a parameter. Although the temperature of the SCR catalyst may be estimated from the operating state of the internal combustion engine 1, the output signal of the second temperature sensor 13 may be used as a correlation value of the temperature of the SCR catalyst.

ここで、図2の処理ルーチンに戻り、ECU7は、前記S102の処理において否定判定された場合は、本ルーチンの実行を一旦終了する。一方、S102の処理において肯定
判定された場合は、ECU7は、S103の処理へ進み、リッチスパイク処理の実行を禁止する。このようにECU7がリッチスパイク処理を禁止することにより、NSR触媒へ流入する排気の空燃比がリーンに維持される。よって、ECU7がS103の処理を実行することにより、本発明に係わる維持手段が実現される。
Here, returning to the processing routine of FIG. 2, when the ECU 7 makes a negative determination in the processing of S102, the execution of this routine is temporarily terminated. On the other hand, when an affirmative determination is made in the process of S102, the ECU 7 proceeds to the process of S103 and prohibits the execution of the rich spike process. As described above, the ECU 7 prohibits the rich spike processing, so that the air-fuel ratio of the exhaust gas flowing into the NSR catalyst is maintained lean. Thus, the maintenance means according to the present invention is realized by the ECU 7 executing the process of S103.

S104の処理では、ECU7は、NSR触媒のNO吸蔵能力が飽和したか否かを判別する。詳細には、ECU7は、第一NOセンサ11の出力信号(NO流入量)が零或いは零に所定のマージンを加算した量より多くなったときに、NSR触媒のNO吸蔵能力が飽和したと判定する。S104の処理において否定判定された場合は、ECU7は、S103の処理へ戻り、リッチスパイク処理の禁止状態を維持する。一方、S104の処理において肯定判定された場合は、ECU7は、S105の処理へ進む。 In the process of S104 is, ECU 7 is, NO X storage capability of the NSR catalyst is determined whether or not saturated. Specifically, the ECU 7 saturates the NO X storage capacity of the NSR catalyst when the output signal (NO X inflow amount) of the first NO X sensor 11 becomes zero or more than an amount obtained by adding a predetermined margin to zero. It is determined that When a negative determination is made in the process of S104, the ECU 7 returns to the process of S103 and maintains the rich spike process prohibited state. On the other hand, when a positive determination is made in the process of S104, the ECU 7 proceeds to the process of S105.

S105の処理では、ECU7は、SCR触媒のアンモニア吸着量を再度取得する。続いて、ECU7は、S106の処理へ進み、前記S105の処理で取得されたアンモニア吸着量が下限値より多いか否かを再度判別する。SCR触媒の温度変化等によってSCR触媒のアンモニア吸着量が下限値以下となった場合は、ECU7は、本ルーチンの実行を一旦終了する。一方、S106の処理において肯定判定された場合は、ECU7は、S107の処理へ進む。   In the process of S105, the ECU 7 acquires the ammonia adsorption amount of the SCR catalyst again. Subsequently, the ECU 7 proceeds to the process of S106, and again determines whether or not the ammonia adsorption amount acquired in the process of S105 is larger than the lower limit value. When the ammonia adsorption amount of the SCR catalyst becomes equal to or lower than the lower limit due to the temperature change of the SCR catalyst, the ECU 7 once ends the execution of this routine. On the other hand, if an affirmative determination is made in the process of S106, the ECU 7 proceeds to the process of S107.

S107の処理では、ECU7は、第一NOセンサ11及び第二NOセンサ12の出力信号を利用して、NO流入量及びNO流出量の積算を開始する。好ましくは、ECU7は、NSR触媒のNO吸蔵能力が飽和した時点からNO流入量及びNO流出量の積算を開始してもよい。このようにECU7がNO流入量及びNO流出量の積算値を演算することにより、本発明に係わる積算手段が実現される。 In the process of S107, the ECU 7 uses the output signals of the first NO X sensor 11 and the second NO X sensor 12 to start integration of the NO X inflow amount and the NO X outflow amount. Preferably, the ECU 7 may start the accumulation of the NO X inflow amount and the NO X outflow amount from the time when the NO X storage capacity of the NSR catalyst is saturated. In this way, the ECU 7 calculates the integrated value of the NO X inflow amount and the NO X outflow amount, thereby realizing the integrating means according to the present invention.

S108の処理では、NO流入量の積算値が基準NO量以上であるか否かを判別する。基準NO量は、正常状態のSCR触媒が浄化することができるNOの量に相当する。正常状態のSCR触媒が浄化可能なNOの量は、SCR触媒のアンモニア吸着量とSCR触媒の温度をパラメータとして演算される。詳細には、ECU7は、SCR触媒のアンモニア吸着量と当量比が1になるNOの量、言い換えると、SCR触媒に吸着されている全てのアンモニアがNOの還元に消費されたと仮定した場合のNO還元量(以下、「基準還元量」と称する)を演算する。続いて、ECU7は、SCR触媒の温度をパラメータとして、正常状態のSCR触媒による最大のNO浄化率を演算する。ここで、SCR触媒が正常である場合のSCR触媒の温度とSCR触媒のNO浄化率との関係を図4に示す。図4に示すように、SCR触媒が正常であるときの最大のNO浄化率(以下、「最大NO浄化率」と称する)は、SCR触媒の温度によって変化する。よって、SCR触媒の現在の温度において、正常状態のSCR触媒が還元することができるNOの量は、基準還元量と最大NO浄化率との積に相当する。そこで、ECU7は、基準還元量と最大NO浄化率を乗算することによって基準NO量を算出する。このような方法により、ECU7が基準NO量を演算することにより、本発明に係わる演算手段が実現される。 In the process of S108, it is determined whether or not the integrated value of the NO X inflow amount is greater than or equal to the reference NO X amount. The reference NO X amount corresponds to the amount of NO X that can be purified by the normal SCR catalyst. The amount of NO X that can be purified by the SCR catalyst in the normal state is calculated using the ammonia adsorption amount of the SCR catalyst and the temperature of the SCR catalyst as parameters. Specifically, ECU 7, the amount of the NO X ammonia adsorption amount and the equivalent ratio of the SCR catalyst is 1, in other words, if all of the ammonia adsorbed on the SCR catalyst is assumed to have been consumed in the reduction of the NO X of the NO X reduction amount (hereinafter, referred to as "reference reduction amount") is calculated. Subsequently, ECU 7 has a temperature of the SCR catalyst as a parameter, and calculates the maximum of the NO X purification rate by the SCR catalyst in a normal state. Here, the relationship between NO X purification rate temperature and SCR catalyst of the SCR catalyst when the SCR catalyst is normal in Fig. As shown in FIG. 4, the maximum NO X purification rate when the SCR catalyst is normal (hereinafter referred to as “maximum NO X purification rate”) varies depending on the temperature of the SCR catalyst. Therefore, the current temperature of the SCR catalyst, the amount of the NO X capable SCR catalyst normal state is reduced corresponds to the product of the reference amount of reduction and the maximum NO X purification rate. Accordingly, ECU 7 calculates a reference amount of NO X by multiplying the reference amount of reduction and the maximum NO X purification rate. By such a method, by ECU7 to calculating the reference amount of NO X, calculating means according to the present invention is implemented.

前記S108の処理において否定判定された場合は、ECU7は、NO流入量の積算値が基準NO量以上になるまで、S107及びS108の処理を繰り返し実行する。一方、前記S108の処理において肯定判定された場合は、ECU7は、S109の処理へ進む。S109の処理では、ECU7は、NO流入量の積算値が基準NO量以上になった時点におけるNO流入量の積算値とNO流出量の積算値とをパラメータとして、SCR触媒のNO浄化率Enoxを演算する。具体的には、ECU7は、以下の式(1)に基づいてNO浄化率Enoxを算出する。
Enox=(ΣAnoxin−ΣAnoxout)/ΣAnoxin・・・(1)
式(1)中のΣAnoxinはNO流入量の積算値であり、ΣAnoxoutはNO流出量の積算値である。
When a negative determination is made in the processing of the S108, the ECU 7, until the integrated value of the NO X flow rate becomes equal to or higher than the reference amount of NO X, repeatedly executes the processes in S107 and S108. On the other hand, if an affirmative determination is made in the process of S108, the ECU 7 proceeds to the process of S109. In the process of S109, the ECU 7 has an integrating value of the integrated value of the NO X flow rate at the time when the integration value of the NO X flow rate is equal to or greater than the amount of the reference NO X and NO X outflow as a parameter, the SCR catalyst NO X purification rate Enox is calculated. Specifically, ECU 7 calculates the NO X purification rate Enox based on the following equation (1).
Enox = (ΣAnoxin−ΣAnoxout) / ΣAnoxin (1)
In formula (1), ΣAnoxin is an integrated value of the NO X inflow amount, and ΣAnoxout is an integrated value of the NO X outflow amount.

S110の処理では、ECU7は、前記S109の処理で算出されたNO浄化率Enoxが閾値以上であるか否かを判別する。閾値は、異常状態のSCR触媒の最大のNO浄化率に所定のマージンを加算した値、或いは正常状態のSCR触媒の最小のNO浄化率に相当し、予め実験的に求められた値である。 In the process of S110 is, ECU 7 is, NO X purification rate Enox calculated in the processing of the step S109 wherein it is determined whether or not the threshold value or more. Threshold value obtained by adding a predetermined margin to the maximum of the NO X purification rate of the SCR catalyst abnormal condition, or corresponds to the minimum of the NO X purification rate of the SCR catalyst in a normal state, in advance experimentally determined value is there.

前記S110の処理において肯定判定された場合は、ECU7は、S111の処理へ進み、SCR触媒が正常であると判定する。一方、前記S110の処理において否定判定された場合は、ECU7は、S112の処理へ進み、SCR触媒が異常であると判定する。このように、ECU7がS108乃至S112の処理を実行することにより、本発明に係わる診断手段が実現される。   If an affirmative determination is made in step S110, the ECU 7 proceeds to step S111 and determines that the SCR catalyst is normal. On the other hand, if a negative determination is made in the process of S110, the ECU 7 proceeds to the process of S112 and determines that the SCR catalyst is abnormal. In this way, the diagnostic means according to the present invention is realized by the ECU 7 executing the processing of S108 to S112.

以上述べた手順によりSCR触媒の異常検出処理が実行されると、SCR触媒のアンモニア吸着量が基準値を上回る状況下において、SCR触媒へ流入するNO量の積算値が基準NO量に達したときのNO流入量の積算値及びNO流出量の積算値をパラメータとしてSCR触媒の劣化診断が行われることになる。その結果、正常状態のSCR触媒のNO浄化性能と異常状態のSCR触媒のNO浄化性能との差が大きくなる条件下においてSCR触媒の劣化診断が行われることになる。よって、SCR触媒の上流にNSR触媒が配置される構成においても、SCR触媒の異常をより正確に検出することが可能になる。 When the abnormality detection process of the SCR catalyst is executed according to the procedure described above, the integrated value of the NO X amount flowing into the SCR catalyst reaches the reference NO X amount under the situation where the ammonia adsorption amount of the SCR catalyst exceeds the reference value. The deterioration diagnosis of the SCR catalyst is performed using the integrated value of the NO X inflow amount and the integrated value of the NO X outflow amount as parameters. As a result, the deterioration diagnosis of the SCR catalyst is performed under the condition that the difference between the NO X purification performance of the normal SCR catalyst and the NO X purification performance of the abnormal SCR catalyst becomes large. Therefore, even in the configuration in which the NSR catalyst is arranged upstream of the SCR catalyst, it is possible to detect the abnormality of the SCR catalyst more accurately.

1 内燃機関
2 燃料噴射弁
3 排気通路
4 第一触媒ケーシング
5 第二触媒ケーシング
6 第三触媒ケーシング
7 ECU
8 空燃比センサ
9 酸素濃度センサ
10 第一温度センサ
11 第一NOセンサ
12 第二NOセンサ
13 第二温度センサ
14 アクセルポジションセンサ
1 Internal combustion engine 2 Fuel injection valve 3 Exhaust passage 4 First catalyst casing 5 Second catalyst casing 6 Third catalyst casing 7 ECU
8 Air-fuel ratio sensor 9 Oxygen concentration sensor 10 First temperature sensor 11 First NO X sensor 12 Second NO X sensor 13 Second temperature sensor 14 Accelerator position sensor

Claims (2)

吸蔵還元型触媒より下流の排気通路に配置され、吸蔵還元型触媒によって生成されたアンモニアを吸着し、吸着したアンモニアを還元剤として排気中のNOを還元する選択還元型触媒と、
選択還元型触媒のアンモニア吸着量を取得する取得手段と、
取得手段により取得されたアンモニア吸着量が異常状態の選択還元型触媒の吸着可能なアンモニアの量である下限値より多くなった場合に、選択還元型触媒の温度と取得手段により取得されたアンモニア吸着量とをパラメータとして、正常状態の選択還元型触媒が浄化することができるNOの量である基準NO量を演算する演算手段と、
取得手段により取得されたアンモニア吸着量が前記下限値より多くなった後に選択還元型触媒へ流入するNOの量であるNO流入量及び選択還元型触媒から流出するNOの量であるNO流出量をそれぞれ積算する積算手段と、
前記積算手段により積算されたNO流入量が基準NO量と等しくなったときのNO流入量の積算値及びNO流出量の積算値に基づいて選択還元型触媒の劣化を診断する診断手段と、
を備える選択還元型触媒の劣化検出装置。
A selective reduction catalyst that is disposed in an exhaust passage downstream of the storage reduction catalyst, adsorbs ammonia generated by the storage reduction catalyst, and reduces NO X in the exhaust gas using the adsorbed ammonia as a reducing agent;
Acquisition means for acquiring the ammonia adsorption amount of the selective catalytic reduction catalyst;
When the ammonia adsorption amount acquired by the acquisition means exceeds the lower limit, which is the amount of ammonia that can be adsorbed by the selective reduction catalyst in the abnormal state, the temperature of the selective reduction catalyst and the ammonia adsorption acquired by the acquisition means Calculating means for calculating a reference NO X amount, which is the amount of NO X that can be purified by the selective catalytic reduction catalyst in a normal state, using the amount as a parameter;
NO ammonia adsorption amount obtained by the obtaining unit is the amount of the NO X flowing out from the NO X flow rate and the selective reduction catalyst is the amount of the NO X flowing into the selective reduction catalyst after becoming larger than the lower limit value An integration means for integrating each X outflow amount;
Diagnosis for diagnosing NO X flow rate integrated value and degradation of the selective reduction catalyst based on the integrated value of the NO X runoff when NO X flow rate, which is integrated by the integration means becomes equal to the reference amount of NO X Means,
A deterioration detection apparatus for a selective catalytic reduction catalyst.
請求項1において、取得手段により取得されたアンモニア吸着量が前記下限値を上回った時点から積算手段により積算されるNO流入量が前記基準NO量と等しくなる時点までの期間は、吸蔵還元型触媒へ流入する排気の空燃比をリーンに維持する維持手段を更に備える選択還元型触媒の劣化検出装置。 2. The period from the time when the ammonia adsorption amount acquired by the acquiring means exceeds the lower limit to the time when the NO X inflow amount integrated by the integrating means becomes equal to the reference NO X amount in claim 1 A selective reduction type catalyst deterioration detection device further comprising a maintaining means for maintaining the air-fuel ratio of the exhaust gas flowing into the type catalyst lean.
JP2013139897A 2013-07-03 2013-07-03 Deterioration detection device for selective reduction type catalyst Pending JP2015014213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013139897A JP2015014213A (en) 2013-07-03 2013-07-03 Deterioration detection device for selective reduction type catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013139897A JP2015014213A (en) 2013-07-03 2013-07-03 Deterioration detection device for selective reduction type catalyst

Publications (1)

Publication Number Publication Date
JP2015014213A true JP2015014213A (en) 2015-01-22

Family

ID=52436111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013139897A Pending JP2015014213A (en) 2013-07-03 2013-07-03 Deterioration detection device for selective reduction type catalyst

Country Status (1)

Country Link
JP (1) JP2015014213A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016148319A (en) * 2015-02-13 2016-08-18 トヨタ自動車株式会社 Deterioration diagnosis device for exhaust emission control device
JP2016205320A (en) * 2015-04-27 2016-12-08 トヨタ自動車株式会社 Abnormality diagnosis device of exhaust emission control mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016148319A (en) * 2015-02-13 2016-08-18 トヨタ自動車株式会社 Deterioration diagnosis device for exhaust emission control device
JP2016205320A (en) * 2015-04-27 2016-12-08 トヨタ自動車株式会社 Abnormality diagnosis device of exhaust emission control mechanism

Similar Documents

Publication Publication Date Title
JP6036772B2 (en) Control device for internal combustion engine
JP4737010B2 (en) Catalyst deterioration diagnosis device
JP5907286B2 (en) Failure diagnosis device for exhaust purification system
JP6287989B2 (en) Abnormality diagnosis device for NOx storage reduction catalyst
JP6032358B2 (en) Exhaust gas purification device abnormality diagnosis device
US9404405B2 (en) Abnormality diagnosis apparatus for exhaust gas purification apparatus
US10072544B2 (en) Deterioration diagnosis apparatus for the exhaust gas purification apparatus
US9416716B2 (en) Control apparatus for an internal combustion engine
WO2018097246A1 (en) Exhaust gas purifying device abnormality diagnosing system
JP6123822B2 (en) Exhaust purification device deterioration diagnosis device
JP6278039B2 (en) Degradation diagnosis device for selective catalytic reduction catalyst
JP2008215315A (en) DETERIORATION DIAGNOSIS DEVICE FOR NOx CATALYST
JP6278005B2 (en) Exhaust purification device deterioration diagnosis device
JP2008240577A (en) Deterioration diagnosis device and deterioration diagnosis method for oxidation catalyst
JP6102908B2 (en) Exhaust purification device deterioration diagnosis device
US10316776B2 (en) Control apparatus for an internal combustion engine
JP2015197086A (en) Deterioration determination device of selectively reducing catalyst
JP2015014213A (en) Deterioration detection device for selective reduction type catalyst
US10519840B2 (en) Abnormality diagnosis system for exhaust gas purification apparatus
JP5892047B2 (en) SCR system degradation diagnosis device
JP2020041444A (en) Catalyst deterioration diagnosis method and catalyst deterioration diagnosis system
JP2018071490A (en) Deterioration diagnosis device of selective reduction catalyst
JP2016118140A (en) Deterioration diagnosis system of exhaust emission control device