WO2010131687A1 - 被検体内撮像システムおよび被検体内導入装置 - Google Patents

被検体内撮像システムおよび被検体内導入装置 Download PDF

Info

Publication number
WO2010131687A1
WO2010131687A1 PCT/JP2010/058065 JP2010058065W WO2010131687A1 WO 2010131687 A1 WO2010131687 A1 WO 2010131687A1 JP 2010058065 W JP2010058065 W JP 2010058065W WO 2010131687 A1 WO2010131687 A1 WO 2010131687A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
light
wavelength
unit
wavelength spectrum
Prior art date
Application number
PCT/JP2010/058065
Other languages
English (en)
French (fr)
Inventor
哲夫 薬袋
慎介 田中
内山 昭夫
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to JP2010540975A priority Critical patent/JP4741033B2/ja
Priority to CN201080007685.2A priority patent/CN102316785B/zh
Priority to EP10774944A priority patent/EP2386239A4/en
Priority to US12/917,863 priority patent/US8740777B2/en
Publication of WO2010131687A1 publication Critical patent/WO2010131687A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000095Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope for image enhancement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0684Endoscope light sources using light emitting diodes [LED]

Definitions

  • the present invention relates to an intra-subject imaging system and an intra-subject introduction device, and more particularly to an intra-subject imaging system and an intra-subject introduction device for observing the inside of a subject such as a person or an animal.
  • an apparatus for observing the inside of a subject such as a human being or an animal has two ends, and an endoscope that inserts one end into the subject and observes the inside of the subject (
  • an endoscope that inserts one end into the subject and observes the inside of the subject
  • a capsule endoscope hereinafter simply referred to as a capsule endoscope
  • Endoscopes are optical endoscopes that have a CCD (Charge Coupled Device) sensor or a CMOS (Complementary Metal Oxide Semiconductor) sensor at the tip, or a fiber in which a bundle of optical fibers is passed through a tubular probe.
  • a scope In such an endoscope, a probe is inserted from the mouth or anus of the subject to acquire an image inside the subject (for example, refer to Patent Document 1 shown below).
  • a capsule endoscope is a capsule-type in-subject introduction device that is introduced into a subject and has a size that can be swallowed by a person or an animal.
  • This capsule endoscope is introduced into a subject, for example, orally.
  • the capsule endoscope introduced inside the subject periodically images the inside of the subject, for example, and transmits an image inside the subject obtained by imaging to an external receiving device as a radio signal (for example, below) Patent Document 2 shown).
  • An observer reproduces a plurality of images obtained by an endoscope or a capsule endoscope individually or continuously, and observes the images to observe the inside of the subject.
  • a white light source such as a halogen lamp is employed as a light source for illuminating the inside of a subject, and imaging using a so-called frame sequential color filter system using a monochrome CCD and a rotating color filter as an imaging mechanism.
  • Mechanism is adopted.
  • a white light source such as a halogen lamp can emit light having a substantially uniform intensity in the visible light band.
  • the frame sequential color filter type imaging mechanism can easily obtain uniform light receiving sensitivity for each color component by matching the light transmittance of each of the filters of the three primary colors (R, G, B). For this reason, by using a white light source and a frame-sequential color filter type imaging mechanism, it is possible to obtain a clean image in which each color component is balanced.
  • a white light source such as a halogen lamp or a frame sequential color filter type imaging mechanism has a relatively large configuration and requires a relatively large amount of power for driving. For this reason, it is difficult to mount the white light source and the imaging mechanism on a capsule endoscope having a limited size. Therefore, in a conventional capsule endoscope, a relatively small and low power consumption LED (Light Emitting Diode) is used as a light source, and a CCD array including a light receiving element for each of the three primary colors is used as an imaging unit. .
  • LED Light Emitting Diode
  • Patent Document 1 when an LED and a CCD array are used, the center wavelength in the emission spectrum of the LED is positioned between the main spectral sensitivities of each CCD, so A technique for bringing the luminance closer to the actual one is disclosed.
  • a capsule endoscope that can acquire an image (hereinafter referred to as a special light image) obtained by imaging when irradiated with special light.
  • the capsule endoscope in which a color filter is provided in a light receiving unit such as a CCD.
  • the light receiving portions of each of the RGB color components are crested and have a light receiving wavelength spectrum. Therefore, when light with a flat emission wavelength spectrum is incident on the light receiving unit having a mountain-shaped reception wavelength spectrum for each color component, the combined reception wavelength spectrum (synthetic reception wavelength spectrum) is a flat spectrum. It may not be. As a result, the normal light image obtained by the capsule endoscope may not be an image obtained by accurately capturing the subject.
  • Patent Document 3 when the technique disclosed in Patent Document 3 described above is used, a normal light image can be acquired, but in order to acquire a special light image, a process such as extracting a specific wavelength component from the normal light image is performed. Therefore, the burden required for image processing increases. Moreover, since the above-mentioned patent document 3 does not consider the special light image in the first place, it cannot acquire the special light image in addition to the normal light image.
  • the present invention has been made in view of the above problems, and provides an in-subject imaging system and an intra-subject introduction apparatus that can acquire a normal light image and a special light image as clear images.
  • Another object of the present invention is to provide an in-subject imaging system and an in-subject introduction apparatus that can acquire a normal light image and a special light image without increasing the burden required for image processing. To do.
  • an in-vivo imaging system receives an in-subject introduction device introduced into a subject and a wireless signal transmitted from the in-subject introduction device.
  • An intra-subject imaging system including a receiving device, wherein the intra-subject introduction device includes a light receiving unit including a plurality of light receiving elements having a light reception wavelength spectrum, and an emission wavelength spectrum corresponding to the light reception wavelength spectrum.
  • a selection unit for selecting a predetermined light emitting element from the plurality of light emitting elements, and a flat combined wavelength spectrum synthesized by the light receiving unit
  • An image generation unit that generates a normal light image or a special light image based on a sharp combined wavelength spectrum synthesized by the light receiving unit, and the image generation unit
  • a transmission unit that transmits the normal light image or special light image, characterized in that it comprises a control unit for controlling the driving of the light receiving element based on the selection of the selection unit.
  • An in-subject introduction device includes a light receiving unit including a plurality of light receiving elements having a light reception wavelength spectrum, and a light emission wavelength that deviates by a predetermined wavelength from the light reception wavelength spectrum corresponding to the light reception wavelength spectrum.
  • a normal light image is generated based on a light emitting unit having a plurality of spectra, a selection unit that selects a predetermined light emitting element from the plurality of light emitting elements, and a flat combined wavelength spectrum synthesized by the light receiving unit, Alternatively, an image generation unit that generates a special light image based on a sharp combined wavelength spectrum combined by the light receiving unit, and a transmission unit that transmits a normal light image or a special light image generated by the image generation unit, And a control unit that controls driving of the light receiving element based on selection by the selection unit.
  • the light source for acquiring the special light image in addition to the light source for acquiring the normal light image, the light source for acquiring the special light image is separately mounted, and the normal light image and the special light image are driven in combination. Therefore, it is possible to realize an in-subject imaging system and an in-subject introduction apparatus that can acquire a normal light image and a special light image without increasing the burden required for image processing. Become.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a capsule endoscope system according to Embodiment 1 of the present invention.
  • FIG. 2 is a perspective view showing a schematic configuration of the capsule endoscope according to the first embodiment of the present invention.
  • FIG. 3 is a block diagram showing a schematic configuration of the capsule endoscope according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing an emission spectrum of each LED in the illumination unit of the capsule endoscope according to the first embodiment of the present invention.
  • FIG. 5 is a block diagram showing a schematic configuration of another form of the illumination unit according to Embodiment 1 of the present invention.
  • FIG. 6 is a diagram showing a schematic configuration example of the CCD array according to the first embodiment of the present invention.
  • FIG. 7 is a diagram showing a spectrum of spectral sensitivity characteristics of each CCD according to the first embodiment of the present invention.
  • FIG. 8 is a diagram showing a spectrum of the combined sensitivity characteristic of each CCD when all the LEDs according to Embodiment 1 of the present invention emit light.
  • FIG. 9 is a diagram showing a spectrum of combined sensitivity characteristics of the B pixel CCD and the B pixel CCD when the NU light source LED and the G light source LED are driven in the first embodiment of the present invention. It is.
  • FIG. 10 is a block diagram showing a schematic configuration of the receiving apparatus according to Embodiment 1 of the present invention.
  • FIG. 11 is a block diagram showing a schematic configuration of the display device according to Embodiment 1 of the present invention.
  • FIG. 12 is a flowchart showing a schematic operation example of the capsule endoscope according to the first embodiment of the present invention.
  • FIG. 13 is a diagram showing a schematic configuration example of a CCD array according to Modification 1-1 of Embodiment 1 of the present invention.
  • FIG. 14 is a diagram showing a spectrum of spectral sensitivity characteristics of each CCD according to the first embodiment of the present invention.
  • FIG. 15 is a diagram showing a schematic configuration example of a CCD array according to Modification 1-2 of Embodiment 1 of the present invention.
  • FIG. 16 is a diagram showing a spectrum of spectral sensitivity characteristics of each CCD according to Modification 1-2 of Embodiment 1 of the present invention.
  • FIG. 17 is a block diagram illustrating a schematic configuration example of an imaging unit and its peripheral circuits according to Modification 1-3 of Embodiment 1 of the present invention.
  • FIG. 18 is a flowchart showing a schematic operation example of the capsule control circuit according to the modification 1-3 of the first embodiment of the present invention.
  • FIG. 19 is a block diagram showing a schematic configuration of an image processing circuit and its peripheral circuits according to Embodiment 2 of the present invention.
  • FIG. 20 is a diagram illustrating an example of a GUI screen that displays a first image that is a normal light image and a GUI screen that displays a second image that is a special light image according to Embodiment 2 of the present invention.
  • FIG. 21 is a diagram showing an example of a GUI screen that displays the first image and the second image in parallel according to Embodiment 2 of the present invention.
  • FIG. 22 displays the thumbnail image generated from the first image data and the thumbnail image generated from the second image data in the second embodiment of the present invention while linking to the position on the time axis indicated by the time bar on the GUI screen. It is a figure which shows an example.
  • FIG. 23 is a diagram showing an example in which thumbnail images are displayed while being linked to positions on the time axis indicated by the time bar on the GUI screen in the second embodiment of the present invention.
  • FIG. 24 is a diagram showing an example of a GUI screen according to the modified example 2-1 of the second embodiment of the present invention.
  • FIG. 25 is a diagram showing an example of a GUI screen according to the modified example 2-1 of the second embodiment of the present invention.
  • FIG. 26 is a block diagram showing a schematic configuration of a display device according to Embodiment 3 of the present invention.
  • FIG. 27 is a diagram showing a GUI screen for the user to confirm and select an examination file to be a report creation target according to the third embodiment of the present invention.
  • FIG. 28 is a diagram showing a GUI screen for inputting a comment or the like for the first image / second image included in the examination file selected on the GUI screen shown in FIG.
  • FIG. 29 is a diagram for explaining operations when the user instructs image processing such as structure enhancement processing and narrowband component extraction processing using the GUI screen shown in FIG. 28.
  • FIG. 30 is a diagram showing a display example of thumbnail images for the first image / second image in which there are images that have been subjected to processing such as structure enhancement processing and narrowband component extraction processing according to Embodiment 3 of the present invention.
  • FIG. 31A is a diagram showing an example of a report created and exported using the GUI screen according to the third embodiment of the present invention (part 1).
  • FIG. 31B is a diagram showing an example of a report created and exported using the GUI screen according to the third embodiment of the present invention (part 2).
  • FIG. 32 is a diagram illustrating an example of a GUI screen for outputting any one or more image files as a single file when the inspection file according to the third embodiment of the present invention includes a plurality of image files.
  • FIG. 33 is a diagram for explaining an operation when the user instructs a processing process such as a structure enhancement process or a narrowband component extraction process on the image data of the image displayed in the reproduction field of the GUI screen shown in FIG.
  • FIG. 33 is a diagram for
  • each drawing only schematically shows the shape, size, and positional relationship to the extent that the contents of the present invention can be understood. Therefore, the present invention is illustrated in each drawing. It is not limited to only the shape, size, and positional relationship. Moreover, in each figure, a part of hatching in a cross section is abbreviate
  • an imaging operation is performed in the course of moving in the lumen from the esophagus to the anus of the subject as introduced orally into the subject.
  • a capsule endoscope system 1 that uses the capsule endoscope 10 that acquires an image inside the subject as an in-subject introduction device will be described.
  • the capsule endoscope 10 a so-called monocular capsule endoscope provided with one imaging unit is taken as an example.
  • the present invention is not limited to this.
  • a compound-eye capsule endoscope may be used.
  • a monocular or compound capsule endoscope that is orally introduced into the subject and floats on the liquid stored in the subject's stomach, small intestine, large intestine, etc. can be variously modified. It is.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a capsule endoscope system 1 according to the first embodiment.
  • a capsule endoscope system 1 includes a capsule endoscope 10 that is orally introduced into a subject 900 and a receiving device that receives an image signal wirelessly transmitted from the capsule endoscope 10. 20 and a display device 40 that inputs and displays an image signal received by the receiving device 20 via, for example, the portable recording medium 30.
  • the body surface of the subject 900 has one or more receiving antennas 21a to 21h (hereinafter referred to as any of the receiving antennas 21a to 21h) for receiving a signal when wirelessly transmitted from the capsule endoscope 10. In this case, 21 is attached.
  • the receiving antenna 21 is connected to the receiving device 20 via a signal cable and a balun (not shown).
  • a wireless transmission transmitting antenna 22 connected to the receiving device 20 via a balun or the like is provided on the body surface of the subject 900, for example. It may be attached.
  • FIG. 2 is a perspective view showing a schematic configuration of the capsule endoscope 10 according to the first embodiment.
  • FIG. 3 is a block diagram showing a schematic configuration of the capsule endoscope 10 according to the first embodiment.
  • the capsule endoscope 10 is provided at a hollow cylindrical portion 100a having one end opened and the other end closed in a dome shape, and an opened end of the cylindrical portion 100a. And a dome-shaped transparent cap 100b.
  • the inside of the housing 100 is sealed watertight by fitting the transparent cap 100b into the opening of the cylindrical portion 100a.
  • the substrate 103B is disposed on the transparent cap 100b side in the housing 100 with the mounting surface facing the transparent cap 100b side.
  • LEDs 107a to 107d as illumination units 107 that illuminate the inside of the subject 900, and objective lenses 103a and a CCD array 103A included in the imaging unit 103 that images the inside of the subject 900 are provided.
  • the illumination / imaging direction Dr of the imaging unit 103 and the illumination unit 107 faces the outside of the housing 100 through the transparent cap 100b.
  • the capsule endoscope 10 includes a capsule control circuit 101, an imaging unit 103 including a CCD drive circuit 102 and a CCD array 103A, an image signal processing circuit 104, and a housing 100.
  • the wireless transmission / reception circuit 105, the illumination unit 107 including the LED drive circuit 106 and the LEDs 107 a to 107 d, and a battery 108 and a power supply circuit 109 that supply power to each circuit in the capsule endoscope 10 are included.
  • the LED 107a is a cyan (C) light source
  • the LED 107b is a yellow (Y) light source
  • the LED 107c is a near-infrared light source
  • the LED 107d is a near-ultraviolet light source.
  • FIG. 4 shows emission spectra of the LEDs 107a to 107d in the illumination unit 107 of the capsule endoscope 10.
  • the emission spectrum Ec of the LED 107a as the C light source, the emission spectrum Ey of the LED 107b as the Y light source, and the emission spectrum Eni of the LED 107c as the near-infrared light source have substantially the same emission intensity and It has a bandwidth spectral shape.
  • the emission spectra Ec, Ey, and Eni are shifted in wavelength indicating the respective emission intensity peaks (or emission center wavelengths) so that substantially uniform light intensity can be obtained over the entire visible light band.
  • the wavelength (or center wavelength) indicating the intensity peak of the emission spectrum Ec of the LED 107a which is the C light source is located on the most ultraviolet light side of the emission spectra Ec, Ey and Eni of the three light sources (LEDs 107a to 107c).
  • the wavelength (or center wavelength) indicating the intensity peak of the emission spectrum Eni of the LED 107c as the light source is the most infrared light side of the emission spectra Ec, Ey and Eni of the three light sources (LEDs 107a to 107c).
  • the emission spectrum Ey of the LED 107b which is a Y light source, is located approximately in the middle between the wavelength (or center wavelength) showing the intensity peak of the emission spectrum Ec and the wavelength (or center wavelength) showing the intensity peak of the emission spectrum Eni.
  • the illumination part 107 which can obtain substantially uniform light intensity over the whole visible light zone
  • the emission spectra Ec, Ey and Eni are not limited to the spectrum shape as shown in FIG. 4, but can provide a substantially uniform light intensity over the entire visible light band, or color components (R, R, which will be described later). Any combination of emission spectra capable of realizing substantially the same spectral sensitivity characteristics in the CCDs (103r, 103g, 103b) for each of G, B) can be modified in any way. Further, the LED 107c, which is a near infrared light source, can be replaced with a magenta (M) light source.
  • M magenta
  • the bandwidth of the emission spectrum Enu of the LED 107d which is a near ultraviolet (NU) light source is narrower than the bandwidth of the emission spectra Ec, Ey and Eni of the LEDs 107a to 107c.
  • the LED 107d is a light source for acquiring a special light image in the first embodiment. For this reason, by making the bandwidth of the emission spectrum Enu of the LED 107d narrower than the bandwidth of other light sources, it is possible to obtain a clear image for the color components near the target near-ultraviolet light.
  • the present invention is not limited to this, and the bandwidth may be the same as the emission spectrum (Ec, Ey and Eni) of the other light sources (LEDs 107a to 107c).
  • the light intensity distribution in the wavelength band mainly composed of near-ultraviolet light (hereinafter referred to as special light) emitted from the LED 107d, and the LEDs 107a to 107d. It is preferable that there is a decrease in light intensity between the light intensity distribution in the wavelength band mainly composed of the combined light emitted from 107c. This makes it possible to substantially separate the spectrum of near-ultraviolet light (hereinafter referred to as special light) emitted from the LED 107d and the spectrum of the combined light emitted from the LEDs 107a to 107c. As a result, the special light image targeting the special light can be made a clearer image.
  • special light near-ultraviolet light
  • FIG. 5 is a block diagram showing a schematic configuration of another form of illumination unit 107 in the present embodiment.
  • the emission spectrum Eni is obtained by converting the wavelength of a part of cyan light from the LED 107a using a wavelength conversion unit such as a fluorescent material, and obtaining a spectrum of a near infrared light (NI) component. It is also possible to replace it with light.
  • the LEDs 107a to 107d are driven in a period in which they overlap each other in normal light observation. Therefore, in addition to the wavelength shifter 107e that converts part of the near-ultraviolet light from the LED 107d into light having a spectrum equivalent to that of the yellow light from the LED 107b, as shown in FIG. 5, part of the cyan light from the LED 107a is transmitted from the LED 107c.
  • wavelength shifters 107e and 107f for example, one or a plurality of wavelength shifters that convert near-ultraviolet light from the LED 107d into light having the respective spectrum shapes of the emission spectra Ec, Ey, and Eni may be used. good.
  • the image pickup unit 103 includes a CCD array 103 ⁇ / b> A that is an image pickup element in which CCDs that are photoelectric conversion elements are arranged in a two-dimensional matrix, and a CCD drive circuit that drives the CCD array 103 ⁇ / b> A under the control of the capsule control circuit 101. 102.
  • the imaging unit 103 includes the substrate 103B and the objective lens 103a shown in FIG.
  • FIG. 6 shows a schematic configuration example of the CCD array 103A according to the first embodiment.
  • FIG. 7 shows spectra Sr, Sg, and Sb of the spectral sensitivity characteristics of the CCDs 103r, 103g, and 103b.
  • FIG. 8 shows the combined sensitivity characteristics of the CCDs 103r, 103g, and 103b when all the LEDs 107a to 107d emit light. Spectra Cr, Cg, and Cb are shown, and FIG.
  • FIG. 9 shows spectra Cb1 and Cg1 of combined sensitivity characteristics of the CCD 103b for the B pixel and the CCD 103g for the B pixel when the LED 107d that is the NU light source and the LED 107b that is the G light source are driven.
  • FIG. 7 shows emission spectra Ec, Ey and Eni of the LEDs 107a to 107d shown in FIG.
  • the CCD array 103A receives a red (R) component light and accumulates charges corresponding to the light amount, and receives a green (G) component light.
  • a pixel 103e composed of a G pixel CCD 103g that accumulates charges according to the amount of light, a B pixel CCD 103b that receives blue (B) component light and accumulates charges according to the amount of light, and two pixels 103e.
  • a plurality of configurations are arranged in a dimensional matrix.
  • the spectrum Sr of the spectral sensitivity characteristic of the CCD 103r for the R pixel has a peak wavelength (or center wavelength) of the emission spectra Ey and Eni of the Y light source (LED 107b) and the NU light source (LED 107c). It becomes a shape located between the wavelengths (or center wavelengths) showing the peak. That is, the spectral sensitivity characteristic of the CCD 103r for the R pixel has a peak wavelength between the emission peaks Ey and Eni of the yellow (Y) and near infrared light (NI) whose complementary color is red (R). The distribution shape is located. Therefore, as shown in FIG.
  • the sensitivity characteristics of the CCD 103r obtained when all the light sources (LEDs 107a to 107d) emit light that is, the spectrum Sr of the spectral sensitivity characteristics of the CCD 103r and the emission spectra Ec
  • the spectrum Cr of the sensitivity characteristic of the CCD 103r (hereinafter referred to as R pixel synthesis sensitivity characteristic) obtained from the synthesis with Ey, Eni and Enu is substantially flat in the vicinity of the center wavelength (for example, the wavelength corresponding to the peak wavelength of the spectrum Sr).
  • a substantially trapezoidal distribution shape in which attenuation from both shoulders is steeper than the spectrum Sr.
  • the spectrum Sg of the spectral sensitivity characteristic of the CCD 103g for the G pixel has a peak wavelength (or center wavelength) of the emission spectra Ec and Ey of the C light source (LED 107a) and the Y light source (LED 107b). It becomes a shape located between wavelengths (or center wavelengths) showing intensity peaks. That is, the spectral sensitivity characteristic of the CCD 103g for G pixel has a peak wavelength between the emission peaks Ec and Ey of the cyan (C) and yellow (Y) whose complementary colors are green (G). It becomes a distribution shape. Therefore, as shown in FIG.
  • the sensitivity characteristics of the CCD 103g obtained when all the light sources (LEDs 107a to 107d) emit light that is, the spectrum Sg of the spectral sensitivity characteristics of the CCD 103g and the emission spectra Ec of the LEDs 107a to 107d
  • the spectrum Cg of the CCD 103g sensitivity characteristic (hereinafter referred to as G pixel synthesis sensitivity characteristic) obtained by combining Ey, Eni and Enu is substantially flat in the vicinity of the center wavelength (for example, the wavelength corresponding to the peak wavelength of the spectrum Sg).
  • G synthesis sensitivity characteristic the spectrum Cg of the CCD 103g sensitivity characteristic obtained by combining Ey, Eni and Enu is substantially flat in the vicinity of the center wavelength (for example, the wavelength corresponding to the peak wavelength of the spectrum Sg).
  • a substantially trapezoidal distribution shape in which attenuation from both shoulders is steeper than the spectrum Sg.
  • the spectrum Sb of the spectral sensitivity characteristic of the CCD 103b for the B pixel has a wavelength (or center wavelength) at which the peak (or center wavelength) indicates the intensity peak of the emission spectrum Ec of the C light source (LED 107a) (or The shape is shorter than the center wavelength), that is, located on the ultraviolet light side. Therefore, as shown in FIG. 8, the sensitivity characteristic of the CCD 103b obtained when all the light sources (LEDs 107a to 107d) emit light, that is, the spectrum Sb of the spectral sensitivity characteristic of the CCD 103b and the emission spectra Ec and Ey of the LEDs 107a to 107d.
  • the spectrum Cb of the sensitivity characteristic of the CCD 103b (hereinafter referred to as G pixel synthesis sensitivity characteristic) obtained from the combination with the infrared light from a substantially central wavelength (for example, the wavelength corresponding to the peak wavelength of the spectrum Sb).
  • the distribution shape is substantially flat toward the side and the attenuation from the shoulder on the infrared light side is steeper than the spectrum Sb.
  • the combined sensitivity obtained from the emission spectrum Ec (Enu) of the LED 107a (which may include the LED 107d) and the spectral sensitivity characteristic (spectrum Sb) of the CCD 103b.
  • the vicinity of the peak of the synthesized sensitivity characteristic (spectrum Cg (or spectrum Cb)) obtained from the above are broad sensitivity characteristics.
  • the sensitivity characteristic is broad as compared with the spectral shape of the spectral sensitivity characteristic of each CCD or the spectral shape of the emission spectrum of each LED, the wavelength dependence of the characteristic can be ignored or allowed as an error. This means that the spectrum shape is sufficiently flat.
  • the combined sensitivity characteristic of the CCD 103b with respect to cyan (C) light (long wavelength side of the spectrum Cb), cyan (C) light (or yellow (Y) light) and yellow (Y) light (or near infrared light (NU). )
  • the synthesized sensitivity characteristic (spectrum Cb) in the sensitivity characteristic (first superimposed sensitivity characteristic) superimposed with the synthesized sensitivity characteristic (spectrum Cg (or spectrum Cr)) of the CCD 103g (or CCD 103r) with respect to the synthesized light and the synthesized sensitivity characteristic in the sensitivity characteristic (first superimposed sensitivity characteristic) superimposed with the synthesized sensitivity characteristic (spectrum Cg (or spectrum Cr)) of the CCD 103g (or CCD 103r) with respect to the synthesized light.
  • the peak wavelength (or center wavelength) of the spectrum Sb is longer than the wavelength (or center wavelength) indicating the intensity peak of the emission spectrum Enu of the NU light source (LED 107d), and the emission spectrum Enu Wavelength (or center wavelength) that has a wavelength band that is sufficiently narrower than the other emission spectra (Ec, Ey, and Eni) and that shows the peak wavelength (or center wavelength) of the emission spectrum Enu and the light receiving sensitivity characteristic spectrum Sb of the CCD 103b.
  • the wavelength band mainly including the special light from the LED 107d Light intensity distribution and a light intensity distribution in the wavelength band mainly composed of the combined light radiated from the LEDs 107a to 107c.
  • the spectrum is substantially separated from the spectrum of the combined light of the light emitted from the LEDs 107a to 107c.
  • the sensitivity characteristic of the CCD 103b obtained when all the light sources (LEDs 107a to 107d) emit light that is, the spectrum Sb of the spectral sensitivity characteristic of the CCD 103b and the emission spectrum Ec of the LEDs 107a to 107d
  • the emission spectrum Ec of the LED 107a is in the band from the substantially central wavelength (for example, the wavelength corresponding to the peak wavelength of the spectrum Sb) to the ultraviolet light side.
  • a temporary decrease in sensitivity characteristics is formed between the vicinity of the peak wavelength of the LED 107 and the vicinity of the peak wavelength of the emission spectrum Enu of the LED 107d.
  • the special light image targeting the special light can be made a clearer image.
  • the ultraviolet light side in the spectrum Cb of the B pixel composite sensitivity characteristic also has a distribution shape in which attenuation from the shoulder is steeper than that of the spectrum Sb.
  • the sensitivity characteristic of the CCD 103b with respect to near-ultraviolet light (NU) from the LED 107d (hereinafter referred to as the first special light combining sensitivity characteristic) is shown in the spectrum Cb1 of FIG. 9, and the emission spectrum Enu of the LED 107d and the spectrum of the CCD 103b.
  • the distribution shape is obtained by synthesizing the sensitivity characteristic spectrum Sb.
  • the sensitivity characteristic of the CCD 103g with respect to the yellow (Y) light from the LED 107b (hereinafter referred to as the second special light combining sensitivity characteristic) is the emission spectrum Ey of the LED 107b and the spectrum of the CCD 103b as shown by the spectrum Cg1 in FIG.
  • the distribution shape is obtained by synthesizing the sensitivity characteristic spectrum Sb.
  • the LED 107d and the LED 107b that emits light of the emission spectrum Ey that is sufficiently separated from the emission spectrum Enu of the LED 107d are driven, and the CCD 103b for the B pixel and the G pixel in the CCD array 103A are driven.
  • the CCD 103g By driving the CCD 103g, a special light image composed of two types of special light components is acquired.
  • first special light For example, light having a wavelength near 415 nm: hereinafter referred to as first special light
  • green for example, light having a wavelength of around 540 nm: hereinafter referred to as second special light
  • the transmittance of light inside the subject 900 varies depending on the wavelength. In other words, light having a shorter wavelength is reflected at a deeper portion of the inner wall of the subject 900. Further, light having a wavelength near 415 nm and light near 540 nm have a high absorption rate by blood, for example. For this reason, by imaging the inside of the subject 900 using the first special light and the second special light, it is possible to acquire special light images in which shapes of blood vessels having different depths are imaged.
  • the complementary color of cyan (C) and near ultraviolet light (NU) may be light in a wavelength band that can be received by the CCD 103b for the B pixel, that is, blue (B).
  • various image pickup devices such as a CMOS (Complementary Metal Oxide Semiconductor) sensor array can be used instead of the CCD array 103A.
  • various light emitting elements can be used in place of the LEDs 107a to 107d.
  • the capsule control circuit 101 includes a memory that stores programs and parameters for executing various operations, and controls each unit in the capsule endoscope 10 by appropriately reading and executing the programs and parameters from the memory. Perform the action. For example, the capsule control circuit 101 executes the read program based on the read parameters, thereby causing the LED drive circuit 106 of the illumination unit 107 to emit any combination of the LEDs 107a to 107d and causing the imaging unit 103 to periodically The image signal of the normal light image and the image signal of the special light image are generated alternately and alternately. The capsule control circuit 101 causes the image signal processing circuit 104 to process the image signal acquired by the imaging unit 103 and then causes the wireless transmission / reception circuit 105 to wirelessly transmit the processed image signal.
  • the image signal processing circuit 104 executes signal processing such as A / D (Analog to Digital) conversion on the input image signal, for example.
  • the wireless transmission / reception circuit 105 converts the input processed image signal into a signal for wireless transmission, and transmits this as a wireless signal from the transmission antenna 105t.
  • the wireless transmission / reception circuit 105 receives a control signal wirelessly transmitted from the receiving apparatus 20 described later via the reception antenna 105r and inputs the control signal to the capsule control circuit 101, and the capsule control circuit 101 converts the control signal to the input control signal.
  • Various operations may be performed based on the above.
  • the battery 108 and the power supply circuit 109 supply power to each unit in the capsule endoscope 10.
  • a primary battery such as a button battery or a secondary battery can be used.
  • FIG. 10 is a block diagram showing a schematic configuration of receiving apparatus 20 according to the first embodiment.
  • the reception device 20 includes a radio reception circuit 203 to which a reception antenna 21 attached to the body surface of the subject 900 is connected, and reception received via the reception antenna 21 and the radio reception circuit 203.
  • the reception signal processing circuit 204 that performs predetermined processing on the signal and the radio wave intensity of the reception signal detected by the RSSI (Received Signal Strength Indication) circuit in the wireless reception circuit 203 in the subject 900 of the capsule endoscope 10
  • a position detection circuit 205 that detects a position
  • a transmission signal processing circuit 206 that executes predetermined processing on a control signal transmitted to the capsule endoscope 10, and a transmission signal processed by the transmission signal processing circuit 206 are transmitted to the transmission antenna 22.
  • a wireless transmission circuit 207 that wirelessly transmits via the A receiving device control circuit 201 that controls each circuit, and a memory circuit 202 that stores programs and parameters executed by the receiving device control circuit 201 to control each circuit, image data of an image received from the capsule endoscope 10, and the like.
  • An image display circuit 208 that displays an image received from the capsule endoscope 10 and various setting screens for the receiving device 20 to the user, and the user performs various settings and instructions for the receiving device 20 or the capsule endoscope 10.
  • a battery 211 and a power supply circuit 212 for supplying power to each circuit are included.
  • the wireless reception circuit 203 receives an image signal that is periodically transmitted via the reception antenna 21, and inputs the received image signal to the reception signal processing circuit 204.
  • the received signal processing circuit 204 performs predetermined processing on the input image signal to generate image data, and then inputs the generated image data to the memory circuit 202 and the image display circuit 208.
  • the image data input to the memory circuit 202 is held in the temporary memory circuit 202.
  • the image display circuit 208 displays the image sent from the capsule endoscope 10 to the user by reproducing the input image data.
  • the radio reception circuit 203 in the reception device 20 inputs the radio wave intensity of the reception signal at each reception antenna 21 detected in the mounted RSSI circuit to the position detection circuit 205.
  • the position detection circuit 205 is controlled based on the position of each reception antenna 21 on the surface of the subject 900 and the radio wave intensity of the reception signal received by each reception antenna 21 under the control of the reception apparatus control circuit 201, for example, the third order.
  • the position of the capsule endoscope 10 in the subject 900 is detected using original positioning or the like.
  • the position detection circuit 205 inputs the detected position information of the capsule endoscope 10 to the reception signal processing circuit 204 or the memory circuit 202 via the reception device control circuit 201.
  • the received signal processing circuit 204 when position information is input to the received signal processing circuit 204, the received signal processing circuit 204 adds position information to image data corresponding to the received signal used for position detection, and image data to which the position information is added. Is input to the memory circuit 202.
  • the reception signal control circuit 201 controls the memory circuit 202 so that new position information is added to the image data stored in the memory circuit 202 immediately before. To do.
  • the image data to which the position information is added is read from the memory circuit 202 by the receiving device control circuit 201 and input to the portable recording medium 30 via the data output I / F control circuit 210. Thereby, the image data to which the position information is added is stored in the portable recording medium 30.
  • FIG. 11 is a block diagram showing a schematic configuration of the display device 40 according to the first embodiment.
  • the display device 40 includes a display device control circuit 401 that controls each circuit in the display device 40, various programs and parameters executed by the display device control circuit 401, and image data input from the receiving device 20.
  • GUIs Graphic User Interfaces
  • An image processing circuit 404 for generating a screen includes a monitor control circuit 405 to display a GUI screen generated by the circuit 404 to the monitor 406, a liquid crystal display or an organic / inorganic EL (Electro-luminescence) monitor 406 constituted by a display or the like, the.
  • a monitor control circuit 405 to display a GUI screen generated by the circuit 404 to the monitor 406, a liquid crystal display or an organic / inorganic EL (Electro-luminescence) monitor 406 constituted by a display or the like, the.
  • the user When the user accumulates the image data from the capsule endoscope 10 in the portable recording medium 30 in the receiving device 20, the user removes the portable recording medium 30 from the receiving device 20 and inserts it into the display device 40. Thereafter, by inputting various instructions to the display device 40 using the input device 411 connected to the display device 40, the GUI screen of the image stored in the portable recording medium 30 is displayed on the monitor 406, and this GUI screen While observing the inside of the subject 900 using, various operation instructions for the display device 40 are input as necessary.
  • FIG. 12 is a flowchart illustrating a schematic operation example of the capsule endoscope 10 according to the first embodiment. Note that FIG. 12 will be described focusing on the operation of the capsule control circuit 101 that controls each circuit in the capsule endoscope 10.
  • the capsule control circuit 101 determines whether or not a first predetermined time has elapsed after activation (step S101). After the first predetermined time has elapsed (Yes in step S101), first, By controlling the LED drive circuit 106, all the LEDs 107a to 107d emit light for a second predetermined time (step S102). Subsequently, the capsule control circuit 101 drives the CCD drive circuit 102 to read out the charges accumulated in all the CCDs 103r, 103g, and 103b of the CCD array 103A (step S103), and the normal light image obtained by this reading The image signal is input to the image signal processing circuit 104, and the image signal processing circuit 104 executes predetermined processing on the image signal (step S104).
  • the processed image signal is input to the wireless transmission / reception circuit 105.
  • the capsule control circuit 101 controls the wireless transmission / reception circuit 105 to wirelessly transmit the image signal of the normal light image as the first image data to the reception device 20 (step S105).
  • the capsule control circuit 101 waits, for example.
  • a time at the time of imaging or signal processing may be added to the first image data wirelessly transmitted to the receiving device 20 as a time stamp.
  • Steps S101 to S105 are the first imaging mode for acquiring a normal light image.
  • the capsule control circuit 101 determines whether or not a third predetermined time has elapsed since step S101 (step S106). After the third predetermined time has elapsed (Yes in step S106), first, the LED drive circuit 106 is determined. Is controlled to cause the LED 107d, which is a near-ultraviolet (NU) light source, and the LED 107b, which is a Y light source, to emit light (step S107). Subsequently, the capsule control circuit 101 drives the CCD drive circuit 102 to read out the electric charges accumulated in the CCDs 103b and 103g in the CCD array 103A (step S108), and the image signal of the special light image obtained by this reading is read out.
  • NU near-ultraviolet
  • the image signal is input to the image signal processing circuit 104, and the image signal processing circuit 104 executes predetermined processing on the image signal (step S109).
  • the processed image signal is input to the wireless transmission / reception circuit 105.
  • the capsule control circuit 101 controls the wireless transmission / reception circuit 105 to wirelessly transmit the image signal of the special light image to the reception device 20 as the second image data (step S110). If the second predetermined time has not elapsed (No in step S106), the capsule control circuit 101 waits, for example. In addition, for example, a time at the time of imaging or signal processing may be added to the second image data wirelessly transmitted to the receiving device 20 as a time stamp. Steps S106 to S110 are the second imaging mode for acquiring a special light image.
  • the first image data of the normal light image and the second image data of the special light image are periodically and alternately transmitted from the capsule endoscope 10 to the receiving device 20.
  • the receiving device 20 adds position information of the capsule endoscope 10 at the time of imaging to the received first and second image data, and executes predetermined processing in the reception signal processing circuit 204, and then The first and second image data are input to the portable recording medium 30 via the data output I / F control circuit 210.
  • the display device 40 to which the first and second image data is input via the portable recording medium 30 generates a GUI screen using the input first and / or second image data, for example, in accordance with an instruction from the user. Then, by displaying this GUI screen on the monitor 406, the observation environment inside the subject 900 is provided to the user.
  • a special light image is also provided.
  • a light source (LED 107d) for acquiring the (second image) is separately mounted, and the normal light image and the special light image are acquired while driving in combination without increasing the burden required for image processing. It is possible to realize the capsule endoscope system 1 and the capsule endoscope 10 that can acquire a normal light image and a special light image.
  • the combination of the light sources (LEDs 107a to 107d) that are automatically driven in the capsule endoscope 10 is switched, and the normal light image and the special light image are periodically acquired.
  • the present invention is not limited to this, and for example, a combination of light sources (LEDs 107a to 107d) to be driven may be selected by operating the capsule endoscope 10 from the receiving device 20.
  • the CCD array 103A in which one pixel 103e is provided with the CCDs 103r, 103g, and 103b of the three primary colors (R pixel, G pixel, and B pixel) is taken as an example. Is not limited to this.
  • another embodiment of the CCD array 103A will be described in detail as modification 1-1 of the first embodiment with reference to the drawings.
  • FIG. 13 is a diagram showing a schematic configuration example of the CCD array 103A-1 according to the modification 1-1.
  • FIG. 14 is a diagram showing spectra Sr, Sg, Sb, and Snu of the spectral sensitivity characteristics of the CCDs 103r, 103g, 103b, and 103nu.
  • FIG. 14 shows emission spectra Ec, Ey and Eni of the LEDs 107a to 107d shown in FIG.
  • the first special light having a wavelength of about 415 nm and the second special light having a wavelength of about 540 nm are exemplified as the special light when acquiring the special light image, and these color components
  • the obtained image was acquired as a special light image (second image data). Therefore, in the present modified example 1-1, as shown in FIG. 13, in addition to the CCD 103r for the R pixel, the CCD 103g for the G pixel, and the CCD 103b for the B pixel, a pixel including the CCD 103nu for the near ultraviolet (NU) pixel
  • An example is a CCD array 103A-1 in which 103f is arranged in a two-dimensional matrix.
  • the CCD 103 nu has a spectral sensitivity characteristic of a spectrum Snu in which the wavelength (or central wavelength) indicating the sensitivity peak is substantially the same as the emission spectrum Enu of the LED 107 d that is a NU light source.
  • each pixel 103f of the CCD array 103A-1 includes a CCD 103nu that targets near-ultraviolet light (first special light) having a wavelength of about 415 nm from the LED 107d. It makes it possible to acquire optical images. Since other configurations, operations, and effects are the same as those of the first embodiment, detailed description thereof is omitted here.
  • FIG. 15 is a diagram illustrating a schematic configuration example of the CCD array 103A-2 according to the modification 1-2.
  • FIG. 16 is a diagram showing spectra Sr, Sg, Sb, Snu, and Sng of the spectral sensitivity characteristics of the CCDs 103r, 103g, 103b, 103nu, and 103ng.
  • FIG. 16 shows emission spectra Ec, Ey and Eni of the LEDs 107a to 107d shown in FIG.
  • each pixel 103 h further includes a CCD 103 ng targeting light having a wavelength of about 540 nm (second special light).
  • the CCD array 103A-2 according to the modified example 1-2 includes a CCD 103r for the R pixel, a CCD 103g for the G pixel, a CCD 103b for the B pixel, and a CCD 103nu for the NU pixel.
  • a pixel 103h including a CCD 103ng for a pixel (NG pixel) that receives special light is arranged in a two-dimensional matrix.
  • the CCDs 103r, 103g, 103b, and 103nu are the same as in Modification 1-1.
  • the spectrum Sng of the spectral sensitivity characteristic of the CCD 103ng has a distribution shape in which the wavelength (or central wavelength) indicating the sensitivity peak is approximately 540 nm, as shown in FIG.
  • the capsule endoscope 10 sequentially transmits the normal light image (first image data) and the special light image (second image data) to the receiving device 20 after acquisition. It was.
  • the present invention is not limited to this.
  • one or more normal light images (first image data) and one or more special light images (second image data) are transmitted together to the receiving device 20. You may comprise.
  • this case will be described in detail as Modification 1-3 of Embodiment 1 with reference to the drawings.
  • the same reference numerals are given to the same configurations as those in the first embodiment or the modification thereof, and detailed description thereof is omitted.
  • FIG. 17 is a block diagram illustrating a schematic configuration example of the imaging unit 103-1 and its peripheral circuits according to Modification 1-3.
  • the imaging unit 103-1 according to Modification 1-3 includes a CCD array 103A, a CCD drive circuit 102-1, and a buffer 103C.
  • the buffer 103C is a page memory that temporarily stores an image signal generated by the CCD array 103A.
  • the CCD driving circuit 102-1 temporarily stores the image signal of the normal light image generated by the CCD array 103A in the buffer 103C, and subsequently stores the image signal of the special light image in the CCD array.
  • 103A is generated.
  • the image signal processing circuit 104 reads an image signal of a normal light image stored in, for example, the buffer 103C under the control of the capsule control circuit 101, executes predetermined processing on the image signal, and sends it to the wireless transmission / reception circuit 105.
  • the image signal of the special light image is continuously read out from the CCD array 103A, and predetermined processing is executed on this signal and output to the wireless transmission / reception circuit 105.
  • the wireless transmission / reception circuit 105 transmits the input image signal of the normal light image and the image signal of the special light image to the reception device 20 by one transmission process.
  • FIG. 18 is a flowchart showing a schematic operation example of the capsule control circuit 101 according to Modification 1-3.
  • the capsule control circuit 101 causes all the LEDs 107a to 107d to emit light for a second predetermined time by performing the same operation as steps S101 and S102 of FIG. 12 (steps S101 and S102 of FIG. 18). ). Subsequently, the capsule control circuit 101 drives the CCD drive circuit 102-1, thereby storing the charges accumulated in all the CCDs 103r, 103g, and 103b of the CCD array 103A as the first image signal in the buffer 103C (step S203). ).
  • the matrix structure of the CCD array 103A and the matrix structure of the buffer 103C are preferably mirrors. As a result, by moving the charge generated in the CCD array 103A to the buffer 103C as it is, the image signal generated by the CCD array 103A can be easily stored in the buffer 103C.
  • the capsule control circuit 101 performs the same operation as steps S106 and S107 in FIG. 12, thereby causing the LED 107d, which is a near ultraviolet (NU) light source, and the LED 107b, which is a Y light source, to emit light (FIG. 18). Steps S106 and S107). Subsequently, the capsule control circuit 101 reads out the first image signal stored in the buffer 103C (step S202), inputs the first image signal to the image signal processing circuit 104, and the image signal processing circuit 104 performs this operation. A predetermined process is performed on the image signal (step S203). The processed first image signal is input to the wireless transmission / reception circuit 105.
  • the capsule control circuit 101 reads out the first image signal stored in the buffer 103C (step S202), inputs the first image signal to the image signal processing circuit 104, and the image signal processing circuit 104 performs this operation.
  • a predetermined process is performed on the image signal (step S203).
  • the processed first image signal is input to the wireless transmission / reception
  • the capsule control circuit 101 reads out the electric charges accumulated in the CCDs 103b and 103g in the CCD array 103A as the second image signal by performing the same operations as in steps S108 and S109 in FIG. Is executed (steps S108 and S109 in FIG. 18).
  • the processed second image signal is input to the wireless transmission / reception circuit 105.
  • the capsule control circuit 101 controls the wireless transmission / reception circuit 105 to wirelessly transmit the first and second image signals to the reception device 20 by a single transmission process (step S204).
  • the first image signal and the second image signal can be transmitted to the receiving device 20 by a single transmission process, so that it is possible to reduce the processing and time required for the transmission. It becomes. Since other configurations, operations, and effects are the same as those of the first embodiment or the modification thereof, detailed description is omitted here.
  • FIG. 19 is a block diagram showing a schematic configuration of the image processing circuit 404A and its peripheral circuits according to the second embodiment.
  • the image processing circuit 404A for example, a data acquisition unit that acquires one or more image data to be displayed (hereinafter referred to as an image data group im1) from the storage circuit 402 via the display device control circuit 401.
  • a first image processing unit 4042a that executes predetermined processing on the first image data of the image data group im1 acquired by the data acquisition unit 4041, and an image data group im1 acquired by the data acquisition unit 4041.
  • a second image processing unit 4042b that executes predetermined processing on the second image data and an instruction (display image selection information) input from the input device 411 via the user I / F control circuit 407.
  • the image displayed in FIG. 11) is selected and selected from the processed first image data im01 and second image data im02.
  • Image display processing unit 4043 that generates a GUI screen using second image data im01 / im02, and data acquisition unit 4041 based on an instruction (thumbnail registration information) input via user I / F control circuit 407
  • thumbnail generation unit 4044 that generates a thumbnail image from first / second image data that is a thumbnail display target in the acquired image data group im1.
  • GUI screen generated by the image display processing unit 4043 is input to the monitor control circuit 405 and displayed on the monitor 406 under the control of the monitor control circuit 405.
  • the first / second thumbnail images Sm01 / Sm02 generated by the thumbnail generation unit 4044 are input to the monitor control circuit 405.
  • the monitor control circuit 405 appropriately incorporates the input first / second thumbnail images Sm01 / Sm02 into the GUI screen.
  • a GUI screen in which the first / second thumbnail images Sm01 / Sm02 are incorporated is input to the monitor 406.
  • a GUI screen as shown in FIGS. 20 to 25 is displayed on the monitor 406.
  • FIG. 20 shows a GUI screen A1 that displays a first image (an image based on the first image data im01) IM01 that is a normal light image and a second image (an image based on the second image data im02) IM02 that is a special light image. It is a figure which shows an example with GUI screen A2.
  • FIG. 21 is a diagram illustrating an example of a GUI screen A3 that displays the first image IM01 and the second image IM02 in parallel.
  • FIG. 22 shows an example in which the thumbnail image Sm01 generated from the first image data im01 and the thumbnail image Sm02 generated from the second image data im02 are displayed while being linked to the position on the time axis indicated by the time bar A13 on the GUI screen A1.
  • FIG. 23 is a diagram illustrating an example in which the thumbnail image Sm01 and the thumbnail image Sm02 are displayed while being linked to the position on the time axis indicated by the time bar A13 on the GUI screen A2.
  • a GUI screen A1 that displays a first image IM01 that is a normal light image will be described later with a main image display area A11 that displays the first image IM01 and a GUI screen that is displayed on the monitor 406.
  • a switching instruction for switching among the GUI screens A1 to A3, and the first image IM01 (or the second image IM02) being displayed in the main image display area A11 (or main image display area A21 / A31 / A32) )
  • Thumbnail image Sm01 or thumbnail image Sm02 for registering an operation button A12 for inputting an instruction (thumbnail registration instruction) and an imaging period (at least first / second image data im01 / im02) by the capsule endoscope 10
  • the time bar A13 indicating the time axis and the main image display area A11 (or main image) Indication area A21 / A31 / A32) indicates the position on the time axis of the first image IM01 being displayed and an instruction to switch the first image IM01 (or second image IM02) being displayed in the main image display area A11 ( And a slider A14 for inputting a display image selection instruction).
  • the GUI screen A2 that displays the second image IM02 that is a special light image
  • two main image display areas A11 and A21 are incorporated in the GUI screen A1 / A2.
  • a first image IM01 and a second image IM02 captured at substantially the same time are displayed, respectively.
  • the user While observing the first image IM01 / second image IM02 being displayed in the main image display area A11 / A21, the user operates the operation button A12 or the slider A14 using the pointer P1 which is one of the GUI functions from the input device 411.
  • An operation such as registering the thumbnail image Sm01 / Sm02 of the two-image IM02 is input from the input device 411.
  • the first image IM01 / second image IM02 corresponding to the selected thumbnail image Sm01 / Sm02 is displayed in the main image display area A11 / A21.
  • the second embodiment it is possible to provide the user with a GUI screen that can easily register and view thumbnails of the normal light image and the special light image. . Since other configurations, operations, and effects are the same as those of the first embodiment or the modification thereof, detailed description is omitted here.
  • the thumbnail image Sm01 of the first image IM01 being displayed in the main image display area A11 or the thumbnail image Sm02 of the second image IM02 being displayed in the main image display area A21 is stored.
  • Im02 / thumbnail image Sm02 / Sm01 of first image IM01 may be automatically registered by a single thumbnail registration instruction by the user.
  • this case will be described in detail as modification 2-1 of the second embodiment with reference to the drawings.
  • FIG. 24 is a diagram showing an example of the GUI screen A1 / A2 according to the present modification 2-1
  • FIG. 25 is a diagram showing an example of the GUI screen A3 according to the present modification 2-1.
  • the thumbnail image Sm01 of the first image IM01 and the second image IM02 of the point on the time axis indicated by the time bar A13 are displayed. Both the thumbnail image Sm02 are registered.
  • a user can add a comment to the first image IM01 / second image IM02 acquired by the capsule endoscope 10 in the first embodiment, and the first image IM01 with a comment and The second image IM02 can be output to an electronic file or paper in a report format. Therefore, in the present third embodiment, a configuration similar to that of the capsule endoscope system 1 according to the first embodiment can be applied.
  • the display device 40 shown in FIG. 11 is replaced with a display device 40A shown in FIG.
  • FIG. 26 is a block diagram showing a schematic configuration of a display device 40A according to the third embodiment.
  • the display device 40A has a configuration similar to that of the display device 40 shown in FIG. 11, in which the display device control circuit 401 is replaced with the display device control circuit 401A and a printer connected to an external printer 413.
  • a drive circuit 408A is provided.
  • the storage circuit 402 stores an examination folder 4021, a management folder 4022, and an input / output folder 4023.
  • the display device control circuit 401A for example, a display control unit 4011 that executes control such as switching a GUI screen displayed on the monitor 406, and the first received from the capsule endoscope 10 based on various instructions input from the input device 411.
  • An image processing unit 4012 that executes processing such as structure enhancement processing and narrowband component extraction processing on one image data im01 / second image data im02, and first image data im01 / second processed by the image processing unit 4012
  • An image file generation unit 4013 that generates an image file of the two image data im02, and a report (text) input from the input device 411 to the image file generated by the image file generation unit 4013 is created.
  • a report creation unit 4014 that performs the PDF (Portab) e Document Format)
  • An output processing unit 4015 that exports an electronic file such as a file or paper
  • an input processing unit 4016 that imports a report output as an electronic file from, for example, the storage circuit 402 or an external storage device .
  • the examination folder 4021 stores the image data group im1 of the first image data im01 and the second image data im02 received from the capsule endoscope 10 by one examination as one examination file.
  • the management folder 4021 for example, a file that stores various information such as information on the subject 900 and examination execution date is stored as a management file.
  • the input / output folder 4023 stores electronic files of reports created and exported by the user. Each management file and the inspection file may be associated with each other.
  • FIG. 27 is a diagram showing a GUI screen B1 for the user to confirm and select an examination file to be a report creation target according to the third embodiment.
  • FIG. 28 is a diagram showing a GUI screen B2 for inputting a comment or the like to the first image IM01 / second image IM02 included in the examination file selected by the GUI screen B1 shown in FIG.
  • FIG. 29 is a diagram for explaining work when the user instructs image processing such as structure enhancement processing and narrowband component extraction processing using the GUI screen B2 shown in FIG.
  • FIG. 30 is a diagram illustrating a display example of thumbnail images for the first image IM01 / second image IM02 in which there are images that have been subjected to processing such as structure enhancement processing or narrowband component extraction processing.
  • the GUI screen B1 includes a target examination file list display field B11 for displaying a list of examination files F1 to F4 that can be selected as a report creation target, and a first image included in the examination file being selected.
  • a target examination file list display field B11 for displaying a list of examination files F1 to F4 that can be selected as a report creation target, and a first image included in the examination file being selected.
  • an instruction display image selection instruction for switching between the first image IM01 and the second image IM02 being displayed in the main display area B12 is input.
  • the user selects any one of the inspection files F1 to F4 to be a report creation target from the input device 411 using the pointer P1 on the GUI screen B1 displayed on the monitor 406.
  • the images in the examination file are confirmed by referring to the first image IM01 / second image IM02 displayed in the main display area B12 and the thumbnail images Sm11 to SM15,... Displayed in the sub display area B16. Can do.
  • the monitor 406 displays a GUI screen B2 shown in FIG.
  • the GUI screen B2 is used as a comment input target among the first image IM01 / second image IM02 included in the test file (here, the test file F1) that is the report creation target.
  • a target image display area B21 for displaying an image
  • a comment input field B23 for inputting a comment to be added to the first image IM01 / second image IM02 being displayed in the target image display area B21
  • a comment input field B23 An edit button B21a for adding the comment to the target first image IM01 / second image IM02 or deleting the comment added to the target first image IM01 / second image IM02
  • a target image display area A dictionary field B24 for displaying general information related to the first image IM01 / second image IM02 being displayed in B21, and a dictionary field A dictionary registration field B25 for inputting general information to be recorded
  • a thumbnail list display area B22 for displaying a list of thumbnail images Sm11 to SM15,...
  • a report generation button B26 for printing or exporting a report for the first image IM01 / second image IM02 to which a comment or the like is added.
  • time information Tm3 indicating the imaging time of the first image data im01 / second image data im02 corresponding thereto may be displayed in close proximity.
  • the user selects one of the thumbnail images Sm3 displayed in the thumbnail list display area B22 from the input device 411 using the pointer P1 with respect to the GUI screen B2 displayed on the monitor 406.
  • the first image IM01 / second image IM02 corresponding to the selected thumbnail image Sm3 is displayed in the target image display area B21.
  • the user inputs a comment in the comment input field B23 using, for example, the keyboard of the input device 411 and clicks the registration button in the edit button B21a, whereby the first image IM01 / second image IM02 being selected is selected.
  • the comment entered in is added.
  • the report generation button B26 using the pointer P1 from the input device 411, a report R1 or R2 as shown in FIG. 31A or 31B described later is generated.
  • a processing menu as shown in FIG. 29 is displayed on the GUI screen B2.
  • a column B27 is popped up. The user selects one of the processing options displayed in the processing menu column B27 using the pointer P1 from the input device 411, thereby processing the target first image data im01 / second image data im02. Processing is executed.
  • thumbnail images of the processed image data are superimposed and displayed. Accordingly, the user can easily specify which first image IM01 / second image IM02 the processed image data exists.
  • thumbnail images of the first image data im01 and the second image data im02 acquired at the same time may be displayed in a superimposed manner. Thereby, the user can easily specify an image in which both the normal light image and the special light image exist.
  • FIGS. 31A and 31B are diagrams showing examples of reports created and exported using the GUI screens B1 and B2 shown in FIGS. 27 to 30, respectively.
  • the report R1 includes a header for displaying various information such as information on the subject 900 (patient information R41a), examination information R41b, information on diagnosis results and treatment details (diagnosis information R41c), and the like.
  • body regions R42A / R42B for displaying comments Cm41 / Cm42 added to the images IM41 / IM42.
  • the number of body regions is not limited to two, and may be one or more than two.
  • a comment is displayed for the processed image IM51 (see the body region R52A), or one comment is displayed for the plurality of images IM42 and IM52 (the body region). (See R52B).
  • the first image data im01 / second image data im02 include a plurality of images such as still images (still image files PF1, PF2,...) And moving images (moving image files MF1, MF2,. If a file exists, any one or more files may be output as a single file.
  • 32 is a diagram showing an example of a GUI screen B3 for outputting any one or more image files as a single file when the inspection files F1 to F4,... Are composed of a plurality of image files.
  • the user uses the input device 411.
  • the target file (moving image file MF2 in the example of FIG. 32) is selected from the still image list B31 or the moving image list B32 using the pointer P1, and the registration button B34 is clicked.
  • the selected file (moving image file MF2) is registered in the file list B35 to be output as a single file.
  • the currently selected file is reproduced in the reproduction column B33, for example. Further, the reproduction in the reproduction column B33 can be stopped, forward reproduction, reverse reproduction, etc.
  • the operation button B33a by operating the operation button B33a.
  • the exclude button B36 is clicked in a state where any one of the files listed in the list B35 is selected on the GUI screen B3, the currently selected file is excluded from the output target files.
  • the OK button B38 is clicked, one or more files registered in the list B35 are output as a single file.
  • the name of the output file can be, for example, the name input by the user in the name input field B37 using the input device 411.
  • FIG. 33 shows a work when the user instructs a processing process such as a structure enhancement process or a narrowband component extraction process on the image data of the image being displayed in the reproduction field B33 of the GUI screen B3 shown in FIG. It is a figure for demonstrating.
  • a processing process such as a structure enhancement process or a narrowband component extraction process
  • a processing menu field B39 as shown in FIG. 33 pops up on the GUI screen B3.
  • the user selects one of the processing options displayed in the processing menu field B39 using the pointer P1 from the input device 411, thereby executing the processing on the image data of the displayed image.
  • the processed image data obtained by the above is newly registered in the still image list B31 or the moving image list B32 as a still image file or a moving image file.
  • the third embodiment it is possible to easily and clearly add a comment to the target image or image group (inspection file) and output this as a report. . Since other configurations, operations, and effects are the same as those of the first embodiment or the modification thereof, detailed description is omitted here.
  • Capsule endoscope system 10
  • Capsule endoscope 20 Reception apparatus 21a-21h Reception antenna 22
  • Transmission antenna 30 Portable recording medium 40
  • Display apparatus 100 Case 100a Cylindrical part 100b Transparent cap 101
  • Image signal processing circuit 105
  • Wireless transmission / reception circuit 105r Reception antenna 105t Transmission antenna
  • LED drive circuit 107 Illumination unit 107a, 107b, 107c, 107d LED 107e, 107f Wavelength shifter 108
  • Receiver control circuit 202
  • Memory circuit 203
  • Radio reception circuit 204 Reception signal processing circuit

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Endoscopes (AREA)

Abstract

 カプセル内視鏡10は、強度ピークが第1波長の第1光を放射する第1光源と、強度ピークが前記可視光帯域内であって前記第1波長よりも長い第2波長の第2光を放射する第2光源と、波長ピークが前記可視光体域内であって前記第2波長よりも長い第3波長の第3光を放射する第3光源と、を含む照明部と、前記第1光と前記第2光との少なくとも一方を受光して電荷を蓄積する第1受光素子と、前記第2光と前記第3光との少なくとも一方を受光して電荷を蓄積する第2受光素子と、前記第1受光素子と前記第2受光素子とのうち少なくとも一方に蓄積された電荷より画像信号を生成する画像信号生成部と、を含む撮像部と、を備えた。

Description

被検体内撮像システムおよび被検体内導入装置
 本発明は、被検体内撮像システムおよび被検体内導入装置に関し、特に人や動物などの被検体の内部を観察するための被検体内撮像システムおよびその被検体内導入装置に関する。
 従来、人や動物などの被検体の内部を観察する装置には、2つの端部を有し、一方の端部を被検体の内部へ挿入して被検体の内部を観察する内視鏡(以下、単に内視鏡という)やカプセル型の内視鏡(以下、単にカプセル内視鏡という)などが存在する。内視鏡には、先端部にCCD(Charge Coupled Device)センサやCMOS(Complementary Metal Oxide Semiconductor)センサなどが設けられた電子内視鏡やチューブ状のプローブ内に光ファイバの束が通されたファイバスコープなどが存在する。このような内視鏡は、プローブが被検体の口や肛門等から挿入されて被検体内部の画像を取得する(例えば以下に示す特許文献1参照)。
 一方、カプセル内視鏡は、被検体内に導入されるカプセル型の被検体内導入装置であり、人や動物などが飲み込める程度の大きさを備える。このカプセル内視鏡は、例えば経口で被検体内に導入される。被検体内部に導入されたカプセル内視鏡は、例えば定期的に被検体内部を撮像し、撮像して得られた被検体内部の画像を無線信号として外部の受信装置へ送信する(例えば以下に示す特許文献2参照)。観察者は、内視鏡やカプセル内視鏡で得られた複数の画像を個別または連続して再生し、これを観察することで被検体の内部を観察する。
 ここで、例えば内視鏡では、被検体内を照明する光源にハロゲンランプなどの白色光源が採用され、撮像機構にモノクロのCCDと回転するカラーフィルタとを用いたいわゆる面順次カラーフィルタ方式の撮像機構が採用される。ハロゲンランプなどの白色光源は、一般的に、可視光帯域において略均一な強度の光を放射することができる。また、面順次カラーフィルタ方式の撮像機構は、三原色(R,G,B)それぞれのフィルタの光透過率を合わせることで、容易に各色成分で均一な受光感度を得ることができる。このため、白色光源と面順次カラーフィルタ方式の撮像機構とを用いることで、各色成分のバランスが取れたきれいな画像を得ることができる。
 ただし、ハロゲンランプ等の白色光源や面順次カラーフィルタ方式の撮像機構は、その構成が比較的大きくまた駆動に比較的大きな電力を要する。このため、大きさに制限のあるカプセル内視鏡に上記白色光源や撮像機構を搭載することは困難である。そこで従来のカプセル内視鏡では、比較的小型で消費電力の小さいLED(Light Emitting Diode)を光源として用いると共に、また、色の三原色ごとの受光素子を備えたCCDアレイを撮像部として用いていた。
 また、例えば以下に示す特許文献1には、LEDとCCDアレイとを用いた場合に、LEDの発光スペクトルにおける中心波長を各CCDの主要スペクトル感度の間に位置させることで、撮像画像の色や輝度を実際のものに近づける技術が開示されている。
特許第3898781号公報 特開2003-70728号公報 特開2002-369217号公報 特開2005-74034号公報
 ところで近年では、観察内容の多様化のため、白色光を用いて照明した際の撮像により得られる画像(以下、通常光画像または白色光画像という)の他に、ある特定波長の光(以下、特殊光という)を照射した際の撮像により得られる画像(以下、特殊光画像という)を取得できるカプセル内視鏡が求められている。
 そこで近年では、CCDなどの受光部にカラーフィルタが設けられたカプセル内視鏡が存在する。ただし、このカプセル内視鏡では、RGBの色成分それぞれの受光部が山なり受光波長スペクトルを持つ。そのため、このように色成分ごとに山なりの受光波長スペクトルを持つ受光部に対してフラットな発光波長スペクトルの光が入射した場合、合成される受光波長スペクトル(合成受光波長スペクトル)はフラットなスペクトルとならない場合がある。その結果、カプセル内視鏡で得られる通常光画像が正確に被写体を撮像した画像とはならない場合がある。
 また、たとえば上記した特許文献3が開示するところの技術を用いた場合、通常光画像は取得できるものの、特殊光画像を取得するためには、通常光画像から特定波長成分を抽出するなど処理が必要となるため、画像処理に要する負担が増大してしまう。また、上記特許文献3は、そもそも特殊光画像については考慮されていないため、通常光画像の他に特殊光画像を取得することができない。
 そこで本発明は、上記の問題に鑑みてなされたものであり、通常光画像と特殊光画像とを鮮明な画像で取得することが可能な被検体内撮像システムおよび被検体内導入装置を提供することを目的とする。また、本発明は、画像処理に要する負担を増大させることなく、通常光画像と特殊光画像とを取得することが可能な被検体内撮像システムおよび被検体内導入装置を提供することを目的とする。
 かかる目的を達成するために、本発明の一態様による被検体内撮像システムは、被検体内に導入される被検体内導入装置と、該被検体内導入装置から送信された無線信号を受信する受信装置と、を含む被検体内撮像システムであって、前記被検体内導入装置が、受光波長スペクトルを備えた受光素子を複数備えた受光部と、前記受光波長スペクトルに対応する発光波長スペクトルから所定波長だけ乖離する発光波長スペクトルを複数備えた発光部と、前記複数の発光素子のなかから所定の発光素子を選択する選択部と、前記受光部で合成されたフラットな合成波長スペクトルを基に通常光画像を生成する、もしくは、前記受光部で合成された鋭利な合成波長スペクトルを基に特殊光画像を生成する画像生成部と、前記画像生成部で生成された通常光画像もしくは特殊光画像を送信する送信部と、前記選択部の選択に基づいて前記受光素子の駆動を制御する制御部と、を備えることを特徴とする。
 また、本発明の他の態様による被検体内導入装置は、受光波長スペクトルを備えた受光素子を複数備えた受光部と、前記受光波長スペクトルに対応する受光波長スペクトルから所定波長だけ乖離する発光波長スペクトルを複数備えた発光部と、前記複数の発光素子のなかから所定の発光素子を選択する選択部と、前記受光部で合成されたフラットな合成波長スペクトルを基に通常光画像を生成する、もしくは、前記受光部で合成された鋭利な合成波長スペクトルを基に特殊光画像を生成する画像生成部と、前記画像生成部で生成された通常光画像もしくは特殊光画像を送信する送信部と、前記選択部の選択に基づいて前記受光素子の駆動を制御する制御部と、を備えたことを特徴とする。
 本発明の前記態様によれば、通常光画像を取得するための光源の他に、特殊光画像を取得するための光源を別途搭載し、これらを組合せて駆動しつつ通常光画像と特殊光画像とを取得するため、画像処理に要する負担を増大させることなく、通常光画像と特殊光画像とを取得することが可能な被検体内撮像システムおよび被検体内導入装置を実現することが可能となる。
図1は、本発明の実施の形態1によるカプセル内視鏡システムの概略構成を示す模式図である。 図2は、本発明の実施の形態1によるカプセル内視鏡の概略構成を示す斜視図である。 図3は、本発明の実施の形態1によるカプセル内視鏡の概略構成を示すブロック図である。 図4は、本発明の実施の形態1によるカプセル内視鏡の照明部における各LEDの発光スペクトルを示す図である。 図5は、本発明の実施の形態1における照明部の他の形態の概略構成を示すブロック図である。 図6は、本発明の実施の形態1によるCCDアレイの概略構成例を示す図である。 図7は、本発明の実施の形態1による各CCDの分光感度特性のスペクトルを示す図である。 図8は、本発明の実施の形態1による全てのLEDを発光させた際の各CCDの合成感度特性のスペクトルを示す図である。 図9は、本発明の実施の形態1においてNU光源であるLEDとG光源であるLEDとを駆動した際のB画素用のCCDとB画素用のCCDとの合成感度特性のスペクトルを示す図である。 図10は、本発明の実施の形態1による受信装置の概略構成を示すブロック図である。 図11は、本発明の実施の形態1による表示装置の概略構成を示すブロック図である。 図12は、本発明の実施の形態1によるカプセル内視鏡の概略動作例を示すフローチャートである。 図13は、本発明の実施の形態1の変形例1-1によるCCDアレイの概略構成例を示す図である。 図14は、本発明の実施の形態1による各CCDの分光感度特性のスペクトルを示す図である。 図15は、本発明の実施の形態1の変形例1-2によるCCDアレイの概略構成例を示す図である。 図16は、本発明の実施の形態1の変形例1-2による各CCDの分光感度特性のスペクトルを示す図である。 図17は、本発明の実施の形態1の変形例1-3による撮像部およびその周辺回路の概略構成例を示すブロック図である。 図18は、本発明の実施の形態1の変形例1-3によるカプセル制御回路の概略動作例を示すフローチャートである。 図19は、本発明の実施の形態2による画像処理回路およびその周辺回路の概略構成を示すブロック図である。 図20は、本発明の実施の形態2による通常光画像である第1画像を表示するGUI画面と特殊光画像である第2画像を表示するGUI画面との一例を示す図である。 図21は、本発明の実施の形態2による第1画像と第2画像とを並列に表示するGUI画面の一例を示す図である。 図22は、本発明の実施の形態2において第1画像データから生成したサムネイル画像および第2画像データから生成したサムネイル画像をGUI画面におけるタイムバーが示す時間軸上の位置にリンクさせつつ表示した一例を示す図である。 図23は、本発明の実施の形態2においてサムネイル画像をGUI画面におけるタイムバーが示す時間軸上の位置にリンクさせつつ表示した一例を示す図である。 図24は、本発明の実施の形態2の変形例2-1によるGUI画面の一例を示す図である。 図25は、本発明の実施の形態2の変形例2-1によるGUI画面の一例を示す図である。 図26は、本発明の実施の形態3による表示装置の概略構成を示すブロック図である。 図27は、本発明の実施の形態3によるレポートの作成対象とする検査ファイルをユーザが確認および選択するためのGUI画面を示す図である。 図28は、図27に示すGUI画面によって選択した検査ファイルに含まれる第1画像/第2画像に対してコメント等を入力するためのGUI画面を示す図である。 図29は、図28に示すGUI画面を用いて構造強調処理や狭帯域成分の抽出処理等の画像の加工処理をユーザが指示する際の作業を説明するための図である。 図30は、本発明の実施の形態3による構造強調処理や狭帯域成分の抽出処理等の加工処理がなされた画像が存在する第1画像/第2画像についてのサムネイル画像の表示例を示す図である。 図31Aは、本発明の実施の形態3によるGUI画面を用いて作成およびエクスポートされたレポートの一例を示す図である(その1)。 図31Bは、本発明の実施の形態3によるGUI画面を用いて作成およびエクスポートされたレポートの一例を示す図である(その2)。 図32は、本発明の実施の形態3による検査ファイルが複数の画像ファイルよりなる場合に何れか1つ以上の画像ファイルを単一ファイルとして出力するためのGUI画面の一例を示す図である。 図33は、図32に示すGUI画面の再生欄に表示中の画像の画像データに対して構造強調処理や狭帯域成分の抽出処理等の加工処理をユーザが指示する際の作業を説明するための図である。
 以下、本発明を実施するための最良の形態を図面と共に詳細に説明する。なお、以下の説明において、各図は本発明の内容を理解でき得る程度に形状、大きさ、および位置関係を概略的に示してあるに過ぎず、従って、本発明は各図で例示された形状、大きさ、および位置関係のみに限定されるものではない。また、各図では、構成の明瞭化のため、断面におけるハッチングの一部が省略されている。さらに、後述において例示する数値は、本発明の好適な例に過ぎず、従って、本発明は例示された数値に限定されるものではない。
 <実施の形態1>
 以下、本発明の実施の形態1による被検体内観察システムおよび被検体内導入装置を、図面を用いて詳細に説明する。なお、以下の説明では、被検体内観察システムとして、図1に示すような、被検体内に経口にて導入され、被検体の食道から肛門にかけて管腔内を移動する途中で撮像動作を実行することで被検体内部の画像を取得するカプセル内視鏡10を被検体内導入装置として用いるカプセル内視鏡システム1を例に挙げる。また、カプセル内視鏡10としては、1つの撮像部を備えた、いわゆる単眼のカプセル内視鏡を例に挙げる。ただし、これに限定されず、例えば複眼のカプセル内視鏡としてもよい。また、例えば被検体内に経口にて導入され、被検体の胃や小腸や大腸などに蓄えた液体に浮かぶ単眼または複眼のカプセル内視鏡を被検体内導入装置に適用するなど、種々変形可能である。
 (構成)
 図1は、本実施の形態1によるカプセル内視鏡システム1の概略構成を示す模式図である。図1に示すように、カプセル内視鏡システム1は、経口にて被検体900内に導入されるカプセル内視鏡10と、カプセル内視鏡10より無線送信された画像信号を受信する受信装置20と、受信装置20が受信した画像信号を例えば携帯型記録媒体30を介して入力して表示する表示装置40と、を含む。また、被検体900の体表には、カプセル内視鏡10から無線送信されたと信号を受信するための1つ以上の受信アンテナ21a~21h(以下、受信アンテナ21a~21hのうち任意のアンテナを指す場合の符号を21とする)が取り付けられる。受信アンテナ21は、信号ケーブルおよび不図示のバラン等を介して受信装置20に接続される。なお、カプセル内視鏡10へ制御信号等を無線にて入力可能とする場合、被検体900の体表に、例えばバラン等を介して受信装置20に接続された無線送信用の送信アンテナ22を取り付けてもよい。
 ・カプセル内視鏡
 ここで、本実施の形態1によるカプセル内視鏡10の概略構成を、図面を用いて詳細に説明する。図2は、本実施の形態1によるカプセル内視鏡10の概略構成を示す斜視図である。図3は、本実施の形態1によるカプセル内視鏡10の概略構成を示すブロック図である。
 図2に示すように、カプセル内視鏡10は、一方の端が開口され、他方の端がドーム状に閉口された中空の円筒部100aと、円筒部100aの開口された端に設けられたドーム型の透明キャップ100bと、から構成される筐体100を備える。筐体100内部は、円筒部100aの開口に透明キャップ100bがはめ込まれることで、水密に封止される。また、筐体100内の透明キャップ100b側には、実装面が透明キャップ100b側へ向いた状態で基板103Bが配置される。基板103Bの実装面には、例えば、被検体900内部を照明する照明部107としてのLED107a~107dおよび被検体900内部を撮像する撮像部103に含まれる対物レンズ103aおよびCCDアレイ103Aが設けられる。このような配置により、撮像部103および照明部107の照明/撮像方向Drが透明キャップ100bを介して筐体100の外側を向く。
 また、図3に示すように、カプセル内視鏡10は、筐体100内部に、カプセル制御回路101と、CCD駆動回路102およびCCDアレイ103Aを含む撮像部103と、画像信号処理回路104と、無線送受信回路105と、LED駆動回路106およびLED107a~107dを含む照明部107と、カプセル内視鏡10内の各回路へ電力を供給するバッテリ108および電源回路109と、を含む。
 本実施の形態1による照明部107において、LED107aはシアン(C)光源であり、LED107bはイエロー(Y)光源であり、LED107cは近赤外光光源であり、LED107dは近紫外光光源である。ここで図4に、カプセル内視鏡10の照明部107における各LED107a~107dの発光スペクトルを示す。
 図4に示すように、C光源であるLED107aの発光スペクトルEcと、Y光源であるLED107bの発光スペクトルEyと、近赤外光光源であるLED107cの発光スペクトルEniとは、略同様な発光強度および帯域幅のスペクトル形状を有する。また、各発光スペクトルEc,EyおよびEniは、可視光帯域全体に亘って略均一の光強度が得られるように、それぞれの発光強度ピーク(または発光中心波長)を示す波長がずれている。
 例えば、C光源であるLED107aの発光スペクトルEcの強度ピークを示す波長(または中心波長)は3つの光源(LED107a~107c)の発光スペクトルEc,EyおよびEniのうち最も紫外光側に位置し、NI(Near Infrared-ray)光源であるLED107cの発光スペクトルEniの強度ピークを示す波長(または中心波長)は3つの光源(LED107a~107c)の発光スペクトルEc,EyおよびEniのうち最も赤外光側に位置し、Y光源であるLED107bの発光スペクトルEyは発光スペクトルEcの強度ピークを示す波長(または中心波長)と発光スペクトルEniの強度ピークを示す波長(または中心波長)との略中間に位置する。これにより、可視光帯域全体に亘って略均一の光強度が得られる照明部107を実現できる。
 なお、上記発光スペクトルEc,EyおよびEniは、図4に示すようなスペクトル形状に限らず、可視光帯域全体に亘って略均一の光強度が得られるか、もしくは、後述する色成分(R,G,B)ごとのCCD(103r,103g,103b)に相互に略同等の分光感度特性を実現させることでき得る発光スペクトルの組合せであれば、如何様にも変形することができる。また、近赤外光光源であるLED107cはマゼンタ(M)光源に置き換得ることも可能である。
 一方、近紫外光(NU:Near Ultraciolet)光源であるLED107dの発光スペクトルEnuの帯域幅は、LED107a~107cそれぞれの発光スペクトルEc,EyおよびEniの帯域幅と比較して狭い。LED107dは、本実施の形態1において、特殊光画像を取得するための光源である。このため、LED107dの発光スペクトルEnuの帯域幅を他の光源の帯域幅よりも狭くすることで、ターゲットとする近紫外光付近の色成分についてクリアな画像を得ることが可能となる。ただし、これに限定されるものではなく、他の光源(LED107a~107c)の発光スペクトル(Ec,EyおよびEni)と同様の帯域幅であってもよい。
 また、LED107a~107dを同時に発光させた際に得られる合計の光強度分布において、LED107dから放射された近紫外光(以下、特殊光という)を主とする波長帯域の光強度分布と、LED107a~107cから放射された光の合成光を主とする波長帯域の光強度分布との間には、光強度の低下が存在することが好ましい。これにより、LED107dから放射された近紫外光(以下、特殊光という)のスペクトルと、LED107a~107cから放射された光の合成光のスペクトルとを、実質的に分離することが可能となるため、結果、特殊光をターゲットとした特殊光画像をよりクリアな画像とすることができる。
 なお、発光スペクトルEyを、LED107dからの近紫外光の一部を蛍光物質などの波長変換部を用いて波長変換することで得られた黄色(Y)成分のスペクトルの光に置き換えることも可能である。LED107dとLED107bとは、通常光観察および特殊光観察において互いにオーバラップする期間駆動される。したがって、図5に示すように、LED107dからの近紫外光の一部をLED107bからの黄色光と同等のスペクトルの光に変換する波長シフタ107eをLED107dに設けることで、LED107bを省くことが可能となる。この結果、照明部107の構成を簡略化することが可能となる。なお、図5は、本実施の形態における照明部107の他の形態の概略構成を示すブロック図である。
 また、上記と同様に、発光スペクトルEniを、LED107aからのシアン光の一部を蛍光物質などの波長変換部を用いて波長変換することで得られた近赤外光(NI)成分のスペクトルの光に置き換えることも可能である。LED107a~LED107dは、通常光観察において互いにオーバラップする期間駆動される。そこで、LED107dからの近紫外光の一部をLED107bからの黄色光と同等のスペクトルの光に変換する波長シフタ107eに加え、図5に示すように、LED107aからのシアン光の一部をLED107cからの近赤外光と同等のスペクトルの光に変換する波長シフタ107fを設けることで、LED107bとともにLED107cを省くことも可能である。この結果、照明部107の構成をより簡略化することが可能となる。
 この他、上記した波長シフタ107eおよび107fに限らず、例えばLED107dからの近紫外光を、発光スペクトルEc,EyおよびEniそれぞれのスペクトル形状の光に変換する1つまたは複数の波長シフタを用いても良い。
 図3に戻り説明する。図3において、撮像部103は、光電変換素子であるCCDが2次元マトリクス状に配列した撮像素子であるCCDアレイ103Aと、カプセル制御回路101の制御の下でCCDアレイ103Aを駆動するCCD駆動回路102と、を含む。なお、撮像部103には、図2に示す基板103Bや対物レンズ103a等が含まれる。
 ここで、本実施の形態1によるCCDアレイ103Aの概略構成例を図6に示す。また、図7に各CCD103r,103gおよび103bの分光感度特性のスペクトルSr,SgおよびSbを示し、図8に全てのLED107a~107dを発光させた際の各CCD103r、103gおよび103bの合成感度特性のスペクトルCr,CgおよびCbを示し、図9にNU光源であるLED107dとG光源であるLED107bとを駆動した際のB画素用のCCD103bとB画素用のCCD103gとの合成感度特性のスペクトルCb1およびCg1を示す。なお、図7には、参考として、図4に示す各LED107a~107dの発光スペクトルEc,EyおよびEniを記す。
 図6に示すように、CCDアレイ103Aは、赤色(R)成分の光を受光してその光量に応じた電荷を蓄積するR画素用のCCD103rと、緑色(G)成分の光を受光してその光量に応じた電荷を蓄積するG画素用のCCD103gと、青色(B)成分の光を受光してその光量に応じた電荷を蓄積するB画素用のCCD103bと、よりなる画素103eが、2次元マトリクス状に複数配列した構成を備える。
 図7に示すように、R画素用のCCD103rの分光感度特性のスペクトルSrは、ピークを示す波長(または中心波長)がY光源(LED107b)およびNU光源(LED107c)の発光スペクトルEyおよびEniの強度ピークを示す波長(または中心波長)の間に位置する形状となる。すなわち、R画素用のCCD103rの分光感度特性は、その補色が赤色(R)となるイエロー(Y)と近赤外光(NI)との発光スペクトルEyおよびEniそれぞれの強度ピークの間にピーク波長が位置する分布形状となる。このため、図8に示すように、全ての光源(LED107a~107d)を発光させた際に得られるCCD103rの感度特性、すなわち、CCD103rの分光感度特性のスペクトルSrとLED107a~107dの発光スペクトルEc,Ey,EniおよびEnuとの合成から得られるCCD103rの感度特性(以下、これをR画素合成感度特性という)のスペクトルCrは、中心波長(例えばスペクトルSrのピーク波長と対応する波長)近辺が略平坦で且つ両肩からの減衰がスペクトルSrよりも急峻な略台形の分布形状となる。
 同じく図7に示すように、G画素用のCCD103gの分光感度特性のスペクトルSgは、ピークを示す波長(または中心波長)がC光源(LED107a)およびY光源(LED107b)の発光スペクトルEcおよびEyの強度ピークを示す波長(または中心波長)の間に位置する形状となる。すなわち、G画素用のCCD103gの分光感度特性は、その補色が緑色(G)となるシアン(C)とイエロー(Y)との発光スペクトルEcおよびEyそれぞれの強度ピークの間にピーク波長が位置する分布形状となる。このため、図8に示すように、全ての光源(LED107a~107d)を発光させた際に得られるCCD103gの感度特性、すなわち、CCD103gの分光感度特性のスペクトルSgとLED107a~107dの発光スペクトルEc,Ey,EniおよびEnuとの合成から得られるCCD103gの感度特性(以下、これをG画素合成感度特性という)のスペクトルCgは、中心波長(例えばスペクトルSgのピーク波長と対応する波長)近辺が略平坦で且つ両肩からの減衰がスペクトルSgよりも急峻な略台形の分布形状となる。
 また、図7に示すように、B画素用のCCD103bの分光感度特性のスペクトルSbは、ピークを示す波長(または中心波長)がC光源(LED107a)の発光スペクトルEcの強度ピークを示す波長(または中心波長)よりも短い、すなわち紫外光側に位置した形状となる。したがって、図8に示すように、全ての光源(LED107a~107d)を発光させた際に得られるCCD103bの感度特性、すなわち、CCD103bの分光感度特性のスペクトルSbとLED107a~107dの発光スペクトルEc,Ey,EniおよびEnuとの合成から得られるCCD103bの感度特性(以下、これをG画素合成感度特性という)のスペクトルCbは、略中心波長(例えばスペクトルSbのピーク波長と対応する波長)から赤外光側にかけて略平坦で且つ赤外光側の肩からの減衰がスペクトルSbよりも急峻な分布形状となる。
 以上のことから、図8に示すように、本実施の形態1では、LED107a(LED107dを含んでもよい)の発光スペクトルEc(Enu)とCCD103bの分光感度特性(スペクトルSb)とから得られる合成感度特性(スペクトルCb)のピーク近傍と、LED107aおよび107b(またはLED107bおよび107c)の発光スペクトルEcおよびEy(または発光スペクトルEyおよびEni)とCCD107g(またはLED107r)の分光感度特性(スペクトルSg(またはスペクトルSr))とから得られる合成感度特性(スペクトルCg(またはスペクトルCb))のピーク近傍と、がブロードな感度特性となっている。なお、感度特性がブロードであるとは、個々のCCDの分光感度特性のスペクトル形状や個々のLEDの発光スペクトルのスペクトル形状と比較して、その特性の波長依存性を無視できる又は誤差として許容できる程度に、十分に平坦なスペクトル形状を備えていることを意味する。
 また、シアン(C)光に対するCCD103bの合成感度特性(スペクトルCbの長波長側)と、シアン(C)光(またはイエロー(Y)光)とイエロー(Y)光(または近赤外光(NU))との合成光に対するCCD103g(またはCCD103r)の合成感度特性(スペクトルCg(またはスペクトルCr))とを重畳した感度特性(第1重畳感度特性)における合成感度特性(スペクトルCb)のピークから合成感度特性(スペクトルCg(またはスペクトルCr))のピークまでの高低差よりも、近紫外光(NU)に対するCCD103dの合成感度特性(スペクトルCbの短波長側)と合成感度特性(スペクトルCbの長波長側)とを重畳した感度特性(第2重畳感度特性)における合成感度特性(スペクトルCbの短波長側)のピークから合成感度特性(スペクトルCbの長波長側)のピークまでの高低差の方が大きい。
 なお、本実施の形態1では、スペクトルSbのピーク波長(または中心波長)がNU光源(LED107d)の発光スペクトルEnuの強度ピークを示す波長(または中心波長)よりも長く、さらに、発光スペクトルEnuの波長帯域が他の発光スペクトル(Ec,EyおよびEni)よりも十分に狭く且つ発光スペクトルEnuのピーク波長(または中心波長)とCCD103bの受光感度特性のスペクトルSbの強度ピークを示す波長(または中心波長)とが十分に離れている場合(例えば、発光スペクトルEcのピーク波長(または中心波長)とCCD103bの受光感度特性のスペクトルSbの強度ピークを示す波長(または中心波長)との波長差よりも、発光スペクトルEnuのピーク波長(または中心波長)とCCD103bの受光感度特性のスペクトルSbの強度ピークを示す波長(または中心波長)との波長差の方が大きい場合)を例に挙げることで、上述したように、LED107dからの特殊光を主とする波長帯域の光強度分布とLED107a~107cから放射された光の合成光を主とする波長帯域の光強度分布との間に光強度の窪み(低下部分)を設け、これにより、LED107dからの特殊光のスペクトルとLED107a~107cから放射された光の合成光のスペクトルとを実質的に分離させている。
 このため、図8に示すように、全ての光源(LED107a~107d)を発光させた際に得られるCCD103bの感度特性、すなわち、CCD103bの分光感度特性のスペクトルSbとLED107a~107dの発光スペクトルEc,Ey,EniおよびEnuとの合成から得られるG画素合成感度特性のスペクトルCbにおいて、略中心波長(例えばスペクトルSbのピーク波長と対応する波長)から紫外光側にかけての帯域では、LED107aの発光スペクトルEcのピーク波長近傍とLED107dの発光スペクトルEnuのピーク波長近傍との間に一時的な感度特性の低下が形成される。これにより、LED107dから放射された特殊光に対する撮像部103の分光感度特性と他の光源(LED107a~107c)から放射された光の合成光に対する撮像部103の分光感度特性とを実質的に分離することが可能となるため、結果、特殊光をターゲットとした特殊光画像をよりクリアな画像とすることができる。なお、B画素合成感度特性のスペクトルCbにおける紫外光側も、肩からの減衰がスペクトルSbよりも急峻な分布形状であることが好ましい。
 また、LED107dからの近紫外光(NU)に対するCCD103bの感度特性(以下、これを第1特殊光合成感度特性という)は、図9のスペクトルCb1に示すように、LED107dの発光スペクトルEnuとCCD103bの分光感度特性のスペクトルSbとを合成して得られる分布形状となる。同様に、LED107bからのイエロー(Y)光に対するCCD103gの感度特性(以下、これを第2特殊光合成感度特性という)は、図9のスペクトルCg1に示すように、LED107bの発光スペクトルEyとCCD103bの分光感度特性のスペクトルSbとを合成して得られる分布形状となる。
 そこで本実施の形態1では、LED107dと、このLED107dの発光スペクトルEnuと十分に分離した発光スペクトルEyの光を放射するLED107bとを駆動した状態でCCDアレイ103AにおけるB画素用のCCD103bとG画素用のCCD103gとを駆動することで、2種類の特殊光成分よりなる特殊光画像を取得する。なお、2種類の特殊光成分のうち、1つは、第1特殊光合成感度特性に従って光電変換される近紫外光(例えば波長が415nm近辺の光:以下、第1特殊光という)であり、他の1つは、第2特殊光合成感度特性に従って光電変換される緑色(例えば波長が540nm近辺の光:以下、第2特殊光という)である。
 ここで、被検体900内部における光の透過率は、波長によって異なる。すなわち、波長の短い光ほど、被検体900内壁における深い部分で反射する。また、波長が415nm付近の光および540nm付近の光は、例えば血液による吸収率が高い。このため、第1特殊光と第2特殊光とを用いて被検体900内部を撮像することで、異なる深さの血管の形状が撮像された特殊光画像を取得することが可能となる。
 なお、シアン(C)と近紫外光(NU)との補色は、B画素用のCCD103bが受光可能な波長帯域の光、すなわち青色(B)であってもよい。また、CCDアレイ103Aに代えて、CMOS(Complementary Metal Oxide Semiconductor)センサアレイなど、種々の撮像素子を用いることができる。さらに、LED107a~107dに代えて種々の発光素子を用いることができる。
 図3に戻り説明する。カプセル制御回路101は、各種動作を実行するためのプログラムおよびパラメータを記憶したメモリを含み、このメモリから適宜プログラムおよびパラメータを読み出して実行することで、カプセル内視鏡10内の各ユニットを制御する動作を実行する。例えばカプセル制御回路101は、読み出したプログラムを同じく読み出したパラメータに基づいて実行することで、照明部107のLED駆動回路106にLED107a~107dにおける何れかの組合せを発光させると共に、撮像部103に定期的且つ交互に通常光画像の画像信号と特殊光画像の画像信号とを生成させる。また、カプセル制御回路101は、撮像部103において取得された画像信号を画像信号処理回路104に処理させた後、処理後の画像信号を無線送受信回路105に無線送信させる。
 なお、画像信号処理回路104は、例えば入力された画像信号に対してA/D(Analog to Digital)変換などの信号処理を実行する。また、無線送受信回路105は、入力された処理後の画像信号を無線送信用の信号に変換し、これを送信アンテナ105tから無線信号として送信する。なお、無線送受信回路105が後述する受信装置20から無線送信された制御信号を受信アンテナ105rを介して受信してこれをカプセル制御回路101に入力し、カプセル制御回路101が入力された制御信号に基づいて各種動作を実行するように構成してもよい。
 また、バッテリ108および電源回路109は、カプセル内視鏡10内の各ユニットに電力を供給する。このバッテリ108には、例えばボタン電池(Button Battery)などの1次電池(Primarybattery)または2次電池(Secondary Battery)を用いることができる。
 ・受信装置
 次に、本実施の形態1による受信装置20の概略構成を、図面を用いて詳細に説明する。図10は、本実施の形態1による受信装置20の概略構成を示すブロック図である。
 図10に示すように、受信装置20は、被検体900の体表に取り付けられた受信アンテナ21が接続された無線受信回路203と、受信アンテナ21および無線受信回路203を介して受信された受信信号に所定の処理を実行する受信信号処理回路204と、無線受信回路203におけるRSSI(Received Signal Strength Indication)回路において検出された受信信号の電波強度からカプセル内視鏡10の被検体900内部での位置を検出する位置検出回路205と、カプセル内視鏡10へ送信する制御信号等に所定の処理を実行する送信信号処理回路206と、送信信号処理回路206で処理された送信信号を送信アンテナ22を介して無線送信する無線送信回路207と、受信装置20内の各回路を制御する受信装置制御回路201と、受信装置制御回路201が各回路を制御するために実行するプログラムおよびパラメータやカプセル内視鏡10から受信した画像の画像データ等を記憶するメモリ回路202と、カプセル内視鏡10から受信した画像や受信装置20への各種設定画面等をユーザへ表示する画像表示回路208と、ユーザが受信装置20またはカプセル内視鏡10への各種設定および指示を入力するユーザI/F回路209と、カプセル内視鏡10から受信した画像の画像データ等を着脱可能な携帯型記録媒体30へ出力するデータ出力I/F制御回路210と、受信装置20内の各回路へ電力を供給するバッテリ211および電源回路212と、を含む。
 受信装置20において、無線受信回路203は、定期的に送信される画像信号を受信アンテナ21を介して受信し、この受信した画像信号を受信信号処理回路204に入力する。受信信号処理回路204は、入力された画像信号に対して所定の処理を実行して画像データを生成した後、生成された画像データをメモリ回路202および画像表示回路208に入力する。メモリ回路202に入力された画像データは、一時メモリ回路202において保持される。また、画像表示回路208は、入力された画像データを再生することで、カプセル内視鏡10から送られた画像をユーザへ表示する。
 また、受信装置20における無線受信回路203は、実装するRSSI回路において検出された各受信アンテナ21での受信信号の電波強度を位置検出回路205へ入力する。位置検出回路205は、受信装置制御回路201の制御の下、各受信アンテナ21の被検体900体表上での位置と各受信アンテナ21で受信された受信信号の電波強度とに基づき、例えば三次元測位等を用いて、被検体900内におけるカプセル内視鏡10の位置を検出する。また、位置検出回路205は、検出したカプセル内視鏡10の位置情報を受信装置制御回路201を介して受信信号処理回路204またはメモリ回路202に入力する。例えば受信信号処理回路204に位置情報が入力される場合、受信信号処理回路204は、位置検出に用いた受信信号に相当する画像データに位置情報を付加し、この位置情報が付加された画像データをメモリ回路202に入力する。一方、メモリ回路202に位置情報が入力される場合、受信信号制御回路201は、直前にメモリ回路202に保存された画像データに対して新たな位置情報が付加されるようにメモリ回路202を制御する。
 位置情報が付加された画像データは、受信装置制御回路201によってメモリ回路202から読み出され、データ出力I/F制御回路210を介して携帯型記録媒体30に入力する。これにより、位置情報が付加された画像データが携帯型記録媒体30に保存される。
 ・表示装置
 次に、本実施の形態1による表示装置40の概略構成を、図面を用いて詳細に説明する。図11は、本実施の形態1による表示装置40の概略構成を示すブロック図である。
 図11に示すように、表示装置40は、表示装置40内の各回路を制御する表示装置制御回路401と、表示装置制御回路401が実行する各種プログラムおよびパラメータや受信装置20から入力した画像データ等を記憶する記憶回路402と、携帯型記録媒体30からこれに保存された画像データを入力するデータ入力I/F制御回路403と、マウスやキーボードやジョイスティック等のユーザが操作入力に用いる入力装置411に対するインタフェースであるユーザI/F制御回路407と、表示装置制御回路401を介して入力された画像データを用いてユーザにカプセル内視鏡10が取得した画像を観察させる各種GUI(Graphical User Interface)画面を生成する画像処理回路404と、画像処理回路404で生成されたGUI画面をモニタ406に表示させるモニタ制御回路405と、液晶ディスプレイや有機/無機EL(Electro-luminescence)ディスプレイ等で構成されたモニタ406と、を含む。
 ユーザは、受信装置20において携帯型記録媒体30にカプセル内視鏡10からの画像データを蓄積すると、この携帯型記録媒体30を受信装置20から取り外し、表示装置40に差し込む。その後、表示装置40に接続された入力装置411を用いて表示装置40に各種指示を入力することで、携帯型記録媒体30に蓄積された画像のGUI画面をモニタ406に表示し、このGUI画面を用いて被検体900内部を観察しつつ、必要に応じて表示装置40に対する各種操作指示を入力する。
 (動作)
 次に、本実施の形態1によるカプセル内視鏡システム1の動作について詳細に説明する。まず、本実施の形態1によるカプセル内視鏡10の動作について説明する。図12は、本実施の形態1によるカプセル内視鏡10の概略動作例を示すフローチャートである。なお、図12では、カプセル内視鏡10内の各回路を制御するカプセル制御回路101の動作に着目して説明する。
 図12に示すように、カプセル制御回路101は、起動後、第1所定時間が経過したか否かを判定し(ステップS101)、第1所定時間が経過後(ステップS101のYes)、まず、LED駆動回路106を制御することで、全てのLED107a~107dを第2所定時間発光させる(ステップS102)。続いてカプセル制御回路101は、CCD駆動回路102を駆動することで、CCDアレイ103Aの全てのCCD103r、103gおよび103bに蓄積された電荷を読み出し(ステップS103)、この読み出しにより得られた通常光画像の画像信号を画像信号処理回路104に入力し、画像信号処理回路104においてこの画像信号に対する所定の処理を実行する(ステップS104)。なお、処理後の画像信号は、無線送受信回路105に入力される。その後、カプセル制御回路101は、無線送受信回路105を制御することで、通常光画像の画像信号を第1画像データとして受信装置20へ無線送信する(ステップS105)。なお、第1所定時間が経過していない場合(ステップS101のNo)、カプセル制御回路101は、例えば待機する。また、受信装置20へ無線送信される第1画像データには、例えば撮像時もしくは信号処理時の時刻がタイムスタンプとして付加されていてもよい。また、ステップS101~S105までが、通常光画像を取得する第1撮像モードである。
 次に、カプセル制御回路101は、ステップS101から第3所定時間が経過したか否かを判定し(ステップS106)、第3所定時間が経過後(ステップS106のYes)、まず、LED駆動回路106を制御することで、近紫外光(NU)光源であるLED107dとY光源であるLED107bとを発光させる(ステップS107)。続いてカプセル制御回路101は、CCD駆動回路102を駆動することで、CCDアレイ103AにおけるCCD103bおよび103gに蓄積された電荷を読み出し(ステップS108)、この読み出しにより得られた特殊光画像の画像信号を画像信号処理回路104に入力し、画像信号処理回路104においてこの画像信号に対する所定の処理を実行する(ステップS109)。なお、処理後の画像信号は、無線送受信回路105に入力される。その後、カプセル制御回路101は、無線送受信回路105を制御することで、特殊光画像の画像信号を第2画像データとして受信装置20へ無線送信する(ステップS110)。なお、第2所定時間が経過していない場合(ステップS106のNo)、カプセル制御回路101は、例えば待機する。また、受信装置20へ無線送信される第2画像データには、例えば撮像時もしくは信号処理時の時刻がタイムスタンプとして付加されていてもよい。また、ステップS106~S110までが、特殊光画像を取得する第2撮像モードである。
 以上により、カプセル内視鏡10から通常光画像の第1画像データと特殊光画像の第2画像データとが受信装置20へ定期的かつ交互に送信される。これに対し、受信装置20は、受信した第1および第2画像データに対して撮像時のカプセル内視鏡10の位置情報を付加すると共に受信信号処理回路204において所定の処理を実行し、その後、第1および第2画像データをデータ出力I/F制御回路210を介して携帯型記録媒体30に入力する。また、携帯型記録媒体30を介して第1および第2画像データが入力された表示装置40は、例えばユーザによる指示に従い、入力した第1および/または第2画像データを用いてGUI画面を生成し、このGUI画面をモニタ406に表示することで、被検体900内部の観察環境をユーザに提供する。
 以上のように構成および動作することで、本実施の形態1では、通常光画像(第1画像)を取得するための光源(LED107a~107c(LED107dを含んでもよい)の他に、特殊光画像(第2画像)を取得するための光源(LED107d)を別途搭載し、これらを組合せて駆動しつつ通常光画像と特殊光画像とを取得するため、画像処理に要する負担を増大させることなく、通常光画像と特殊光画像とを取得することが可能なカプセル内視鏡システム1およびカプセル内視鏡10を実現することが可能となる。
 なお、本実施の形態1では、カプセル内視鏡10において自動的に駆動する光源(LED107a~107d)の組合せを切り替えて、定期的に通常光画像と特殊光画像とを取得するように構成したが、本発明はこれに限定されず、例えば受信装置20からカプセル内視鏡10を操作することで、駆動する光源(LED107a~107d)の組合せを選択できるように構成してもよい。
 (変形例1-1)
 なお、上記した実施の形態1では、1つの画素103eが色の三原色(R画素,G画素およびB画素)それぞれのCCD103r,103gおよび103bを備えたCCDアレイ103Aを例に挙げたが、本発明はこれに限定されるものではない。以下、CCDアレイ103Aの他の形態を、本実施の形態1の変形例1-1として、図面を用いて詳細に説明する。
 図13は、本変形例1-1によるCCDアレイ103A-1の概略構成例を示す図である。図14は、各CCD103r,103g,103bおよび103nuの分光感度特性のスペクトルSr,Sg,SbおよびSnuを示す図である。なお、図14には、参考として、図4に示す各LED107a~107dの発光スペクトルEc,EyおよびEniを記す。
 上記した実施の形態1では、特殊光画像を取得する際の特殊光として、波長が415nm程度の第1特殊光と、波長が540nm程度の第2特殊光と、を例示し、これらの色成分よりなる画像を特殊光画像(第2画像データ)として取得した。そこで本変形例1-1では、図13に示すように、R画素用のCCD103r,G画素用のCCD103gおよびB画素用のCCD103bの他に、近紫外光(NU)画素用のCCD103nuを含む画素103fが2次元マトリクス状に配列したCCDアレイ103A-1を例に挙げる。
 CCD103r,103gおよび103bは、上記実施の形態1と同様である。一方、CCD103nuは、図14に示すように、その感度ピークを示す波長(または中心波長)がNU光源であるLED107dの発光スペクトルEnuと略同じであるスペクトルSnuの分光感度特性を備える。
 すなわち、本変形例1-1では、CCDアレイ103A-1の各画素103fがLED107dからの波長415nm程度の近紫外光(第1特殊光)をターゲットとしたCCD103nuを含むことで、より鮮明な特殊光画像を取得することを可能にしている。なお、他の構成、動作および効果は、上記実施の形態1と同様であるため、ここでは詳細な説明を省略する。
 (変形例1-2)
 また、上記したCCDアレイ103Aの他の形態を、本発明の実施の形態1の変形例1-2として、図面を用いて詳細に説明する。図15は、本変形例1-2によるCCDアレイ103A-2の概略構成例を示す図である。図16は、各CCD103r,103g,103b,103nuおよび103ngの分光感度特性のスペクトルSr,Sg,Sb,SnuおよびSngを示す図である。なお、図16には、参考として、図4に示す各LED107a~107dの発光スペクトルEc,EyおよびEniを記す。
 上記した変形例1-1では、波長415nm程度の近紫外光(第1特殊光)をターゲットとしたCCD103nuを各画素103fに含めた場合を例に挙げたが、本変形例1-2では、これに加え、波長540nm程度の光(第2特殊光)をターゲットとしたCCD103ngをさらに各画素103hに含める。そこで本変形例1-2によるCCDアレイ103A-2は、図15に示すように、R画素用のCCD103r,G画素用のCCD103g,B画素用のCCD103bおよびNU画素用のCCD103nuの他に、第2特殊光を受光する画素(NG画素)用のCCD103ngを含む画素103hが2次元マトリクス状に配列した構成を備える。CCD103r,103g,103bおよび103nuは、上記変形例1-1と同様である。一方、CCD103ngの分光感度特性のスペクトルSngは、図16に示すように、その感度ピークを示す波長(または中心波長)が略540nmとなる分布形状を備える。
 このように、第1特殊光と第2特殊光とをそれぞれターゲットとしたCCD103nuおよび103ngを1つの画素103hに含めることで、より鮮明な特殊光画像を取得することが可能となる。なお、他の構成、動作および効果は、上記実施の形態1と同様であるため、ここでは詳細な説明を省略する。
 (変形例1-3)
 また、上記した実施の形態1またはその変形例では、カプセル内視鏡10が通常光画像(第1画像データ)および特殊光画像(第2画像データ)を取得後順次、受信装置20へ送信していた。ただし、本発明はこれに限定されず、例えば1つ以上の通常光画像(第1画像データ)と1つ以上の特殊光画像(第2画像データ)とをまとめて受信装置20へ送信するように構成してもよい。以下、この場合を上記実施の形態1の変形例1-3として、図面を用いて詳細に説明する。ただし、以下の説明において、上記実施の形態1またはその変形例と同様の構成については、同一の符号を付し、その詳細な説明を省略する。
 図17は、本変形例1-3による撮像部103-1およびその周辺回路の概略構成例を示すブロック図である。図17に示すように、本変形例1-3による撮像部103-1は、CCDアレイ103AとCCD駆動回路102-1とバッファ103Cとを含む。
 バッファ103Cは、CCDアレイ103Aが生成した画像信号を一時記憶するページメモリである。CCD駆動回路102-1は、カプセル制御回路101からの制御の下、CCDアレイ103Aが生成した通常光画像の画像信号を一時、バッファ103Cに保存し、続けて特殊光画像の画像信号をCCDアレイ103Aに生成させる。また、画像信号処理回路104は、カプセル制御回路101からの制御の下、例えばバッファ103Cに格納されている通常光画像の画像信号を読み出し、これに所定の処理を実行して無線送受信回路105へ出力した後、続けてCCDアレイ103Aから特殊光画像の画像信号を読み出し、これに所定の処理を実行して無線送受信回路105へ出力する。無線送受信回路105は、入力された通常光画像の画像信号と特殊光画像の画像信号とを1度の送信処理により受信装置20へ送信する。
 次に、本変形例1-3によるカプセル制御回路101の動作について、図面を用いて詳細に説明する。図18は、本変形例1-3によるカプセル制御回路101の概略動作例を示すフローチャートである。
 図12に示すように、カプセル制御回路101は、図12のステップS101およびS102と同様の動作を実行することで、全てのLED107a~107dを第2所定時間発光させる(図18のステップS101およびS102)。続いてカプセル制御回路101は、CCD駆動回路102-1を駆動することで、CCDアレイ103Aの全てのCCD103r、103gおよび103bに蓄積された電荷を第1画像信号としてバッファ103Cに保存する(ステップS203)。なお、CCDアレイ103Aのマトリクス構造とバッファ103Cのマトリクス構造とはミラーであることが好ましい。これにより、CCDアレイ103Aに生じた電荷をそのままバッファ103Cに移動することで、CCDアレイ103Aが生成した画像信号を容易にバッファ103Cに保存することが可能となる。
 次に、カプセル制御回路101は、図12のステップS106およびS107と同様の動作を実行することで、近紫外光(NU)光源であるLED107dとY光源であるLED107bとを発光させる(図18のステップS106およびS107)。続いてカプセル制御回路101は、バッファ103Cに保存しておいた第1画像信号を読み出し(ステップS202)、この第1画像信号を画像信号処理回路104に入力して、画像信号処理回路104においてこの画像信号に対する所定の処理を実行する(ステップS203)。なお、処理後の第1画像信号は、無線送受信回路105に入力される。
 次に、カプセル制御回路101は、図12のステップS108およびS109と同様の動作を実行することで、CCDアレイ103AにおけるCCD103bおよび103gに蓄積された電荷を第2画像信号として読み出して、これに所定の処理を実行する(図18のステップS108およびS109)。なお、処理後の第2画像信号は、無線送受信回路105に入力される。その後、カプセル制御回路101は、無線送受信回路105を制御することで、第1および第2画像信号を一度の送信処理により受信装置20へ無線送信する(ステップS204)。
 以上のように動作することで、第1画像信号と第2画像信号とを一度の送信処理で受信装置20へ送信することが可能となるため、送信に要する処理および時間を低減することが可能となる。なお、他の構成、動作および効果は、上記した実施の形態1またはその変形例と同様であるため、ここでは詳細な説明を省略する。
 <実施の形態2>
 次に、本発明の実施の形態2による被検体内観察システムおよび被検体内導入装置を、図面を用いて詳細に説明する。なお、以下の説明において、上記実施の形態1またはその変形例と同様の構成については、同一の符号を付し、その詳細な説明を省略する。
 本実施の形態2では、上記実施の形態1によるカプセル内視鏡システム1と同様の構成の構成を適用することができる。ただし、本実施の形態2では、図11に示す表示装置40における画像処理回路404が、図19に示す画像処理回路404Aに置き換えられる。なお、図19は、本実施の形態2による画像処理回路404Aおよびその周辺回路の概略構成を示すブロック図である。
 図19に示すように、画像処理回路404Aは、例えば記憶回路402から表示装置制御回路401を介して表示対象の1つ以上の画像データ(以下、画像データ群im1という)を取得するデータ取得部4041と、データ取得部4041が取得した画像データ群im1のうちの第1画像データに所定の処理を実行する第1画像処理部4042aと、同じくデータ取得部4041が取得した画像データ群im1のうちの第2画像データに所定の処理を実行する第2画像処理部4042bと、ユーザI/F制御回路407を介して入力装置411から入力された指示(表示画像選択情報)に基づいてモニタ406(図11参照)に表示する画像を処理後の第1画像データim01および第2画像データim02から選択すると共に選択した第1/第2画像データim01/im02を用いてGUI画面を生成する画像表示処理部4043と、ユーザI/F制御回路407を介して入力された指示(サムネイル登録情報)に基づいてデータ取得部4041が取得した画像データ群im1のうちサムネイル表示対象とされた第1/第2画像データからサムネイル画像を生成するサムネイル生成部4044と、を含む。
 なお、画像表示処理部4043で生成されたGUI画面は、モニタ制御回路405に入力され、モニタ制御回路405による制御の下、モニタ406に表示される。また、サムネイル生成部4044で生成された第1/第2サムネイル画像Sm01/Sm02は、モニタ制御回路405に入力される。モニタ制御回路405は、入力された第1/第2サムネイル画像Sm01/Sm02を適宜、GUI画面に組み込む。また、モニタ406へは、第1/第2サムネイル画像Sm01/Sm02が組み込まれたGUI画面が入力される。これにより、モニタ406には、図20~図25に示すようなGUI画面が表示される。
 ここで、本実施の形態2によりモニタ406に表示されるGUI画面の例を、図面を用いて詳細に説明する。図20は、通常光画像である第1画像(第1画像データim01による画像)IM01を表示するGUI画面A1と特殊光画像である第2画像(第2画像データim02による画像)IM02を表示するGUI画面A2との一例を示す図である。図21は、第1画像IM01と第2画像IM02とを並列に表示するGUI画面A3の一例を示す図である。図22は第1画像データim01から生成したサムネイル画像Sm01および第2画像データim02から生成したサムネイル画像Sm02をGUI画面A1におけるタイムバーA13が示す時間軸上の位置にリンクさせつつ表示した一例を示す図であり、図23はサムネイル画像Sm01およびサムネイル画像Sm02をGUI画面A2におけるタイムバーA13が示す時間軸上の位置にリンクさせつつ表示した一例を示す図である。
 まず、図20に示すように、通常光画像である第1画像IM01を表示するGUI画面A1は、第1画像IM01を表示する主画像表示領域A11と、モニタ406に表示するGUI画面を後述するGUI画面A1~A3の中で切り替える切り替え指示(GUI画面切替指示)や、主画像表示領域A11(または主画像表示領域A21/A31/A32)に表示中の第1画像IM01(または第2画像IM02)のサムネイル画像Sm01(またはサムネイル画像Sm02)を登録する指示(サムネイル登録指示)を入力するための操作ボタンA12と、カプセル内視鏡10による撮像期間(少なくとも第1/第2画像データim01/im02が存在する期間)の時間軸を示すタイムバーA13と、主画像表示領域A11(または主画像表示領域A21/A31/A32)に表示中である第1画像IM01の時間軸上の位置を示すと共に主画像表示領域A11に表示中の第1画像IM01(または第2画像IM02)を切り替える指示(表示画像選択指示)を入力するためのスライダA14と、を実装する。また、特殊光画像である第2画像IM02を表示するGUI画面A2は、主画像表示領域A11が、第2画像IM02を表示する主画像表示領域A21に置き換えられた構成である。
 さらに、図21に示すGUI画面A3は、GUI画面A1/A2に2つの主画像表示領域A11およびA21が組み込まれている。この2つの主画像表示領域A11およびA21には、例えば略同じ時刻に撮像された第1画像IM01と第2画像IM02とがそれぞれ表示される。
 ユーザは、主画像表示領域A11/A21に表示中の第1画像IM01/第2画像IM02を観察しつつ、入力装置411からGUI機能の1つであるポインタP1を用いて操作ボタンA12やスライダA14を操作することで、主画像表示領域A11/A21に表示する画像を選択したり、モニタ406に表示するGUI画面を切り替えたり、主画像表示領域A11/A21に表示中の第1画像IM01/第2画像IM02のサムネイル画像Sm01/Sm02を登録したり、などの操作を入力装置411より入力する。また、ユーザによりサムネイル画像Sm01/Sm02が選択されると、主画像表示領域A11/A21には、選択されたサムネイル画像Sm01/Sm02に対応する第1画像IM01/第2画像IM02が表示される。
 以上のような構成とすることで、本実施の形態2では、通常光画像と特殊光画像とのサムネイルを容易に登録および閲覧することが可能なGUI画面をユーザに提供することが可能となる。なお、他の構成、動作および効果は、上記した実施の形態1またはその変形例と同様であるため、ここでは詳細な説明を省略する。
 (変形例2-1)
 また、上記した実施の形態2では、主画像表示領域A11に表示中である第1画像IM01のサムネイル画像Sm01、または、主画像表示領域A21に表示中である第2画像IM02のサムネイル画像Sm02を個別に登録する場合を例に挙げたが、本発明はこれに限定されるものではない。例えば、主画像表示領域A11/A21に表示中である第1画像IM01/第2画像IM02のサムネイル画像Sm01/Sm02と、この第1画像Im01/第2画像IM02と略同時に取得された第2画像Im02/第1画像IM01のサムネイル画像Sm02/Sm01とを、ユーザによる1回のサムネイル登録指示で自動的に登録するように構成してもよい。以下、この場合を本実施の形態2による変形例2-1として、図面を用いて詳細に説明する。
 図24は本変形例2-1によるGUI画面A1/A2の一例を示す図であり、図25は本変形例2-1によるGUI画面A3の一例を示す図である。図24に示すように、本変形例2-1によるGUI画面A1/A2では、タイムバーA13が示す時間軸上の点に対して、第1画像IM01のサムネイル画像Sm01と第2画像IM02のサムネイル画像Sm02とが共に登録されている。同様に、図25に示すように、本変形例2-1によるGUI画面A3では、タイムバーA13が示す時間軸上の点に対して、第1画像IM01のサムネイル画像Sm01と第2画像IM02のサムネイル画像Sm02とが共に登録されている。
 以上のような構成とすることで、本変形例2-1では、通常光画像および特殊光画像のうち何れか一方に対するサムネイル画像の登録指示により、両方の画像に自動的にサムネイル画像を登録し、さらに、これらを並列に表示することが可能となるため、複数の画像に対して容易にサムネイル画像を登録し、さらに、容易に閲覧することが可能なGUI画面をユーザに提供することが可能となる。なお、他の構成、動作および効果は、上記した実施の形態1またはその変形例と同様であるため、ここでは詳細な説明を省略する。
 <実施の形態3>
 次に、本発明の実施の形態3による被検体内観察システムおよび被検体内導入装置を、図面を用いて詳細に説明する。なお、以下の説明において、上記実施の形態1、2またはそれらの変形例と同様の構成については、同一の符号を付し、その詳細な説明を省略する。
 本実施の形態3では、上記実施の形態1におけるカプセル内視鏡10が取得した第1画像IM01/第2画像IM02に対してユーザがコメントを付加でき、さらに、コメント付きの第1画像IM01および/または第2画像IM02をレポート形式で電子ファイルまたは紙に出力できるように構成される。そこで本実施の形態3では、上記実施の形態1によるカプセル内視鏡システム1と同様の構成の構成を適用することができる。ただし、本実施の形態3では、図11に示す表示装置40が、図26に示す表示装置40Aに置き換えられる。なお、図26は、本実施の形態3による表示装置40Aの概略構成を示すブロック図である。
 図26に示すように、表示装置40Aは、図11に示す表示装置40と同様の構成において、表示装置制御回路401が表示装置制御回路401Aに置き換えられると共に、外部のプリンタ413と接続されたプリンタ駆動回路408Aが設けられている。また、記憶回路402内には、検査フォルダ4021と、管理フォルダ4022と、入出力フォルダ4023と、が格納されている。
 表示装置制御回路401Aは、例えばモニタ406に表示するGUI画面を切り替えるなどの制御を実行する表示制御部4011と、入力装置411より入力された各種指示に基づいてカプセル内視鏡10より受信した第1画像データim01/第2画像データim02に構造強調処理や狭帯域成分の抽出処理等の加工処理を実行する画像加工部4012と、画像加工部4012により加工処理された第1画像データim01/第2画像データim02の画像ファイルを生成する画像ファイル生成部4013と、画像ファイル生成部4013により生成された画像ファイルに対して入力装置411より入力されたコメント(テキスト)等を付加してレポートを作成するレポート作成部4014と、作成したレポートをPDF(Portable Document Format)ファイルなどの電子ファイルまたは紙にエクスポートする出力処理部4015と、電子ファイルとして出力しておいたレポートを例えば記憶回路402や外部記憶装置等からインポートする入力処理部4016と、を備える。
 また、記憶回路402において、検査フォルダ4021には、一度の検査によりカプセル内視鏡10から受信した第1画像データim01および第2画像データim02の画像データ群im1が1つの検査ファイルとして保存される。管理フォルダ4021には、例えば被検体900の情報や検査実行日などの各種情報を格納するファイルが管理ファイルとして格納される。入出力フォルダ4023には、ユーザにより作成され、エクスポートされたレポートの電子ファイルが格納される。なお、各管理ファイルと検査ファイルとは関連付けられていてもよい。
 次に、本実施の形態3によるレポート作成用のGUI画面およびこのGUI画面を用いて作成されるレポートについて、図面を用いて詳細に説明する。図27は、本実施の形態3によるレポートの作成対象とする検査ファイルをユーザが確認および選択するためのGUI画面B1を示す図である。図28は、図27に示すGUI画面B1によって選択した検査ファイルに含まれる第1画像IM01/第2画像IM02に対してコメント等を入力するためのGUI画面B2を示す図である。図29は、図28に示すGUI画面B2を用いて構造強調処理や狭帯域成分の抽出処理等の画像の加工処理をユーザが指示する際の作業を説明するための図である。図30は、構造強調処理や狭帯域成分の抽出処理等の加工処理がなされた画像が存在する第1画像IM01/第2画像IM02についてのサムネイル画像の表示例を示す図である。
 図27に示すように、GUI画面B1には、レポート作成対象として選択可能な検査ファイルF1~F4の一覧を表示する対象検査ファイル一覧表示欄B11と、選択中の検査ファイルに含まれる第1画像IM01/第2画像IM02の何れかおよび被検体900の情報等を表示する主表示領域B12と、主表示領域B12に表示する静止画像の第1画像IM01/第2画像IM02を切り替える、もしくは、主表示領域B12に再生する動画像の第1画像IM01/第2画像IM02を順再生、逆再生、早送り、巻き戻しおよび頭出し等の操作を入力するための操作ボタンB13と、一度に主表示領域B12に表示する第1画像IM01/第2画像IM02の枚数を例えば1枚、2枚、4枚の中から切り替える切替ボタンB14a~B14cと、主表示領域B12に表示中の第1画像IM01/第2画像IM02に対してレポートを作成する指示を入力するレポート作成ボタンB14dと、第1画像IM01/第2画像IM02の印刷指示を入力する画像出力ボタンB14eと、主表示領域B12に表示する画像を第1画像IM01と第2画像IM02との何れかに切り替える表示画像切替ボタンB14fと、カプセル内視鏡10による撮像期間(少なくとも第1/第2画像データim01/im02が存在する期間)の時間軸を示すタイムバーB15と、主表示領域B12に表示中である第1画像IM01/第2画像IM02の時間軸上の位置を示すと共に主表示領域B12に表示中の第1画像IM01/第2画像IM02を切り替える指示(表示画像選択指示)を入力するためのスライダB15aと、登録されたサムネイル画像Sm11~SM15,…を時系列に沿って表示する副表示領域B16と、を実装する。また、副表示領域B16に表示された各サムネイル画像Sm11~Sm15,…には、それぞれのサムネイル画像が対応する第1画像データim01/第2画像データim02に対してコメント等が付加されているか否か等を表示するコメントフラグRm11~Rm15,…が近接して表示される。
 ユーザは、モニタ406に表示されたGUI画面B1に対し、入力装置411よりポインタP1を用いてレポート作成対象とする検査ファイルF1~F4の何れかを選択する。なお、検査ファイル内の画像は、主表示領域B12に表示された第1画像IM01/第2画像IM02や副表示領域B16に表示されたサムネイル画像Sm11~SM15,…を参照することで確認することができる。何れかの検査ファイルを選択した状態で、ユーザがレポート作成ボタンB14dをクリックすると、モニタ406には、図28に示すGUI画面B2が表示される。
 図28に示すように、GUI画面B2には、レポート作成対象とされた検査ファイル(ここでは検査ファイルF1とする)に含まれる第1画像IM01/第2画像IM02のうちコメントの入力対象とする画像を表示する対象画像表示領域B21と、対象画像表示領域B21に表示中の第1画像IM01/第2画像IM02に対して付加するコメントを入力するコメント入力欄B23と、コメント入力欄B23に入力したコメントを対象の第1画像IM01/第2画像IM02に付加したり対象の第1画像IM01/第2画像IM02に付加されたコメントを削除したりするための編集ボタンB21aと、対象画像表示領域B21に表示中の第1画像IM01/第2画像IM02と関連する一般情報等を表示する辞書欄B24と、辞書欄に登録する一般情報等を入力する辞書登録欄B25と、検査ファイルF1中の各第1画像IM01/第2画像IM02について登録されたサムネイル画像Sm11~SM15,…を一覧表示するサムネイル一覧表示領域B22と、コメント等が付加された第1画像IM01/第2画像IM02についてのレポートを印刷またはエクスポートするレポート生成ボタンB26と、を実装する。なお、サムネイル一覧表示領域B22に表示された各サムネイル画像Sm3には、これと対応する第1画像データim01/第2画像データim02の撮像時刻を示す時刻情報Tm3が近接して表示されてもよい。
 ユーザは、モニタ406に表示されたGUI画面B2に対し、入力装置411よりポインタP1を用いてサムネイル一覧表示領域B22に表示されたサムネイル画像Sm3の何れかを選択する。これにより、対象画像表示領域B21には選択されたサムネイル画像Sm3と対応する第1画像IM01/第2画像IM02が表示される。この状態で、ユーザが入力装置411の例えばキーボード等を用いてコメント入力欄B23にコメントを入力し、編集ボタンB21aにおける登録ボタンをクリックすることで、選択中の第1画像IM01/第2画像IM02に入力したコメントが付加される。また、ユーザが入力装置411よりポインタP1を用いてレポート生成ボタンB26をクリックすることで、後述する図31Aまたは図31Bに示すようなレポートR1またはR2が作成される。
 また、ユーザが、対象画像表示領域B21に表示された第1画像IM01/第2画像IM02に対して例えば入力装置411におけるマウスを右クリックすると、GUI画面B2には図29に示すような加工メニュー欄B27がポップアップ表示される。ユーザは、入力装置411よりポインタP1を用いて加工メニュー欄B27に一覧表示された加工処理の選択肢のうち何れかを選択することで、対象の第1画像データim01/第2画像データim02に対する加工処理が実行される。
 また、上記のように選択中の第1画像データim01/第2画像データim02に対する加工処理後の画像データを生成すると、GUI画面B2におけるサムネイル一覧表示領域B22における対応するサムネイル画像(これをサムネイル画像Sm41とする)には、図30に示すように、加工処理後の画像データのサムネイル画像が重畳されて表示される。これにより、ユーザは何れの第1画像IM01/第2画像IM02に加工処理された画像データが存在するかを容易に特定することが可能となる。なお、サムネイル一覧表示領域B22では、同時期に取得された第1画像データim01と第2画像データim02とのサムネイル画像を重畳して表示してもよい。これにより、ユーザは、通常光画像と特殊光画像との両方が存在する画像を容易に特定することが可能となる。
 次に、上記のGUI画面B1およびB2を用いて作成およびエクスポートされたレポートの例を、図面を用いて詳細に説明する。図31Aおよび図31Bは、それぞれ、図27~図30に示すGUI画面B1およびB2を用いて作成およびエクスポートされたレポートの一例を示す図である。
 まず、図31Aに示すように、レポートR1には、被検体900の情報(患者情報R41a)や検査情報R41bや診断結果や治療内容等の情報(診断情報R41c)などの各種情報を表示するヘッダ領域R41と、コメントCm41/Cm42が付された画像IM41/IM42、この画像IM41/IM42の撮像時刻Tm41/Tm42、画像IM41/IM42の被検体900内部における撮像箇所を示すイメージSi41/Si42、および、画像IM41/IM42に付加されたコメントCm41/Cm42を表示するボディ領域R42A/R42Bとを含む。なお、ボディ領域は、2つに限らず、1つであっても3つ以上の複数であってもよい。
 また、図31Bに示すように、レポートR2では、加工処理した画像IM51についてコメントを表示したり(ボディ領域R52A参照)、複数の画像IM42およびIM52に対して1つのコメントを表示したり(ボディ領域R52B参照)するように構成してもよい。
 また、図32に示すように、第1画像データim01/第2画像データim02に静止画像(静止画像ファイルPF1,PF2,…)や動画像(動画像ファイルMF1,MF2,…)など、複数のファイルが存在する場合、何れか1つ以上のファイルを単一ファイルとして出力できるように構成してもよい。なお、図32は、検査ファイルF1~F4,…が複数の画像ファイルよりなる場合に何れか1つ以上の画像ファイルを単一ファイルとして出力するためのGUI画面B3の一例を示す図である。
 例えば、図32に示すGUI画面B3において、静止画像ファイルPF1またはPF2を単一ファイルとして出力する場合、もしくは、動画像ファイルMF1またはMF2を単一ファイルとして出力する場合、ユーザは、入力装置411よりポインタP1を用いて静止画像一覧B31または動画像一覧B32から目的のファイル(図32の例では動画像ファイルMF2)を選択し、登録ボタンB34をクリックする。これにより、単一ファイルとして出力するファイルの一覧B35に、選択中のファイル(動画ファイルMF2)が登録される。なお、選択中のファイルは、例えば再生欄B33において再生される。また、再生欄B33における再生は、操作ボタンB33aを操作することで、停止、順再生、逆再生等が可能である。なお、GUI画面B3において一覧B35に列挙されたファイルのうち何れかを選択した状態で除外ボタンB36をクリックすると、この選択中のファイルが出力対象のファイルから除外される。さらに、OKボタンB38をクリックすると、一覧B35に登録されている1つ以上のファイルが単一ファイルとして出力される。なお、出力ファイルの名称は、例えばユーザが入力装置411を用いて名称入力欄B37に入力した名称とすることができる。
 また、図33は、図32に示すGUI画面B3の再生欄B33に表示中の画像の画像データに対して構造強調処理や狭帯域成分の抽出処理等の加工処理をユーザが指示する際の作業を説明するための図である。
 ユーザが、再生欄B33に表示された画像に対して例えば入力装置411におけるマウスを右クリックすると、GUI画面B3には図33に示すような加工メニュー欄B39がポップアップ表示される。ユーザは、入力装置411よりポインタP1を用いて加工メニュー欄B39に一覧表示された加工処理の選択肢のうち何れかを選択することで、表示中の画像の画像データに対する加工処理が実行され、これにより得られた加工処理後の画像データが静止画像ファイルまたは動画像ファイルとして新たに静止画像一覧B31または動画像一覧B32に登録される。
 以上のような構成とすることで、本実施の形態3では、目的の画像や画像群(検査ファイル)に対して容易かつ明確にコメントを付加し、これをレポートとして出力することが可能となる。なお、他の構成、動作および効果は、上記した実施の形態1またはその変形例と同様であるため、ここでは詳細な説明を省略する。
 また、上記実施の形態は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、仕様等に応じて種々変形することは本発明の範囲内であり、更に本発明の範囲内において、他の様々な実施の形態が可能であることは上記記載から自明である。
 1 カプセル内視鏡システム
 10 カプセル内視鏡
 20 受信装置
 21a~21h 受信アンテナ
 22 送信アンテナ
 30 携帯型記録媒体
 40 表示装置
 100 筐体
 100a 円筒部
 100b 透明キャップ
 101 カプセル制御回路
 102、102-1 CCD駆動回路
 103、103-1 撮像部
 103A、103A-1、103A-2 CCDアレイ
 103B 基板
 103C バッファ
 103a 対物レンズ
 103b、103e、103f、103g、103ng、103nu CCD
 103e、103h 画素
 104 画像信号処理回路
 105 無線送受信回路
 105r 受信アンテナ
 105t 送信アンテナ
 106 LED駆動回路
 107 照明部
 107a、107b、107c、107d LED
 107e、107f 波長シフタ
 108 バッテリ
 109 電源回路
 201 受信装置制御回路
 202 メモリ回路
 203 無線受信回路
 204 受信信号処理回路
 205 位置検出回路
 206 送信信号処理回路
 207 無線送信回路
 208 画像表示回路
 209 ユーザI/F回路
 210 データ出力I/F制御回路
 211 バッテリ
 212 電源回路
 401 表示装置制御回路
 402 記憶回路
 403 データ入力I/F制御回路
 404 画像処理回路
 405 モニタ制御回路
 406 モニタ
 407 ユーザI/F制御回路
 411 入力装置
 Cb、Cb1、Cg、Cg1、Cr、Sb、Sg、Sng、Snu、Sr スペクトル
 Ec、Eni、Enu、Ey 発光スペクトル

Claims (12)

  1.  被検体内に導入される被検体内導入装置と、該被検体内導入装置から送信された無線信号を受信する受信装置と、を含む被検体内撮像システムであって、
     前記被検体内導入装置は、
     受光波長スペクトルを備えた受光素子を複数備えた受光部と、
     前記受光波長スペクトルに対応する発光波長スペクトルから所定波長だけ乖離する発光波長スペクトルを複数備えた発光部と、
     前記複数の発光素子のなかから所定の発光素子を選択する選択部と、
     前記受光部で合成されたフラットな合成波長スペクトルを基に通常光画像を生成する、もしくは、前記受光部で合成された鋭利な合成波長スペクトルを基に特殊光画像を生成する画像生成部と、
     前記画像生成部で生成された通常光画像もしくは特殊光画像を送信する送信部と、
     前記選択部の選択に基づいて前記受光素子の駆動を制御する制御部と、
     を備えることを特徴とする被検体内撮像システム。
  2.  前記フラットな合成波長スペクトルは、紫外光領域の付近でくぼみを有することを特徴とする請求項1に記載の被検体内撮像システム。
  3.  前記受光素子の受光波長スペクトルの中心波長は、前記複数の発光波長スペクトルのうち隣接する2つの発光波長スペクトルの中心波長間の中央付近に位置することを特徴とする請求項1に記載の被検体内撮像システム。
  4.  前記制御部は、少なくとも2つの異なる発光波長スペクトルの光が放射されるように前記発光部を駆動して前記通常光画像を取得し、前記発光部のうち1を駆動して前記特殊光画像を取得することを特徴とする請求項1に記載の被検体内撮像システム。
  5.  前記撮像部は、前記発光波長スペクトルのうち紫外光領域付近の発光波長スペクトルと略一致する受光波長スペクトルを持つ受光素子を含むことを特徴とする請求項1に記載の被検体内撮像システム。
  6.  前記撮像部は、前記発光波長スペクトルのうち紫外光領域付近の発光波長スペクトルと略一致する受光波長スペクトルを持つ受光素子を含み、
     前記制御部は、少なくとも2つの異なる発光波長スペクトルの光が放射されるように前記発光部を駆動して前記通常光画像を取得し、前記紫外光領域付近の発光波長スペクトルと略一致する受光波長スペクトルを持つ受光素子を駆動して前記特殊光画像を取得することを特徴とする請求項1に記載の被検体内撮像システム。
  7.  前記送信部は、前記通常光画像と前記特殊光画像とを個別に送信することを特徴とする請求項4または6に記載の被検体内撮像システム。
  8.  前記制御部は、前記照明部と前記撮像部とを駆動することで前記通常光画像と前記特殊光画像とを交互に生成させ、
     前記撮像部は、前記通常光画像または前記特殊光画像を一時保持するバッファメモリを含み、
     前記送信部は、前記撮像部が生成した特殊光画像または通常光画像と前記バッファメモリに記憶された前記通常光画像または特殊光画像とを連続して送信することを特徴とする請求項4または6に記載の被検体内撮像システム。
  9.  前記紫外光領域付近の発光波長スペクトルの光は、該紫外光領域付近の発光波長スペクトルの光以外の光の波長をシフトすることで生成されることを特徴とする請求項1に記載の被検体内撮像システム。
  10.  前記複数の発光波長スペクトルは、青色波長帯域の発光波長スペクトルと、緑色波長帯域の発光波長スペクトルと、赤色波長帯域の発光波長スペクトルと、を含むことを特徴とする請求項1に記載の被検体内撮像システム。
  11.  前記紫外光領域付近の発光波長スペクトルは、該紫外光領域付近の発光波長スペクトル以外の発光波長スペクトルよりも鋭利であることを特徴とする請求項1に記載の被検体内撮像システム。
  12.  受光波長スペクトルを備えた受光素子を複数備えた受光部と、
     前記受光波長スペクトルに対応する受光波長スペクトルから所定波長だけ乖離する発光波長スペクトルを複数備えた発光部と、
     前記複数の発光素子のなかから所定の発光素子を選択する選択部と、
     前記受光部で合成されたフラットな合成波長スペクトルを基に通常光画像を生成する、もしくは、前記受光部で合成された鋭利な合成波長スペクトルを基に特殊光画像を生成する画像生成部と、
     前記画像生成部で生成された通常光画像もしくは特殊光画像を送信する送信部と、
     前記選択部の選択に基づいて前記受光素子の駆動を制御する制御部と、
     を備えたことを特徴とする被検体内導入装置。
PCT/JP2010/058065 2009-05-12 2010-05-12 被検体内撮像システムおよび被検体内導入装置 WO2010131687A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010540975A JP4741033B2 (ja) 2009-05-12 2010-05-12 被検体内撮像システムおよび被検体内導入装置
CN201080007685.2A CN102316785B (zh) 2009-05-12 2010-05-12 被检体内摄像系统以及被检体内导入装置
EP10774944A EP2386239A4 (en) 2009-05-12 2010-05-12 IN VIVO IMAGING SYSTEM OF THE SUBJECT AND IN VIVO INTRODUCTION DEVICE IN THE FIELD
US12/917,863 US8740777B2 (en) 2009-05-12 2010-11-02 In-vivo imaging system and body-insertable apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009115576 2009-05-12
JP2009-115576 2009-05-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/917,863 Continuation US8740777B2 (en) 2009-05-12 2010-11-02 In-vivo imaging system and body-insertable apparatus

Publications (1)

Publication Number Publication Date
WO2010131687A1 true WO2010131687A1 (ja) 2010-11-18

Family

ID=43085060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058065 WO2010131687A1 (ja) 2009-05-12 2010-05-12 被検体内撮像システムおよび被検体内導入装置

Country Status (5)

Country Link
US (1) US8740777B2 (ja)
EP (1) EP2386239A4 (ja)
JP (1) JP4741033B2 (ja)
CN (1) CN102316785B (ja)
WO (1) WO2010131687A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504776A (ja) * 2008-10-02 2012-02-23 イエップ オーストラリア ピーティーワイ リミテッド 画像処理システム

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5058209B2 (ja) * 2009-05-22 2012-10-24 株式会社日立製作所 ストリームデータ処理において逆再生を行うデータ処理システム
EP2453376B1 (en) * 2010-11-15 2019-02-20 Fujifilm Corporation Medical image recording/reproducing apparatus, medical image recording/reproducing method and program
CN103513413B (zh) * 2012-06-18 2017-05-24 奥林巴斯株式会社 内窥镜装置以及内窥镜图像的记录目的地文件夹变更方法
JP6342390B2 (ja) * 2012-06-29 2018-06-13 ギブン イメージング リミテッドGiven Imaging Ltd. 画像ストリームを表示するシステムおよび方法
WO2015099749A1 (en) * 2013-12-27 2015-07-02 Capso Vision Inc. Capsule camera device with multi-spectral light sources
JP6639920B2 (ja) * 2016-01-15 2020-02-05 ソニー・オリンパスメディカルソリューションズ株式会社 医療用信号処理装置、及び医療用観察システム
JP6654051B2 (ja) * 2016-01-15 2020-02-26 ソニー・オリンパスメディカルソリューションズ株式会社 医療用観察システム
WO2017141417A1 (ja) * 2016-02-19 2017-08-24 Hoya株式会社 内視鏡用光源装置
CN110121280A (zh) * 2017-02-28 2019-08-13 松下知识产权经营株式会社 化妆模拟装置、方法以及非瞬时性存储介质
CN107769812B (zh) * 2017-10-31 2019-10-15 乐普医学电子仪器股份有限公司 一种用于植入式医疗器械的无线通讯系统
US11700437B2 (en) * 2020-12-16 2023-07-11 Anx Robotica Corp. Capsule endoscope with a dynamic adjustable color illumination spectrum

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63167577A (ja) * 1986-12-27 1988-07-11 Olympus Optical Co Ltd 撮像装置
JP2002369217A (ja) 2001-02-21 2002-12-20 Franz Josef Gassmann カメラ、画像情報再現方法及び画像情報校正方法
JP2003070728A (ja) 2001-06-20 2003-03-11 Olympus Optical Co Ltd カプセル式内視鏡
JP2005074034A (ja) 2003-09-01 2005-03-24 Olympus Corp カプセル型内視鏡
JP2005198794A (ja) * 2004-01-15 2005-07-28 Pentax Corp 内視鏡装置
JP2005319115A (ja) * 2004-05-10 2005-11-17 Pentax Corp 蛍光観察内視鏡装置
JP2006136453A (ja) * 2004-11-11 2006-06-01 Fujinon Corp 内視鏡装置
JP2006166940A (ja) * 2004-12-10 2006-06-29 Olympus Corp 内視鏡照明装置
JP2006314629A (ja) * 2005-05-13 2006-11-24 Olympus Medical Systems Corp 生体観測装置
JP3898781B2 (ja) 1996-07-01 2007-03-28 オリンパス株式会社 内視鏡
JP2007212376A (ja) * 2006-02-13 2007-08-23 Fujifilm Corp 光断層画像化装置
JP2007525261A (ja) * 2004-01-16 2007-09-06 ザ シティ カレッジ オブ ザ シティ ユニバーシティ オブ ニューヨーク 光学式画像化とポイント蛍光分光学とを組み合わせたインビボ医療診断のためのマイクロスケールコンパクトデバイス
WO2008011255A2 (en) * 2006-07-20 2008-01-24 Gsi Group Corporation Systems and methods for laser processing during periods having non-constant velocities
JP2008086759A (ja) * 2006-09-14 2008-04-17 Given Imaging Ltd インビボ撮像装置から受信した画像を表示する装置およびその方法
JP2008096413A (ja) * 2006-09-11 2008-04-24 Olympus Corp 分光観察装置および内視鏡システム
JP2008118635A (ja) * 2004-01-23 2008-05-22 Olympus Corp カメラ

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7116352B2 (en) * 1999-02-25 2006-10-03 Visionsense Ltd. Capsule
US8636648B2 (en) * 1999-03-01 2014-01-28 West View Research, Llc Endoscopic smart probe
DE10052863A1 (de) * 2000-10-24 2002-04-25 Christian Pilgrim Endoskopisches Instrument zur Anwendung in Hohlräumen
US7347817B2 (en) * 2001-08-02 2008-03-25 Given Imaging Ltd. Polarized in vivo imaging device, system and method
IL151049A0 (en) * 2001-08-02 2003-04-10 Given Imaging Ltd In vivo imaging methods and devices
JP4231657B2 (ja) 2002-05-10 2009-03-04 オリンパス株式会社 カプセル型医療装置
CN101701849A (zh) * 2004-01-23 2010-05-05 奥林巴斯株式会社 图像处理系统以及照相机
KR101041311B1 (ko) * 2004-04-27 2011-06-14 파나소닉 주식회사 형광체 조성물과 그 제조 방법, 및 그 형광체 조성물을 이용한 발광장치
DE202005022114U1 (de) * 2004-10-01 2014-02-10 Nichia Corp. Lichtemittierende Vorrichtung
US8109981B2 (en) * 2005-01-25 2012-02-07 Valam Corporation Optical therapies and devices
US8301229B2 (en) * 2005-05-12 2012-10-30 Olympus Medical Systems Corp. Biological observation display apparatus for presenting color or spectral images
JP2006314557A (ja) * 2005-05-12 2006-11-24 Olympus Medical Systems Corp 生体観測装置
US20090091614A1 (en) * 2005-05-13 2009-04-09 Olympus Medical Systems Corp. Biological observation apparatus
WO2006124648A2 (en) * 2005-05-13 2006-11-23 The University Of North Carolina At Chapel Hill Capsule imaging devices, systems and methods for in vivo imaging applications
JP2006345947A (ja) * 2005-06-13 2006-12-28 Olympus Medical Systems Corp 内視鏡装置
JP4951256B2 (ja) * 2006-03-16 2012-06-13 オリンパスメディカルシステムズ株式会社 生体観測装置
US20080177140A1 (en) * 2007-01-23 2008-07-24 Xillix Technologies Corp. Cameras for fluorescence and reflectance imaging
EP2116176B1 (en) * 2007-02-26 2011-12-28 Olympus Medical Systems Corp. Capsule endoscope
US9730573B2 (en) * 2007-03-20 2017-08-15 Given Imaging Ltd. Narrow band in-vivo imaging device

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63167577A (ja) * 1986-12-27 1988-07-11 Olympus Optical Co Ltd 撮像装置
JP3898781B2 (ja) 1996-07-01 2007-03-28 オリンパス株式会社 内視鏡
JP2002369217A (ja) 2001-02-21 2002-12-20 Franz Josef Gassmann カメラ、画像情報再現方法及び画像情報校正方法
JP2003070728A (ja) 2001-06-20 2003-03-11 Olympus Optical Co Ltd カプセル式内視鏡
JP2005074034A (ja) 2003-09-01 2005-03-24 Olympus Corp カプセル型内視鏡
JP2005198794A (ja) * 2004-01-15 2005-07-28 Pentax Corp 内視鏡装置
JP2007525261A (ja) * 2004-01-16 2007-09-06 ザ シティ カレッジ オブ ザ シティ ユニバーシティ オブ ニューヨーク 光学式画像化とポイント蛍光分光学とを組み合わせたインビボ医療診断のためのマイクロスケールコンパクトデバイス
JP2008118635A (ja) * 2004-01-23 2008-05-22 Olympus Corp カメラ
JP2005319115A (ja) * 2004-05-10 2005-11-17 Pentax Corp 蛍光観察内視鏡装置
JP2006136453A (ja) * 2004-11-11 2006-06-01 Fujinon Corp 内視鏡装置
JP2006166940A (ja) * 2004-12-10 2006-06-29 Olympus Corp 内視鏡照明装置
JP2006314629A (ja) * 2005-05-13 2006-11-24 Olympus Medical Systems Corp 生体観測装置
JP2007212376A (ja) * 2006-02-13 2007-08-23 Fujifilm Corp 光断層画像化装置
WO2008011255A2 (en) * 2006-07-20 2008-01-24 Gsi Group Corporation Systems and methods for laser processing during periods having non-constant velocities
JP2008096413A (ja) * 2006-09-11 2008-04-24 Olympus Corp 分光観察装置および内視鏡システム
JP2008086759A (ja) * 2006-09-14 2008-04-17 Given Imaging Ltd インビボ撮像装置から受信した画像を表示する装置およびその方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2386239A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504776A (ja) * 2008-10-02 2012-02-23 イエップ オーストラリア ピーティーワイ リミテッド 画像処理システム

Also Published As

Publication number Publication date
CN102316785A (zh) 2012-01-11
EP2386239A1 (en) 2011-11-16
JPWO2010131687A1 (ja) 2012-11-01
CN102316785B (zh) 2014-10-08
US8740777B2 (en) 2014-06-03
JP4741033B2 (ja) 2011-08-03
EP2386239A4 (en) 2012-08-15
US20110213203A1 (en) 2011-09-01

Similar Documents

Publication Publication Date Title
JP4741033B2 (ja) 被検体内撮像システムおよび被検体内導入装置
JP6495539B2 (ja) 画像処理装置、画像処理装置の作動方法、および画像処理プログラム
US8390679B2 (en) Capsule endoscope device
JP3869324B2 (ja) 蛍光観察用画像処理装置
JPWO2004096029A1 (ja) カプセル内視鏡およびカプセル内視鏡システム
CN1827033A (zh) 内窥镜装置
US20190246875A1 (en) Endoscope system and endoscope
JP6690003B2 (ja) 内視鏡システム及びその作動方法
US10285631B2 (en) Light source device for endoscope and endoscope system
US10299665B2 (en) Imaging device and capsule endoscope system
KR20120097828A (ko) 협대역 영상을 제공할 수 있는 내시경 장치 및 상기 내시경 장치의 영상 처리 방법
CN106163367A (zh) 医用图像处理装置及其工作方法以及内窥镜系统
JP2009056160A (ja) 被検体内画像取得システム、被検体内画像処理方法および被検体内導入装置
JP6392891B2 (ja) 撮像装置、内視鏡およびカプセル型内視鏡
WO2018142658A1 (ja) 画像処理装置、画像処理装置の作動方法、及び画像処理装置の作動プログラム
US20170276847A1 (en) Imaging system
JP2016116741A (ja) 内視鏡用のプロセッサ装置、内視鏡用のプロセッサ装置の作動方法、内視鏡用の制御プログラム
JP6254506B2 (ja) 内視鏡システム及びその作動方法
CN111712177B (zh) 图像处理装置、内窥镜系统、图像处理方法及记录介质
JP2016067373A (ja) 内視鏡用光源装置及び内視鏡システム
JP6669539B2 (ja) 画像処理装置、画像処理装置の作動方法、および画像処理プログラム
US20230233070A1 (en) Endoscope light source device, endoscope system, and method of changing illumination light in endoscope light source device
WO2016203983A1 (ja) 内視鏡装置
CN109310272B (zh) 处理装置、设定方法以及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007685.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010540975

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774944

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010774944

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010774944

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE