WO2010131459A1 - 高比強度を有する純チタン構造材料 - Google Patents

高比強度を有する純チタン構造材料 Download PDF

Info

Publication number
WO2010131459A1
WO2010131459A1 PCT/JP2010/003192 JP2010003192W WO2010131459A1 WO 2010131459 A1 WO2010131459 A1 WO 2010131459A1 JP 2010003192 W JP2010003192 W JP 2010003192W WO 2010131459 A1 WO2010131459 A1 WO 2010131459A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
stearic acid
pure titanium
vickers hardness
sintering
Prior art date
Application number
PCT/JP2010/003192
Other languages
English (en)
French (fr)
Inventor
久保田正広
Original Assignee
学校法人日本大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人日本大学 filed Critical 学校法人日本大学
Publication of WO2010131459A1 publication Critical patent/WO2010131459A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material

Definitions

  • the present invention relates to a pure titanium structural material having a high specific strength.
  • Titanium has a specific gravity of 4.5 and 60% of steel, and is light and strong. Pure titanium is not inferior to ordinary steel, and an alloy has strength comparable to special steel. Good corrosion resistance and high proportional limit. It has many features such as low thermal expansion coefficient and high thermal conductivity. Compared to aluminum, it is about 60% heavier, but about twice as strong. Due to the influence of these characteristics, titanium is less likely to cause metal fatigue than other metals.
  • the strength of industrial pure titanium greatly depends on the amounts of impurity elements such as oxygen, iron, nitrogen, and carbon, and the amount and mechanical properties are specified in Japanese Industrial Standards.
  • titanium When producing titanium, ore containing iron such as ilmenite or rutile is used as a raw material, and after heating with carbon to remove iron, titanium tetrachloride is further purified by distillation through chlorine while heating with carbon. After this is reacted with magnesium at about 900 ° C. in argon, magnesium chloride is vacuum separated to obtain porous metallic titanium (chlor method), or sodium is used in place of magnesium, A method (hunter method) for producing sodium chloride at the same time as obtaining is usually used. In these methods, the fused mass in which titanium is a mass by slightly containing molten magnesium chloride (or sodium) is called a titanium sponge.
  • the solidified titanium metal sponge is crushed and purified, and then dried in a hot nitrogen stream.
  • Powdered titanium is usually performed by pulverization, shot casting, or centrifugation. In order to accelerate crushing, it is common practice to first adsorb hydrogen to titanium to make the sponge brittle. Therefore, an invention in which the particles are dehydrogenated after the production of powdered titanium hydride (PTL 1). Japanese Patent No. 3391461. No. 10-502418) is known.
  • the manufacturing method of high-purity titanium ingot was completed based on this knowledge.
  • Sponge titanium particles manufactured by the chlor method were formed into a compact by compression processing, and a plurality of compression-molded bodies were welded to form a rod-shaped melting raw material.
  • the compression molded body is subjected to pressure reduction treatment in a decompression vessel and then cooled in a low-humidity atmosphere (Patent Document 2) No. 2008-231509) is known.
  • Patent Document 2 No. 2008-231509 There are many inventions such as removal of iron and nickel remaining in sponge titanium, but specific measures for removing impurities have been taken, but there are many problems that are difficult to solve technically.
  • the problems to be solved by the present invention are a new pure titanium in which the strength of pure titanium is raised to a level higher than that of a titanium alloy, and a titanium alloy that has been conventionally known by sintering this new pure titanium. It is to provide a novel pure titanium sintered body having higher strength.
  • pure titanium powder JIS3 grade, Vickers hardness of less than 200
  • the Vickers hardness of sintered bodies sintered by discharge plasma sintering after mechanical milling for 4 hours and 8 hours was compared, the Vickers hardness of each sintered body sintered for 4 hours and 8 hours was high. Found that can be obtained. From this, it is understood that pure titanium can improve the hardness of the sintered body by adding stearic acid before sintering and performing mechanical milling and then performing discharge plasma sintering. It was.
  • the titanium alloy Ti-6Al-4V has a Vickers hardness of 320 HV (the above is shown in FIG. 3).
  • the sintered body of pure titanium obtained in the present invention is obtained by obtaining a fine powdery pure titanium containing steric acid, and subsequently performing a discharge plasma sintering method, and solidifying and molding at a relatively low temperature and in a short time.
  • the present invention is as follows. (1) After adding stearic acid to powdery JIS3 grade pure titanium, mechanical milling to make an aggregate of fine powdery Ti with Vickers hardness of 330 to 530 HV and stearic acid attached to the surface, A fine powder Ti powder sintered body having a Vickers hardness of 600 to 1250 HV and containing ceramic particles, which is obtained by discharge plasma sintering.
  • the Vickers hardness is 330 to 530 HV, and the aggregate of finely powdered Ti with stearic acid attached to the surface
  • a fine powdery Ti powder sintered body having a Vickers hardness of 600 to 1250 HV can be obtained by spark plasma sintering.
  • mechanical milling was performed to form an aggregate of finely powdered Ti having a Vickers hardness of 330 to 530 HV and stearic acid attached to the surface, and then discharge plasma.
  • a Vickers hardness of 600 to 1250 HV and a fine powdery Ti powder sintered body containing ceramic particles can be produced.
  • a fine powdery Ti aggregate having a Vickers hardness of 330 to 530 HV and stearic acid attached to the surface.
  • This is a fine powder Ti powder sintered body having a Vickers hardness of 600 to 1250 HV and ceramic particles obtained by subjecting this to discharge plasma sintering, and a method for producing the sintered body.
  • the material to be processed which is a raw material used in the present invention is powdery pure titanium.
  • the purity of the powdery pure titanium was 99.5%, and the average particle size was 44 ⁇ m or less.
  • the analysis values are as shown in Table 1. This is generally called JIS3 grade. Titanium as a raw material of the present invention is titanium as an inevitable impurity.
  • JIS3 grade titanium The analysis values of JIS3 grade titanium are as shown in Table 1 below.
  • Titanium which is a workpiece, is treated with stearic acid.
  • Stearic acid is known as a higher fatty acid and is solid at room temperature.
  • the mixing ratio of the titanium fine powder and stearic acid is (90 to 98% by weight) to (10 to 2% by weight) (100% by weight in total). It is observed that stearic acid and titanium fine powder are unevenly distributed only by combining them. In this case, it is necessary to achieve a uniform mixing state by sufficiently mixing.
  • Powdered JIS 3 grade pure titanium and stearic acid are stirred and mixed and pulverized to uniformly disperse stearic acid in fine powdered titanium to produce fine titanium.
  • Mechanical milling is a process in which a pulverization is performed by mechanical means using a planetary ball mill, a vibration ball mill, a high-speed rotating ball mill, and the like, and at the same time a mechanochemical reaction is performed.
  • an 8000 type vibration type ball mill was adopted by SPEX, USA.
  • 1425 rpm which is the rotation speed described in the catalog was adopted. This condition is a normal operating condition. Even when other models are used, it can be performed according to the normal operating conditions of each model.
  • Mechanical milling is performed for 4 to 8 hours to confirm the effect. If the upper limit is reached, processing exceeding 8 hours can be performed.
  • the titanium fine particles, stearic acid, and stainless spheres are placed in a stainless steel pot, and after high-purity argon gas is injected, it is sealed.
  • the composition can be made uniform while being finely divided by mechanical milling.
  • FIG. 1 shows the result of measuring the Vickers hardness of the obtained fine powder per time when mechanical milling was performed.
  • stearic acid is added to 0.25 g of stearic acid with respect to 10 g of Ti powder (indicated by ⁇ in the figure, indicated as 0.25 g of PCA).
  • the Vickers hardness is shown when 0.50 g of stearic acid is added (indicated by ⁇ in the figure, indicated as 0.50 g of PCA).
  • the result of the treatment for 4 hours shows that the Vickers hardness increases when 0.25 g of stearic acid is used.
  • the Vickers hardness decreases when 0.50 g of stearic acid is added.
  • FIG. 2 shows an apparatus for producing a fine powdery Ti powder sintered body by the discharge plasma sintering method using the fine powdery Ti powder obtained as described above.
  • Fine powder Ti powder (including stearic acid) 1 is filled in a molding die 21, set in a discharge plasma sintering apparatus, and then sintered by a discharge plasma sintering method.
  • the discharge plasma sintering apparatus includes a vacuum chamber 20, a pair of upper and lower pressure rams 24 and 25, a sintering power source 32 that generates a pulse voltage, and a hydraulic pressure press that drives the pressure rams 24 and 25 up and down. It has the drive mechanism 33 and the control part 31 which controls these.
  • the molding die 21 charged with powdery JIS 3 grade pure titanium powder (including stearic acid) 1 is set between the pressure rams 24 and 25 in the vacuum chamber 20.
  • the inside of the vacuum chamber 20 is evacuated by the vacuum pump 22 to be in a vacuum state (reduced pressure).
  • the inside of the vacuum chamber 20 is set to an inert gas atmosphere. Thereafter, sintering is performed.
  • the control unit 31 controls the output of the sintering power supply 32 so that the material temperature detected by a temperature sensor (thermocouple) (not shown) installed in the molding die 21 matches a preset temperature increase curve. . Further, the control unit 31 controls the driving of the pressurization drive mechanism 33 and the vacuum pump 22.
  • the pair of upper and lower first pressing elements 26 and the second pressing element 27 are fixed to the pressure rams 24 and 25, respectively, and are fed by power supply terminals (not shown) provided in the pressure rams 24 and 25. It is electrically connected to the power source 32 for sintering.
  • the pressurization drive mechanism 33 is operated to move the pressurization rams 24 and 25 toward each other, and the pure titanium powder 1 is compressed by the first presser 26 and the second presser 27 fixed thereto. To obtain a compressed body.
  • a carbon sheet (not shown) between the heat insulating material 28 and the heat insulating material 29, and the pure titanium powder 1, the first pressing element 26, and the second pressing element 27, respectively.
  • a pulse voltage is applied through the first pressing element 26, the second pressing element 27, and the molding die 21 to heat the compression energization system. After the temperature of the sintering system reaches a predetermined temperature, this temperature is maintained for a certain period of time to form a composite.
  • sintering temperature The temperature of the range of 700K to 1200K is employ
  • the sintering was performed at a sintering temperature up to 1073K.
  • the sintering temperature exceeds 1200 K, the sintering temperature may be too high, and the strength may be significantly reduced due to decomposition in the oversintered state or cracks or the like in the composite. If it is less than 700K, sintering may not proceed well.
  • the sintering time is required to be in the range of 20 minutes to more than 1 hour, approximately 30 minutes.
  • the pressure at that time was in the range of 40 to 60 MPa, and in the examples of the present invention, the pressure was 49 MPa.
  • titanium powder treated for 4 hours or 8 hours in a ball mill was charged into a graphite mold, the sintering temperature was increased to 1073 K, and the titanium sintered body (SPS material) was produced by holding at 49 MPa for 30 minutes. .
  • spark plasma sintering method pulsed electric energy is directly applied to the green compact particle gap, and the high energy of the high temperature plasma generated instantaneously by spark discharge is effectively applied to thermal diffusion and electric field diffusion.
  • sintering or sinter bonding is possible in a short time of several minutes to several tens of minutes including temperature rise and holding time.
  • uniform heating by dispersion of discharge points makes it possible to easily and efficiently produce a high-quality composite having a uniform and excellent bonding strength.
  • the discharge plasma sintering method it is possible to perform each step of material filling, compacting and sintering performed as necessary in one molding die 21, and to reduce the manufacturing cost. It is also possible.
  • the sintered body When leaving to cool, it is preferable to release the pressurized state of the composite and let it cool.
  • the sintered body is cooled by water through a forming punch or the like in a pressurized state.
  • FIG. 3 shows the powder plasma JIS3 grade pure titanium without mechanical milling (mechanical milling 0 hours) or after mechanical milling for 4 hours (mechanical milling 4). Time), or after mechanical milling for 8 hours (8 hours for mechanical milling), Vickers hardness of the discharge plasma sintered body in the case of spark plasma sintering (powdered JIS3 grade pure titanium with 0.25 g of stearic acid When added (indicated by ⁇ . Indicated as 0.25 g of PCA), 0.50 g of stearic acid is added to powdery JIS3 grade pure titanium (indicated by ⁇ . Indicated as 0.25 g of PCA).
  • the hardness of the material obtained by solidifying and molding the powder not subjected to canal milling by spark plasma sintering is 268 HV.
  • stearic acid is not added.
  • the hardness of the material solidified by spark plasma sintering is 700 HV.
  • the hardness of the material solidified by spark plasma sintering is 740 HV.
  • the hardness of the material solidified by spark plasma sintering is 600 HV. After adding 0.50 g of stearic acid to 10 g of pure titanium and performing mechanical milling for 8 hours, the hardness of the material solidified by spark plasma sintering is 1250 HV.
  • the above results show that it is effective to perform mechanical milling for 4 hours.
  • Mechanical milling for 8 hours shows very effective results when 0.50 g of stearic acid is added.
  • the sintered body of pure titanium obtained in the present invention is obtained by obtaining a fine powdery pure titanium containing steric acid, and subsequently performing a discharge plasma sintering method, and solidifying and molding at a relatively low temperature and in a short time. Pure titanium and stearic acid react with each other by heating at this time, and a new titanium structure material containing ceramic particles as a reaction product is obtained. The result was far superior to that of Ti-6Al-4V, which is known as a high hardness alloy.
  • the measuring method of the Vickers hardness which is the fine powder Ti powder sintered compact containing fine powder Ti and ceramic particle
  • the Vickers hardness was measured by polishing the surface of the solidified material, then using a Vickers hardness tester to perform a test load of 1 kg, a holding time of 15 seconds, and measuring 7 times to obtain an average value thereof.
  • the pure titanium uses the pure titanium powder (JIS3 grade Vickers hardness is less than 200) which is the purity of an industrial level.
  • the purity of the pure titanium powder used was 99.5%, and the average particle size was 44 ⁇ m or less.
  • Stearic acid was solid at room temperature and was used (manufactured by Kanto Chemical Co., Inc.).
  • the mechanical milling process is as follows. For stearic acid, 0.25 g of stearic acid and 0.50 g of stearic acid were added to 10 g of Ti powder. The hardness of the powder obtained by mechanical milling both in a ball mill for 4 hours and 8 hours is shown in FIG. The Vickers hardness of the fine powder that had been milled for 8 hours was 330 (indicated by ⁇ for the result in the case of 0.50 g of stearic acid) and 530 HV (indicated by ⁇ for the result in the case of 0.25 g of stearic acid). . All of these results exceeded Ti-6Al-4V, which is known as an alloy with high hardness.
  • the mechanical milling process and the subsequent sintering process are as follows.
  • the measurement results of the hardness of the sintered body are as follows and are shown in FIG. (1)
  • Mechanical milling step Stearic acid was added to 0.25 g of stearic acid and 0.50 g of stearic acid to 10 g of Ti powder. Both were mechanically milled in a ball mill at 4 and 8 hours.
  • (2) Process of sintering process The mechanical milling product obtained at the previous process was sintered according to the said conditions.
  • the hardness of the obtained sintered body was as follows.
  • the hardness as a result of sintering fine powder mechanically milled for 4 hours is as follows.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

 純チタンの強度をチタン合金と同等レベルまで引き上げた新規な純チタン及びこの純チタンを用いた合金からなるチタン合金と比較して硬度が高い新規な純チタン焼結体を提供することを課題とする。上記課題を解決するために、粉状の純チタンにステアリン酸を添加た後、メカニカルミリングを行い、ビッカース硬度を330から530Hvであり表面にステアリン酸が付着した微粉状Tiを製造した後、上記微粉状Tiを放電プラズマ焼結することにより、ビッカース硬度が600から1250Hvであり、セラミックス粒子を含む微粉状Ti粉末焼結体とする。

Description

高比強度を有する純チタン構造材料
 本発明は高比強度を有する純チタン構造材料に関するものである。
 チタンは比重が4.5で鋼に比較して60%であり、軽く、強度も純チタンでは普通鋼に劣らず、合金では特殊鋼に負けない強度を有している。耐食性がよく、比例限度が高い。熱膨張係数が小さい、熱伝導度が大きい等多くの特徴をもっている。アルミニウムと比較した場合、約60%程度重いものの、約2倍の強度を持っている。これらの特性の影響により、チタンは他の金属よりも金属疲労が起こり難いとされている。
 工業用純チタンの強度は不純物元素の酸素、鉄、窒素及び炭素量に大きく依存し、日本工業規格ではそれらの量と機械的性質は規定されている。
 チタンを製造するに際しては、チタン鉄鉱やルチルなどの鉄分を含む鉱石を原料とし、炭素と熱して鉄を除いた後、さらに炭素と熱しながら塩素を通じて4塩化チタンとし蒸留により精製する。これをアルゴン中約900℃でマグネシウムと反応させた後、塩化マグネシウムを真空分離して多孔質の金属チタンを得る方法(クロル法)、又は、前記マグネシウムの代りにナトリウムを使用し、金属チタンを得ると同時に塩化ナトリウムを生成する方法(ハンター法)を通常用いる。
 これらの方法ではチタンは溶融塩化マグネシウム(又は、ナトリウム)を若干内包して塊となった融合塊はチタンスポンジと呼ばれる。金属製レトルトを冷却した後、凝固した金属チタンスポンジを粉砕して精製した後、熱窒素気流中で乾燥させる。粉末チタンは、通常、粉砕、ショットキャスティング若しくは遠心法により行われる。粉砕を促進するため、最初にチタンに水素を吸着させてスポンジを脆くするのが一般的技術である。そこで、粉末水素化チタンの生成後、粒子を脱水素して使用可能な製品とする発明(特許文献1
 特許第3391461号公報。特表平10-502418号公報)が知られている。
 高純度チタンインゴットの製造方法は、この知見を基礎として完成されたものであり、クロル法により製造されたスポンジチタン粒を圧縮加工により成形体にし、複数の圧縮成形体を溶接して棒状溶解原料とした後に溶解する高純度チタンインゴットの製造方法において、前記圧縮加工により温度上昇した圧縮成形体を、減圧容器内で減圧処理した後に低湿度雰囲気中に保持して冷却する方法(特許文献2 特開2008-231509号公報)が知られている。又、スポンジチタンに残る鉄分やニッケルの除去など多くの発明が見られるが不純物を取り除くための具体的な手段がとられが、その実行には技術的に解決することが困難な問題が多いことがわかる(特許文献3 特開2008-274406号公報)。不純物の除去は技術的に困難であることがわかる。
 製造された純チタンでは、不純物元素量は不可避的に存在した状態として利用される。純チタンを純粋なチタンとして輸送機器をはじめとする構造部材に用いることは困難であることがわかる。
 また、粉末を固化成形する際に、従来から用いられてきた粉末冶金法を採用することはその工程数が多く、比較的高い温度で加工することが必要となる。このため、優れた粉末を作製しても固化成形する際に、その特性は変化する結果となる。
 この事情を反映して、工業用チタンの強度を向上させるために、純チタンに対して種々の元素を適宜添加して、加工や熱処理によって材料特性を最大限に引き出すための合金開発及び詳細に組織制御する加工プロセス条件の確立に努力が払われてきた(例えば、特許文献4 特開2005-298855号公報)。チタンスポンジをチタンとして利用して、チタン(Ti)、チタン合金、又はチタンコンポジット材料物質(チタン複合材料物質)から成る成形体(成形品)又は成形構成部品(Ti-6Al-4V(Ti-6-4) 合金)などとして成形体又は成形構成部品として利用する発明(特許文献5 特表2008-528813号公報)などが知られている。
 しかしながら、これらの発明に見られる添加元素の組合せ加工や熱処理の組合せも頭打ちの状態が続いている。
 このことを解決するために、従来から純チタンに対して高価なセラミックス粉末やセラミック繊維を分散又は配向させた複合材料の開発が行なわれてきた。セラミックス粒子や繊維の分散状態、さらにはポロシティなど複合化する過程でのプロセス上の問題ばかりでなく、セラミックス自体の価格やプロセス工程の複雑さに加え、加工時間が長時間に及ぶことによる高コスト化などの問題がある。このことから、複合材料は広範囲に適用されていないという現状にある。
 粉末からバルク材を作製する際に粉末を冷間や熱間で予備成形する必要があること、又は比較的高温で熱間押出加工する必要があることなど、工程の煩雑さや加工温度等の制御などの点に問題点が残されている。
 この状況下にあってチタン材料を用いる場合には合金化やセラミックとの複合化によって解決していくことには限界があり、従来全く検討されてこなかった純チタンの強度をチタン合金と同等レベルまで引き上げることに向けて努力することが必要であること、又このようにして得られる純チタンを用いることにより、従来のチタン合金と比較して強度が高い純チタン焼結体の開発が可能となるという考え方のもとに、研究を進めることとした。
特許第3391461号公報、特表平10-502418号公報 特開2008-231509号公報 特開2008-274406号公報 特開2005-298855号公報 特表2008-528813号公報
 本発明が解決しようとする課題は、純チタンの強度をチタン合金の強度以上のレベルまで引き上げた新規な純チタン、及びこの新規な純チタンを焼結することにより、従来知られていたチタン合金より強度が高い新規な純チタン焼結体を提供することである。
 本発明者らは鋭意前記課題を解決すべく、研究を進め、以下の新しいことを見出して、前記課題を解決した。
 1.工業用レベルの純度である純チタン粉末(JIS3グレード ビッカース硬度が200未満)に、助剤としてステアリン酸を添加して4時間及び8時間にわたり、メカニカルミリングを行った。このときステアリン酸は機械的混合粉砕処理中で焼き付きを防止する作用を果たす。純チタンをステアリン酸の存在下にメカニカルミリングを行うことにより、微粉状の純チタンを得る。これはステアリン酸が表面に付着した微粉状Tiとして得られる。
 この微粉状の純チタンの硬度は、処理前の値から上昇し、8時間の処理後のビッカース硬度は330から530HVとなる(図1)。これは当初の純チタン粉末のビッカース硬度以上の硬度であり、粉末状の合金であるTi-6Al-4Vのビッカース硬度を、凌ぐ結果を得た。硬度はステアリン酸の添加量に依存すること、特に添加量は少ない場合の方が良好な結果を得ることができることがわかった。
 2.工業用レベルの純度である純チタン粉末(JIS3グレード、ビッカース硬度が200未満)に助剤としてステアリン酸を添加して、メカニカルミリングを行わずに放電プラズマ焼結法により焼結した焼結体、及び4時間及び8時間にわたりメカニカルミリングを行った後に放電プラズマ焼結した焼結体のビッカース硬度を比較すると、4時間、及び8時間焼結を行った各焼結体のビッカース硬度は高い結果を得ることができることを見出した。
 このことから、純チタンでは焼結する前にステアリン酸を添加してメカニカルミリングを行い、放電プラズマ焼結を行って得られる焼結体では、焼結体の硬度を向上させることができることがわかった。硬度を向上させるにしても、硬度が高いとして知られているチタン合金Ti-6Al-4Vのビッカース硬度をはるかに超える結果である(1250HV(10gの純チタンにステアリン酸0.50gを添加した場合)、600HV(10gの純チタンにステアリン酸0.25を添加した場合))。なお、チタン合金Ti-6Al-4Vのビッカース硬度は320HVである(以上は図3に示されている。)。
 本発明で得られる純チタンの焼結体は、ステリン酸を含む微粉状の純チタンを得た後、引き続き放電プラズマ焼結法を行い、比較的低温及び短時間で固化成形を行ない、この加工の際の加熱によって純チタンとステアリン酸が反応し、反応生成物であるセラミックス粒子を含む新たなチタン構造材料を得ているものである。
 3.本発明は、以下の通りである。
(1)粉状のJIS3グレードの純チタンにステアリン酸を添加した後、メカニカルミリングし、ビッカース硬度が330から530HVであり、表面にステアリン酸が付着した微粉状Tiの集合体とした後、これを放電プラズマ焼結することにより得られることを特徴とするビッカース硬度が600から1250HVであり、セラミックス粒子を含む微粉状Ti粉末焼結体。
(2)粉状のJIS3グレードの純チタンにステアリン酸を添加した後、メカニカルミリングし、ビッカース硬度が330から530HVであり、表面にステアリン酸が付着した微粉状Tiの集合体とした後、これを放電プラズマ焼結することを特徴とするビッカース硬度が600から1250HVであり、セラミックス粒子を含む微粉状Ti粉末焼結体の製造方法。
 本発明によれば、粉状のJIS3グレードの純チタンにステアリン酸を添加した後、メカニカルミリングすることによりビッカース硬度が330から530HVであり、表面にステアリン酸が付着した微粉状Tiの集合体とした後、放電プラズマ焼結することによりビッカース硬度が600から1250HVである微粉状Ti粉末焼結体を得ることができる。また、粉状のJIS3グレードの純チタンにステアリン酸を添加した後、メカニカルミリングし、ビッカース硬度が330から530HVであり、表面にステアリン酸が付着した微粉状Tiの集合体とした後、放電プラズマ焼結することによりビッカース硬度が600から1250HVであり、セラミックス粒子を含む微粉状Ti粉末焼結体を製造することができる。
チタン粉末をメカニカルミリングすることにより、硬度を向上させることができることを示す図である。 本発明で用いる放電プラズマ焼結装置を示す図である。 メカニカルミリングを行わない場合、4時間のメカニカリミリングを行った場合及び8時間のメカニカリミリングを行った場合の各焼結体のビッカース硬度を示す図である。
 本発明は、粉状のJIS3グレードの純チタンにステアリン酸を添加した後、メカニカルミリングし、ビッカース硬度が330から530HVであり、表面にステアリン酸が付着した微粉状Tiの集合体とした後、これを放電プラズマ焼結することにより得られる、ビッカース硬度が600から1250HVであり、セラミックス粒子を含む微粉状Ti粉末焼結体、および焼結体の製造方法である。
 本発明で用いた原料物質である被加工材は粉状の純チタンである。粉状の純チタンの純度は99.5%,平均粒子径は44μm以下であった。分析値は表1に示すとおりである。これは一般にJIS3グレードと呼ばれている。
 本発明の原料となるチタンは、不可避的不純物をチタンである。
 JIS3グレードのチタンの分析値は以下の表1に示すとおりである。
Figure JPOXMLDOC01-appb-T000001
 被加工材であるチタンはステアリン酸と共に処理される。ステアリン酸は高級脂肪酸として知られており、常温で固体状である。
 チタン微粉末とステアリン酸の混合割合は、(90~98重量%)対(10~2重量%)(合計100重量%)である。
 これらを合わせるだけでは、ステアリン酸やチタン微粉末が偏在することが観察される。この場合には十分に混ぜ合わせることにより、均一に混ざり合っている状態とすることが必要である。
 粉状のJIS3グレードの純チタンとステアリン酸を撹拌混合粉砕処理手段により微粉状のチタン中にステアリン酸を均一に分散させて微細状のチタンを製造する。
 メカニカルミリングは、遊星ボールミル、振動ボールミル、高速回転ボールミルなどを用いた機械的な手段による微粉末化すると同時にメカノケミカル反応させる処理である。なお、本発明ではアメリカのSPEX社で8000型振動型のボールミルを採用した。操作ではカタログ記載の回転数である1425rpmを採用した。この条件は通常の操作条件である。他の機種を用いる場合にも各機種の通常の操作条件により行うことができる。
 メカニカルミリングを行う時間は4時間から8時間行ってその効果を確認している。上限いついては8時間を越える処理を行うことができる。
 ステンレス製のポットに、前記のチタンの微粒子とステアリン酸と、ステンレス球を入れ、高純度アルゴンガスを注入後、密閉する。
 メカニカルミリングにより微粉化するとともに組成を均一にすることができる。
 メカニカルミリングを行った時間当たりの、得られた微粉末のビッカース硬度を測定した結果を図1は示している。
 ステアリン酸はTi粉末10gに対して、ステアリン酸0.25gを添加した場合(図中、○で示す。PCA0.25gとして表示している。)。同じく、ステアリン酸0.50gを添加した場合のビッカース硬度を示している(図中、△で示す。PCA0.50gとして表示している。)。
 4時間処理した場合の結果は、ステアリン酸0.25gを用いた場合ではビッカース硬度は上昇することがわかる。又、ステアリン酸0.50gを添加した場合のビッカース硬度は減少する。
 8時間処理した場合の結果は、ステアリン酸0.25gを用いた場合では
硬度を有する合金として知られるTi-6Al-4Vを超えるビッカース硬度が530HVのものが得られる。
 ステアリン酸0.50gを用いた場合では、硬度を有する合金として知られるTi-6Al-4Vを超えるビッカース硬度が330HVのものが得られる。
 上記のようにして得られた微粉状Ti粉末を放電プラズマ焼結法により微粉状Ti粉末焼結体を製造するための装置を図2に示す。
 微粉状Ti粉末(ステアリン酸を含む)1を成形用型21内に充填し、放電プラズマ焼結装置にセットした後、放電プラズマ焼結法により焼結する。
 放電プラズマ焼結装置は、真空チャンバー20と、上下一対の加圧ラム24、25と、パルス電圧を発生させる焼結用電源32と、加圧ラム24、25を昇降駆動する油圧式の加圧駆動機構33と、これらを制御する制御部31とを有している。
 粉状のJIS3グレードの純チタン粉末(ステアリン酸を含む)1を装入した成形用型21は、真空チャンバー20内の加圧ラム24、25間にセットされる。真空チャンバー20内を真空ポンプ22により脱気し、真空状態(減圧状)とする。又は真空チャンバー20内を不活性ガスによる雰囲気とする。その後焼結を行う。
 制御部31は、成形用型21に設置された図示しない温度センサー(熱電対)により検出される材料温度が予め設定された昇温曲線と一致するように焼結用電源32の出力を制御する。また、制御部31は、加圧駆動機構33及び真空ポンプ22の駆動を制御する。
 上下一対の第1の押圧子26、第2の押圧子27は、各々加圧ラム24及び25に固定されており、加圧ラム24、25内に設けられた給電端子(図示せず)により焼結用電源32と電気的に接続されている。加圧駆動機構33の作動により、加圧ラム24、25を互いに接近する方向に移動し、これらに固定された第1の押圧子26、第2の押圧子27により純チタン粉末1を圧縮して圧縮体を得る。
 純チタン粉末1を圧縮する際には、純チタン粉末1と第1の押圧子26及び第2の押圧子27との間には、各々断熱材28、29を介在させることが好ましい。これにより、電流が第1の押圧子26又は押圧子27に集中した場合、加熱された状態にある第1の押圧子26又は第2の押圧子27から微粉状Ti圧粉体への熱の拡散が遮断され、局所的な加熱および高温化を防止する。したがって、微粉状Ti圧粉体の焼結時の温度が均一化され、均質で高品位な焼結体を得ることができる。
 さらに、断熱材28及び断熱材29と、純チタン粉末1および第1の押圧子26、第2の押圧子27の間には各々カーボンシート(図示せず)を介在させることが好ましい。
 放電プラズマ焼結は、第1の押圧子26、第2の押圧子27及び成形用型21を通してパルス電圧を印加し、圧縮通電系を加熱する。焼結系の温度が所定温度に達した後、この温度で一定時間保持し、複合体を形成する。
 焼結温度としては特に限定されないが、焼結温度は700Kから1200Kの範囲の温度が採用される。本発明の実施例では1073Kまで焼結温度を上げて焼結を行った。焼結温度1200Kを超える場合には焼結温度が高すぎることがあり、過焼結状態となって分解する、又は複合体にクラック等が発生することにより強度が著しく低下するおそれがある。700K未満である場合には焼結がうまく進行しない場合がある。
 また、焼結時間は20分より1時間を超える範囲、およそ30分程度は必要とされる。そのときの圧力は40から60MPaの範囲であり、本発明の実施例では49MPaで行った。
 具体的にはボールミル中で4時間又8時間処理したチタン粉末を黒鉛型に装入し、1073Kまで焼結温度を上げ、49MPaで30分間保持してチタン焼結体(SPS材)を作製した。
 放電プラズマ焼結法は、圧粉体粒子間隙に直接パルス状の電気エネルギーを投入し、火花放電により瞬時に発生する高温プラズマの高エネルギーを熱拡散・電界拡散等へ効果的に応用することで、ホットプレス法等に比べ、昇温、保持時間を含め、数分~数十分の短時間で焼結あるいは焼結接合を可能とする。また、放電点の分散による均等加熱により、均質で接合強度に優れた高品位の複合体を容易かつ高効率で製造することができる。
 放電プラズマ焼結法によれば、材料の充填、必要に応じて行う圧粉体化及び焼結の各工程を1つの成形用型21内で行うことが可能であり、製造コストの低減を図ることも可能である。
 上記の焼結温度で所定時間保持した後に、放置冷却し、成形用型21から微粉状Ti粉末焼結体を取出す。
 放置冷却する際には、複合体の加圧状態を解除して放置冷却することが好ましい。通常、焼結後、焼結体は加圧状態で成形パンチ等を介して水冷することにより行う。
 図3は、前記放電プラズマ焼結装置を用いて、粉状のJIS3グレードの純チタンに、メカニカルミリングを行うことなく(メカニカルミリング0時間)、又はメカニカルミリングを4時間行った後に(メカニカルミリング4時間)、又はメカニカルミリングを8時間行った後に(メカニカルミリング8時間)、放電プラズマ焼結した場合の放電プラズマ焼結体のビッカース硬度(粉状のJIS3グレードの純チタンにステアリン酸を0.25g添加した場合(○で示す。PCA0.25gと表示)、粉状のJIS3グレードの純チタンに、ステアリン酸を0.50g添加した場合(△で示す。PCA0.25gと表示)を示している。前記のメカニカルミリングを行うことなく(メカニカルミリング0時間)の放電プラズマ焼結した場合には、メカニカルミリングを行っていないのでステアリン酸を存在しない状態で焼結を行った結果である。
(  )内の数値は、相対密度%を表している。
 上記の図3では、カニカルミリングをしてない粉末を、放電プラズマ焼結で固化成形した材料の硬さは268HVである。
この場合、メカニカルミリングしてないので、ステアリン酸は添加していない。
  純チタン10gに対してステアリン酸0.25gを添加し、メカニカルミリングを4時間行なった後、放電プラズマ焼結で固化成形した材料の硬度は700HVである。
  純チタン10gに対してステアリン酸0.50gを添加し、メカニカルミリングを4時間行なった後、放電プラズマ焼結で固化成形した材料の硬度は740HVである。
  純チタン10gに対してステアリン酸0.25gを添加し、メカニカルミリングを8時間行なった後、放電プラズマ焼結で固化成形した材料の硬度は600HVである。
  純チタン10gに対してステアリン酸0.50gを添加し、 メカニカルミリングを8時間行なった後、放電プラズマ焼結で固化成形した材料の硬度は1250HVである。
 上記の結果によれば、4時間メカニカルミリングすることは有効である結果を示している。8時間メカニカルミリングすることは、ステアリン酸0.50gを添加した場合には、きわめて有効な結果を示している。
 以上の結果、本発明者らは粉状の純チタンの焼結体を得る場合には、予めステリン酸の存在下にメカニカルミリングを行った後に焼結を行うと、ビッカース硬度が高い焼結体を得ることができることを見出した。本発明で得られる純チタンの焼結体は、ステリン酸を含む微粉状の純チタンを得た後、引き続き放電プラズマ焼結法を行い、比較的低温及び短時間で固化成形を行ない、この加工の際の加熱によって純チタンとステアリン酸が反応し、反応生成物であるセラミックス粒子を含む新たなチタン構造材料を得ているものである。
 硬度が高い合金として知られているTi-6Al-4Vの硬度をはるかに凌ぐ結果であった。
 以下に本発明の具体例を実施例として示す。本発明はこの実施例により限定されるものではない。
 本発明で得られる微粉状Ti及びセラミックス粒子を含む微粉状Ti粉末焼結体であるビッカース硬度の測定法は以下の通りである。
 ビッカース硬度の測定法は、固化成形した材料の表面を研磨後、ビッカース硬度計を用いて、試験荷重1kg、保持時間15秒、測定を7回行い、それらの平均値を求めた。
 原料物質及び被加工材の調整について
 純チタンは、工業用レベルの純度である純チタン粉末(JIS3グレード ビッカース硬度が200未満)を用いる。
 用いた純チタン粉末の純度は99.5%,平均粒子径は44μm以下であった。
 ステアリン酸は室温で固体状であり、(関東化学株式会社製)のものを使用した。
 メカニカルミリング工程は以下の通りである。
 ステアリン酸はTi粉末10gに対して、ステアリン酸0.25g、同じく、ステアリン酸0.50gを添加した場合の実験を行った。
 両者を4時間及び8時間ボールミル中でメカニカルミリングした粉末の硬さを図1に示した。
 8時間、カニカルミリングした微細粉末のビッカース硬度が330(ステアリン酸0.50g場合の結果については△で示す)、及び530HV(ステアリン酸0.25g場合の結果については○で示す)であった。
 いずれも硬度が高い合金として知られるTi-6Al-4Vを超える結果になっている。
 メカニカルミリングの工程及びその後の焼結処理を行う工程は以下の通りである。また、焼結体の硬度の測定結果は以下の通りであり、図3に示した。
 (1)メカニカルミリング工程
 ステアリン酸はTi粉末10gに対して、ステアリン酸0.25g、同じくステアリン酸0.50gを添加した。両者を4時間及び8時間にボールミル中でメカニカルミリングした。
 (2)焼結処理の工程
 前工程で得られたメカニカルミリング生成物を前記条件にしたがって焼結処理を行った。得られた焼結体の硬度は以下の通りであった。
 4時間メカニカルミリングした微粉末を焼結した結果の硬度は以下の通り。700HV(ステアリン酸0.25gを添加した場合)、740HV(ステアリン酸0.50添加した場合)であった。
 8時間メカニカルミリングした微粉末を焼結した結果の硬度は以下の通り。600HV(ステアリン酸0.25g添加した場合)、1250HV(ステアリン酸を0.50添加した場合)であった。
 いずれも、Ti-Al-4Vの硬度を超える結果であった。
 比較例には、メカニカルミリングを行わずに焼結処理した場合の焼結体の硬度は268HVであった。
 これらの結果を対比すると、メカニカルミリングを行ったあとに焼結を行って得られる焼結体のビッカース硬度は極めて高くなることを確認できた。
 図中( )内は相対密度を表している。
符号の簡単な説明
 1:微粉状Ti粉末(ステアリン酸を含む)
 20:真空チャンバー
 21:成形用型
 22:真空ポンプ
 24:加圧ラム
 25:加圧ラム
 26:第1の押圧子
 27:第2の押圧子
 28:断熱材
 29:断熱材
 31:制御部
 32:焼結用電源
 33:加圧駆動機構

Claims (2)

  1.  粉状のJIS3グレードの純チタンにステアリン酸を添加した後、メカニカルミリングし、ビッカース硬度が330から530HVであり、表面にステアリン酸が付着した微粉状Tiの集合体とした後、これを放電プラズマ焼結することにより得られることを特徴とするビッカース硬度が600から1250HVであり、セラミックス粒子を含む微粉状Ti粉末焼結体。
  2.  粉状のJIS3グレードの純チタンにステアリン酸を添加した後、メカニカルミリングし、ビッカース硬度が330から530HVであり、表面にステアリン酸が付着した微粉状Tiの集合体とした後、これを放電プラズマ焼結することを特徴とするビッカース硬度が600から1250HVであり、セラミックス粒子を含む微粉状Ti粉末焼結体の製造方法。
     
PCT/JP2010/003192 2009-05-12 2010-05-11 高比強度を有する純チタン構造材料 WO2010131459A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009115661A JP2012149275A (ja) 2009-05-12 2009-05-12 高比強度を有する純チタン構造材料
JP2009-115661 2009-05-12

Publications (1)

Publication Number Publication Date
WO2010131459A1 true WO2010131459A1 (ja) 2010-11-18

Family

ID=43084844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003192 WO2010131459A1 (ja) 2009-05-12 2010-05-11 高比強度を有する純チタン構造材料

Country Status (2)

Country Link
JP (1) JP2012149275A (ja)
WO (1) WO2010131459A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007515551A (ja) * 2003-11-25 2007-06-14 ザ・ボーイング・カンパニー 超微細サブミクロン粒子チタニウムおよびチタニウム合金製品を製造する方法、およびそれによって製造された製品

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007515551A (ja) * 2003-11-25 2007-06-14 ザ・ボーイング・カンパニー 超微細サブミクロン粒子チタニウムおよびチタニウム合金製品を製造する方法、およびそれによって製造された製品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKUYA ONO ET AL.: "Fabrication of high strength pure titanium by mechanical milling and spark plasma sintering and its properties", THE JAPAN INSTITUTE OF LIGHT METALS DAI 116 KAI SHUNKI TAIKAI KOEN GAIYO, vol. 116, 21 April 2009 (2009-04-21), pages 237 - 238 *

Also Published As

Publication number Publication date
JP2012149275A (ja) 2012-08-09

Similar Documents

Publication Publication Date Title
CN108103381B (zh) 一种高强度FeCoNiCrMn高熵合金及其制备方法
JP5889786B2 (ja) 銅粉、クロム粉または鉄粉を配合したチタン合金混合粉およびその製造方法ならびにチタン合金材の製造方法
JPS5925003B2 (ja) チタンを主体とする焼結性合金粉末の製造法
WO2019085183A1 (zh) 制造钛及钛合金冶金制品的方法
EP0244949B1 (en) Manufacturing of a stable carbide-containing aluminium alloy by mechanical alloying
JP4989636B2 (ja) 高強度極微細ナノ構造のアルミニウム及び窒化アルミニウム又はアルミニウム合金及び窒化アルミニウム複合材料の製造方法
WO2011152359A1 (ja) セラミックスを含有したチタン合金複合粉およびその製造方法、これを用いた緻密化されたチタン合金材およびその製造方法
CN113088752B (zh) 一种铍铜母合金的制备方法
CN113088753B (zh) 一种采用真空自耗电弧熔炼制备铍铜母合金的方法
JP2008280570A (ja) MoNb系焼結スパッタリングターゲット材の製造方法
Balog et al. Industrially fabricated in-situ Al-AlN metal matrix composites (part A): Processing, thermal stability, and microstructure
GB2575005A (en) A process and method for producing titanium and titanium alloy billets, spherical and non-spherical powder
US10174407B2 (en) Oxygen-enriched Ti-6AI-4V alloy and process for manufacture
XIAO et al. Microstructures and mechanical properties of TiAl alloy prepared by spark plasma sintering
JP5896968B2 (ja) 炭化ジルコニウムのインゴット及び粉末の製造方法
RU2485195C1 (ru) Способ получения металломатричного композита с наноразмерными компонентами
US20090311123A1 (en) Method for producing metal alloy and intermetallic products
Ružić et al. Synthesis and characterization of Cu-ZrB2 alloy produced by PM techniques
WO2010131459A1 (ja) 高比強度を有する純チタン構造材料
JP3125851B2 (ja) アルミナ分散強化銅の製造法
KR20090132799A (ko) 복합 분말야금 공정을 이용한 마그네슘 합금의 제조방법
JP4123388B2 (ja) 亜鉛アンチモン化合物焼結体
JP3704556B2 (ja) 亜鉛アンチモン化合物の製造法
JPWO2020166380A1 (ja) スパッタリングターゲット材
MXPA04007104A (es) Productos laminados de pulvimetalurgia de metal refractario de tamano de grano estabilizado.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10774718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP