WO2010131327A1 - Equipment for the desulfurization of flue gas with seawater and process for treatment of the seawater used in the desufurization - Google Patents

Equipment for the desulfurization of flue gas with seawater and process for treatment of the seawater used in the desufurization Download PDF

Info

Publication number
WO2010131327A1
WO2010131327A1 PCT/JP2009/058780 JP2009058780W WO2010131327A1 WO 2010131327 A1 WO2010131327 A1 WO 2010131327A1 JP 2009058780 W JP2009058780 W JP 2009058780W WO 2010131327 A1 WO2010131327 A1 WO 2010131327A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
flue gas
gas desulfurization
mixing tank
weir
Prior art date
Application number
PCT/JP2009/058780
Other languages
French (fr)
Japanese (ja)
Inventor
知雄 秋山
進 沖野
英次 越智
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to MYPI2011001306A priority Critical patent/MY170614A/en
Priority to PCT/JP2009/058780 priority patent/WO2010131327A1/en
Priority to KR1020117007344A priority patent/KR101269707B1/en
Priority to SA109300664A priority patent/SA109300664B1/en
Publication of WO2010131327A1 publication Critical patent/WO2010131327A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/502Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific solution or suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/304Alkali metal compounds of sodium
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents

Definitions

  • the present invention relates to a seawater flue gas desulfurization apparatus, a seawater flue gas desulfurization system, and a method for treating desulfurized seawater, which desulfurize sulfur such as oxide sulfur in an exhaust gas from an industrial combustion facility using seawater.
  • seawater flue gas desulfurization device In a normal thermal power plant, since a large amount of seawater is used as cooling water in a boiler condenser, a part of the seawater effluent discharged from the condenser and heated is supplied to a seawater flue gas desulfurization device. The SO 2 in the exhaust gas is removed by using it as an absorbing liquid for desulfurization of seawater flue gas.
  • FIG. 9 An example of a flow diagram of a thermal power generation system provided with a seawater flue gas desulfurization device using conventional seawater is shown in FIG.
  • a thermal power generation system 100 using a conventional seawater flue gas desulfurization apparatus uses a preheated air 101 to burn with a burner (not shown), and is heat-exchanged by the boiler 102 and discharged.
  • a dust collector 104 that removes soot and dust in the exhaust gas 103, and sulfur-absorbing seawater 106 containing a high concentration of sulfur produced by desulfurizing and desulfurizing sulfur in the exhaust gas 103 using seawater 105.
  • a seawater flue gas desulfurization apparatus 107A for performing a water quality recovery process.
  • the seawater flue gas desulfurization apparatus 107A has a high concentration of a flue gas desulfurization absorption tower 108 that collects SO 2 in the exhaust gas 103 as sulfurous acid (H 2 SO 3 ), and a high concentration of sulfur content discharged from the flue gas desulfurization absorption tower 108. And an oxidation tank 109 that performs a water quality recovery process of the sulfur-absorbing seawater 106 contained in the water (Patent Documents 1 and 2).
  • Exhaust gas 103 generated by combustion in the boiler 102 is fed to a flue gas denitration device (not shown) and denitrated, and then fed to a dust collector 104 to remove the dust in the exhaust gas 103. Then, the exhaust gas 103 removed by the dust collector 104 is supplied into the exhaust gas desulfurization device 108 of the seawater exhaust gas desulfurization device 107A by the induction fan 110.
  • the sulfur content in the exhaust gas 103 is desulfurized using a part of the seawater 105A for absorption out of the seawater 105 pumped up from the sea 111. That is, the exhaust gas 103 produced by burning fossil fuel contains a sulfur content that is sulfur oxide (SO x ) in the form of SO 2 or the like.
  • SO x sulfur oxide
  • an absorption seawater 105A of the flue gas desulfurization absorber tower 108 is supplied via the exhaust gas 103 and seawater supply line 112 by gas-liquid contact, to absorb SO 2 in the flue gas 103 in the absorber seawater 105A .
  • the purified gas 113 desulfurized by the flue gas desulfurization absorption tower 108 passes through the purified gas discharge passage 114 and is released into the atmosphere from the chimney 115.
  • the reaction shown in the following formula occurs by the contact between the seawater 105A and the exhaust gas 103.
  • the gas-liquid contact between the seawater 105A and the exhaust gas 103 absorbs SO 2 in the exhaust gas 103 to generate H 2 SO 3 , which dissociates in the seawater 105A, so that the seawater 105A and the exhaust gas 103 are brought into gas-liquid contact.
  • the concentration of HSO 3 ⁇ increases, and H + is released, so that the pH decreases.
  • the pH of the sulfur-absorbing seawater 106 produced by absorbing a large amount of sulfur is about 3-6.
  • the sulfur-absorbing seawater 106 discharged from the flue gas desulfurization absorption tower 108 needs to have its pH raised to 6.0 or higher before being released or reused into the sea 111. Therefore, the sulfur-absorbing seawater 106 containing sulfur is mixed with part of the seawater 105 supplied by the secondary seawater supply line 116 in the oxidation tank 109 as dilution seawater 105B, and at the same time from the oxidizing air blower 117. Air 118 is supplied into the oxidation tank 109 through the nozzle 120 of the diffuser pipe 119 and is brought into gas-liquid contact with the sulfur-absorbing seawater to cause a reaction as shown in the following formula.
  • the sulfur-absorbing seawater 106 is discharged from a condenser (not shown) in order to prevent the diffusion of SO 2 and improve the pH in the oxidation tank 109.
  • the mixture is diluted with the seawater 105 and the oxidation tank 109 and oxidized and aerated in the oxidation tank 109 to oxidize and detoxify the sulfurous acid, increase the dissolved oxygen concentration, decarboxylate, and absorb the sulfur content.
  • the pH of the seawater drainage 122 is discharged so as to satisfy the drainage standard (usually pH 6.0 or higher) (Patent Documents 1 and 2).
  • FIG. 10 is a diagram simply showing another configuration of the seawater flue gas desulfurization apparatus applied to the conventional seawater desulfurization system.
  • another conventional seawater flue gas desulfurization apparatus 107B includes a flue gas desulfurization absorption tower 131 for desulfurizing SO 2 in the exhaust gas 103 to sulfurous acid (H 2 SO 3 ), and a flue gas desulfurization absorption tower.
  • seawater flue gas desulfurization apparatus 107 ⁇ / b> B a part of the seawater 105 ⁇ / b> A for absorption in the seawater 105 supplied via the seawater supply line 112 in the flue gas desulfurization absorption tower 131 is brought into gas-liquid contact with the exhaust gas 103.
  • SO 2 is absorbed by the absorbing seawater 105A.
  • the sulfur-absorbing seawater 106 ⁇ / b> A that has absorbed the sulfur in the flue gas desulfurization absorption tower 131 is mixed with the dilution seawater 105 ⁇ / b> B supplied to the dilution mixing tank 132 provided in the lower part of the flue gas desulfurization absorption tower 131.
  • the sulfur-absorbing seawater 106B mixed and diluted with the dilution seawater 105B is supplied to the oxidation tank 133 provided on the downstream side of the dilution mixing tank 132, and the air 118 is diffused from the oxidation air blower 117. After being supplied through the oxidized air nozzle 120 to recover the water quality, the water is discharged.
  • the flue gas desulfurization absorption tower 131 is installed on the upper side of the dilution mixing tank 132 which becomes a drainage channel of a condenser (not shown) through which the seawater 105 used for dilution flows.
  • the sulfur-absorbing seawater 106A and the seawater 105B supplied to the dilution and mixing tank 132 may not be sufficiently mixed due to a temperature difference between them. There's a problem.
  • the present invention prevents the SO 2 recovered in seawater from being diffused when oxidizing seawater used for desulfurization, and is a safe and highly reliable seawater flue gas desulfurization apparatus. It is another object of the present invention to provide a method for treating desulfurized seawater.
  • a first invention of the present invention for solving the above-mentioned problems is provided integrally with a flue gas desulfurization absorption tower that purifies sulfur content in exhaust gas by contacting with seawater, and under the flue gas desulfurization absorption tower.
  • the sulfur content absorption seawater generated by bringing the sulfur content in the exhaust gas into contact with the seawater and desulfurizing the seawater is mixed and diluted with seawater fed into the main body.
  • the seawater flue gas desulfurization apparatus has a gas retention part including a first weir whose end is buried in the water surface.
  • the length L1 from the side wall of the flue gas desulfurization absorption tower to the inner wall of the first weir is any one of the following formulas (1) and (2): It exists in the seawater flue gas desulfurization apparatus characterized by satisfy
  • d G1 the opening height from the first weir at the outlet of the gas retention section to the bottom of the dilution mixing tank
  • ⁇ 1 the residence time of seawater in the gas retention section
  • U t (dp) the seawater Is the final rising speed of the bubble group having the bubble diameter dp
  • Cc the SO 2 environmental standard concentration
  • C 0 the SO 2 concentration at the inlet of the flue gas desulfurization absorption tower
  • Kg is the gas-liquid of the bubble an overall mass transfer coefficient of the SO 2 gas at the interface
  • dp is the bubble diameter
  • U L is the outlet flow rate of the bottom of the dilution mixing tank.
  • the terminal rising speed of a single bubble in the static fluid can be obtained from the following Stokes equation (4).
  • U t g ⁇ dp 2 ⁇ ( ⁇ L ⁇ G ) / 18 ⁇ (4)
  • g the gravitational acceleration
  • dp the bubble diameter
  • mu the viscosity of sea water.
  • the bubble diameter exceeds 1 mm, the bubble shape does not become spherical due to friction with the fluid, and the rising speed of the bubble group differs from the behavior of a single bubble, so it does not exactly match, but the bubble in seawater
  • the diameter is usually about 0.5 to 1.0 mm, rarely exceeding 5.0 mm at most, and the terminal ascending rate in the seawater is 200 to 300 mm / s, with a maximum of 400 mm / s. It is about s.
  • the third invention is the seawater flue gas desulfurization apparatus according to the first invention, wherein a second weir is provided at the bottom of the dilution mixing tank.
  • the length L2 from the side wall of the flue gas desulfurization absorption tower to the inner wall of the second weir is any one of the following formulas (5) and (6): It exists in the seawater flue gas desulfurization apparatus characterized by satisfy
  • Cc is the SO 2 environmental standard concentration
  • C 0 is the SO 2 concentration at the inlet of the flue gas desulfurization absorption tower
  • Kg is the overall mass transfer coefficient of SO 2 gas at the gas-liquid interface of the bubbles
  • dp is the bubble diameter
  • U L is the outlet flow rate of the bottom of the dilution mixing tank
  • the d G2 is the height of the liquid surface between the seawater liquid surface and the second weir.
  • the fifth invention is the seawater flue gas desulfurization apparatus according to the first invention, wherein a third weir is provided inside the gas retention part.
  • the length L3 from the outer wall of the third weir to the inner wall of the first weir is any one of the following formulas (8) and (9) and the following formula: (10) It is in the seawater flue gas desulfurization apparatus characterized by satisfy
  • d G1 is the opening height from the first weir at the outlet of the gas retention section to the bottom of the dilution mixing tank
  • ⁇ 3 is the residence time of seawater in the gas retention section
  • U t (dp) is the seawater Is the final rising speed of the bubble group having the bubble diameter dp
  • Cc is the SO 2 environmental standard concentration
  • C 0 is the SO 2 concentration at the inlet of the flue gas desulfurization absorption tower
  • Kg is the gas-liquid of the bubble an overall mass transfer coefficient of the SO 2 gas at the interface
  • dp is the bubble diameter
  • U L is the outlet flow rate of the bottom of the dilution mixing tank
  • D is a liquid depth of the sea water dilution mixing unit
  • the seventh invention is characterized in that, in the first invention, the second weir is provided at the bottom of the dilution mixing tank, and the third weir is provided inside the gas retention part. Located in smoke desulfurization equipment.
  • the length L4 from the outer wall of the third weir to the inner wall of the second weir is any one of the following formulas (11) and (12) and the following formula: (13) It is in the seawater flue gas desulfurization apparatus characterized by satisfy
  • Cc is the SO 2 environmental standard concentration
  • C 0 is the SO 2 concentration at the inlet of the flue gas desulfurization absorption tower
  • Kg is the overall mass transfer coefficient of SO 2 gas at the gas-liquid interface of the bubbles
  • dp is the bubble diameter
  • U L is the outlet flow rate of the bottom of the dilution mixing tank
  • d G1 is the opening height to the bottom of the dilution mixing tank from the first weir
  • d G2 is a sea liquid surface
  • D G3 is the opening height from the third weir to the bottom of the diluting mixing tank
  • MIN (d G1 , d G2 , d G3 ) is: It is the minimum value of d G1 , d G2 , and d G3 .
  • the third weir communicates the space between the gas retention part and the seawater and the flue gas desulfurization absorption tower. It exists in the seawater flue gas desulfurization apparatus characterized by having.
  • a tenth aspect of the invention is the seawater flue gas desulfurization apparatus according to any one of the first to ninth aspects, wherein the seawater is discharged from a condenser.
  • the sulfur component in seawater mixed with the sulfur-absorbing seawater in the dilution / mixing tank is oxidized downstream of the dilution / mixing tank.
  • a seawater flue gas desulfurization apparatus characterized by having an oxidation tank that decarboxylates and recovers water quality.
  • the twelfth invention uses a boiler, exhaust gas discharged from the boiler as a heat source for generating steam, a steam turbine that drives a generator using the generated steam, and water condensed in the steam turbine.
  • a condenser that collects and circulates, a flue gas denitration device that denitrates exhaust gas discharged from the boiler, a dust collector that removes soot in the exhaust gas, and A seawater flue gas desulfurization apparatus and a chimney for discharging the purified gas desulfurized by the flue gas desulfurization apparatus to the outside.
  • the thirteenth invention is to prevent the SO 2 gas contained in the seawater used for the desulfurization using the seawater flue gas desulfurization apparatus according to any one of the first to eleventh inventions from being diffused to the outside. In the processing method of the desulfurization seawater characterized by these.
  • the flue gas desulfurization absorption tower for purifying sulfur in the exhaust gas by contacting with seawater and the flue gas desulfurization absorption tower are integrally provided below the flue gas desulfurization absorption tower, Gas retention provided with a lid having a certain length extending so as to cover the dilution / mixing tank at a connecting portion with the dilution / mixing tank for mixing the sulfur-absorbing seawater with the seawater fed into the main body And has a first weir suspended from the back side of the lid and embedded in the water surface of the dilution mixing tank, so that the sulfur-absorbing seawater is the flue gas desulfurization.
  • Bubbles containing gas having a high SO 2 concentration in the sulfur-absorbing seawater trapped in the seawater by flowing down from an absorption tower in the gas retention part formed by the lid part and the first weir It is possible to prevent the SO 2 gas from leaking outside by being diffused into the space.
  • FIG. 1 is a schematic diagram showing the configuration of a seawater flue gas desulfurization apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a schematic view schematically showing a part of the configuration of the seawater flue gas desulfurization apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a schematic view schematically showing a part of the configuration of a conventional seawater flue gas desulfurization apparatus.
  • FIG. 4 is a schematic view schematically showing a part of the configuration of the seawater flue gas desulfurization apparatus according to the second embodiment of the present invention.
  • FIG. 5 is a schematic view schematically showing a part of the configuration of the seawater flue gas desulfurization apparatus according to the third embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing the configuration of a seawater flue gas desulfurization apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a schematic view schematically showing a part of the configuration of the seawater flue
  • FIG. 6 is a partially enlarged view of the configuration of the seawater flue gas desulfurization apparatus according to the third embodiment of the present invention.
  • FIG. 7 is a schematic view schematically showing a part of the configuration of the seawater flue gas desulfurization apparatus according to the fourth embodiment of the present invention.
  • FIG. 8 is a conceptual diagram showing a seawater desulfurization system.
  • FIG. 9 is a diagram illustrating an example of a flow diagram of a thermal power generation system including a seawater flue gas desulfurization device using conventional seawater.
  • FIG. 10 is a diagram simply showing another configuration of the seawater flue gas desulfurization apparatus applied to the conventional seawater desulfurization system.
  • FIG. 1 is a schematic view showing the configuration of the seawater flue gas desulfurization apparatus according to the first embodiment of the present invention
  • FIG. 2 is a simplified diagram of a part of the configuration of the seawater flue gas desulfurization apparatus shown in FIG. FIG.
  • the first seawater flue gas desulfurization apparatus 10-1 removes the sulfur content in the exhaust gas 11 by bringing it into contact with a portion of the seawater 12 for absorbing seawater 12 ⁇ / b> A.
  • a smoke desulfurization absorption tower 13 is provided integrally with the flue gas desulfurization absorption tower 13, and the sulfur content in the exhaust gas 11 is brought into contact with the absorbing sea water 12A in the flue gas desulfurization absorption tower 13 to desulfurize the sea water.
  • the sulfur-absorbing seawater 14A flowing down in the flue gas desulfurization absorption tower 13 produced by the above-mentioned is provided with the dilution seawater 12B fed into the main body 15 and the dilution mixing tank 16 for mixing and diluting, and the flue gas desulfurization absorption tower A lid 18 extending along the longitudinal direction of the dilution / mixing tank 16 so as to cover the dilution / mixing tank 16 on the lower end side of the side wall 17 of the thirteen;
  • the first end 19a is buried in the sea water surface Those having a gas retaining portion 20A that includes a 19.
  • reference numeral 16 a is the bottom of the dilution / mixing tank 16.
  • the seawater 12 is supplied to the flue gas desulfurization absorption tower 13 and used for purification of the exhaust gas 11 as the absorption seawater 12A, and is supplied to the flue gas desulfurization absorption tower 13 for dilution.
  • the seawater used for the dilution is designated as seawater 12B for dilution.
  • the seawater in which the dilution seawater 12B and the sulfur-absorbing seawater 14A flowing down in the flue-gas desulfurization absorption tower 13 are mixed in the flue gas desulfurization absorption tower 13 is referred to as sulfur-absorption seawater 14B.
  • Absorption seawater 12A used in the flue gas desulfurization absorption tower 13 is a part of the seawater 12 extracted by the pump 24 out of the seawater 12 pumped from the sea 21 to the seawater supply line 23 using the pump 22. Absorption seawater 12A is fed to the flue gas desulfurization absorption tower 13. Moreover, although the seawater 12 uses the seawater pumped directly from the sea 21 by the pump 22, the present invention is not limited to this, and the drainage of the seawater 12 discharged from a condenser (not shown) is used. You may make it use.
  • the exhaust gas 11 and the absorbing seawater 12 ⁇ / b> A are brought into gas-liquid contact to desulfurize the sulfur content in the exhaust gas 11. That is, the exhaust gas 11 and the absorbing seawater 12A are brought into gas-liquid contact in the flue gas desulfurization absorption tower 13 to cause a reaction represented by the following formula, and sulfur contained in the exhaust gas 11 in the form of SO 2 or the like.
  • Sulfur content such as oxide (SO x ) is removed using seawater for absorption 12A.
  • the seawater desulfurization causes H 2 SO 3 generated by gas-liquid contact between the absorption seawater 12A and the exhaust gas 11 to dissociate and release H + into the absorption seawater 12A.
  • a large amount of sulfur is absorbed by the sulfur-absorbing seawater 14 ⁇ / b> A flowing down in 13.
  • the pH of the sulfur-absorbing seawater 14A flowing down in the flue gas desulfurization absorption tower 13 is, for example, about 3.
  • the sulfur-absorbing seawater 14 ⁇ / b> A flows down in the flue gas desulfurization absorption tower 13 and is stored in a dilution and mixing tank 16 that is integrally provided on the lower side of the flue gas desulfurization absorption tower 13.
  • the purified gas 25 desulfurized in the flue gas desulfurization absorption tower 13 is released into the atmosphere through the purified gas discharge passage 26.
  • a part of the seawater 12 from the seawater supply line 23 passes through the dilution seawater supply line 27 as dilution seawater 12B and is fed to the dilution mixing tank 16.
  • the sulfur content absorption seawater 14A which flows down in the flue gas desulfurization absorption tower 13 is mixed with the seawater 12B for dilution, and is diluted.
  • Seawater in which the sulfur-absorbing seawater 14A flowing down in the flue gas desulfurization absorption tower 13 and the dilution seawater 12B are mixed is defined as sulfur-absorbing seawater 14B.
  • FIG. 2 is a schematic view schematically showing a part of the configuration of the seawater flue gas desulfurization apparatus according to the present embodiment.
  • the first seawater flue gas desulfurization apparatus 10-1 according to the present embodiment has a dilution mixing tank 16 on the lower end side of the side wall 17 on the downstream side of the dilution mixing tank of the flue gas desulfurization absorption tower 13.
  • a cover 18 extending so as to cover the cover 18 and a first weir 19 suspended from the back surface side of the cover 18 and having an end 19a buried in the seawater surface on the water surface in the dilution / mixing tank 16 were provided. It has a gas retention part 20A.
  • the first weir 19 hangs down from the gas retention part 20A, and the sulfur-absorbing seawater 14B in which the dilution seawater 12B and the sulfur-absorbing seawater 14A flowing down in the flue gas desulfurization absorption tower 13 are mixed.
  • the part is dammed in the flue gas desulfurization absorption tower 13.
  • the sulfur-absorbing seawater 14A flows down from the flue gas desulfurization absorption tower 13
  • the bubbles 28 containing the gas having a high SO 2 concentration in the flue gas desulfurization absorption tower 13 are caught in the sulfur-absorption seawater 14B.
  • the bubbles 28 containing SO 2 gas entrained in the sulfur-absorbing seawater 14B are diffused into the space S1 formed by the lid portion 18 and the first weir 19 of the gas retention portion 20A. For this reason, the SO 2 gas entrained in the sulfur-absorbing seawater 14B can remain in the space S1 formed by the lid portion 18 and the first weir 19 of the gas retention portion 19B.
  • FIG. 3 is a schematic view schematically showing a part of the configuration of the conventional seawater flue gas desulfurization apparatus shown in FIG.
  • the conventional seawater flue gas desulfurization apparatus 107B shown in FIG. 3 extends the downstream side wall plate of the dilution and mixing tank of the flue gas desulfurization absorption tower 131 to the sulfur-absorbing seawater 106B of the dilution and mixing tank 132 as it is. The end is buried. Therefore, the conventional seawater flue gas desulfurization apparatus 107B includes a gas having a high SO 2 concentration entrained in the dilution seawater 105B by entrainment of bubbles by the sulfur-absorbing seawater 106A flowing down in the flue gas desulfurization absorption tower 131. There is a risk that bubbles rise and are diffused out of the flue gas desulfurization absorption tower 131, and SO 2 gas leaks to the outside.
  • a lid portion 18 extending from the lower end side of the side wall 17 of the flue gas desulfurization absorption tower 13 so as to cover the dilution / mixing tank 16 and a back surface side of the lid portion 18 are suspended.
  • the gas retention part 20A provided with the first weir 19 whose end is buried in the water surface in the dilution mixing tank 16 is provided, and the end 19a of the first weir 19 is buried in the water surface in the dilution mixing tank 16 And partially immersed in the sulfur-absorbing seawater 14B in the main body 15.
  • the length L1 from the side wall 17 of the flue gas desulfurization absorption tower 13 to the inner wall 19b of the first weir 19 is either one of the following formulas (1) and (2) and the following formula: (3) is satisfied.
  • d G1 is the opening height from the first weir at the outlet of the gas retention section to the bottom of the dilution mixing tank
  • ⁇ 1 is the residence time of seawater in the gas retention section
  • U t (dp) is the seawater Is the final rising speed of the bubble group having the bubble diameter dp
  • Cc is the SO 2 environmental standard concentration
  • C 0 is the SO 2 concentration at the inlet of the flue gas desulfurization absorption tower
  • Kg is the gas-liquid of the bubble an overall mass transfer coefficient of the SO 2 gas at the interface
  • the terminal rising speed U t of a single bubble in the static fluid is obtained from the following Stokes equation (4).
  • U t g ⁇ dp 2 ⁇ ( ⁇ L ⁇ G ) / 18 ⁇ (4)
  • g the gravitational acceleration
  • dp the bubble diameter
  • mu the viscosity of sea water.
  • the bubble diameter exceeds 1 mm, the bubble shape does not become spherical due to friction with the fluid, and the rising speed of the bubble group differs from the behavior of a single bubble, so it does not exactly match, but the bubble in seawater
  • the diameter is usually about 0.5 to 1.0 mm, rarely exceeding 5.0 mm at most, and the terminal group rising speed U t in seawater is 200 to 300 mm / s, which is the maximum. However, it is about 400 mm / s.
  • bubbles 28 containing SO 2 gas entrained in the dilution and mixing tank 16 flow into the oxidation tank 29 together with the sulfur-absorbing seawater 14B, and SO 2 is diffused in the oxidation tank 29 to prevent release of an irritating odor. Can do.
  • the gas generated when the quality of the sulfur-absorbing seawater 14B is recovered in the oxidation tank 29 can be diffused in the oxidation tank 29 so as to satisfy the SO 2 environmental standard concentration.
  • the bubbles 28 containing the high-concentration SO 2 gas entrained in the dilution / mixing tank 16 are diffused in the oxidation tank 29 installed on the downstream side of the dilution / mixing tank 16, and the SO 2 gas leaks to the outside. Can be prevented, and a safe and highly reliable seawater desulfurization absorption apparatus can be provided.
  • the sulfur-absorbing seawater 14B is supplied to an oxidation tank 29 provided on the downstream side of the dilution / mixing tank 16.
  • the dilution mixing tank 16 and the oxidation tank 29 are comprised by one tank integrally, this invention is not limited to this, The dilution mixing tank 16 and the oxidation tank 29 are comprised. As a separate tank, the dilution mixing tank 16 and the oxidation tank 29 may be connected.
  • the oxidation tank 29 is provided integrally on the downstream side of the dilution / mixing tank 16, and oxidizes the sulfur content in the sulfur-absorbing seawater 14B and decarboxylates it to restore the water quality.
  • the oxidation tank 29 is provided with an air supply unit 30.
  • the air supply unit 30 includes an oxidizing air blower 32 that supplies air 31, an air diffuser 33 that supplies the air 31, and an oxidized air nozzle 34 that supplies the air 31 to the sulfur-absorbing seawater 14 ⁇ / b> B in the oxidation tank 29.
  • the sulfur-absorbing seawater 14B is recovered by the oxidation reaction of bisulfite ions (HSO 3 ⁇ ) in the sulfur-absorbing seawater 14 and the decarboxylation reaction of bicarbonate ions (HCO 3 ⁇ ). It becomes the recovery seawater 35.
  • the water quality recovery seawater 35 is discharged to the sea 21 as seawater waste liquid through the seawater discharge line 36.
  • the pH of the water-modified seawater 35 can be raised and the COD can be reduced, and the pH, dissolved oxygen concentration, and COD of the water-quality-recovered seawater 35 can be released to a level at which seawater can be discharged.
  • the flue gas desulfurization absorption tower 13 for purifying the sulfur content in the exhaust gas 11 by contacting with the seawater 12A, the exhaust gas Mixing / diluting with the dilution seawater 12B fed into the main body 15 of the sulfur-absorbing seawater 14A provided integrally with the lower side of the smoke desulfurization absorption tower 13 and desulfurizing the seawater in the flue gas desulfurization absorption tower 13
  • a dilution mixing tank 16 a lid 18 extending so as to cover the dilution mixing tank 16 on the lower end side of the side wall 17 of the flue gas desulfurization absorption tower 13, and a drooping and mixing from the back side of the lid 18 It has a gas retention part 20A provided with a first weir 19 whose end 19a is buried in the water surface in the tank 16.
  • the first weir 19 hangs down from the back side of the lid 18, and its end 19 a is buried in the water surface in the dilution and mixing tank 16, and a part of the sulfur-absorbing seawater 14 B is contained in the flue gas desulfurization absorption tower 13. I try to stop it. Accordingly, when the sulfur-absorbing seawater 14A flows down from the flue gas desulfurization absorption tower 13, the bubbles 28 containing the gas having a high SO 2 concentration entrained in the sulfur-absorbing seawater 14B are removed from the lid portion 18 of the gas retaining portion 20A and the first. It is possible to prevent the SO 2 gas from leaking outside by being diffused into the space S1 formed by the one weir 19.
  • a seawater flue gas desulfurization apparatus that can be prevented from being diffused, preventing SO 2 from leaking to the outside, and preventing an irritating odor from being emitted, can be provided.
  • the seawater flue gas desulfurization apparatus which processes the seawater which used the oxidation tank 29 for seawater desulfurization by the flue gas desulfurization absorption tower 13 was demonstrated, this invention is not limited to this. Absent.
  • the oxidation tank 29 desulfurizes sulfur oxides contained in exhaust gas discharged from, for example, factories in various industries, power plants such as large and medium-sized thermal power plants, large boilers for electric utilities, or general industrial boilers. It can be used for the removal of sulfur content in the sulfur-absorbing seawater 14A produced in the above, and desulfurized seawater.
  • FIG. 4 is a schematic view schematically showing a part of the configuration of the seawater flue gas desulfurization apparatus according to the present embodiment.
  • the second seawater flue gas desulfurization apparatus 10-2 is the same as the first seawater flue gas desulfurization apparatus 10- according to the first embodiment shown in FIGS. 1 has a gas retention part 20B in which a second weir 42 is provided at the bottom part 16a of one dilution mixing tank 16.
  • the second weir 42 at the bottom 16a of the dilution mixing tank 16
  • the liquid surface between the liquid surface of the sulfur-absorbing seawater 14B and the end 42a of the second weir 42 The height d G2 is reduced. Therefore, the flow rate of the sulfur-absorbing seawater 14B flowing through the oxidation tank 29 is increased, and the bubbles 28 in the sulfur-absorbing seawater 14B are placed between the liquid surface of the sulfur-absorbing seawater 14B and the end 42a of the second weir 42. Can concentrate. As a result, the bubbles 28 can be diffused into the space S1 formed by the lid 18 and the first weir 19 of the gas retention part 20B.
  • the sulfur-absorbing seawater 14A which is the desulfurized flow down liquid
  • the liquid temperature is high because the sulfur-absorbing seawater 14A is in contact with the exhaust gas 11, and the dilution seawater Since the liquid temperature of 12B is low, it is difficult to mix uniformly by simply merging.
  • the second weir 42 is provided at the bottom 16a of the dilution mixing tank 16, the liquid surface between the liquid surface of the sulfur-absorbing seawater 14B and the end 42a of the second weir 42 is provided.
  • the height d G2 is small, and the flow rate of the sulfur-absorbing seawater 14B flowing through the oxidation tank 29 can be increased. For this reason, mixing with the sulfur content absorption seawater 14A and the seawater 12B for dilution can be accelerated
  • the length L2 in the flow direction of the sulfur-absorbing seawater 14B from the side wall 17 of the flue gas desulfurization absorption tower 13 to the inner wall 42b of the second weir 42 is expressed by the following formula (5), ( 6) and the following expression (7) are satisfied.
  • Cc is the SO 2 environmental standard concentration
  • C 0 is the SO 2 concentration at the inlet of the flue gas desulfurization absorption tower
  • Kg is the overall mass transfer coefficient of SO 2 gas at the gas-liquid interface of the bubbles
  • dp is the bubble diameter
  • U L is the outlet flow rate of the bottom of the dilution mixing tank
  • the d G2 is the height of the liquid surface between the seawater liquid surface and the second weir.
  • the bubbles 28 containing SO 2 gas in the sulfur-absorbing seawater 14B are more reliably formed by the gas retention part 20B and the first weir 19. Can be diffused into the space S1 and the SO 2 gas can be diffused. This prevents bubbles 28 containing SO 2 gas entrained in the dilution and mixing tank 16 from flowing into the oxidation tank 29 together with the sulfur-absorbing seawater 14B, so that SO 2 is diffused in the oxidation tank 29 and prevents the emission of irritating odors. Can do.
  • the gas generated when the quality of the sulfur-absorbing seawater 14B is recovered in the oxidation tank 29 can be diffused in the oxidation tank 29 so as to satisfy the SO 2 environmental standard concentration.
  • the sulfur content-absorbing seawater flowing into the oxidation tank 29 is provided by providing the second weir 42 at the bottom 16a of the dilution mixing tank 16.
  • the flow rate of 14B is increased, the bubbles 28 are concentrated on the upper surface of the liquid, and the mixing of the sulfur-absorbing seawater 14A and the diluting seawater 12B is promoted in the dilution mixing tank 16, and the bubbles 28 in the sulfur-absorbing seawater 14B are gasified. It can be diffused in the space S ⁇ b> 1 formed by the lid portion 18 of the staying portion 20 ⁇ / b> B and the first weir 19.
  • a high seawater flue gas desulfurization apparatus can be provided.
  • FIG. 5 is a schematic view schematically showing a part of the configuration of the seawater flue gas desulfurization apparatus according to the present embodiment
  • FIG. 6 is a partially enlarged view of the configuration of the seawater flue gas desulfurization apparatus according to the present embodiment. It is.
  • the tower of the flue gas desulfurization absorption tower 13 which is a seawater desulfurization absorption tower a large amount of bubbles is absorbed because the sulfur-absorbing seawater 14A which is a large amount of seawater flowing down falls on the dilution mixing tank 16 which is a dilute seawater channel.
  • the amount of foam generated depends on the quality of seawater and the concentration of SO 2 gas in the exhaust gas 11.
  • the dilution mixing tank inside the flue gas desulfurization absorption tower 13 is used. 16 is covered with foam and may flow out to the outside due to the flow of the sulfur-absorbing seawater 14B.
  • the third seawater flue gas desulfurization apparatus 10-3 has a gas retention part 20C in which a third weir 43 is provided inside the gas retention part 20C.
  • the third weir 43 is suspended from the back surface side of the lid 18, the end 43 a is buried in the water surface in the dilution and mixing tank 16, and the seawater 12 ⁇ / b> C is mixed with the seawater 12 ⁇ / b> B and the sulfur-absorbing seawater 14.
  • This part is dammed in the flue gas desulfurization absorption tower 13 to prevent the outflow of bubbles generated inside the flue gas desulfurization absorption tower 13 which is an absorption tower.
  • the partial flow of the sulfur-absorbing seawater 14B is blocked to dilute.
  • the mixing of the sulfur-absorbing seawater 14 ⁇ / b> A and the dilution seawater 12 ⁇ / b> B is promoted, and in the space S ⁇ b> 2 formed by the lid 18, the first dam 19, and the third dam 43 of the gas retention part 20 ⁇ / b> C.
  • the bubbles 28 can be diffused to prevent the SO 2 gas from leaking outside, and the outflow of bubbles generated inside the flue gas desulfurization absorption tower 13 can be prevented.
  • a vent hole 44 is provided to communicate S2 with the flue gas desulfurization absorption tower 13. Therefore, the SO 2 gas filled in the space S2 formed by the lid 18 of the gas retention part 20B, the first dam 19 and the third dam 43 can be diffused to the flue gas desulfurization absorption tower 13 side. .
  • the height d G3 between the end portion 43 a of the third weir 43 and the bottom surface 16 a of the dilution mixing tank 16 is equal to the end portion 19 a of the first weir 19 and the dilution mixing tank 16.
  • the height is the same as the height d G1 between the bottom surface 16a, the height d G1 is not limited to this and may be different.
  • the length L3 in the flow direction of the seawater 12C from the outer wall 43b of the third weir 43 to the inner wall 41a of the first weir 19 is any of the following formulas (8) and (9).
  • the following equation (10) is satisfied.
  • d G1 is the opening height from the first weir at the outlet of the gas retention section to the bottom of the dilution mixing tank
  • ⁇ 3 is the residence time of seawater in the gas retention section
  • U t (dp) is the seawater Is the final rising speed of the bubble group having the bubble diameter dp
  • Cc is the SO 2 environmental standard concentration
  • C 0 is the SO 2 concentration at the inlet of the flue gas desulfurization absorption tower
  • Kg is the gas-liquid of the bubble an overall mass transfer coefficient of the SO 2 gas at the interface
  • dp is the bubble diameter
  • U L is the outlet flow rate of the bottom of the dilution mixing tank
  • D is a liquid depth of the sea water dilution mixing unit
  • the air bubbles 28 containing SO 2 gas in the sulfur-absorbing seawater 14B can be more reliably removed from the lid portion 18 and the first weir 19 of the gas retention portion 20C.
  • the third weir 43 can be diffused into the space S2. This prevents bubbles 28 containing SO 2 gas entrained in the dilution mixing tank 16 from flowing into the oxidation tank 29 together with the sulfur-absorbing seawater 14B, so that SO 2 is diffused in the oxidation tank 29 and is prevented from leaking to the outside. It can prevent giving off odor.
  • the gas generated when the quality of the sulfur-absorbing seawater 14B is recovered in the oxidation tank 29 can be diffused in the oxidation tank 29 so as to satisfy the SO 2 environmental standard concentration.
  • the third weir 43 is provided inside the gas retention part 20C in the flow direction of the sulfur-absorbing seawater 14B, and the dilution mixing tank The height of the liquid level between the bottom 16 a of the 16 and the third weir 43 is reduced.
  • the dilution mixing tank 16 mixing with the sulfur content absorption seawater 14A and the dilution seawater 12B is accelerated
  • the bubbles 28 can be diffused into the space S2 to prevent the SO 2 gas from leaking to the outside, and the outflow of bubbles generated inside the flue gas desulfurization absorption tower 13 can be prevented. For this reason, it is possible to prevent the bubbles 28 entrained in the diluting / mixing tank 16 from flowing into the oxidation tank 29 and leaking SO 2 gas to the outside in the oxidation tank 29, and safe and highly reliable seawater.
  • a flue gas desulfurization apparatus can be provided.
  • FIG. 7 is a schematic view schematically showing a part of the configuration of the seawater flue gas desulfurization apparatus according to the present embodiment. As shown in FIG.
  • the seawater flue gas desulfurization apparatus 10-4 according to the fourth embodiment according to the present embodiment is the first according to the first embodiment according to the present invention shown in FIGS.
  • Seawater flue gas desulfurization apparatus 10-1 a second seawater flue gas desulfurization apparatus 10-2 according to the second embodiment of the present invention shown in FIG. 4, and a third implementation according to the present invention shown in FIG.
  • a third seawater flue gas desulfurization apparatus 10-3 according to the above embodiment.
  • the fourth seawater flue gas desulfurization apparatus 10-4 performs dilution so as to cover the dilution mixing tank 16 on the lower end side of the side wall 17 of the flue gas desulfurization absorption tower 13.
  • a first weir 19 that hangs down from the back side of the lid 18 that extends along the longitudinal direction of the mixing tank 16 and whose end 19 a is buried in the water surface in the dilution mixing tank 16;
  • a second weir 42 on the bottom 16a and a third weir 43 hanging from the back side of the lid 18 inside the lid 18 and having its end 43a buried in the water surface in the dilution mixing tank 16 are provided.
  • the first dam 19 and the third dam 43 hang down from the lid 18 and have a sulfur-absorbing seawater 14B in which the dilution seawater 12B and the sulfur-absorbing seawater 14A are mixed. Is partially dammed in the flue gas desulfurization tank 13.
  • the first weir 19 suspended from the back surface side of the lid portion 18 of the gas retaining portion 20D was provided, the second weir 42 was provided at the bottom portion 16a of the dilution mixing tank 16, and the first weir 19 was suspended from the back surface side of the lid portion 18.
  • the third weir 43 As described above, while promoting the mixing of the sulfur-absorbing seawater 14A and the diluting seawater 12B, the flow rate of the sulfur-absorbing seawater 14B flowing toward the oxidation tank 29 is increased, The bubbles 28 containing SO 2 gas in the sulfur-absorbing seawater 14B in the dilution mixing tank 16 can be diffused into the space S2 formed by the first weir 19 and the third weir 43 of the gas retention part 20D. .
  • the length L4 from the outer wall 43b of the third weir 43 to the inner wall 42b of the second weir 42 is either one of the following formulas (11) and (12) and the following formula ( 13) is satisfied.
  • ⁇ 4 L4 / (U L ⁇ D / MIN (d G1 , d G2 , d G3 )) (13)
  • D is the depth of seawater in the dilution mixing tank
  • ⁇ 4 is the residence time of seawater in the gas residence part
  • U t (dp) is the terminal rising speed of the bubble group having the bubble diameter dp in the seawater.
  • Cc is the SO 2 environmental standard concentration
  • C 0 is the SO 2 concentration at the inlet of the flue gas desulfurization absorption tower
  • Kg is the overall mass transfer coefficient of SO 2 gas at the gas-liquid interface of the bubbles
  • dp is the bubble diameter
  • U L is the outlet flow rate of the bottom of the dilution mixing tank
  • d G1 is the opening height to the bottom of the dilution mixing tank from the first weir
  • d G2 is a sea liquid surface
  • D G3 is the opening height from the third weir to the bottom of the diluting mixing tank
  • MIN (d G1 , d G2 , d G3 ) is: It is the minimum value of d G1 , d G2 , and d G3 .
  • the bubbles 28 containing SO 2 gas entrained in the sulfur-absorbing seawater 14B can be more reliably secured to the first weir 19 of the gas retention part 20D.
  • the third weir 43 can be diffused into the space S2. This prevents bubbles 28 containing SO 2 gas entrained in the dilution and mixing tank 16 from flowing into the oxidation tank 29 together with the sulfur-absorbing seawater 14B, so that SO 2 is not diffused to the outside in the oxidation tank 29 and leaks. It can prevent giving off odor.
  • the gas generated when the quality of the sulfur-absorbing seawater 14B is recovered in the oxidation tank 29 can be diffused in the oxidation tank 29 so as to satisfy the SO 2 environmental standard concentration.
  • the mixing of the sulfur-absorbing seawater 14A and the diluting seawater 12B in the dilution-mixing tank 16 is further promoted, and the sulfur-absorption is absorbed.
  • the bubbles 28 in the seawater 14B can be diffused into the space S2 formed by the first weir 19 and the third weir 43 of the gas retention part 20D.
  • FIG. 8 is a conceptual diagram showing a seawater desulfurization system. Since the configuration of the seawater flue gas desulfurization apparatus is the same as that of the seawater flue gas desulfurization apparatus according to the first to fifth embodiments of the present invention, the description thereof is omitted here.
  • the seawater desulfurization system 50 is discharged from the boiler 53, which is burned by a burner (not shown) using air 52 preheated by an air preheater (AH) 51.
  • the exhaust gas 54 is used as a heat source for generating steam, the steam turbine 57 that drives the generator 56 using the generated steam 55, and the condenser 58 that collects and circulates the water 58 condensed by the steam turbine 57.
  • a flue gas denitration device 60 that denitrates the exhaust gas 54 discharged from the boiler 53
  • a dust collector 61 that removes soot and dust in the exhaust gas 54 discharged from the boiler 53
  • the sulfur content in the exhaust gas 54 is converted into seawater
  • a desulfurization apparatus 64 in which the exhaust gas 54 becomes the chimney 66. for discharging purified gas 65 which is desulfurized outside with flue gas desulfurization absorber tower 71.
  • the air 52 supplied from the outside is supplied to the air preheater 51 by the pushing fan 67 and preheated.
  • Fuel (not shown) and air 52 preheated by the air preheater 51 are supplied to the burner, and the fuel is burned by the boiler 53 to generate steam 55 for driving the steam turbine 57.
  • fuel (not shown) used in the present embodiment is supplied from, for example, an oil tank.
  • the exhaust gas 54 generated by combustion in the boiler 53 is sent to the flue gas denitration device 60. At this time, the exhaust gas 54 exchanges heat with the water 58 discharged from the condenser 59 and is used as a heat source for generating steam 55, and the generated steam 55 drives the generator 56 of the steam turbine 57. Then, the water 58 condensed by the steam turbine 57 is returned to the boiler 53 again and circulated.
  • the exhaust gas 54 discharged from the boiler 53 and guided to the flue gas denitration device 60 is denitrated in the flue gas denitration device 60, exchanges heat with the air 52 by the air preheater 51, and then is sent to the dust collector 61.
  • the dust in the exhaust gas 54 is removed.
  • the exhaust gas 54 that has been dust-removed by the dust collector 61 is supplied to the seawater flue gas desulfurization device 64.
  • the seawater flue gas desulfurization apparatus 64 the seawater flue gas desulfurization apparatus according to the present invention is used.
  • the seawater flue gas desulfurization device 64 is provided with a flue gas desulfurization absorption tower 71 for purifying the sulfur content in the exhaust gas 54 by bringing it into contact with a part of the seawater 62A for absorption of the seawater 62, and under the flue gas desulfurization absorption tower 71
  • the sulfur-absorbing seawater 63A generated by bringing the sulfur content in the exhaust gas 54 into contact with the absorbing seawater 62A and desulfurizing in the flue gas desulfurization absorption tower 71 is fed into the main body 72.
  • a gas retaining portion 77 having a lid portion 75 provided and a first weir 76 which is suspended from the back surface side of the lid portion 75 and whose end portion is buried in the water surface in the dilution and mixing tank 73. It is.
  • an oxidation tank 78 is provided integrally with the dilution mixing tank 73 on the downstream side of the dilution mixing tank 73 to oxidize and decarboxylate the sulfur content in the sulfur-absorbing seawater 63B to restore the water quality.
  • the sulfur-absorbing seawater 63B is seawater in which the dilution seawater 62B and the sulfur-absorbing seawater 62A flowing down in the flue gas desulfurization absorption tower 71 are mixed.
  • the oxidation tank 78 is provided with an oxidation air blower 80 for supplying air 79, a diffuser pipe 81 for supplying the air 79, and an oxidation air nozzle 82 for supplying the air 79 to the seawater 62C in the oxidation tank 78. ing.
  • the exhaust gas 54 is supplied into the flue gas desulfurization absorption tower 71 by the induction fan 83. At this time, the exhaust gas 54 is heat-exchanged with the purified gas 65 desulfurized and discharged by the flue gas desulfurization absorption tower 71 by the heat exchanger 84, and then supplied into the flue gas desulfurization absorption tower 71.
  • seawater desulfurization is performed by using a part of the seawater 62 pumped up from the sea 85 as the sulfur content contained in the exhaust gas 54 as the absorption seawater 62A.
  • the exhaust gas 54 produced by burning fossil fuel contains a sulfur content that is sulfur oxide (SO x ) in the form of SO 2 or the like.
  • SO x sulfur oxide
  • seawater 62A of the flue gas desulfurization absorber tower 71 is supplied via the exhaust 54 and the seawater supply line 86 by gas-liquid contact, to absorb SO 2 in the flue gas 54 to absorption seawater 62A, seawater desulfurization Is going.
  • the seawater 62 pumped up from the sea 85 by the pump 87 is heat-exchanged by the condenser 59, and then a part of the seawater 62A for absorption of the seawater 62 that is the drainage of the condenser 59 is exhausted by the pump 88. It is fed to the absorption tower 71. Further, the purified gas 65 desulfurized by the flue gas desulfurization absorption tower 71 is released from the chimney 66 into the atmosphere.
  • the sulfur-absorbing seawater 63A is collected in a dilution and mixing tank 73 that is integrally provided below the flue gas desulfurization absorption tower 71. Further, a part of the seawater 62 is supplied as dilution seawater 62B to the dilution mixing tank 73 via the dilution seawater supply line 89.
  • the sulfur content-absorbing seawater 63A can be diluted with the dilution seawater 62B, and the pH of the sulfur-content-absorbing seawater 63B can be increased.
  • a lid 75 in which a gas retention part 77 is extended along the longitudinal direction of the dilution / mixing tank 73 so as to cover the dilution / mixing tank 73 on the lower end side of the side wall 74 of the flue gas desulfurization absorption tower 71, and this lid 75 has a gas retention part 77 provided with a first weir 76 that hangs down from the back surface side of 75 and whose end is buried in the water surface in the dilution and mixing tank 73.
  • the bubbles 90 containing the high-concentration SO 2 gas entrained in the bottom 73a of the dilution mixing tank 73 are diffused into the space S11 in the gas retention part 77, and remain in this space S11, and the SO 2 gas. Can be prevented from leaking into the downstream oxidation tank 77.
  • air 79 is supplied from the oxidizing air blower 80 through the diffuser pipe 81 into the oxidizing tank 78 from the oxidizing air nozzle 82 to oxidize the bisulfite ions in the sulfur-absorbing seawater 63B and from the bicarbonate ions. Carbon dioxide is desorbed. As a result, the water content of the sulfur-absorbing seawater 63B is recovered and becomes the water-modified seawater 91.
  • the water-modified seawater 91 that has been subjected to the water quality recovery process in the oxidation tank 78 is discharged into the sea 85 as seawater drainage liquid via the seawater discharge line 92.
  • the sulfur-absorbing seawater 63 generated by the seawater desulfurization in the oxidation tank 77 is recovered in the dilution mixing tank 73 and mixed and diluted with the dilution seawater 62B.
  • bubbles 90 containing high-concentration SO 2 gas generated by the flow of the sulfur-absorbing seawater 63A into the dilution seawater 62B at the bottom of the dilution mixing tank 73 are generated in the downstream open oxidation tank 77. Since it can be diffused and SO 2 can be prevented from leaking to the outside, a safe and highly reliable seawater desulfurization system can be provided.
  • the seawater flue gas desulfurization apparatus is externally used when SO 2 entrained in seawater is oxidized when sulfur-absorbed seawater generated by seawater desulfurization is mixed with seawater for dilution. Since it can be prevented from being diffused, it is suitable for use in a seawater flue gas desulfurization apparatus that adjusts so that seawater used for seawater desulfurization can be released to the ocean.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Treating Waste Gases (AREA)

Abstract

The first equipment (10-1) for the desulfurization with seawater according to the invention has both a flue gas desulfurization /absorption tower (13) for bringing the sulfur-containing substances contained in flue gas (11) into contact with absorber seawater (12A) (which is part of seawater (12)) and thereby purifying the flue gas, and a dilution/mixing tank (16) which is provided under the flue gas desulfurization/absorption tower (13) integrally therewith and in which seawater (14A) containing sulfur-containing substances (which is generated in the desulfurization/absorption tower (13) by bringing the sulfur -containing substances contained in flue gas (11) into contact with absorber seawater (12A) and thereby desulfurizing the flue gas with the absorber seawater (12A)) is mixed and diluted with diluent seawater (12B) which is fed into the body (15). Further, the equipment (10-1) also has a gas residence section (20A) equipped with both a cover (18) which is provided on the lower end side of the side wall (17) of the flue gas desulfurization /absorption tower (13) along the longer direction of the dilution/mixing tank (16) in such a way that the cover (18) extends over the dilution/mixing tank (16), and a first weir (19) which hangs down from the back side of the cover (18) in such a way that the end of the weir (19) is buried under the water surface in the dilution/mixing tank (16).

Description

海水排煙脱硫装置及び脱硫海水の処理方法Seawater flue gas desulfurization apparatus and processing method of desulfurized seawater
 本発明は、工業燃焼設備の排ガス中の酸化物硫黄などの硫黄分を海水を用いて脱硫する海水排煙脱硫装置、海水排煙脱硫システム及び脱硫海水の処理方法に関する。 The present invention relates to a seawater flue gas desulfurization apparatus, a seawater flue gas desulfurization system, and a method for treating desulfurized seawater, which desulfurize sulfur such as oxide sulfur in an exhaust gas from an industrial combustion facility using seawater.
 近年、海水排煙脱硫装置を併設した火力発電所が増加傾向にある。発電所などでは大量の冷却水を必要とするため海に面した場所に建設される場合が多いこと、脱硫処理の設備コストを石灰‐石膏法に比べて低く抑えられることなどの観点から、海水を吸収液として利用して脱硫を行う海水脱硫が注目されている。 In recent years, thermal power plants equipped with seawater flue gas desulfurization equipment have been increasing. From the viewpoints such as power plants that require a large amount of cooling water, they are often built in locations facing the sea, and that the desulfurization equipment costs can be kept lower than the lime-gypsum method. Seawater desulfurization, in which desulfurization is performed using as an absorbing liquid, has attracted attention.
 通常火力発電所においては、ボイラの復水器で多量の海水を冷却水として用いるため、前記復水器から排出されて温められた海水排液の一部を海水排煙脱硫装置に供給して、海水排煙脱流用の吸収液として用いて、排ガス中のSO2の除去が行われている。 In a normal thermal power plant, since a large amount of seawater is used as cooling water in a boiler condenser, a part of the seawater effluent discharged from the condenser and heated is supplied to a seawater flue gas desulfurization device. The SO 2 in the exhaust gas is removed by using it as an absorbing liquid for desulfurization of seawater flue gas.
 従来の海水を用いた海水排煙脱硫装置を備えた火力発電システムのフロー図の一例を図9に示す。図9に示すように、従来の海水排煙脱硫装置を用いた火力発電システム100は、予熱された空気101を用いて図示しないバーナにより燃焼させるボイラ102と、ボイラ102で熱交換され、排出される排ガス103中の煤塵を除去する集塵装置104と、排ガス103中の硫黄分を海水105を用いて脱硫し、脱硫することで生成される硫黄分を高濃度に含んだ硫黄分吸収海水106の水質回復処理を行う海水排煙脱硫装置107Aとからなるものである。この海水排煙脱硫装置107Aは、排ガス103中のSO2を亜硫酸(H2SO3)として回収する排煙脱硫吸収塔108と、この排煙脱硫吸収塔108から排出される硫黄分を高濃度に含んだ硫黄分吸収海水106の水質回復処理を行う酸化槽109とからなるものである(特許文献1、2)。 An example of a flow diagram of a thermal power generation system provided with a seawater flue gas desulfurization device using conventional seawater is shown in FIG. As shown in FIG. 9, a thermal power generation system 100 using a conventional seawater flue gas desulfurization apparatus uses a preheated air 101 to burn with a burner (not shown), and is heat-exchanged by the boiler 102 and discharged. A dust collector 104 that removes soot and dust in the exhaust gas 103, and sulfur-absorbing seawater 106 containing a high concentration of sulfur produced by desulfurizing and desulfurizing sulfur in the exhaust gas 103 using seawater 105. And a seawater flue gas desulfurization apparatus 107A for performing a water quality recovery process. The seawater flue gas desulfurization apparatus 107A has a high concentration of a flue gas desulfurization absorption tower 108 that collects SO 2 in the exhaust gas 103 as sulfurous acid (H 2 SO 3 ), and a high concentration of sulfur content discharged from the flue gas desulfurization absorption tower 108. And an oxidation tank 109 that performs a water quality recovery process of the sulfur-absorbing seawater 106 contained in the water (Patent Documents 1 and 2).
 ボイラ102内で燃焼して発生する排ガス103は図示しない排煙脱硝装置に送給され脱硝した後、集塵装置104に送給され、排ガス103中の煤塵を除去する。そして、集塵装置104で除塵された排ガス103は誘引ファン110により海水排煙脱硫装置107Aの排煙脱硫装置108内に供給される。 Exhaust gas 103 generated by combustion in the boiler 102 is fed to a flue gas denitration device (not shown) and denitrated, and then fed to a dust collector 104 to remove the dust in the exhaust gas 103. Then, the exhaust gas 103 removed by the dust collector 104 is supplied into the exhaust gas desulfurization device 108 of the seawater exhaust gas desulfurization device 107A by the induction fan 110.
 排煙脱硫吸収塔108では、排ガス103中の硫黄分を海111から汲み上げられる海水105の内の一部の吸収用海水105Aを用いて脱硫を行っている。即ち、化石燃料を燃焼させて生じる排ガス103には、SO2などの形態で硫黄酸化物(SOX)である硫黄分が含有されている。海水脱硫では、排煙脱硫吸収塔108において排ガス103と海水供給ライン112を介して供給される吸収用海水105Aとを気液接触させて、排ガス103中のSO2を吸収用海水105Aに吸収させる。そして、排煙脱硫吸収塔108で脱硫された浄化ガス113は浄化ガス排出通路114を通って煙突115より大気中に放出する。排煙脱硫吸収塔108では、海水105Aと排ガス103との接触により下記式に示すような反応が生じる。
SO2(g) + H2O → H2SO3(l) → HSO3 - + H・・・(I)
In the flue gas desulfurization absorption tower 108, the sulfur content in the exhaust gas 103 is desulfurized using a part of the seawater 105A for absorption out of the seawater 105 pumped up from the sea 111. That is, the exhaust gas 103 produced by burning fossil fuel contains a sulfur content that is sulfur oxide (SO x ) in the form of SO 2 or the like. In seawater desulfurization, an absorption seawater 105A of the flue gas desulfurization absorber tower 108 is supplied via the exhaust gas 103 and seawater supply line 112 by gas-liquid contact, to absorb SO 2 in the flue gas 103 in the absorber seawater 105A . The purified gas 113 desulfurized by the flue gas desulfurization absorption tower 108 passes through the purified gas discharge passage 114 and is released into the atmosphere from the chimney 115. In the flue gas desulfurization absorption tower 108, the reaction shown in the following formula occurs by the contact between the seawater 105A and the exhaust gas 103.
SO 2 (g) + H 2 O → H 2 SO 3 (l) → HSO 3 + H + (I)
 海水105Aと排ガス103との気液接触により排ガス103中のSO2が吸収されてH2SO3が発生し、これが海水105A中で解離するため、海水105Aと排ガス103とを気液接触させた後の海水105AはHSO3 -の濃度が上昇すると共に、Hが放出されるためpHが下がることになる。多量の硫黄分を吸収させて生じる硫黄分吸収海水106のpHは3~6程度になる。 The gas-liquid contact between the seawater 105A and the exhaust gas 103 absorbs SO 2 in the exhaust gas 103 to generate H 2 SO 3 , which dissociates in the seawater 105A, so that the seawater 105A and the exhaust gas 103 are brought into gas-liquid contact. In the later seawater 105A, the concentration of HSO 3 increases, and H + is released, so that the pH decreases. The pH of the sulfur-absorbing seawater 106 produced by absorbing a large amount of sulfur is about 3-6.
 排煙脱硫吸収塔108から排出される硫黄分吸収海水106は、海111へと放出または再利用する前にpHは6.0以上まで上昇させておく必要がある。そのため、硫黄分を含んだ硫黄分吸収海水106は、酸化槽109において二次海水供給ライン116により供給される海水105の一部を希釈用海水105Bとして混合させると同時に、酸化用空気ブロア117より空気118を散気管119のノズル120を介して酸化槽109内に供給し、硫黄分吸収海水と気液接触して下記式のような反応を生じさせ、その後、三次海水供給ライン121により残りの海水105を希釈用海水105Cとして混合希釈することで、COD源となる亜硫酸を減少させ、溶存酸素濃度、pHを上昇させて水質を回復させ、水質回復海水122として海111へと放出されている。
2(g) → O2(l)・・・(II)
HSO3 - + 1/2O2(l) → +SO4 2- + H・・・(III)
HCO3 - + H → H2CO3(l) → CO2(g)↑ + H2O・・・(IV)
CO3 2- +2H → H2CO3(l) → CO2(g)↑ + H2O・・・(V)
The sulfur-absorbing seawater 106 discharged from the flue gas desulfurization absorption tower 108 needs to have its pH raised to 6.0 or higher before being released or reused into the sea 111. Therefore, the sulfur-absorbing seawater 106 containing sulfur is mixed with part of the seawater 105 supplied by the secondary seawater supply line 116 in the oxidation tank 109 as dilution seawater 105B, and at the same time from the oxidizing air blower 117. Air 118 is supplied into the oxidation tank 109 through the nozzle 120 of the diffuser pipe 119 and is brought into gas-liquid contact with the sulfur-absorbing seawater to cause a reaction as shown in the following formula. By mixing and diluting the seawater 105 as dilution seawater 105C, the sulfurous acid used as the COD source is reduced, the dissolved oxygen concentration and pH are raised to restore the water quality, and the water quality restored seawater 122 is released to the sea 111. .
O 2 (g) → O 2 (l) (II)
HSO 3 + 1 / 2O 2 (l) → + SO 4 2− + H + (III)
HCO 3 + H + → H 2 CO 3 (l) → CO 2 (g) ↑ + H 2 O (IV)
CO 3 2- + 2H + → H 2 CO 3 (l) → CO 2 (g) ↑ + H 2 O (V)
 このように、従来の海水排煙脱硫装置を用いた火力発電システム100では、酸化槽109でSO2の放散の防止とpHを向上するため、硫黄分吸収海水106を図示しない復水器から排出される海水105と酸化槽109で混合希釈し、酸化槽109において酸化・曝気処理することで亜硫酸を酸化して無害化すると共に、溶存酸素濃度を増加させ、脱炭酸して硫黄分吸収海水106のpHを向上させて、海水排液122のpHを排水基準(通常pH6.0以上)を満たすようにして排出している(特許文献1、2)。 As described above, in the thermal power generation system 100 using the conventional seawater flue gas desulfurization apparatus, the sulfur-absorbing seawater 106 is discharged from a condenser (not shown) in order to prevent the diffusion of SO 2 and improve the pH in the oxidation tank 109. The mixture is diluted with the seawater 105 and the oxidation tank 109 and oxidized and aerated in the oxidation tank 109 to oxidize and detoxify the sulfurous acid, increase the dissolved oxygen concentration, decarboxylate, and absorb the sulfur content. The pH of the seawater drainage 122 is discharged so as to satisfy the drainage standard (usually pH 6.0 or higher) (Patent Documents 1 and 2).
 また、従来の海水排煙脱硫装置の他の構成を図10に示す。図10は、従来の海水脱硫システムに適用される海水排煙脱硫装置の他の構成を簡略に示す図である。図10に示すように、従来の他の海水排煙脱硫装置107Bは、排ガス103中のSO2を亜硫酸(H2SO3)へ脱硫反応させる排煙脱硫吸収塔131と、排煙脱硫吸収塔131の下側に設けられ、硫黄分を含んだ硫黄分吸収海水106Aを希釈用海水105Bと希釈混合する希釈混合槽132と、希釈混合槽132の下流側に設けられ、硫黄分吸収海水106の水質回復処理を行う酸化槽133とからなるものである(特許文献3)。 Moreover, the other structure of the conventional seawater flue gas desulfurization apparatus is shown in FIG. FIG. 10 is a diagram simply showing another configuration of the seawater flue gas desulfurization apparatus applied to the conventional seawater desulfurization system. As shown in FIG. 10, another conventional seawater flue gas desulfurization apparatus 107B includes a flue gas desulfurization absorption tower 131 for desulfurizing SO 2 in the exhaust gas 103 to sulfurous acid (H 2 SO 3 ), and a flue gas desulfurization absorption tower. 131, a dilution mixing tank 132 for diluting and mixing sulfur-absorbing seawater 106 </ b> A containing sulfur with dilution seawater 105 </ b> B, and a downstream of the dilution-mixing tank 132, An oxidation tank 133 that performs water quality recovery treatment (Patent Document 3).
 海水排煙脱硫装置107Bでは、排煙脱硫吸収塔131において海水供給ライン112を介して供給される海水105の内の一部の吸収用海水105Aを排ガス103と気液接触させて、排ガス103中のSO2を吸収用海水105Aに吸収させる。そして、排煙脱硫吸収塔131で硫黄分を吸収した硫黄分吸収海水106Aは、排煙脱硫吸収塔131の下部に設けられている希釈混合槽132に供給される希釈用海水105Bと混合させる。そして、希釈用海水105Bと混合希釈された硫黄分吸収海水106Bは、希釈混合槽132の下流側に設けられている酸化槽133に送給され、酸化用空気ブロア117より空気118を散気管119の酸化空気用ノズル120を介して供給して水質回復させた後、排出するようにしている。 In the seawater flue gas desulfurization apparatus 107 </ b> B, a part of the seawater 105 </ b> A for absorption in the seawater 105 supplied via the seawater supply line 112 in the flue gas desulfurization absorption tower 131 is brought into gas-liquid contact with the exhaust gas 103. Of SO 2 is absorbed by the absorbing seawater 105A. Then, the sulfur-absorbing seawater 106 </ b> A that has absorbed the sulfur in the flue gas desulfurization absorption tower 131 is mixed with the dilution seawater 105 </ b> B supplied to the dilution mixing tank 132 provided in the lower part of the flue gas desulfurization absorption tower 131. Then, the sulfur-absorbing seawater 106B mixed and diluted with the dilution seawater 105B is supplied to the oxidation tank 133 provided on the downstream side of the dilution mixing tank 132, and the air 118 is diffused from the oxidation air blower 117. After being supplied through the oxidized air nozzle 120 to recover the water quality, the water is discharged.
特開2006-055779号公報JP 2006-055779 A 特開2007-125474号公報JP 2007-125474 A 国際公開第2008/077430号International Publication No. 2008/077430
 しかしながら、従来の海水排煙脱硫装置107Bでは、希釈混合槽132において、硫黄分吸収海水106Aによる気泡の巻き込みにより、SO2濃度の高いガスを含む気泡が希釈混合槽132内の希釈用海水105Bに巻き込まれるため、屋外に開放されている酸化槽133にその気泡を含んだ状態で希釈用海水105Bと混合した硫黄分吸収海水106Bが流れると、酸化槽133でSO2が放散され刺激臭を放つ虞がある、という問題がある。 However, in the conventional seawater flue gas desulfurization apparatus 107B, bubbles containing a gas having a high SO 2 concentration enter the dilution seawater 105B in the dilution mixing tank 132 due to entrainment of bubbles by the sulfur-absorbing seawater 106A in the dilution mixing tank 132. When the sulfur-absorbing seawater 106B mixed with the dilution seawater 105B flows into the oxidation tank 133 that is open to the outdoors, the SO 2 is diffused in the oxidation tank 133 and emits an irritating odor. There is a problem that there is a fear.
 また、従来の海水排煙脱硫装置107Bのように、排煙脱硫吸収塔131を希釈用に用いる海水105が流れる図示しない復水器の排水路となる希釈混合槽132の上部側に設置し、海水脱硫と、用いた海水の酸化処理とを一体とした装置では、希釈混合槽132に供給された硫黄分吸収海水106Aと海水105Bとが両者の温度差により十分に混ざらない場合がある、という問題がある。 Further, like the conventional seawater flue gas desulfurization apparatus 107B, the flue gas desulfurization absorption tower 131 is installed on the upper side of the dilution mixing tank 132 which becomes a drainage channel of a condenser (not shown) through which the seawater 105 used for dilution flows. In an apparatus in which the seawater desulfurization and the oxidation treatment of the used seawater are integrated, the sulfur-absorbing seawater 106A and the seawater 105B supplied to the dilution and mixing tank 132 may not be sufficiently mixed due to a temperature difference between them. There's a problem.
 また、排煙脱硫吸収塔131を流下する硫黄分吸収海水106Aが希釈海水路に落下することにより、排煙脱硫吸収塔131内にSO2を含む泡が蓄積し、排煙脱硫吸収塔131外に高濃度のSO2を含む泡が流出する、という問題がある。 In addition, when the sulfur-absorbing seawater 106A flowing down the flue gas desulfurization absorption tower 131 falls into the diluted seawater channel, bubbles containing SO 2 are accumulated in the flue gas desulfurization absorption tower 131, and the flue gas desulfurization absorption tower 131 outside. There is a problem that bubbles containing high concentration of SO 2 flow out.
 本発明は、前記問題に鑑み、脱硫に用いた海水を酸化処理する際、海水中に回収したSO2が放散されるのを防止し、安全性、且つ、信頼性の高い海水排煙脱硫装置及び脱硫海水の処理方法を提供することを課題とする。 In view of the above problems, the present invention prevents the SO 2 recovered in seawater from being diffused when oxidizing seawater used for desulfurization, and is a safe and highly reliable seawater flue gas desulfurization apparatus. It is another object of the present invention to provide a method for treating desulfurized seawater.
 上述した課題を解決するための本発明の第1の発明は、排ガス中の硫黄分を海水と接触させて浄化する排煙脱硫吸収塔と、該排煙脱硫吸収塔の下側に一体に設けられ、前記排煙脱硫吸収塔で前記排ガス中の前記硫黄分を前記海水と接触させて海水脱硫することによって生じた硫黄分吸収海水を本体内に送給される海水と混合・希釈する希釈混合槽とを有すると共に、前記排煙脱硫吸収塔の側壁の下端側に前記希釈混合槽を覆うように延設された蓋部と、該蓋部の裏面側から垂下され、前記希釈混合槽内の水面にその端部が埋没する第一の堰とを備えたガス滞留部とを有することを特徴とする海水排煙脱硫装置にある。 A first invention of the present invention for solving the above-mentioned problems is provided integrally with a flue gas desulfurization absorption tower that purifies sulfur content in exhaust gas by contacting with seawater, and under the flue gas desulfurization absorption tower. In the flue gas desulfurization absorption tower, the sulfur content absorption seawater generated by bringing the sulfur content in the exhaust gas into contact with the seawater and desulfurizing the seawater is mixed and diluted with seawater fed into the main body. And a lid portion extending from the bottom side of the side wall of the flue gas desulfurization absorption tower so as to cover the dilution mixing tank, and suspended from the back surface side of the lid section, in the dilution mixing tank The seawater flue gas desulfurization apparatus has a gas retention part including a first weir whose end is buried in the water surface.
 第2の発明は、第1の発明において、前記排煙脱硫吸収塔の前記側壁から前記第一の堰の内壁までの長さL1が、下記式(1)、(2)の何れか一方と下記式(3)とを満たすことを特徴とする海水排煙脱硫装置にある。
海水中における気泡径dpに対して、
G1<τ1(dp) ・・・(1)
Cc>C0exp(-6Kg/dpτ1) ・・・(2)
τ1=L1/U ・・・(3)
 但し、dG1はガス滞留部出口の第一の堰から希釈混合槽の底部までの開口高さであり、τ1はガス滞留部での海水の滞留時間であり、Ut(dp)は海水中における気泡径dpの気泡群の終末上昇速度であり、CcはSO2環境基準濃度であり、C0は排ガスの排煙脱硫吸収塔の入口におけるSO2濃度であり、Kgは気泡の気液界面におけるSOガスの総括物質移動係数であり、dpは気泡径であり、ULは希釈混合槽の底部の出口流速である。
According to a second invention, in the first invention, the length L1 from the side wall of the flue gas desulfurization absorption tower to the inner wall of the first weir is any one of the following formulas (1) and (2): It exists in the seawater flue gas desulfurization apparatus characterized by satisfy | filling following formula (3).
For bubble diameter dp in seawater,
d G11 U t (dp) (1)
Cc> C 0 exp (−6 Kg / dpτ 1 ) (2)
τ 1 = L1 / U L ··· (3)
Where d G1 is the opening height from the first weir at the outlet of the gas retention section to the bottom of the dilution mixing tank, τ 1 is the residence time of seawater in the gas retention section, and U t (dp) is the seawater Is the final rising speed of the bubble group having the bubble diameter dp, Cc is the SO 2 environmental standard concentration, C 0 is the SO 2 concentration at the inlet of the flue gas desulfurization absorption tower, and Kg is the gas-liquid of the bubble an overall mass transfer coefficient of the SO 2 gas at the interface, dp is the bubble diameter, the U L is the outlet flow rate of the bottom of the dilution mixing tank.
 また、静止流体中の単一気泡の終末上昇速度は、以下の下記式(4)のストークスの式から求められ、大きな気泡ほど終末上昇速度が速くなる。
=g×dp2×(ρL-ρG)/18μ ・・・(4)
 但し、gは重力加速度、dpは気泡径、ρLは海水密度、ρGは気体密度、μは海水の粘度である。
Further, the terminal rising speed of a single bubble in the static fluid can be obtained from the following Stokes equation (4). The larger the bubble, the higher the terminal rising speed.
U t = g × dp 2 × (ρ L −ρ G ) / 18 μ (4)
However, g is the gravitational acceleration, dp is the bubble diameter, the [rho L seawater density, the [rho G gas density, mu is the viscosity of sea water.
 また、気泡径が1mmを超えると流体との摩擦により気泡形状が球状にならないこと、また、気泡群の上昇速度は単一気泡の挙動と異なる為、厳密には一致しないが、海水中における気泡径は、通常0.5~1.0mm程度であり、大きくとも5.0mmを超えることは稀であり、海水中における気泡群の終末上昇速度は、200~300mm/sで、最大でも400mm/s程度である。 In addition, when the bubble diameter exceeds 1 mm, the bubble shape does not become spherical due to friction with the fluid, and the rising speed of the bubble group differs from the behavior of a single bubble, so it does not exactly match, but the bubble in seawater The diameter is usually about 0.5 to 1.0 mm, rarely exceeding 5.0 mm at most, and the terminal ascending rate in the seawater is 200 to 300 mm / s, with a maximum of 400 mm / s. It is about s.
 第3の発明は、第1の発明において、前記希釈混合槽の底部に第二の堰を設けてなることを特徴とする海水排煙脱硫装置にある。 The third invention is the seawater flue gas desulfurization apparatus according to the first invention, wherein a second weir is provided at the bottom of the dilution mixing tank.
 第4の発明は、第3の発明において、前記排煙脱硫吸収塔の前記側壁から前記第二の堰の内壁までの長さL2が、下記式(5)、(6)の何れか一方と下記式(7)とを満たすことを特徴とする海水排煙脱硫装置にある。
D<τ2(dp) ・・・(5)
Cc>C0exp(-6Kg/dpτ2) ・・・(6)
τ2=L2/(U×D/dG2) ・・・(7)
 但し、Dは希釈混合槽の海水の液深さであり、τ2はガス滞留部での海水の滞留時間であり、U(dp)は海水中における気泡径dpの気泡群の終末上昇速度であり、CcはSO2環境基準濃度であり、C0は排ガスの排煙脱硫吸収塔の入口におけるSO2濃度であり、Kgは気泡の気液界面におけるSOガスの総括物質移動係数であり、dpは気泡径であり、ULは希釈混合槽の底部の出口流速であり、dG2は海水液面と第二の堰との間の液面の高さである。
According to a fourth invention, in the third invention, the length L2 from the side wall of the flue gas desulfurization absorption tower to the inner wall of the second weir is any one of the following formulas (5) and (6): It exists in the seawater flue gas desulfurization apparatus characterized by satisfy | filling following formula (7).
D <τ 2 U t (dp) (5)
Cc> C 0 exp (−6 Kg / dpτ 2 ) (6)
τ 2 = L2 / (U L × D / d G2 ) (7)
However, D is the depth of seawater in the dilution mixing tank, τ 2 is the retention time of seawater in the gas retention part, and U t (dp) is the terminal rising speed of the bubbles having the bubble diameter dp in the seawater. Cc is the SO 2 environmental standard concentration, C 0 is the SO 2 concentration at the inlet of the flue gas desulfurization absorption tower, and Kg is the overall mass transfer coefficient of SO 2 gas at the gas-liquid interface of the bubbles , dp is the bubble diameter, U L is the outlet flow rate of the bottom of the dilution mixing tank, the d G2 is the height of the liquid surface between the seawater liquid surface and the second weir.
 第5の発明は、第1の発明において、前記ガス滞留部の内側に第三の堰が設けられてなることを特徴とする海水排煙脱硫装置にある。 The fifth invention is the seawater flue gas desulfurization apparatus according to the first invention, wherein a third weir is provided inside the gas retention part.
 第6の発明は、第5の発明において、前記第三の堰の外壁から前記第一の堰の内壁までの長さL3が、下記式(8)、(9)の何れか一方と下記式(10)とを満たすことを特徴とする海水排煙脱硫装置にある。
G1<τ3(dp) ・・・(8)
Cc>C0exp(-6Kg/dpτ3) ・・・(9)
τ3=L3/(U×D/MIN(dG1、G2)) ・・・(10)
 但し、dG1はガス滞留部出口の第一の堰から希釈混合槽の底部までの開口高さであり、τ3はガス滞留部での海水の滞留時間であり、U(dp)は海水中における気泡径dpの気泡群の終末上昇速度であり、CcはSO2環境基準濃度であり、C0は排ガスの排煙脱硫吸収塔の入口におけるSO2濃度であり、Kgは気泡の気液界面におけるSOガスの総括物質移動係数であり、dpは気泡径であり、ULは希釈混合槽の底部の出口流速であり、Dは希釈混合部の海水の液深さであり、dG2はガス滞留部出口の第二の堰から希釈混合槽の底部までの開口高さであり、MIN(dG1、G2)は、dG1、G2の最小値である。
According to a sixth invention, in the fifth invention, the length L3 from the outer wall of the third weir to the inner wall of the first weir is any one of the following formulas (8) and (9) and the following formula: (10) It is in the seawater flue gas desulfurization apparatus characterized by satisfy | filling.
d G13 U t (dp) (8)
Cc> C 0 exp (−6 Kg / dpτ 3 ) (9)
τ 3 = L3 / (U L × D / MIN (d G1, d G2 )) (10)
Where d G1 is the opening height from the first weir at the outlet of the gas retention section to the bottom of the dilution mixing tank, τ 3 is the residence time of seawater in the gas retention section, and U t (dp) is the seawater Is the final rising speed of the bubble group having the bubble diameter dp, Cc is the SO 2 environmental standard concentration, C 0 is the SO 2 concentration at the inlet of the flue gas desulfurization absorption tower, and Kg is the gas-liquid of the bubble an overall mass transfer coefficient of the SO 2 gas at the interface, dp is the bubble diameter, U L is the outlet flow rate of the bottom of the dilution mixing tank, D is a liquid depth of the sea water dilution mixing unit, d G2 Is the opening height from the second weir at the outlet of the gas retention section to the bottom of the dilution mixing tank, and MIN (d G1, d G2 ) is the minimum value of d G1, d G2 .
 第7の発明は、第1の発明において、前記希釈混合槽の底部に第二の堰を設けると共に、前記ガス滞留部の内側に第三の堰が設けられてなることを特徴とする海水排煙脱硫装置にある。 The seventh invention is characterized in that, in the first invention, the second weir is provided at the bottom of the dilution mixing tank, and the third weir is provided inside the gas retention part. Located in smoke desulfurization equipment.
 第8の発明は、第7の発明において、前記第三の堰の外壁から前記第二の堰の内壁までの長さL4が、下記式(11)、(12)の何れか一方と下記式(13)とを満たすことを特徴とする海水排煙脱硫装置にある。
D<τ4(dp) ・・・(11)
Cc>C0exp(-6Kg/dpτ4) ・・・(12)
τ4=L4/(U×D/MIN(dG1、dG2、dG3)) ・・・(13)
 但し、Dは希釈混合槽の海水の液深さであり、τ4はガス滞留部での海水の滞留時間であり、U(dp)は海水中における気泡径dpの気泡群の終末上昇速度であり、CcはSO2環境基準濃度であり、C0は排ガスの排煙脱硫吸収塔の入口におけるSO2濃度であり、Kgは気泡の気液界面におけるSOガスの総括物質移動係数であり、dpは気泡径であり、ULは希釈混合槽の底部の出口流速であり、dG1は第一の堰から希釈混合槽の底部までの開口高さであり、dG2は海水液面と第二の堰との間の液面の高さであり、dG3は第三の堰から希釈混合槽の底部までの開口高さであり、MIN(dG1、dG2、dG3)は、dG1、dG2、dG3の最小値である。
According to an eighth invention, in the seventh invention, the length L4 from the outer wall of the third weir to the inner wall of the second weir is any one of the following formulas (11) and (12) and the following formula: (13) It is in the seawater flue gas desulfurization apparatus characterized by satisfy | filling.
D <τ 4 U t (dp) (11)
Cc> C 0 exp (−6 Kg / dpτ 4 ) (12)
τ 4 = L4 / (U L × D / MIN (d G1 , d G2 , d G3 )) (13)
However, D is the depth of seawater in the dilution mixing tank, τ 4 is the retention time of seawater in the gas retention part, and U t (dp) is the end rising speed of bubbles having a bubble diameter dp in the seawater. Cc is the SO 2 environmental standard concentration, C 0 is the SO 2 concentration at the inlet of the flue gas desulfurization absorption tower, and Kg is the overall mass transfer coefficient of SO 2 gas at the gas-liquid interface of the bubbles , dp is the bubble diameter, U L is the outlet flow rate of the bottom of the dilution mixing tank, d G1 is the opening height to the bottom of the dilution mixing tank from the first weir, d G2 is a sea liquid surface D G3 is the opening height from the third weir to the bottom of the diluting mixing tank, and MIN (d G1 , d G2 , d G3 ) is: It is the minimum value of d G1 , d G2 , and d G3 .
 第9の発明は、第5乃至8の何れか一つの発明において、前記第三の堰が、前記ガス滞留部と前記海水との間の空間と前記排煙脱硫吸収塔とを連通する通気孔を有することを特徴とする海水排煙脱硫装置にある。 According to a ninth invention, in any one of the fifth to eighth inventions, the third weir communicates the space between the gas retention part and the seawater and the flue gas desulfurization absorption tower. It exists in the seawater flue gas desulfurization apparatus characterized by having.
 第10の発明は、第1乃至9の何れか一つの発明において、前記海水が復水器から排出される排液であることを特徴とする海水排煙脱硫装置にある。 A tenth aspect of the invention is the seawater flue gas desulfurization apparatus according to any one of the first to ninth aspects, wherein the seawater is discharged from a condenser.
 第11の発明は、第1乃至10の何れか一つの発明において、前記希釈混合槽の後流に設けられ、前記希釈混合槽で前記硫黄分吸収海水と混合した海水中の硫黄分を酸化すると共に脱炭酸し、水質回復を行う酸化槽を有することを特徴とする海水排煙脱硫装置にある。 In an eleventh aspect of the present invention, in any one of the first to tenth aspects, the sulfur component in seawater mixed with the sulfur-absorbing seawater in the dilution / mixing tank is oxidized downstream of the dilution / mixing tank. And a seawater flue gas desulfurization apparatus characterized by having an oxidation tank that decarboxylates and recovers water quality.
 第12の発明は、ボイラと、前記ボイラから排出される排ガスを蒸気発生用の熱源として使用すると共に、発生した蒸気を用いて発電機を駆動する蒸気タービンと、前記蒸気タービンで凝縮した水を回収し、循環させる復水器と、前記ボイラから排出される排ガスの脱硝を行う排煙脱硝装置と、前記排ガス中の煤塵を除去する集塵装置と、第1乃至11の何れか一つの発明の海水排煙脱硫装置と、前記排煙脱硫装置で脱硫された浄化ガスを外部へ排出する煙突とからなることを特徴とする海水脱硫システムにある。 The twelfth invention uses a boiler, exhaust gas discharged from the boiler as a heat source for generating steam, a steam turbine that drives a generator using the generated steam, and water condensed in the steam turbine. Any one of the first to eleventh inventions, a condenser that collects and circulates, a flue gas denitration device that denitrates exhaust gas discharged from the boiler, a dust collector that removes soot in the exhaust gas, and A seawater flue gas desulfurization apparatus and a chimney for discharging the purified gas desulfurized by the flue gas desulfurization apparatus to the outside.
 第13の発明は、第1乃至11の何れか一つの発明の海水排煙脱硫装置を用いて脱硫に用いた海水中に含有されているSO2ガスが外部に放散されるのを防止することを特徴とする脱硫海水の処理方法にある。 The thirteenth invention is to prevent the SO 2 gas contained in the seawater used for the desulfurization using the seawater flue gas desulfurization apparatus according to any one of the first to eleventh inventions from being diffused to the outside. In the processing method of the desulfurization seawater characterized by these.
 本発明によれば、排ガス中の硫黄分を海水と接触させて浄化する排煙脱硫吸収塔と該排煙脱硫吸収塔の下側に一体に設けられ、前記排煙脱硫吸収塔から流下してくる硫黄分吸収海水を本体内に送給される海水と混合する希釈混合槽との連結部分に前記希釈混合槽を覆うように延設された一定の長さを有する蓋部を備えたガス滞留部を有すると共に、前記蓋部の裏面側から垂下され、前記希釈混合槽内の水面にその端部が埋没する第一の堰を有しているため、前記硫黄分吸収海水が前記排煙脱硫吸収塔から流下することで前記海水中に巻き込まれた前記硫黄分吸収海水中のSO2濃度の高いガスを含む気泡を前記蓋部と前記第一の堰とにより形成される前記ガス滞留部内の空間内に放散し、SO2ガスが屋外に漏洩するのを防ぐことができる。 According to the present invention, the flue gas desulfurization absorption tower for purifying sulfur in the exhaust gas by contacting with seawater and the flue gas desulfurization absorption tower are integrally provided below the flue gas desulfurization absorption tower, Gas retention provided with a lid having a certain length extending so as to cover the dilution / mixing tank at a connecting portion with the dilution / mixing tank for mixing the sulfur-absorbing seawater with the seawater fed into the main body And has a first weir suspended from the back side of the lid and embedded in the water surface of the dilution mixing tank, so that the sulfur-absorbing seawater is the flue gas desulfurization. Bubbles containing gas having a high SO 2 concentration in the sulfur-absorbing seawater trapped in the seawater by flowing down from an absorption tower in the gas retention part formed by the lid part and the first weir It is possible to prevent the SO 2 gas from leaking outside by being diffused into the space.
 この結果、前記海水を酸化処理し水質回復を行う際、SO2を含有する前記海水が酸化槽に流れ出し、屋外開放型の前記酸化槽でSO2が放散され、刺激臭を放つのを防ぐことができるため、安全性、且つ、信頼性の高い海水排煙脱硫装置を提供することができる。 As a result, when the seawater is oxidized to restore the water quality, the seawater containing SO 2 flows out to the oxidation tank, and SO 2 is diffused in the outdoor open type oxidation tank to prevent the emission of irritating odors. Therefore, it is possible to provide a seawater flue gas desulfurization apparatus that is safe and highly reliable.
図1は、本発明による第一の実施の形態に係る海水排煙脱硫装置の構成を示す概略図である。FIG. 1 is a schematic diagram showing the configuration of a seawater flue gas desulfurization apparatus according to a first embodiment of the present invention. 図2は、本発明による第一の実施の形態に係る海水排煙脱硫装置の構成の一部を簡略に示す概略図である。FIG. 2 is a schematic view schematically showing a part of the configuration of the seawater flue gas desulfurization apparatus according to the first embodiment of the present invention. 図3は、従来の海水排煙脱硫装置の構成の一部を簡略に示す概略図である。FIG. 3 is a schematic view schematically showing a part of the configuration of a conventional seawater flue gas desulfurization apparatus. 図4は、本発明による第二の実施の形態に係る海水排煙脱硫装置の構成の一部を簡略に示す概略図である。FIG. 4 is a schematic view schematically showing a part of the configuration of the seawater flue gas desulfurization apparatus according to the second embodiment of the present invention. 図5は、本発明による第三の実施の形態に係る海水排煙脱硫装置の構成の一部を簡略に示す概略図である。FIG. 5 is a schematic view schematically showing a part of the configuration of the seawater flue gas desulfurization apparatus according to the third embodiment of the present invention. 図6は、本発明による第三の実施の形態に係る海水排煙脱硫装置の構成の部分拡大図である。FIG. 6 is a partially enlarged view of the configuration of the seawater flue gas desulfurization apparatus according to the third embodiment of the present invention. 図7は、本発明による第四の実施の形態に係る海水排煙脱硫装置の構成の一部を簡略に示す概略図である。FIG. 7 is a schematic view schematically showing a part of the configuration of the seawater flue gas desulfurization apparatus according to the fourth embodiment of the present invention. 図8は、海水脱硫システムを示す概念図である。FIG. 8 is a conceptual diagram showing a seawater desulfurization system. 図9は、従来の海水を用いた海水排煙脱硫装置を備えた火力発電システムのフロー図の一例を示す図である。FIG. 9 is a diagram illustrating an example of a flow diagram of a thermal power generation system including a seawater flue gas desulfurization device using conventional seawater. 図10は、従来の海水脱硫システムに適用される海水排煙脱硫装置の他の構成を簡略に示す図である。FIG. 10 is a diagram simply showing another configuration of the seawater flue gas desulfurization apparatus applied to the conventional seawater desulfurization system.
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、下記実施の形態における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。 Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.
[第一の実施の形態]
 本発明による第一の実施の形態に係る海水排煙脱硫装置について、図面を参照して説明する。
 図1は、本発明による第一の実施の形態に係る海水排煙脱硫装置の構成を示す概略図であり、図2は、図1に示す海水排煙脱硫装置の構成の一部を簡略に示す概略図である。
[First embodiment]
A seawater flue gas desulfurization apparatus according to a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view showing the configuration of the seawater flue gas desulfurization apparatus according to the first embodiment of the present invention, and FIG. 2 is a simplified diagram of a part of the configuration of the seawater flue gas desulfurization apparatus shown in FIG. FIG.
 図1に示すように、本実施の形態に係る第一の海水排煙脱硫装置10-1は、排ガス11中の硫黄分を海水12の一部の吸収用海水12Aと接触させて浄化する排煙脱硫吸収塔13と、該排煙脱硫吸収塔13の下側に一体に設けられ、排煙脱硫吸収塔13で排ガス11中の前記硫黄分を吸収用海水12Aと接触させて海水脱硫することによって生じた排煙脱硫吸収塔13内を流下する硫黄分吸収海水14Aを本体15内に送給される希釈用海水12Bと混合・希釈する希釈混合槽16とを有すると共に、排煙脱硫吸収塔13の側壁17の下端側に希釈混合槽16を覆うように希釈混合槽16の長手方向に沿って延設された蓋部18と、この蓋部18の裏面側から垂下され、希釈混合槽16内の水面にその端部19aが海水面に埋没する第一の堰19とを備えたガス滞留部20Aとを有するものである。
 また、図中、符号16aは、希釈混合槽16の底部である。
As shown in FIG. 1, the first seawater flue gas desulfurization apparatus 10-1 according to the present embodiment removes the sulfur content in the exhaust gas 11 by bringing it into contact with a portion of the seawater 12 for absorbing seawater 12 </ b> A. A smoke desulfurization absorption tower 13 is provided integrally with the flue gas desulfurization absorption tower 13, and the sulfur content in the exhaust gas 11 is brought into contact with the absorbing sea water 12A in the flue gas desulfurization absorption tower 13 to desulfurize the sea water. The sulfur-absorbing seawater 14A flowing down in the flue gas desulfurization absorption tower 13 produced by the above-mentioned is provided with the dilution seawater 12B fed into the main body 15 and the dilution mixing tank 16 for mixing and diluting, and the flue gas desulfurization absorption tower A lid 18 extending along the longitudinal direction of the dilution / mixing tank 16 so as to cover the dilution / mixing tank 16 on the lower end side of the side wall 17 of the thirteen; The first end 19a is buried in the sea water surface Those having a gas retaining portion 20A that includes a 19.
In the figure, reference numeral 16 a is the bottom of the dilution / mixing tank 16.
 本実施の形態においては、海水12のうち、排煙脱硫吸収塔13に送給し排ガス11の浄化用に用いる海水を吸収用海水12Aとし、排煙脱硫吸収塔13に送給し、希釈用に用いる海水を希釈用海水12Bとする。また、排煙脱硫吸収塔13で希釈用海水12Bと排煙脱硫吸収塔13内を流下する硫黄分吸収海水14Aとが混合された海水を硫黄分吸収海水14Bとする。 In the present embodiment, the seawater 12 is supplied to the flue gas desulfurization absorption tower 13 and used for purification of the exhaust gas 11 as the absorption seawater 12A, and is supplied to the flue gas desulfurization absorption tower 13 for dilution. The seawater used for the dilution is designated as seawater 12B for dilution. The seawater in which the dilution seawater 12B and the sulfur-absorbing seawater 14A flowing down in the flue-gas desulfurization absorption tower 13 are mixed in the flue gas desulfurization absorption tower 13 is referred to as sulfur-absorption seawater 14B.
 排煙脱硫吸収塔13において用いられる吸収用海水12Aは、海21よりポンプ22を用いて海水供給ライン23に汲み上げられた海水12のうち、ポンプ24により抜出された海水12の一部である吸収用海水12Aが排煙脱硫吸収塔13に送給される。また、海水12は、海21からポンプ22により直接汲み上げた海水を用いているが、本発明はこれに限定されるものではなく、図示しない復水器から排出される海水12の排液などを用いるようにしてもよい。 Absorption seawater 12A used in the flue gas desulfurization absorption tower 13 is a part of the seawater 12 extracted by the pump 24 out of the seawater 12 pumped from the sea 21 to the seawater supply line 23 using the pump 22. Absorption seawater 12A is fed to the flue gas desulfurization absorption tower 13. Moreover, although the seawater 12 uses the seawater pumped directly from the sea 21 by the pump 22, the present invention is not limited to this, and the drainage of the seawater 12 discharged from a condenser (not shown) is used. You may make it use.
 排煙脱硫吸収塔13では、排ガス11と吸収用海水12Aとを気液接触させて、排ガス11中の硫黄分の脱硫を行っている。即ち、排煙脱硫吸収塔13において排ガス11と吸収用海水12Aとを気液接触させて、下記式に示すような反応が生じさせ、排ガス11中のSO2などの形態で含有されている硫黄酸化物(SOX)などの硫黄分を吸収用海水12Aを用いて除去している。
SO2(g) + H2O → H2SO3(l) → HSO3 - + H ・・・(I)
In the flue gas desulfurization absorption tower 13, the exhaust gas 11 and the absorbing seawater 12 </ b> A are brought into gas-liquid contact to desulfurize the sulfur content in the exhaust gas 11. That is, the exhaust gas 11 and the absorbing seawater 12A are brought into gas-liquid contact in the flue gas desulfurization absorption tower 13 to cause a reaction represented by the following formula, and sulfur contained in the exhaust gas 11 in the form of SO 2 or the like. Sulfur content such as oxide (SO x ) is removed using seawater for absorption 12A.
SO 2 (g) + H 2 O → H 2 SO 3 (l) → HSO 3 + H + (I)
 この海水脱硫により吸収用海水12Aと排ガス11との気液接触により発生したH2SO3が解離してHが吸収用海水12A中に放出されるため、pHが下がり、排煙脱硫吸収塔13内を流下する硫黄分吸収海水14Aには多量の硫黄分が吸収される。このとき、排煙脱硫吸収塔13内を流下する硫黄分吸収海水14AのpHとしては、例えば3程度となる。そして、硫黄分吸収海水14Aは排煙脱硫吸収塔13内を流下し、排煙脱硫吸収塔13の下側に一体に設けられている希釈混合槽16内に溜められる。また、排煙脱硫吸収塔13で脱硫された浄化ガス25は浄化ガス排出通路26を介して大気中に放出される。 The seawater desulfurization causes H 2 SO 3 generated by gas-liquid contact between the absorption seawater 12A and the exhaust gas 11 to dissociate and release H + into the absorption seawater 12A. A large amount of sulfur is absorbed by the sulfur-absorbing seawater 14 </ b> A flowing down in 13. At this time, the pH of the sulfur-absorbing seawater 14A flowing down in the flue gas desulfurization absorption tower 13 is, for example, about 3. Then, the sulfur-absorbing seawater 14 </ b> A flows down in the flue gas desulfurization absorption tower 13 and is stored in a dilution and mixing tank 16 that is integrally provided on the lower side of the flue gas desulfurization absorption tower 13. Further, the purified gas 25 desulfurized in the flue gas desulfurization absorption tower 13 is released into the atmosphere through the purified gas discharge passage 26.
 また、海水供給ライン23から海水12の一部が希釈用海水12Bとして希釈用海水供給ライン27を通過して希釈混合槽16に送給される。そして、希釈混合槽16において、排煙脱硫吸収塔13内を流下してくる硫黄分吸収海水14Aを希釈用海水12Bと混合し、希釈している。この排煙脱硫吸収塔13内を流下する硫黄分吸収海水14Aと希釈用海水12Bとが混合した海水を硫黄分吸収海水14Bとする。硫黄分吸収海水14Aを海水12Bとで混合し、希釈することで、希釈混合槽16内の硫黄分吸収海水14BのpHを上昇させ、SO2の再放散を防ぐことができる。 Further, a part of the seawater 12 from the seawater supply line 23 passes through the dilution seawater supply line 27 as dilution seawater 12B and is fed to the dilution mixing tank 16. And in the dilution mixing tank 16, the sulfur content absorption seawater 14A which flows down in the flue gas desulfurization absorption tower 13 is mixed with the seawater 12B for dilution, and is diluted. Seawater in which the sulfur-absorbing seawater 14A flowing down in the flue gas desulfurization absorption tower 13 and the dilution seawater 12B are mixed is defined as sulfur-absorbing seawater 14B. By mixing and diluting the sulfur-absorbing seawater 14A with the seawater 12B, the pH of the sulfur-absorbing seawater 14B in the dilution mixing tank 16 can be raised, and re-emission of SO 2 can be prevented.
 また、図2は、本実施の形態に係る海水排煙脱硫装置の構成の一部を簡略に示す概略図である。図2に示すように、本実施の形態に係る第一の海水排煙脱硫装置10-1は、排煙脱硫吸収塔13の希釈混合槽下流側の側壁17の下端側に希釈混合槽16を覆うように延設された蓋部18と、この蓋部18の裏面側から垂下され、希釈混合槽16内の水面にその端部19aが海水面に埋没する第一の堰19とを備えたガス滞留部20Aを有している。そして、この第一の堰19がガス滞留部20Aから垂下して、希釈用海水12Bと排煙脱硫吸収塔13内を流下する硫黄分吸収海水14Aとが混合された硫黄分吸収海水14Bの一部を排煙脱硫吸収塔13内で堰き止めるようにしている。 Further, FIG. 2 is a schematic view schematically showing a part of the configuration of the seawater flue gas desulfurization apparatus according to the present embodiment. As shown in FIG. 2, the first seawater flue gas desulfurization apparatus 10-1 according to the present embodiment has a dilution mixing tank 16 on the lower end side of the side wall 17 on the downstream side of the dilution mixing tank of the flue gas desulfurization absorption tower 13. A cover 18 extending so as to cover the cover 18 and a first weir 19 suspended from the back surface side of the cover 18 and having an end 19a buried in the seawater surface on the water surface in the dilution / mixing tank 16 were provided. It has a gas retention part 20A. Then, the first weir 19 hangs down from the gas retention part 20A, and the sulfur-absorbing seawater 14B in which the dilution seawater 12B and the sulfur-absorbing seawater 14A flowing down in the flue gas desulfurization absorption tower 13 are mixed. The part is dammed in the flue gas desulfurization absorption tower 13.
 硫黄分吸収海水14Aが排煙脱硫吸収塔13から流下することで、排煙脱硫吸収塔13のSO2濃度の高いガスを含む気泡28が硫黄分吸収海水14B中に巻き込まれる。硫黄分吸収海水14B中に巻き込まれたSO2ガスを含む気泡28は、ガス滞留部20Aの蓋部18と第一の堰19とにより形成される空間S1内に放散される。このため、硫黄分吸収海水14B中に巻き込まれたSO2ガスをガス滞留部19Bの蓋部18と第一の堰19とにより形成される空間S1内に留まらせることができる。 When the sulfur-absorbing seawater 14A flows down from the flue gas desulfurization absorption tower 13, the bubbles 28 containing the gas having a high SO 2 concentration in the flue gas desulfurization absorption tower 13 are caught in the sulfur-absorption seawater 14B. The bubbles 28 containing SO 2 gas entrained in the sulfur-absorbing seawater 14B are diffused into the space S1 formed by the lid portion 18 and the first weir 19 of the gas retention portion 20A. For this reason, the SO 2 gas entrained in the sulfur-absorbing seawater 14B can remain in the space S1 formed by the lid portion 18 and the first weir 19 of the gas retention portion 19B.
 図3は、図10に示す従来の海水排煙脱硫装置の構成の一部を簡略に示す概略図である。図3に示す従来の海水排煙脱硫装置107Bは、排煙脱硫吸収塔131の希釈混合槽下流側壁板をそのまま希釈混合槽132の硫黄分吸収海水106Bに延長し、希釈混合槽132内の水面にその端部を埋没させている。そのため、従来の海水排煙脱硫装置107Bでは、排煙脱硫吸収塔131内を流下する硫黄分吸収海水106Aによる気泡の巻き込みにより、希釈用海水105B中に巻き込まれたSO2濃度の高いガスを含む気泡が上昇し排煙脱硫吸収塔131外に放散され、SO2ガスが外部に漏洩する虞がある。 FIG. 3 is a schematic view schematically showing a part of the configuration of the conventional seawater flue gas desulfurization apparatus shown in FIG. The conventional seawater flue gas desulfurization apparatus 107B shown in FIG. 3 extends the downstream side wall plate of the dilution and mixing tank of the flue gas desulfurization absorption tower 131 to the sulfur-absorbing seawater 106B of the dilution and mixing tank 132 as it is. The end is buried. Therefore, the conventional seawater flue gas desulfurization apparatus 107B includes a gas having a high SO 2 concentration entrained in the dilution seawater 105B by entrainment of bubbles by the sulfur-absorbing seawater 106A flowing down in the flue gas desulfurization absorption tower 131. There is a risk that bubbles rise and are diffused out of the flue gas desulfurization absorption tower 131, and SO 2 gas leaks to the outside.
 これに対し、本実施の形態では、排煙脱硫吸収塔13の側壁17の下端側に希釈混合槽16を覆うように延設された蓋部18と、この蓋部18の裏面側から垂下され、希釈混合槽16内の水面にその端部が埋没する第一の堰19とを備えたガス滞留部20Aを設け、第一の堰19の端部19aを希釈混合槽16内の水面に埋没させ、本体15内の硫黄分吸収海水14Bに一部浸漬させている。このため、硫黄分吸収海水14Aが排煙脱硫吸収塔13から流下することによる気泡28の巻き込みにより、SO2濃度の高いガスを含む気泡28が硫黄分吸収海水14Bに巻き込まれても、硫黄分吸収海水14B中に巻き込まれたSO2ガスを含む気泡28をガス滞留部20Aの蓋部18と第一の堰19とにより形成される空間S1内に放散させることができる。これにより、SO2ガスをガス滞留部19Bの蓋部18と第一の堰19とにより形成される空間S1内に留まらせ、SO2ガスが外部に漏洩するのを防ぐことができる。 On the other hand, in the present embodiment, a lid portion 18 extending from the lower end side of the side wall 17 of the flue gas desulfurization absorption tower 13 so as to cover the dilution / mixing tank 16 and a back surface side of the lid portion 18 are suspended. The gas retention part 20A provided with the first weir 19 whose end is buried in the water surface in the dilution mixing tank 16 is provided, and the end 19a of the first weir 19 is buried in the water surface in the dilution mixing tank 16 And partially immersed in the sulfur-absorbing seawater 14B in the main body 15. For this reason, even if the bubbles 28 including the gas having a high SO 2 concentration are caught in the sulfur-absorbing seawater 14B by the entrainment of the bubbles 28 due to the sulfur-absorbing seawater 14A flowing down from the flue gas desulfurization absorption tower 13, the sulfur content The bubbles 28 containing SO 2 gas entrained in the absorption seawater 14B can be diffused into the space S1 formed by the lid 18 and the first weir 19 of the gas retention part 20A. As a result, the SO 2 gas can be retained in the space S1 formed by the lid 18 and the first weir 19 of the gas retention part 19B, and the SO 2 gas can be prevented from leaking to the outside.
 この結果、後述するように、屋外開放型の酸化槽29に硫黄分吸収海水14Bが流れる際、希釈混合槽16において巻き込まれたSO2ガスを含む気泡28が流れて酸化槽29でSO2が放散され、外部に漏洩するのを防止し、刺激臭を放つのを防止することができる。 As a result, as will be described later, when the sulfur-absorbing seawater 14B flows into the outdoor open type oxidation tank 29, the bubbles 28 containing SO 2 gas entrained in the dilution and mixing tank 16 flow, and SO 2 in the oxidation tank 29 flows. It can be emitted and prevented from leaking to the outside, and it can be prevented to emit an irritating odor.
 また、本実施の形態においては、排煙脱硫吸収塔13の側壁17から第一の堰19の内壁19bまでの長さL1が、下記式(1)、(2)の何れか一方と下記式(3)とを満たすようにしている。
G1<τ1(dp) ・・・(1)
Cc>C0exp(-6Kg/dpτ1) ・・・(2)
τ1=L1/U ・・・(3)
 但し、dG1はガス滞留部出口の第一の堰から希釈混合槽の底部までの開口高さであり、τ1はガス滞留部での海水の滞留時間であり、Ut(dp)は海水中における気泡径dpの気泡群の終末上昇速度であり、CcはSO2環境基準濃度であり、C0は排ガスの排煙脱硫吸収塔の入口におけるSO2濃度であり、Kgは気泡の気液界面におけるSOガスの総括物質移動係数であり、dpは気泡径であり、ULは希釈混合槽の底部の出口流速である。
In the present embodiment, the length L1 from the side wall 17 of the flue gas desulfurization absorption tower 13 to the inner wall 19b of the first weir 19 is either one of the following formulas (1) and (2) and the following formula: (3) is satisfied.
d G11 U t (dp) (1)
Cc> C 0 exp (−6 Kg / dpτ 1 ) (2)
τ 1 = L1 / U L ··· (3)
Where d G1 is the opening height from the first weir at the outlet of the gas retention section to the bottom of the dilution mixing tank, τ 1 is the residence time of seawater in the gas retention section, and U t (dp) is the seawater Is the final rising speed of the bubble group having the bubble diameter dp, Cc is the SO 2 environmental standard concentration, C 0 is the SO 2 concentration at the inlet of the flue gas desulfurization absorption tower, and Kg is the gas-liquid of the bubble an overall mass transfer coefficient of the SO 2 gas at the interface, dp is the bubble diameter, the U L is the outlet flow rate of the bottom of the dilution mixing tank.
 ここで、静止流体中の単一気泡の終末上昇速度Utは、以下のストークスの式(4)から求められ、大きな気泡ほど終末上昇速度が速くなる。
=g×dp2×(ρL-ρG)/18μ ・・・(4)
 但し、gは重力加速度、dpは気泡径、ρLは海水密度、ρGは気体密度、μは海水の粘度である。
Here, the terminal rising speed U t of a single bubble in the static fluid is obtained from the following Stokes equation (4). The larger the bubble, the higher the terminal rising speed.
U t = g × dp 2 × (ρ L −ρ G ) / 18 μ (4)
However, g is the gravitational acceleration, dp is the bubble diameter, the [rho L seawater density, the [rho G gas density, mu is the viscosity of sea water.
 また、気泡径が1mmを超えると流体との摩擦により気泡形状が球状にならないこと、また、気泡群の上昇速度は単一気泡の挙動と異なる為、厳密には一致しないが、海水中における気泡径は、通常0.5~1.0mm程度であり、大きくとも5.0mmを超えることは稀であり、海水中における気泡群の終末上昇速度Utは、200~300mm/sであり、最大でも400mm/s程度である。 In addition, when the bubble diameter exceeds 1 mm, the bubble shape does not become spherical due to friction with the fluid, and the rising speed of the bubble group differs from the behavior of a single bubble, so it does not exactly match, but the bubble in seawater The diameter is usually about 0.5 to 1.0 mm, rarely exceeding 5.0 mm at most, and the terminal group rising speed U t in seawater is 200 to 300 mm / s, which is the maximum. However, it is about 400 mm / s.
 本実施の形態のように、上記式を満たすようにすることで、硫黄分吸収海水14B中に巻き込まれたSO2ガスを含む気泡28のうち、浮上速度の大きい比較的大きな気泡を更に確実にガス滞留部20Aの蓋部18と第一の堰19とにより形成される空間S1内に放散し、SO2ガスを放散させることができる。また、硫黄分吸収海水14B中に巻き込まれたSO2ガスを含む気泡28のうち、浮上速度の小さい比較的小さな気泡中のSO2ガスを硫黄分吸収海水14B中に吸収させることができる。 By satisfying the above equation as in the present embodiment, among the bubbles 28 containing SO 2 gas entrained in the sulfur-absorbing seawater 14B, relatively large bubbles having a high levitation speed can be further ensured. The SO 2 gas can be diffused by diffusing into the space S1 formed by the lid 18 and the first weir 19 of the gas retention part 20A. In addition, among the air bubbles 28 containing sulfur absorbing seawater 14B SO 2 gas caught in the SO 2 gas in small relatively small bubbles floating speed can be absorbed into the sulfur absorbing seawater 14B.
 このため、希釈混合槽16において巻き込まれたSO2ガスを含む気泡28が酸化槽29に硫黄分吸収海水14Bと共に流れて酸化槽29でSO2が放散され、刺激臭を放つのを防止することができる。 For this reason, bubbles 28 containing SO 2 gas entrained in the dilution and mixing tank 16 flow into the oxidation tank 29 together with the sulfur-absorbing seawater 14B, and SO 2 is diffused in the oxidation tank 29 to prevent release of an irritating odor. Can do.
 これにより、後述するように、酸化槽29で硫黄分吸収海水14Bの水質回復を行う際に発生するガスが、SO2環境基準濃度を満たすようにして、酸化槽29で放散させることができる。 As a result, as will be described later, the gas generated when the quality of the sulfur-absorbing seawater 14B is recovered in the oxidation tank 29 can be diffused in the oxidation tank 29 so as to satisfy the SO 2 environmental standard concentration.
 従って、希釈混合槽16において巻き込まれた高濃度のSO2ガスを含む気泡28が、希釈混合槽16の後流側に設置してある酸化槽29で放散され、SO2ガスが外部に漏洩するのを防止することができ、安全、且つ、信頼性の高い海水脱硫吸収装置を提供できる。 Accordingly, the bubbles 28 containing the high-concentration SO 2 gas entrained in the dilution / mixing tank 16 are diffused in the oxidation tank 29 installed on the downstream side of the dilution / mixing tank 16, and the SO 2 gas leaks to the outside. Can be prevented, and a safe and highly reliable seawater desulfurization absorption apparatus can be provided.
 そして、希釈混合槽16で硫黄分吸収海水14B中の気泡28が放散された後、硫黄分吸収海水14Bは希釈混合槽16の下流側に設けている酸化槽29に送給される。また、本実施の形態においては、希釈混合槽16と酸化槽29と一体として一つの槽で構成しているが、本発明はこれに限定されるものではなく、希釈混合槽16と酸化槽29とを別々の槽として希釈混合槽16と酸化槽29とを連結するようにしてもよい。 Then, after the bubbles 28 in the sulfur-absorbing seawater 14B are diffused in the dilution / mixing tank 16, the sulfur-absorbing seawater 14B is supplied to an oxidation tank 29 provided on the downstream side of the dilution / mixing tank 16. Moreover, in this Embodiment, although the dilution mixing tank 16 and the oxidation tank 29 are comprised by one tank integrally, this invention is not limited to this, The dilution mixing tank 16 and the oxidation tank 29 are comprised. As a separate tank, the dilution mixing tank 16 and the oxidation tank 29 may be connected.
 酸化槽29は、希釈混合槽16の下流側に一体に設けられ、硫黄分吸収海水14B中の硫黄分を酸化すると共に脱炭酸し、水質回復を行う。酸化槽29には、空気供給部30が設けられている。空気供給部30は、空気31を供給する酸化用空気ブロア32と、空気31を送給する散気管33と、空気31を酸化槽29内の硫黄分吸収海水14Bに供給する酸化空気用ノズル34とからなるものである。酸化槽29において、酸化用空気ブロア32により散気管33を介して酸化空気用ノズル34から空気31を酸化槽29に送り込み、酸化槽29において硫黄分が空気31と接触して下記式(II)~(V)のような酸素の溶解、亜硫酸の酸化反応と、脱炭酸反応を生じる。
2(g) → O2(l)・・・(II)
HSO3 - + 1/2O2 → SO4 2- + H ・・・(III)
HCO3 - + H → CO2(g) + H2O ・・・(IV)
CO3 2- +2H → CO2(g) + H2O ・・・(V)
The oxidation tank 29 is provided integrally on the downstream side of the dilution / mixing tank 16, and oxidizes the sulfur content in the sulfur-absorbing seawater 14B and decarboxylates it to restore the water quality. The oxidation tank 29 is provided with an air supply unit 30. The air supply unit 30 includes an oxidizing air blower 32 that supplies air 31, an air diffuser 33 that supplies the air 31, and an oxidized air nozzle 34 that supplies the air 31 to the sulfur-absorbing seawater 14 </ b> B in the oxidation tank 29. It consists of In the oxidation tank 29, the air 31 is sent from the oxidation air nozzle 34 to the oxidation tank 29 through the diffuser pipe 33 by the oxidation air blower 32, and the sulfur content comes into contact with the air 31 in the oxidation tank 29 and the following formula (II) Oxygen dissolution, sulfurous acid oxidation reaction, and decarboxylation reaction as shown in (V).
O 2 (g) → O 2 (l) (II)
HSO 3 + 1 / 2O 2 → SO 4 2− + H + (III)
HCO 3 + H + → CO 2 (g) + H 2 O (IV)
CO 3 2- + 2H + → CO 2 (g) + H 2 O (V)
 そして、酸化槽29で硫黄分吸収海水14中の亜硫酸水素イオン(HSO3 -)の酸化反応、重炭酸イオン(HCO3 -)の脱炭酸反応により、硫黄分吸収海水14Bは水質回復され、水質回復海水35となる。 In the oxidation tank 29, the sulfur-absorbing seawater 14B is recovered by the oxidation reaction of bisulfite ions (HSO 3 ) in the sulfur-absorbing seawater 14 and the decarboxylation reaction of bicarbonate ions (HCO 3 ). It becomes the recovery seawater 35.
 そして、水質回復海水35は海水排出ライン36を介して海水廃液として海21に排出される。これにより、水質改質海水35のpHを上昇させると共に、CODを低減することができ、水質回復海水35のpH、溶存酸素濃度、CODを海水放流可能なレベルとして放出することができる。 And the water quality recovery seawater 35 is discharged to the sea 21 as seawater waste liquid through the seawater discharge line 36. As a result, the pH of the water-modified seawater 35 can be raised and the COD can be reduced, and the pH, dissolved oxygen concentration, and COD of the water-quality-recovered seawater 35 can be released to a level at which seawater can be discharged.
 このように、本実施の形態に係る第一の海水排煙脱硫装置10-1によれば、排ガス11中の硫黄分を海水12Aと接触させて浄化する排煙脱硫吸収塔13と、該排煙脱硫吸収塔13の下側に一体に設けられ、排煙脱硫吸収塔13で海水脱硫することによって生じた硫黄分吸収海水14Aを本体15内に送給される希釈用海水12Bと混合・希釈する希釈混合槽16と、排煙脱硫吸収塔13の側壁17の下端側に希釈混合槽16を覆うように延設された蓋部18と、この蓋部18の裏面側から垂下され、希釈混合槽16内の水面にその端部19aが埋没する第一の堰19とを備えたガス滞留部20Aとを有するものである。この第一の堰19が蓋部18の裏面側から垂下し、その端部19aを希釈混合槽16内の水面に埋没させ、硫黄分吸収海水14Bの一部を排煙脱硫吸収塔13内で堰き止めるようにしている。従って、硫黄分吸収海水14Aが排煙脱硫吸収塔13から流下することで硫黄分吸収海水14B中に巻き込まれたSO2濃度の高いガスを含む気泡28をガス滞留部20Aの蓋部18と第一の堰19とにより形成される空間S1内に放散し、SO2ガスが外部に漏洩するのを防ぐことができる。 Thus, according to the first seawater flue gas desulfurization apparatus 10-1 according to the present embodiment, the flue gas desulfurization absorption tower 13 for purifying the sulfur content in the exhaust gas 11 by contacting with the seawater 12A, the exhaust gas Mixing / diluting with the dilution seawater 12B fed into the main body 15 of the sulfur-absorbing seawater 14A provided integrally with the lower side of the smoke desulfurization absorption tower 13 and desulfurizing the seawater in the flue gas desulfurization absorption tower 13 A dilution mixing tank 16, a lid 18 extending so as to cover the dilution mixing tank 16 on the lower end side of the side wall 17 of the flue gas desulfurization absorption tower 13, and a drooping and mixing from the back side of the lid 18 It has a gas retention part 20A provided with a first weir 19 whose end 19a is buried in the water surface in the tank 16. The first weir 19 hangs down from the back side of the lid 18, and its end 19 a is buried in the water surface in the dilution and mixing tank 16, and a part of the sulfur-absorbing seawater 14 B is contained in the flue gas desulfurization absorption tower 13. I try to stop it. Accordingly, when the sulfur-absorbing seawater 14A flows down from the flue gas desulfurization absorption tower 13, the bubbles 28 containing the gas having a high SO 2 concentration entrained in the sulfur-absorbing seawater 14B are removed from the lid portion 18 of the gas retaining portion 20A and the first. It is possible to prevent the SO 2 gas from leaking outside by being diffused into the space S1 formed by the one weir 19.
 この結果、屋外開放型の酸化槽29に流れた硫黄分吸収海水14Bを酸化処理し水質回復を行う際、希釈混合槽16において巻き込まれたSO2ガスを含む気泡28が酸化槽29に流れて放散され、SO2が外部に漏洩するのを防止し、刺激臭を放つのを防止することができ、安全性、且つ、信頼性の高い海水排煙脱硫装置を提供することができる。 As a result, when the sulfur-absorbing seawater 14B flowing into the outdoor open type oxidation tank 29 is oxidized to recover the water quality, bubbles 28 containing SO 2 gas entrained in the dilution mixing tank 16 flow into the oxidation tank 29. A seawater flue gas desulfurization apparatus that can be prevented from being diffused, preventing SO 2 from leaking to the outside, and preventing an irritating odor from being emitted, can be provided.
 また、本実施の形態においては、酸化槽29を排煙脱硫吸収塔13で海水脱硫に用いた海水の処理をする海水排煙脱硫装置について説明したが、本発明はこれに限定されるものではない。酸化槽29は、例えば各種産業における工場、大型、中型火力発電所などの発電所、電気事業用大型ボイラ又は一般産業用ボイラ等から排出される排ガス中に含まれる硫黄酸化物を海水脱硫することで生じる硫黄分吸収海水14A中の硫黄分の除去、脱硫海水に利用することができる。 Moreover, in this Embodiment, although the seawater flue gas desulfurization apparatus which processes the seawater which used the oxidation tank 29 for seawater desulfurization by the flue gas desulfurization absorption tower 13 was demonstrated, this invention is not limited to this. Absent. The oxidation tank 29 desulfurizes sulfur oxides contained in exhaust gas discharged from, for example, factories in various industries, power plants such as large and medium-sized thermal power plants, large boilers for electric utilities, or general industrial boilers. It can be used for the removal of sulfur content in the sulfur-absorbing seawater 14A produced in the above, and desulfurized seawater.
[第二の実施の形態]
 次に、本発明による第二の実施の形態に係る海水排煙脱硫装置について、図4を参照して説明する。
 海水排煙脱硫装置の構成は、本発明の第一の実施の形態による海水排煙脱硫装置と同様であるため、上記実施の形態による海水排煙脱硫装置全体の構成図は省略し、上記実施の形態による海水排煙脱硫装置と同一構成については同一符号を付して重複した説明は省略する。
 図4は、本実施の形態に係る海水排煙脱硫装置の構成の一部を簡略に示す概略図である。図4に示すように、本実施の形態に係る第二の海水排煙脱硫装置10-2は、図1、2に示す第一の実施の形態に係る第一の海水排煙脱硫装置10-1の希釈混合槽16の底部16aに第二の堰42を設けたガス滞留部20Bを有するものである。
[Second Embodiment]
Next, a seawater flue gas desulfurization apparatus according to a second embodiment of the present invention will be described with reference to FIG.
Since the configuration of the seawater flue gas desulfurization apparatus is the same as that of the seawater flue gas desulfurization apparatus according to the first embodiment of the present invention, the configuration diagram of the entire seawater flue gas desulfurization apparatus according to the above embodiment is omitted, and the above embodiment is implemented. The same reference numerals are assigned to the same components as those of the seawater flue gas desulfurization apparatus according to the embodiment, and redundant description is omitted.
FIG. 4 is a schematic view schematically showing a part of the configuration of the seawater flue gas desulfurization apparatus according to the present embodiment. As shown in FIG. 4, the second seawater flue gas desulfurization apparatus 10-2 according to the present embodiment is the same as the first seawater flue gas desulfurization apparatus 10- according to the first embodiment shown in FIGS. 1 has a gas retention part 20B in which a second weir 42 is provided at the bottom part 16a of one dilution mixing tank 16.
 本実施の形態のように、希釈混合槽16の底部16aに第二の堰42を設けることで、硫黄分吸収海水14Bの液面と第二の堰42の端部42aとの間の液面の高さdG2が小さくなる。このため、酸化槽29に流れる硫黄分吸収海水14Bの流速を早め、硫黄分吸収海水14B中の気泡28を硫黄分吸収海水14Bの液面と第二の堰42の端部42aとの間に集中させることができる。この結果、気泡28をガス滞留部20Bの蓋部18と第一の堰19とにより形成される空間S1内に放散させることができる。 As in the present embodiment, by providing the second weir 42 at the bottom 16a of the dilution mixing tank 16, the liquid surface between the liquid surface of the sulfur-absorbing seawater 14B and the end 42a of the second weir 42 The height d G2 is reduced. Therefore, the flow rate of the sulfur-absorbing seawater 14B flowing through the oxidation tank 29 is increased, and the bubbles 28 in the sulfur-absorbing seawater 14B are placed between the liquid surface of the sulfur-absorbing seawater 14B and the end 42a of the second weir 42. Can concentrate. As a result, the bubbles 28 can be diffused into the space S1 formed by the lid 18 and the first weir 19 of the gas retention part 20B.
 これにより、希釈混合槽16において巻き込まれたSO2ガスを含む気泡28が酸化槽29に流れてSO2を放散し、SO2ガスが外部に漏洩するのを防止し、刺激臭を放つのを防止することができる。 Thus, dissipate SO 2 bubbles 28 containing SO 2 gas caught in diluted mixing tank 16 to flow to the oxidation tank 29, preventing the SO 2 gas from leaking to the outside, that the emitting irritating odor Can be prevented.
 また、希釈混合槽16において脱硫流下液である硫黄分吸収海水14Aが希釈用海水12Bと混合される際、硫黄分吸収海水14Aは排ガス11と接触しているため液温が高く、希釈用海水12Bは液温が低いため、単純に合流させただけでは均一に混合し難い。本実施の形態では、希釈混合槽16の底部16aに第二の堰42を設けているため、硫黄分吸収海水14Bの液面と第二の堰42の端部42aとの間の液面の高さdG2が小さく、酸化槽29に流れる硫黄分吸収海水14Bの流速を早めることができる。このため、硫黄分吸収海水14Aと希釈用海水12Bとの混合を促進することができる。 In addition, when the sulfur-absorbing seawater 14A, which is the desulfurized flow down liquid, is mixed with the dilution seawater 12B in the dilution mixing tank 16, the liquid temperature is high because the sulfur-absorbing seawater 14A is in contact with the exhaust gas 11, and the dilution seawater Since the liquid temperature of 12B is low, it is difficult to mix uniformly by simply merging. In the present embodiment, since the second weir 42 is provided at the bottom 16a of the dilution mixing tank 16, the liquid surface between the liquid surface of the sulfur-absorbing seawater 14B and the end 42a of the second weir 42 is provided. The height d G2 is small, and the flow rate of the sulfur-absorbing seawater 14B flowing through the oxidation tank 29 can be increased. For this reason, mixing with the sulfur content absorption seawater 14A and the seawater 12B for dilution can be accelerated | stimulated.
 また、本実施の形態においては、排煙脱硫吸収塔13の側壁17から第二の堰42の内壁42bまでの硫黄分吸収海水14Bの流れ方向における長さL2が、下記式(5)、(6)の何れか一方と下記式(7)とを満たすようにしている。
D<τ2(dp) ・・・(5)
Cc>C0exp(-6Kg/dpτ2) ・・・(6)
τ2=L2/(U×D/dG2) ・・・(7)
 但し、Dは希釈混合槽の海水の液深さであり、τ2はガス滞留部での海水の滞留時間であり、U(dp)は海水中における気泡径dpの気泡群の終末上昇速度であり、CcはSO2環境基準濃度であり、C0は排ガスの排煙脱硫吸収塔の入口におけるSO2濃度であり、Kgは気泡の気液界面におけるSOガスの総括物質移動係数であり、dpは気泡径であり、ULは希釈混合槽の底部の出口流速であり、dG2は海水液面と第二の堰との間の液面の高さである。
In the present embodiment, the length L2 in the flow direction of the sulfur-absorbing seawater 14B from the side wall 17 of the flue gas desulfurization absorption tower 13 to the inner wall 42b of the second weir 42 is expressed by the following formula (5), ( 6) and the following expression (7) are satisfied.
D <τ 2 U t (dp) (5)
Cc> C 0 exp (−6 Kg / dpτ 2 ) (6)
τ 2 = L2 / (U L × D / d G2 ) (7)
However, D is the depth of seawater in the dilution mixing tank, τ 2 is the retention time of seawater in the gas retention part, and U t (dp) is the terminal rising speed of the bubbles having the bubble diameter dp in the seawater. Cc is the SO 2 environmental standard concentration, C 0 is the SO 2 concentration at the inlet of the flue gas desulfurization absorption tower, and Kg is the overall mass transfer coefficient of SO 2 gas at the gas-liquid interface of the bubbles , dp is the bubble diameter, U L is the outlet flow rate of the bottom of the dilution mixing tank, the d G2 is the height of the liquid surface between the seawater liquid surface and the second weir.
 本実施の形態のように、上記式を満たすようにすることで、硫黄分吸収海水14B中のSO2ガスを含む気泡28を更に確実にガス滞留部20Bと第一の堰19とにより形成される空間S1内に放散し、SO2ガスを放散させることができる。これにより、希釈混合槽16において巻き込まれたSO2ガスを含む気泡28が酸化槽29に硫黄分吸収海水14Bと共に流れて酸化槽29でSO2が放散され、刺激臭を放つのを防止することができる。 By satisfying the above equation as in the present embodiment, the bubbles 28 containing SO 2 gas in the sulfur-absorbing seawater 14B are more reliably formed by the gas retention part 20B and the first weir 19. Can be diffused into the space S1 and the SO 2 gas can be diffused. This prevents bubbles 28 containing SO 2 gas entrained in the dilution and mixing tank 16 from flowing into the oxidation tank 29 together with the sulfur-absorbing seawater 14B, so that SO 2 is diffused in the oxidation tank 29 and prevents the emission of irritating odors. Can do.
 これにより、上述のように、酸化槽29で硫黄分吸収海水14Bの水質回復を行う際に発生するガスが、SO2環境基準濃度を満たすようにして、酸化槽29で放散させることができる。 As a result, as described above, the gas generated when the quality of the sulfur-absorbing seawater 14B is recovered in the oxidation tank 29 can be diffused in the oxidation tank 29 so as to satisfy the SO 2 environmental standard concentration.
 よって、本実施の形態に係る第二の海水排煙脱硫装置10-2によれば、希釈混合槽16の底部16aに第二の堰42を設けることで、酸化槽29に流れる硫黄分吸収海水14Bの流速を早め、気泡28を液面上部に集中し、希釈混合槽16において硫黄分吸収海水14Aと希釈用海水12Bとの混合を促進すると共に、硫黄分吸収海水14B中の気泡28をガス滞留部20Bの蓋部18と第一の堰19とにより形成される空間S1内に放散させることができる。このため、希釈混合槽16において巻き込まれたSO2ガスを含む気泡28が酸化槽29に流れて酸化槽29でSO2ガスが外部に漏洩するのを防止し、安全性、且つ、信頼性の高い海水排煙脱硫装置を提供することができる。 Therefore, according to the second seawater flue gas desulfurization apparatus 10-2 according to the present embodiment, the sulfur content-absorbing seawater flowing into the oxidation tank 29 is provided by providing the second weir 42 at the bottom 16a of the dilution mixing tank 16. The flow rate of 14B is increased, the bubbles 28 are concentrated on the upper surface of the liquid, and the mixing of the sulfur-absorbing seawater 14A and the diluting seawater 12B is promoted in the dilution mixing tank 16, and the bubbles 28 in the sulfur-absorbing seawater 14B are gasified. It can be diffused in the space S <b> 1 formed by the lid portion 18 of the staying portion 20 </ b> B and the first weir 19. For this reason, it is possible to prevent bubbles 28 containing SO 2 gas entrained in the dilution and mixing tank 16 from flowing into the oxidation tank 29 and leaking SO 2 gas to the outside in the oxidation tank 29, thereby ensuring safety and reliability. A high seawater flue gas desulfurization apparatus can be provided.
[第三の実施の形態]
 次に、本発明による第三の実施の形態に係る海水排煙脱硫装置について、図5、6を参照して説明する。
 海水排煙脱硫装置の構成は、本発明の第一の実施の形態による海水排煙脱硫装置と同様であるため、上記実施の形態による海水排煙脱硫装置全体の構成図は省略し、上記実施の形態による海水排煙脱硫装置と同一構成については同一符号を付して重複した説明は省略する。
 図5は、本実施の形態に係る海水排煙脱硫装置の構成の一部を簡略に示す概略図であり、図6は、本実施の形態に係る海水排煙脱硫装置の構成の部分拡大図である。
[Third embodiment]
Next, a seawater flue gas desulfurization apparatus according to a third embodiment of the present invention will be described with reference to FIGS.
Since the configuration of the seawater flue gas desulfurization apparatus is the same as that of the seawater flue gas desulfurization apparatus according to the first embodiment of the present invention, the configuration diagram of the entire seawater flue gas desulfurization apparatus according to the above embodiment is omitted, and the above embodiment The same reference numerals are assigned to the same components as those of the seawater flue gas desulfurization apparatus according to the embodiment, and redundant description is omitted.
FIG. 5 is a schematic view schematically showing a part of the configuration of the seawater flue gas desulfurization apparatus according to the present embodiment, and FIG. 6 is a partially enlarged view of the configuration of the seawater flue gas desulfurization apparatus according to the present embodiment. It is.
 ここで、海水脱硫吸収塔である排煙脱硫吸収塔13の塔内において多量の海水流下液である硫黄分吸収海水14Aが希釈海水路である希釈混合槽16上に落下するため、多量の泡が発生することが確認されている。この泡の発生量は海水の水質や排ガス11中のSO2ガス濃度にも依存することが確認されており、多量の泡が発生した場合には、排煙脱硫吸収塔13内部の希釈混合槽16は泡で覆い尽くされ、硫黄分吸収海水14Bの流れによって外部に流出する可能性がある。 Here, in the tower of the flue gas desulfurization absorption tower 13 which is a seawater desulfurization absorption tower, a large amount of bubbles is absorbed because the sulfur-absorbing seawater 14A which is a large amount of seawater flowing down falls on the dilution mixing tank 16 which is a dilute seawater channel. Has been confirmed to occur. It has been confirmed that the amount of foam generated depends on the quality of seawater and the concentration of SO 2 gas in the exhaust gas 11. When a large amount of foam is generated, the dilution mixing tank inside the flue gas desulfurization absorption tower 13 is used. 16 is covered with foam and may flow out to the outside due to the flow of the sulfur-absorbing seawater 14B.
 図5に示すように、本実施の形態に係る第三の海水排煙脱硫装置10-3は、ガス滞留部20Cの内側に第三の堰43を設けたガス滞留部20Cを有するものであり、第三の堰43が蓋部18の裏面側から垂下され、希釈混合槽16内の水面にその端部43aが埋没し、海水12Bと硫黄分吸収海水14とが混合された海水12Cの一部を排煙脱硫吸収塔13内で堰き止め、吸収塔である排煙脱硫吸収塔13の内部で発生する泡の流出を防ぐものである。 As shown in FIG. 5, the third seawater flue gas desulfurization apparatus 10-3 according to the present embodiment has a gas retention part 20C in which a third weir 43 is provided inside the gas retention part 20C. The third weir 43 is suspended from the back surface side of the lid 18, the end 43 a is buried in the water surface in the dilution and mixing tank 16, and the seawater 12 </ b> C is mixed with the seawater 12 </ b> B and the sulfur-absorbing seawater 14. This part is dammed in the flue gas desulfurization absorption tower 13 to prevent the outflow of bubbles generated inside the flue gas desulfurization absorption tower 13 which is an absorption tower.
 蓋部18の裏面側から垂下された第三の堰43の端部43aを希釈混合槽16内の水面に埋没させることで、硫黄分吸収海水14Bの一部の流れが堰き止めることで、希釈混合槽16において硫黄分吸収海水14Aと希釈用海水12Bとの混合を促進し、ガス滞留部20Cの蓋部18と第一の堰19と第三の堰43とで形成される空間S2内に気泡28を放散してSO2ガスが外部に漏洩するのを防止すると共に、排煙脱硫吸収塔13の内部で発生する泡の流出を防ぐことができる。これにより、希釈混合槽16において巻き込まれたSO2ガスを含む気泡28が酸化槽29に流れてSO2ガスが外部に漏洩するのを防止し、刺激臭を放つのを防止することができる。 By immersing the end 43a of the third weir 43 suspended from the back side of the lid 18 in the water surface in the dilution mixing tank 16, the partial flow of the sulfur-absorbing seawater 14B is blocked to dilute. In the mixing tank 16, the mixing of the sulfur-absorbing seawater 14 </ b> A and the dilution seawater 12 </ b> B is promoted, and in the space S <b> 2 formed by the lid 18, the first dam 19, and the third dam 43 of the gas retention part 20 </ b> C. The bubbles 28 can be diffused to prevent the SO 2 gas from leaking outside, and the outflow of bubbles generated inside the flue gas desulfurization absorption tower 13 can be prevented. Thereby, it is possible to prevent the bubbles 28 containing the SO 2 gas entrained in the diluting and mixing tank 16 from flowing into the oxidation tank 29 and leaking the SO 2 gas to the outside, thereby preventing an irritating odor from being emitted.
 また、本実施の形態においては、図5、6に示すように、第三の堰43にガス滞留部20Cの蓋部18と第一の堰19と第三の堰43とで形成される空間S2と排煙脱硫吸収塔13とを連通する通気孔44を設けている。よって、ガス滞留部20Bの蓋部18と第一の堰19と第三の堰43とで形成される空間S2に充満されたSO2ガスを排煙脱硫吸収塔13側に放散することができる。 Further, in the present embodiment, as shown in FIGS. 5 and 6, a space formed in the third dam 43 by the lid portion 18 of the gas retaining portion 20 </ b> C, the first dam 19, and the third dam 43. A vent hole 44 is provided to communicate S2 with the flue gas desulfurization absorption tower 13. Therefore, the SO 2 gas filled in the space S2 formed by the lid 18 of the gas retention part 20B, the first dam 19 and the third dam 43 can be diffused to the flue gas desulfurization absorption tower 13 side. .
 また、本実施の形態では、第三の堰43の端部43aと希釈混合槽16の底面16aとの間の高さdG3は、第一の堰19の端部19aと希釈混合槽16の底面16aとの間の高さdG1と同じ高さとしているが、これに限定されるもではなく異なるようにしてもよい。 In the present embodiment, the height d G3 between the end portion 43 a of the third weir 43 and the bottom surface 16 a of the dilution mixing tank 16 is equal to the end portion 19 a of the first weir 19 and the dilution mixing tank 16. Although the height is the same as the height d G1 between the bottom surface 16a, the height d G1 is not limited to this and may be different.
 また、本実施の形態においては、第三の堰43の外壁43bから第一の堰19の内壁41aまでの海水12Cの流れ方向における長さL3が、下記式(8)、(9)の何れか一方と下記式(10)とを満たすようにしている。
G1<τ3(dp) ・・・(8)
Cc>C0exp(-6Kg/dpτ3) ・・・(9)
τ3=L3/(U×D/MIN(dG1、G2)) ・・・(10)
 但し、dG1はガス滞留部出口の第一の堰から希釈混合槽の底部までの開口高さであり、τ3はガス滞留部での海水の滞留時間であり、U(dp)は海水中における気泡径dpの気泡群の終末上昇速度であり、CcはSO2環境基準濃度であり、C0は排ガスの排煙脱硫吸収塔の入口におけるSO2濃度であり、Kgは気泡の気液界面におけるSOガスの総括物質移動係数であり、dpは気泡径であり、ULは希釈混合槽の底部の出口流速であり、Dは希釈混合部の海水の液深さであり、dG2はガス滞留部出口の第二の堰から希釈混合槽の底部までの開口高さであり、MIN(dG1、G2)は、dG1、G2の最小値である。
In the present embodiment, the length L3 in the flow direction of the seawater 12C from the outer wall 43b of the third weir 43 to the inner wall 41a of the first weir 19 is any of the following formulas (8) and (9). On the other hand, the following equation (10) is satisfied.
d G13 U t (dp) (8)
Cc> C 0 exp (−6 Kg / dpτ 3 ) (9)
τ 3 = L3 / (U L × D / MIN (d G1, d G2 )) (10)
Where d G1 is the opening height from the first weir at the outlet of the gas retention section to the bottom of the dilution mixing tank, τ 3 is the residence time of seawater in the gas retention section, and U t (dp) is the seawater Is the final rising speed of the bubble group having the bubble diameter dp, Cc is the SO 2 environmental standard concentration, C 0 is the SO 2 concentration at the inlet of the flue gas desulfurization absorption tower, and Kg is the gas-liquid of the bubble an overall mass transfer coefficient of the SO 2 gas at the interface, dp is the bubble diameter, U L is the outlet flow rate of the bottom of the dilution mixing tank, D is a liquid depth of the sea water dilution mixing unit, d G2 Is the opening height from the second weir at the outlet of the gas retention section to the bottom of the dilution mixing tank, and MIN (d G1, d G2 ) is the minimum value of d G1, d G2 .
 本実施の形態のように、上記式を満たすようにすることで、硫黄分吸収海水14B中のSO2ガスを含む気泡28を更に確実にガス滞留部20Cの蓋部18と第一の堰19と第三の堰43とで形成される空間S2内に放散させることができる。これにより、希釈混合槽16において巻き込まれたSO2ガスを含む気泡28が酸化槽29に硫黄分吸収海水14Bと共に流れて酸化槽29でSO2が放散され、外部に漏洩するのを防ぎ、刺激臭を放つのを防止することができる。 By satisfying the above equation as in the present embodiment, the air bubbles 28 containing SO 2 gas in the sulfur-absorbing seawater 14B can be more reliably removed from the lid portion 18 and the first weir 19 of the gas retention portion 20C. And the third weir 43 can be diffused into the space S2. This prevents bubbles 28 containing SO 2 gas entrained in the dilution mixing tank 16 from flowing into the oxidation tank 29 together with the sulfur-absorbing seawater 14B, so that SO 2 is diffused in the oxidation tank 29 and is prevented from leaking to the outside. It can prevent giving off odor.
 これにより、上述のように、酸化槽29で硫黄分吸収海水14Bの水質回復を行う際に発生するガスが、SO2環境基準濃度を満たすようにして、酸化槽29で放散させることができる。 As a result, as described above, the gas generated when the quality of the sulfur-absorbing seawater 14B is recovered in the oxidation tank 29 can be diffused in the oxidation tank 29 so as to satisfy the SO 2 environmental standard concentration.
 よって、本実施の形態に係る第三の海水排煙脱硫装置10-3によれば、硫黄分吸収海水14Bの流れ方向のガス滞留部20Cの内側に第三の堰43を設け、希釈混合槽16の底部16aと第三の堰43との間の液面の高さを小さくしている。これにより、希釈混合槽16において硫黄分吸収海水14Aと希釈用海水12Bとの混合を促進し、ガス滞留部20Cの蓋部18と第一の堰19と第三の堰43とで形成される空間S2内に気泡28を放散してSO2ガスが外部に漏洩するのを防止すると共に、排煙脱硫吸収塔13の内部で発生する泡の流出を防ぐことができる。このため、希釈混合槽16において巻き込まれた気泡28が酸化槽29に流れて酸化槽29でSO2ガスが外部に漏洩するのを防止することができ、安全性、且つ、信頼性の高い海水排煙脱硫装置を提供することができる。 Therefore, according to the third seawater flue gas desulfurization apparatus 10-3 according to the present embodiment, the third weir 43 is provided inside the gas retention part 20C in the flow direction of the sulfur-absorbing seawater 14B, and the dilution mixing tank The height of the liquid level between the bottom 16 a of the 16 and the third weir 43 is reduced. Thereby, in the dilution mixing tank 16, mixing with the sulfur content absorption seawater 14A and the dilution seawater 12B is accelerated | stimulated, and it forms with the cover part 18, the 1st dam 19, and the 3rd dam 43 of the gas retention part 20C. The bubbles 28 can be diffused into the space S2 to prevent the SO 2 gas from leaking to the outside, and the outflow of bubbles generated inside the flue gas desulfurization absorption tower 13 can be prevented. For this reason, it is possible to prevent the bubbles 28 entrained in the diluting / mixing tank 16 from flowing into the oxidation tank 29 and leaking SO 2 gas to the outside in the oxidation tank 29, and safe and highly reliable seawater. A flue gas desulfurization apparatus can be provided.
[第四の実施の形態]
 次に、本発明による第四の実施の形態に係る海水排煙脱硫装置について、図7を参照して説明する。
 海水排煙脱硫装置の構成は、本発明の第一の実施の形態による海水排煙脱硫装置と同様であるため、上記実施の形態による海水排煙脱硫装置全体の構成図は省略し、上記実施の形態による海水排煙脱硫装置と同一構成については同一符号を付して重複した説明は省略する。
 図7は、本実施の形態に係る海水排煙脱硫装置の構成の一部を簡略に示す概略図である。図7に示すように、本実施の形態に係る第四の実施の形態に係る海水排煙脱硫装置10-4は、図1、2に示す本発明による第一の実施の形態に係る第一の海水排煙脱硫装置10-1と、図4に示す本発明による第二の実施の形態に係る第二の海水排煙脱硫装置10-2と、図5に示す本発明による第三の実施の形態に係る第三の海水排煙脱硫装置10-3とを組み合わせたものである。
[Fourth embodiment]
Next, a seawater flue gas desulfurization apparatus according to a fourth embodiment of the present invention will be described with reference to FIG.
Since the configuration of the seawater flue gas desulfurization apparatus is the same as that of the seawater flue gas desulfurization apparatus according to the first embodiment of the present invention, the configuration diagram of the entire seawater flue gas desulfurization apparatus according to the above embodiment is omitted, and the above embodiment is implemented. The same reference numerals are assigned to the same components as those of the seawater flue gas desulfurization apparatus according to the embodiment, and redundant description is omitted.
FIG. 7 is a schematic view schematically showing a part of the configuration of the seawater flue gas desulfurization apparatus according to the present embodiment. As shown in FIG. 7, the seawater flue gas desulfurization apparatus 10-4 according to the fourth embodiment according to the present embodiment is the first according to the first embodiment according to the present invention shown in FIGS. Seawater flue gas desulfurization apparatus 10-1, a second seawater flue gas desulfurization apparatus 10-2 according to the second embodiment of the present invention shown in FIG. 4, and a third implementation according to the present invention shown in FIG. And a third seawater flue gas desulfurization apparatus 10-3 according to the above embodiment.
 即ち、図7に示すように、本実施の形態に係る第四の海水排煙脱硫装置10-4は、排煙脱硫吸収塔13の側壁17の下端側に希釈混合槽16を覆うように希釈混合槽16の長手方向に沿って延設された蓋部18の裏面側から垂下され、希釈混合槽16内の水面にその端部19aが埋没する第一の堰19と、希釈混合槽16の底部16aに第二の堰42と、蓋部18の内側に蓋部18の裏面側から垂下され、希釈混合槽16内の水面にその端部43aが埋没する第三の堰43とを設けたガス滞留部20Cを有するものであり、第一の堰19及び第三の堰43は蓋部18から垂下して、希釈用海水12Bと硫黄分吸収海水14Aとが混合された硫黄分吸収海水14Bの一部を排煙脱硫槽13内で堰き止めるものである。 That is, as shown in FIG. 7, the fourth seawater flue gas desulfurization apparatus 10-4 according to the present embodiment performs dilution so as to cover the dilution mixing tank 16 on the lower end side of the side wall 17 of the flue gas desulfurization absorption tower 13. A first weir 19 that hangs down from the back side of the lid 18 that extends along the longitudinal direction of the mixing tank 16 and whose end 19 a is buried in the water surface in the dilution mixing tank 16; A second weir 42 on the bottom 16a and a third weir 43 hanging from the back side of the lid 18 inside the lid 18 and having its end 43a buried in the water surface in the dilution mixing tank 16 are provided. The first dam 19 and the third dam 43 hang down from the lid 18 and have a sulfur-absorbing seawater 14B in which the dilution seawater 12B and the sulfur-absorbing seawater 14A are mixed. Is partially dammed in the flue gas desulfurization tank 13.
 ガス滞留部20Dの蓋部18の裏面側から垂下された第一の堰19を設け、希釈混合槽16の底部16aに第二の堰42を設けると共に、蓋部18の裏面側から垂下された第三の堰43を設けることで、上述のように、硫黄分吸収海水14Aと希釈用海水12Bとの混合を促進しつつ、酸化槽29に向かって流れる硫黄分吸収海水14Bの流速を早め、希釈混合槽16における硫黄分吸収海水14B中のSO2ガスを含む気泡28をガス滞留部20Dの第一の堰19と第三の堰43とで形成される空間S2内に放散することができる。 The first weir 19 suspended from the back surface side of the lid portion 18 of the gas retaining portion 20D was provided, the second weir 42 was provided at the bottom portion 16a of the dilution mixing tank 16, and the first weir 19 was suspended from the back surface side of the lid portion 18. By providing the third weir 43, as described above, while promoting the mixing of the sulfur-absorbing seawater 14A and the diluting seawater 12B, the flow rate of the sulfur-absorbing seawater 14B flowing toward the oxidation tank 29 is increased, The bubbles 28 containing SO 2 gas in the sulfur-absorbing seawater 14B in the dilution mixing tank 16 can be diffused into the space S2 formed by the first weir 19 and the third weir 43 of the gas retention part 20D. .
 また、本実施の形態においては、第三の堰43の外壁43bから第二の堰42の内壁42bまでの長さL4が、下記式(11)、(12)の何れか一方と下記式(13)とを満たすようにしている。
D<τ4(dp) ・・・(11)
Cc>C0exp(-6Kg/dpτ4) ・・・(12)
τ4=L4/(U×D/MIN(dG1、dG2、dG3)) ・・・(13)
 但し、Dは希釈混合槽の海水の液深さであり、τ4はガス滞留部での海水の滞留時間であり、U(dp)は海水中における気泡径dpの気泡群の終末上昇速度であり、CcはSO2環境基準濃度であり、C0は排ガスの排煙脱硫吸収塔の入口におけるSO2濃度であり、Kgは気泡の気液界面におけるSOガスの総括物質移動係数であり、dpは気泡径であり、ULは希釈混合槽の底部の出口流速であり、dG1は第一の堰から希釈混合槽の底部までの開口高さであり、dG2は海水液面と第二の堰との間の液面の高さであり、dG3は第三の堰から希釈混合槽の底部までの開口高さであり、MIN(dG1、dG2、dG3)は、dG1、dG2、dG3の最小値である。
In the present embodiment, the length L4 from the outer wall 43b of the third weir 43 to the inner wall 42b of the second weir 42 is either one of the following formulas (11) and (12) and the following formula ( 13) is satisfied.
D <τ 4 U t (dp) (11)
Cc> C 0 exp (−6 Kg / dpτ 4 ) (12)
τ 4 = L4 / (U L × D / MIN (d G1 , d G2 , d G3 )) (13)
However, D is the depth of seawater in the dilution mixing tank, τ 4 is the residence time of seawater in the gas residence part, and U t (dp) is the terminal rising speed of the bubble group having the bubble diameter dp in the seawater. Cc is the SO 2 environmental standard concentration, C 0 is the SO 2 concentration at the inlet of the flue gas desulfurization absorption tower, and Kg is the overall mass transfer coefficient of SO 2 gas at the gas-liquid interface of the bubbles , dp is the bubble diameter, U L is the outlet flow rate of the bottom of the dilution mixing tank, d G1 is the opening height to the bottom of the dilution mixing tank from the first weir, d G2 is a sea liquid surface D G3 is the opening height from the third weir to the bottom of the diluting mixing tank, and MIN (d G1 , d G2 , d G3 ) is: It is the minimum value of d G1 , d G2 , and d G3 .
 本実施の形態のように、上記式を満たすようにすることで、硫黄分吸収海水14B中に巻き込まれたSO2ガスを含む気泡28を更に確実に、ガス滞留部20Dの第一の堰19と第三の堰43とで形成される空間S2内に放散させることができる。これにより、希釈混合槽16において巻き込まれたSO2ガスを含む気泡28が酸化槽29に硫黄分吸収海水14Bと共に流れて酸化槽29でSO2が外部に放散され、漏洩するのを防ぎ、刺激臭を放つのを防止することができる。 By satisfying the above equation as in the present embodiment, the bubbles 28 containing SO 2 gas entrained in the sulfur-absorbing seawater 14B can be more reliably secured to the first weir 19 of the gas retention part 20D. And the third weir 43 can be diffused into the space S2. This prevents bubbles 28 containing SO 2 gas entrained in the dilution and mixing tank 16 from flowing into the oxidation tank 29 together with the sulfur-absorbing seawater 14B, so that SO 2 is not diffused to the outside in the oxidation tank 29 and leaks. It can prevent giving off odor.
 これにより、上述のように、酸化槽29で硫黄分吸収海水14Bの水質回復を行う際に発生するガスが、SO2環境基準濃度を満たすようにして、酸化槽29で放散させることができる。 As a result, as described above, the gas generated when the quality of the sulfur-absorbing seawater 14B is recovered in the oxidation tank 29 can be diffused in the oxidation tank 29 so as to satisfy the SO 2 environmental standard concentration.
 よって、本実施の形態に係る第四の海水排煙脱硫装置10-4によれば、希釈混合槽16において硫黄分吸収海水14Aと希釈用海水12Bとの混合を更に促進すると共に、硫黄分吸収海水14B中の気泡28をガス滞留部20Dの第一の堰19と第三の堰43とで形成される空間S2内に放散させることができる。これにより、希釈混合槽16において巻き込まれたSO2ガスを含む気泡28が流れて酸化槽29でSO2が外部に流れて酸化槽29でSO2ガスが外部に漏洩するのを更に確実に防止することができ、安全性、且つ、信頼性の高い海水排煙脱硫装置を提供することができる。 Therefore, according to the fourth seawater flue gas desulfurization apparatus 10-4 according to the present embodiment, the mixing of the sulfur-absorbing seawater 14A and the diluting seawater 12B in the dilution-mixing tank 16 is further promoted, and the sulfur-absorption is absorbed. The bubbles 28 in the seawater 14B can be diffused into the space S2 formed by the first weir 19 and the third weir 43 of the gas retention part 20D. Thus, more reliably prevented from leaking SO 2 gas to the outside oxidation tank 29 SO 2 to flow to the outside in the oxidation tank 29 by air bubbles 28 flows containing SO 2 gas caught in diluted mixing tank 16 It is possible to provide a seawater flue gas desulfurization apparatus that is safe and reliable.
[第五の実施の形態]
 次に、本発明の海水排煙脱硫装置を用いた第五の実施の形態に係る海水脱硫システムについて、図8を参照して説明する。
 図8は、海水脱硫システムを示す概念図である。海水排煙脱硫装置の構成は、本発明の第一の実施の形態~第五の実施の形態による海水排煙脱硫装置と同様であるため、ここでは説明は省略する。
[Fifth embodiment]
Next, a seawater desulfurization system according to a fifth embodiment using the seawater flue gas desulfurization apparatus of the present invention will be described with reference to FIG.
FIG. 8 is a conceptual diagram showing a seawater desulfurization system. Since the configuration of the seawater flue gas desulfurization apparatus is the same as that of the seawater flue gas desulfurization apparatus according to the first to fifth embodiments of the present invention, the description thereof is omitted here.
 図8に示すように、本実施の形態に係る海水脱硫システム50は、空気予熱器(AH)51で予熱された空気52を用いて図示しないバーナにより燃焼させるボイラ53と、ボイラ53から排出される排ガス54を蒸気発生用の熱源として使用すると共に、発生した蒸気55を用いて発電機56を駆動する蒸気タービン57と、この蒸気タービン57で凝縮した水58を回収し、循環させる復水器59と、ボイラ53から排出される排ガス54の脱硝を行う排煙脱硝装置60と、ボイラ53から排出される排ガス54中の煤塵を除去する集塵装置61と、排ガス54中の硫黄分を海水62を用いて除去する排煙脱硫吸収塔71と、排煙脱硫吸収塔71で生成される硫黄分を高濃度に含んだ硫黄分吸収海水63Aの水質回復処理を行う海水排煙脱硫装置64と、排煙脱硫吸収塔71で排ガス54が脱硫処理された浄化ガス65を外部へ排出する煙突66とからなるものである。 As shown in FIG. 8, the seawater desulfurization system 50 according to the present embodiment is discharged from the boiler 53, which is burned by a burner (not shown) using air 52 preheated by an air preheater (AH) 51. The exhaust gas 54 is used as a heat source for generating steam, the steam turbine 57 that drives the generator 56 using the generated steam 55, and the condenser 58 that collects and circulates the water 58 condensed by the steam turbine 57. 59, a flue gas denitration device 60 that denitrates the exhaust gas 54 discharged from the boiler 53, a dust collector 61 that removes soot and dust in the exhaust gas 54 discharged from the boiler 53, and the sulfur content in the exhaust gas 54 is converted into seawater The flue gas desulfurization absorption tower 71 to be removed by using 62, and the seawater exhaust gas for performing water quality recovery processing of the sulfur content absorption seawater 63A containing a high concentration of sulfur content generated in the flue gas desulfurization absorption tower 71 A desulfurization apparatus 64, in which the exhaust gas 54 becomes the chimney 66. for discharging purified gas 65 which is desulfurized outside with flue gas desulfurization absorber tower 71.
 外部から供給される空気52は押込みファン67により空気予熱器51に送給され予熱される。図示しない燃料と空気予熱器51で予熱された空気52とは前記バーナに供給され、前記燃料がボイラ53で燃焼され蒸気タービン57を駆動するための蒸気55を発生する。また、本実施の形態において用いられる図示しない燃料は、例えば油タンクなどから供給される。 The air 52 supplied from the outside is supplied to the air preheater 51 by the pushing fan 67 and preheated. Fuel (not shown) and air 52 preheated by the air preheater 51 are supplied to the burner, and the fuel is burned by the boiler 53 to generate steam 55 for driving the steam turbine 57. Further, fuel (not shown) used in the present embodiment is supplied from, for example, an oil tank.
 ボイラ53内で燃焼して発生する排ガス54は排煙脱硝装置60に送給される。このとき、排ガス54は復水器59から排出される水58と熱交換し、蒸気55を発生する熱源として使用され、発生した蒸気55は蒸気タービン57の発電機56を駆動している。そして、蒸気タービン57で凝縮した水58を再びボイラ53に戻し、循環させるようにしている。 The exhaust gas 54 generated by combustion in the boiler 53 is sent to the flue gas denitration device 60. At this time, the exhaust gas 54 exchanges heat with the water 58 discharged from the condenser 59 and is used as a heat source for generating steam 55, and the generated steam 55 drives the generator 56 of the steam turbine 57. Then, the water 58 condensed by the steam turbine 57 is returned to the boiler 53 again and circulated.
 そして、ボイラ53から排出され、排煙脱硝装置60に導かれた排ガス54は排煙脱硝装置60内で脱硝され、空気予熱器51で空気52と熱交換した後、集塵装置61に送給され、排ガス54中の煤塵を除去する。 Then, the exhaust gas 54 discharged from the boiler 53 and guided to the flue gas denitration device 60 is denitrated in the flue gas denitration device 60, exchanges heat with the air 52 by the air preheater 51, and then is sent to the dust collector 61. The dust in the exhaust gas 54 is removed.
 そして、集塵装置61で除塵処理された排ガス54は、海水排煙脱硫装置64に送給される。海水排煙脱硫装置64は、本発明に係る海水排煙脱硫装置が用いられる。即ち、海水排煙脱硫装置64は、排ガス54中の硫黄分を海水62の一部の吸収用海水62Aと接触させて浄化する排煙脱硫吸収塔71と、該排煙脱硫吸収塔71の下側に一体に設けられ、排煙脱硫吸収塔71で排ガス54中の前記硫黄分を吸収用海水62Aと接触させて脱硫することによって生じた硫黄分吸収海水63Aを本体72内に送給される希釈用海水62Bと混合・希釈する希釈混合槽73とを有すると共に、排煙脱硫吸収塔71の側壁74の下端側に希釈混合槽73を覆うように希釈混合槽73の長手方向に沿って延設された蓋部75と、この蓋部75の裏面側から垂下され、希釈混合槽73内の水面にその端部が埋没する第一の堰76とを備えたガス滞留部77とを有するものである。また、希釈混合槽73の下流側に酸化槽78が希釈混合槽73と一体に設けられ、硫黄分吸収海水63B中の硫黄分を酸化すると共に脱炭酸し、水質回復を行う。また、硫黄分吸収海水63Bは、排煙脱硫吸収塔71で希釈用海水62Bと排煙脱硫吸収塔71内を流下する硫黄分吸収海水62Aとが混合された海水である。酸化槽78には、空気79を供給する酸化用空気ブロア80と、空気79を送給する散気管81と、空気79を酸化槽78内の海水62Cに供給する酸化空気用ノズル82が設けられている。 Then, the exhaust gas 54 that has been dust-removed by the dust collector 61 is supplied to the seawater flue gas desulfurization device 64. As the seawater flue gas desulfurization apparatus 64, the seawater flue gas desulfurization apparatus according to the present invention is used. That is, the seawater flue gas desulfurization device 64 is provided with a flue gas desulfurization absorption tower 71 for purifying the sulfur content in the exhaust gas 54 by bringing it into contact with a part of the seawater 62A for absorption of the seawater 62, and under the flue gas desulfurization absorption tower 71 The sulfur-absorbing seawater 63A generated by bringing the sulfur content in the exhaust gas 54 into contact with the absorbing seawater 62A and desulfurizing in the flue gas desulfurization absorption tower 71 is fed into the main body 72. It has a dilution seawater 62B and a dilution mixing tank 73 for mixing and diluting, and extends along the longitudinal direction of the dilution mixing tank 73 so as to cover the dilution mixing tank 73 on the lower end side of the side wall 74 of the flue gas desulfurization absorption tower 71. A gas retaining portion 77 having a lid portion 75 provided and a first weir 76 which is suspended from the back surface side of the lid portion 75 and whose end portion is buried in the water surface in the dilution and mixing tank 73. It is. Further, an oxidation tank 78 is provided integrally with the dilution mixing tank 73 on the downstream side of the dilution mixing tank 73 to oxidize and decarboxylate the sulfur content in the sulfur-absorbing seawater 63B to restore the water quality. The sulfur-absorbing seawater 63B is seawater in which the dilution seawater 62B and the sulfur-absorbing seawater 62A flowing down in the flue gas desulfurization absorption tower 71 are mixed. The oxidation tank 78 is provided with an oxidation air blower 80 for supplying air 79, a diffuser pipe 81 for supplying the air 79, and an oxidation air nozzle 82 for supplying the air 79 to the seawater 62C in the oxidation tank 78. ing.
 具体的には、排ガス54は、誘引ファン83により排煙脱硫吸収塔71内に供給される。この時、排ガス54は熱交換器84で排煙脱硫吸収塔71で脱硫され排出される浄化ガス65と熱交換された後、排煙脱硫吸収塔71内に供給される。 Specifically, the exhaust gas 54 is supplied into the flue gas desulfurization absorption tower 71 by the induction fan 83. At this time, the exhaust gas 54 is heat-exchanged with the purified gas 65 desulfurized and discharged by the flue gas desulfurization absorption tower 71 by the heat exchanger 84, and then supplied into the flue gas desulfurization absorption tower 71.
 排煙脱硫吸収塔71では、排ガス54中に含有されている硫黄分を海85から汲み上げられた海水62の一部を吸収用海水62Aとして用いて海水脱硫を行っている。化石燃料を燃焼させて生じる排ガス54には、SO2などの形態で硫黄酸化物(SOX)である硫黄分が含有されている。排煙脱硫吸収塔71において排ガス54と海水供給ライン86を介して供給される吸収用海水62Aとを気液接触させて、排ガス54中のSO2を吸収用海水62Aに吸収させ、海水脱硫を行っている。また、ポンプ87で海85から汲み上げられた海水62は復水器59で熱交換した後、復水器59の排液である海水62の一部の吸収用海水62Aをポンプ88で排煙脱硫吸収塔71に送給される。また、排煙脱硫吸収塔71で脱硫された浄化ガス65は煙突66より大気中に放出する。 In the flue gas desulfurization absorption tower 71, seawater desulfurization is performed by using a part of the seawater 62 pumped up from the sea 85 as the sulfur content contained in the exhaust gas 54 as the absorption seawater 62A. The exhaust gas 54 produced by burning fossil fuel contains a sulfur content that is sulfur oxide (SO x ) in the form of SO 2 or the like. And absorbing seawater 62A of the flue gas desulfurization absorber tower 71 is supplied via the exhaust 54 and the seawater supply line 86 by gas-liquid contact, to absorb SO 2 in the flue gas 54 to absorption seawater 62A, seawater desulfurization Is going. The seawater 62 pumped up from the sea 85 by the pump 87 is heat-exchanged by the condenser 59, and then a part of the seawater 62A for absorption of the seawater 62 that is the drainage of the condenser 59 is exhausted by the pump 88. It is fed to the absorption tower 71. Further, the purified gas 65 desulfurized by the flue gas desulfurization absorption tower 71 is released from the chimney 66 into the atmosphere.
 硫黄分吸収海水63Aは、排煙脱硫吸収塔71の下側に一体に設けられている希釈混合槽73に回収される。また、海水62の一部を希釈用海水62Bとして希釈用海水供給ライン89を介して希釈混合槽73に送給する。これにより、硫黄分吸収海水63Aを希釈用海水62Bで希釈することができると共に、硫黄分吸収海水63BのpHを上昇させることができる。 The sulfur-absorbing seawater 63A is collected in a dilution and mixing tank 73 that is integrally provided below the flue gas desulfurization absorption tower 71. Further, a part of the seawater 62 is supplied as dilution seawater 62B to the dilution mixing tank 73 via the dilution seawater supply line 89. Thus, the sulfur content-absorbing seawater 63A can be diluted with the dilution seawater 62B, and the pH of the sulfur-content-absorbing seawater 63B can be increased.
 また、排煙脱硫吸収塔71の側壁74の下端側に希釈混合槽73を覆うように希釈混合槽73の長手方向に沿ってガス滞留部77が延設された蓋部75と、この蓋部75の裏面側から垂下され、希釈混合槽73内の水面にその端部が埋没する第一の堰76とを備えたガス滞留部77を有している。このため、希釈混合槽73の底部73aにおいて巻き込まれた高濃度のSO2ガスを含有する気泡90をガス滞留部77内の空間S11内に放散させ、この空間S11内に留まらせ、SO2ガスが後流の酸化槽77に漏洩するのを防止することができる。 Further, a lid 75 in which a gas retention part 77 is extended along the longitudinal direction of the dilution / mixing tank 73 so as to cover the dilution / mixing tank 73 on the lower end side of the side wall 74 of the flue gas desulfurization absorption tower 71, and this lid 75 has a gas retention part 77 provided with a first weir 76 that hangs down from the back surface side of 75 and whose end is buried in the water surface in the dilution and mixing tank 73. For this reason, the bubbles 90 containing the high-concentration SO 2 gas entrained in the bottom 73a of the dilution mixing tank 73 are diffused into the space S11 in the gas retention part 77, and remain in this space S11, and the SO 2 gas. Can be prevented from leaking into the downstream oxidation tank 77.
 また、本実施の形態においては、海水排煙脱硫装置64として、上述の本実施の形態に係る第一の海水排煙脱硫装置を用いて説明したが、これに限定されるものではなく、上述の本実施の形態に係る第二~第四の海水排煙脱硫装置を用いてもよい。 Moreover, in this Embodiment, although demonstrated using the 1st seawater flue gas desulfurization apparatus which concerns on the above-mentioned this Embodiment as the seawater flue gas desulfurization apparatus 64, it is not limited to this, The above-mentioned The second to fourth seawater flue gas desulfurization apparatuses according to the present embodiment may be used.
 そして、酸化用空気ブロア80より空気79を散気管81を介して酸化空気用ノズル82から酸化槽78内に供給し、硫黄分吸収海水63B中の亜硫酸水素イオンを酸化すると共に、重炭酸イオンから二酸化炭素を脱離している。これにより硫黄分吸収海水63Bは水質回復され、水質改質海水91となる。 Then, air 79 is supplied from the oxidizing air blower 80 through the diffuser pipe 81 into the oxidizing tank 78 from the oxidizing air nozzle 82 to oxidize the bisulfite ions in the sulfur-absorbing seawater 63B and from the bicarbonate ions. Carbon dioxide is desorbed. As a result, the water content of the sulfur-absorbing seawater 63B is recovered and becomes the water-modified seawater 91.
 その後、酸化槽78で水質回復処理がされた水質改質海水91は、海水排出ライン92を介して海水排液として海85へと放出されている。 After that, the water-modified seawater 91 that has been subjected to the water quality recovery process in the oxidation tank 78 is discharged into the sea 85 as seawater drainage liquid via the seawater discharge line 92.
 このように、本実施の形態に係る海水脱硫システム50によれば、酸化槽77で海水脱硫することで生じる硫黄分吸収海水63を希釈混合槽73で回収し、希釈用海水62Bで混合・希釈すると共に、希釈混合槽73の底部において希釈用海水62Bに硫黄分吸収海水63Aの流下により巻き込まれて生じる高濃度のSO2ガスを含有する気泡90が、後流の屋外開放の酸化槽77で放散され、SO2が外部に漏洩することを防止することができるため、安全性、且つ、信頼性の高い海水脱硫システムを提供することができる。 Thus, according to the seawater desulfurization system 50 according to the present embodiment, the sulfur-absorbing seawater 63 generated by the seawater desulfurization in the oxidation tank 77 is recovered in the dilution mixing tank 73 and mixed and diluted with the dilution seawater 62B. At the same time, bubbles 90 containing high-concentration SO 2 gas generated by the flow of the sulfur-absorbing seawater 63A into the dilution seawater 62B at the bottom of the dilution mixing tank 73 are generated in the downstream open oxidation tank 77. Since it can be diffused and SO 2 can be prevented from leaking to the outside, a safe and highly reliable seawater desulfurization system can be provided.
 以上のように、本発明に係る海水排煙脱硫装置は、海水脱硫によって生じる硫黄分吸収海水が希釈用海水と混合する際に海水中に巻き込まれたSO2が酸化処理を行う際に外部に放散されるのを防止することができるため、海水脱硫に用いた海水を海洋に放出できるように調整する海水排煙脱硫装置に用いるのに適している。 As described above, the seawater flue gas desulfurization apparatus according to the present invention is externally used when SO 2 entrained in seawater is oxidized when sulfur-absorbed seawater generated by seawater desulfurization is mixed with seawater for dilution. Since it can be prevented from being diffused, it is suitable for use in a seawater flue gas desulfurization apparatus that adjusts so that seawater used for seawater desulfurization can be released to the ocean.
 10-1~10-4 第一の海水排煙脱硫装置~第四の海水排煙脱硫装置
 11 排ガス
 12、12A、62、62A 海水(吸収用海水)
 12B、62B 希釈用海水
 13、71 排煙脱硫吸収塔
 14A、14B 硫黄分吸収海水
 15、72 本体
 16、73 希釈混合槽
 16a 底部
 17、74 側壁
 18、75 蓋部
 18a 端部
 19、76 第一の堰
 19a 端部
 19b 内壁
 20A~20D、77 ガス滞留部
 21、85 海
 22、24 ポンプ
 23、86 海水供給ライン
 25 浄化ガス
 26 浄化ガス排出通路
 27、88 希釈用海水供給ライン
 28、90 気泡
 29、78 酸化槽
 30 空気供給部
 31、79 空気
 32、80 酸化用空気ブロア
 33、81 散気管
 34、82 酸化空気用ノズル
 35、91 水質改質海水
 36、92 海水排出ライン
 42 第二の堰
 42a 端部
 42b 内壁
 43 第三の堰
 43a 端部
 43b 外壁
 44 通気孔
 50 海水脱硫システム
 51 空気予熱器(AH)
 52、78 空気
 53 ボイラ
 54 排ガス
 55 蒸気
 56 発電機
 57 蒸気タービン
 58 水
 59 復水器
 60 排煙脱硝装置
 61 集塵装置
 63 硫黄分吸収海水
 64 海水排煙脱硫装置
 65 浄化ガス
 66 煙突
 67 押込みファン
 83 誘引ファン
 84 熱交換器
 87、88 ポンプ
 S1~S2、S11 空間
10-1 to 10-4 First seawater flue gas desulfurization device to fourth seawater flue gas desulfurization device 11 Exhaust gas 12, 12A, 62, 62A Seawater (seawater for absorption)
12B, 62B Dilution sea water 13, 71 Flue gas desulfurization absorption tower 14A, 14B Sulfur content absorption sea water 15, 72 Main body 16, 73 Dilution mixing tank 16a Bottom portion 17, 74 Side wall 18, 75 Lid portion 18a End portion 19, 76 First 19a End portion 19b Inner wall 20A to 20D, 77 Gas retention portion 21, 85 Sea 22, 24 Pump 23, 86 Seawater supply line 25 Purified gas 26 Purified gas discharge passage 27, 88 Dilution seawater supply line 28, 90 Bubbles 29 , 78 Oxidation tank 30 Air supply unit 31, 79 Air 32, 80 Oxidizing air blower 33, 81 Air diffuser pipe 34, 82 Oxidized air nozzle 35, 91 Water quality modified seawater 36, 92 Seawater discharge line 42 Second weir 42a End portion 42b Inner wall 43 Third weir 43a End portion 43b Outer wall 44 Vent hole 50 Seawater desulfurization system 51 Air preheating (AH)
52, 78 Air 53 Boiler 54 Exhaust gas 55 Steam 56 Generator 57 Steam turbine 58 Water 59 Condenser 60 Flue gas denitration device 61 Dust collector 63 Sulfur content absorption seawater 64 Seawater flue gas desulfurization device 65 Purified gas 66 Chimney 67 Push-in fan 83 Induction fan 84 Heat exchanger 87, 88 Pump S1-S2, S11 Space

Claims (13)

  1.  排ガス中の硫黄分を海水と接触させて浄化する排煙脱硫吸収塔と、
     該排煙脱硫吸収塔の下側に一体に設けられ、前記排煙脱硫吸収塔で前記排ガス中の前記硫黄分を前記海水と接触させて海水脱硫することによって生じた硫黄分吸収海水を本体内に送給される海水と混合・希釈する希釈混合槽とを有すると共に、
     前記排煙脱硫吸収塔の側壁の下端側に前記希釈混合槽を覆うように延設された蓋部と、該蓋部の裏面側から垂下され、前記希釈混合槽内の水面にその端部が埋没する第一の堰とを備えたガス滞留部とを有することを特徴とする海水排煙脱硫装置。
    A flue gas desulfurization absorption tower for purifying sulfur in the exhaust gas by contacting with seawater;
    Provided integrally below the flue gas desulfurization absorption tower, the sulfur content absorption seawater generated by bringing the sulfur content in the exhaust gas into contact with the seawater and desulfurizing the seawater in the flue gas desulfurization absorption tower With seawater fed to the tank and a dilution / mixing tank for mixing / dilution,
    A lid portion extending from the lower side of the side wall of the flue gas desulfurization absorption tower so as to cover the dilution mixing tank, and suspended from the back side of the lid section, and an end portion of the water surface in the dilution mixing tank A seawater flue gas desulfurization apparatus comprising a gas retention portion including a first weir to be buried.
  2.  請求項1において、
     前記排煙脱硫吸収塔の前記側壁から前記第一の堰の内壁までの長さL1が、下記式(1)、(2)の何れか一方と下記式(3)とを満たすことを特徴とする海水排煙脱硫装置。
    海水中における気泡径dpに対して、
    G1<τ1(dp) ・・・(1)
    Cc>C0exp(-6Kg/dpτ1) ・・・(2)
    τ1=L1/U ・・・(3)
     但し、dG1はガス滞留部出口の第一の堰から希釈混合槽の底部までの開口高さであり、τ1はガス滞留部での海水の滞留時間であり、Ut(dp)は海水中における気泡径dpの気泡群の終末上昇速度であり、CcはSO2環境基準濃度であり、C0は排ガスの排煙脱硫吸収塔の入口におけるSO2濃度であり、Kgは気泡の気液界面におけるSOガスの総括物質移動係数であり、dpは気泡径であり、ULは希釈混合槽の底部の出口流速である。
    In claim 1,
    The length L1 from the side wall of the flue gas desulfurization absorption tower to the inner wall of the first weir satisfies either one of the following formulas (1) and (2) and the following formula (3). Seawater flue gas desulfurization equipment.
    For bubble diameter dp in seawater,
    d G11 U t (dp) (1)
    Cc> C 0 exp (−6 Kg / dpτ 1 ) (2)
    τ 1 = L1 / U L ··· (3)
    Where d G1 is the opening height from the first weir at the outlet of the gas retention section to the bottom of the dilution mixing tank, τ 1 is the residence time of seawater in the gas retention section, and U t (dp) is the seawater Is the final rising speed of the bubble group having the bubble diameter dp, Cc is the SO 2 environmental standard concentration, C 0 is the SO 2 concentration at the inlet of the flue gas desulfurization absorption tower, and Kg is the gas-liquid of the bubble an overall mass transfer coefficient of the SO 2 gas at the interface, dp is the bubble diameter, the U L is the outlet flow rate of the bottom of the dilution mixing tank.
  3.  請求項1において、
     前記希釈混合槽の底部に第二の堰を設けてなることを特徴とする海水排煙脱硫装置。
    In claim 1,
    A seawater flue gas desulfurization apparatus comprising a second weir at the bottom of the dilution mixing tank.
  4.  請求項3において、
     前記排煙脱硫吸収塔の前記側壁から前記第二の堰の内壁までの長さL2が、下記式(4)、(5)の何れか一方と下記式(6)とを満たすことを特徴とする海水排煙脱硫装置。
    D<τ2(dp) ・・・(4)
    Cc>C0exp(-6Kg/dpτ2) ・・・(5)
    τ2=L2/(U×D/dG2) ・・・(6)
     但し、Dは希釈混合槽の海水の液深さであり、τ2はガス滞留部での海水の滞留時間であり、U(dp)は海水中における気泡径dpの気泡群の終末上昇速度であり、CcはSO2環境基準濃度であり、C0は排ガスの排煙脱硫吸収塔の入口におけるSO2濃度であり、Kgは気泡の気液界面におけるSOガスの総括物質移動係数であり、dpは気泡径であり、ULは希釈混合槽の底部の出口流速であり、dG2は海水液面と第二の堰との間の液面の高さである。
    In claim 3,
    The length L2 from the side wall of the flue gas desulfurization absorption tower to the inner wall of the second weir satisfies any one of the following formulas (4) and (5) and the following formula (6). Seawater flue gas desulfurization equipment.
    D <τ 2 U t (dp) (4)
    Cc> C 0 exp (−6 Kg / dpτ 2 ) (5)
    τ 2 = L2 / (U L × D / d G2 ) (6)
    However, D is the depth of seawater in the dilution mixing tank, τ 2 is the retention time of seawater in the gas retention part, and U t (dp) is the terminal rising speed of the bubbles having the bubble diameter dp in the seawater. Cc is the SO 2 environmental standard concentration, C 0 is the SO 2 concentration at the inlet of the flue gas desulfurization absorption tower, and Kg is the overall mass transfer coefficient of SO 2 gas at the gas-liquid interface of the bubbles , dp is the bubble diameter, U L is the outlet flow rate of the bottom of the dilution mixing tank, the d G2 is the height of the liquid surface between the seawater liquid surface and the second weir.
  5.  請求項1において、
     前記ガス滞留部の内側に第三の堰が設けられてなることを特徴とする海水排煙脱硫装置。
    In claim 1,
    A seawater flue gas desulfurization apparatus, wherein a third weir is provided inside the gas retention part.
  6.  請求項5において、
     前記第三の堰の外壁から前記第一の堰の内壁までの長さL3が、下記式(7)、(8)の何れか一方と下記式(9)とを満たすことを特徴とする海水排煙脱硫装置。
    G1<τ3(dp) ・・・(7)
    Cc>C0exp(-6Kg/dpτ3) ・・・(8)
    τ3=L3/(U×D/MIN(dG1、G2)) ・・・(9)
     但し、dG1はガス滞留部出口の第一の堰から希釈混合槽の底部までの開口高さであり、τ3はガス滞留部での海水の滞留時間であり、U(dp)は海水中における気泡径dpの気泡群の終末上昇速度であり、CcはSO2環境基準濃度であり、C0は排ガスの排煙脱硫吸収塔の入口におけるSO2濃度であり、Kgは気泡の気液界面におけるSOガスの総括物質移動係数であり、dpは気泡径であり、ULは希釈混合槽の底部の出口流速であり、Dは希釈混合部の海水の液深さであり、dG2はガス滞留部出口の第二の堰から希釈混合槽の底部までの開口高さであり、MIN(dG1、G2)は、dG1、G2の最小値である。
    In claim 5,
    The length L3 from the outer wall of the third weir to the inner wall of the first weir satisfies any one of the following formulas (7) and (8) and the following formula (9). Flue gas desulfurization equipment.
    d G13 U t (dp) (7)
    Cc> C 0 exp (−6 Kg / dpτ 3 ) (8)
    τ 3 = L3 / (U L × D / MIN (d G1, d G2 )) (9)
    Where d G1 is the opening height from the first weir at the outlet of the gas retention section to the bottom of the dilution mixing tank, τ 3 is the residence time of seawater in the gas retention section, and U t (dp) is the seawater Is the final rising speed of the bubble group having the bubble diameter dp, Cc is the SO 2 environmental standard concentration, C 0 is the SO 2 concentration at the inlet of the flue gas desulfurization absorption tower, and Kg is the gas-liquid of the bubble an overall mass transfer coefficient of the SO 2 gas at the interface, dp is the bubble diameter, U L is the outlet flow rate of the bottom of the dilution mixing tank, D is a liquid depth of the sea water dilution mixing unit, d G2 Is the opening height from the second weir at the outlet of the gas retention section to the bottom of the dilution mixing tank, and MIN (d G1, d G2 ) is the minimum value of d G1, d G2 .
  7.  請求項1において、
     前記希釈混合槽の底部に第二の堰を設けると共に、
     前記ガス滞留部の内側に第三の堰が設けられてなることを特徴とする海水排煙脱硫装置。
    In claim 1,
    While providing a second weir at the bottom of the dilution mixing tank,
    A seawater flue gas desulfurization apparatus, wherein a third weir is provided inside the gas retention part.
  8.  請求項7において、
     前記第三の堰の外壁から前記第二の堰の内壁までの長さL4が、下記式(10)、(11)の何れか一方と下記式(12)とを満たすことを特徴とする海水排煙脱硫装置。
    D<τ4(dp) ・・・(10)
    Cc>C0exp(-6Kg/dpτ4) ・・・(11)
    τ4=L4/(U×D/MIN(dG1、dG2、dG3)) ・・・(12)
     但し、Dは希釈混合槽の海水の液深さであり、τ4はガス滞留部での海水の滞留時間であり、U(dp)は海水中における気泡径dpの気泡群の終末上昇速度であり、CcはSO2環境基準濃度であり、C0は排ガスの排煙脱硫吸収塔の入口におけるSO2濃度であり、Kgは気泡の気液界面におけるSOガスの総括物質移動係数であり、dpは気泡径であり、ULは希釈混合槽の底部の出口流速であり、dG1は第一の堰から希釈混合槽の底部までの開口高さであり、dG2は海水液面と第二の堰との間の液面の高さであり、dG3は第三の堰から希釈混合槽の底部までの開口高さであり、MIN(dG1、dG2、dG3)は、dG1、dG2、dG3の最小値である。
    In claim 7,
    The length L4 from the outer wall of the third weir to the inner wall of the second weir satisfies any one of the following formulas (10) and (11) and the following formula (12). Flue gas desulfurization equipment.
    D <τ 4 U t (dp) (10)
    Cc> C 0 exp (−6 Kg / dpτ 4 ) (11)
    τ 4 = L4 / (U L × D / MIN (d G1 , d G2 , d G3 )) (12)
    However, D is the depth of seawater in the dilution mixing tank, τ 4 is the residence time of seawater in the gas residence part, and U t (dp) is the terminal rising speed of the bubble group having the bubble diameter dp in the seawater. Cc is the SO 2 environmental standard concentration, C 0 is the SO 2 concentration at the inlet of the flue gas desulfurization absorption tower, and Kg is the overall mass transfer coefficient of SO 2 gas at the gas-liquid interface of the bubbles , dp is the bubble diameter, U L is the outlet flow rate of the bottom of the dilution mixing tank, d G1 is the opening height to the bottom of the dilution mixing tank from the first weir, d G2 is a sea liquid surface D G3 is the opening height from the third weir to the bottom of the diluting mixing tank, and MIN (d G1 , d G2 , d G3 ) is: It is the minimum value of d G1 , d G2 , and d G3 .
  9.  請求項5乃至8の何れか一つにおいて、
     前記第三の堰が、前記ガス滞留部と前記海水との間の空間と前記排煙脱硫吸収塔とを連通する通気孔を有することを特徴とする海水排煙脱硫装置。
    In any one of claims 5 to 8,
    The seawater flue gas desulfurization apparatus, wherein the third weir has a vent hole communicating the space between the gas retention part and the seawater and the flue gas desulfurization absorption tower.
  10.  請求項1乃至9の何れか一つにおいて、
     前記海水が復水器から排出される排液であることを特徴とする海水排煙脱硫装置。
    In any one of Claims 1 thru | or 9,
    A seawater flue gas desulfurization apparatus, wherein the seawater is drained from a condenser.
  11.  請求項1乃至10の何れか一つにおいて、
     前記希釈混合槽の後流に設けられ、
     前記希釈混合槽で前記硫黄分吸収海水と混合した海水中の硫黄分を酸化すると共に脱炭酸し、水質回復を行う酸化槽を有することを特徴とする海水排煙脱硫装置。
    In any one of Claims 1 thru | or 10,
    Provided in the downstream of the dilution mixing tank,
    A seawater flue gas desulfurization apparatus comprising an oxidation tank that oxidizes and decarboxylates sulfur content in seawater mixed with the sulfur-absorbing seawater in the dilution and mixing tank and restores water quality.
  12.  ボイラと、
     前記ボイラから排出される排ガスを蒸気発生用の熱源として使用すると共に、発生した蒸気を用いて発電機を駆動する蒸気タービンと、
     前記蒸気タービンで凝縮した水を回収し、循環させる復水器と、
     前記ボイラから排出される排ガスの脱硝を行う排煙脱硝装置と、
     前記排ガス中の煤塵を除去する集塵装置と、
     請求項1乃至11の何れか一つの海水排煙脱硫装置と、
     前記排煙脱硫装置で脱硫された浄化ガスを外部へ排出する煙突とからなることを特徴とする海水脱硫システム。
    With a boiler,
    Using the exhaust gas discharged from the boiler as a heat source for generating steam, and a steam turbine for driving a generator using the generated steam;
    A condenser for collecting and circulating the water condensed in the steam turbine;
    A flue gas denitration device for denitrating exhaust gas discharged from the boiler;
    A dust collector for removing the dust in the exhaust gas;
    Seawater flue gas desulfurization device according to any one of claims 1 to 11,
    A seawater desulfurization system comprising a chimney for discharging the purified gas desulfurized by the flue gas desulfurization apparatus to the outside.
  13.  請求項1乃至11の何れか一つの海水排煙脱硫装置を用いて脱硫に用いた海水中に含有されているSO2ガスが外部に放散されるのを防止することを特徴とする脱硫海水の処理方法。 A desulfurized seawater characterized by preventing SO 2 gas contained in seawater used for desulfurization using the seawater flue gas desulfurization apparatus according to any one of claims 1 to 11 from being released to the outside. Processing method.
PCT/JP2009/058780 2009-05-11 2009-05-11 Equipment for the desulfurization of flue gas with seawater and process for treatment of the seawater used in the desufurization WO2010131327A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MYPI2011001306A MY170614A (en) 2009-05-11 2009-05-11 Seawater flue-gas desulfurization apparatus and method of treating desulfurization seawater
PCT/JP2009/058780 WO2010131327A1 (en) 2009-05-11 2009-05-11 Equipment for the desulfurization of flue gas with seawater and process for treatment of the seawater used in the desufurization
KR1020117007344A KR101269707B1 (en) 2009-05-11 2009-05-11 Equipment for the desulfurization of flue gas with seawater and process for treatment of the seawater used in the desulfurization
SA109300664A SA109300664B1 (en) 2009-05-11 2009-11-09 Seawater flue-gas desulfurization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058780 WO2010131327A1 (en) 2009-05-11 2009-05-11 Equipment for the desulfurization of flue gas with seawater and process for treatment of the seawater used in the desufurization

Publications (1)

Publication Number Publication Date
WO2010131327A1 true WO2010131327A1 (en) 2010-11-18

Family

ID=43084717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058780 WO2010131327A1 (en) 2009-05-11 2009-05-11 Equipment for the desulfurization of flue gas with seawater and process for treatment of the seawater used in the desufurization

Country Status (4)

Country Link
KR (1) KR101269707B1 (en)
MY (1) MY170614A (en)
SA (1) SA109300664B1 (en)
WO (1) WO2010131327A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102343209A (en) * 2011-09-28 2012-02-08 西安交通大学 Seawater flue gas desulphurization (FGD) system applying boiler blowdown water
WO2013118683A1 (en) * 2012-02-06 2013-08-15 三菱重工業株式会社 Desulfurization seawater processing system
EP2644252A1 (en) * 2012-03-29 2013-10-02 Doosan Lentjes GmbH A flue gas purification device
CN114853250A (en) * 2022-06-06 2022-08-05 萍乡市新安环保工程有限公司 Coking desulfurization foam and waste liquid drying equipment and method for drying coking desulfurization foam and waste liquid by using same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101422760B1 (en) 2014-03-06 2014-07-23 (주) 한국환경진단연구소 Apparatus and method for removing sulfur compounds in flue gases using the sea water
KR20180079756A (en) * 2017-01-02 2018-07-11 한국전력기술 주식회사 Construction and treatment of seawater desulfurization facility using seawater concentrated water of seawater desalination facilities

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265140U (en) * 1975-10-24 1977-05-13
JPS5580010U (en) * 1978-11-27 1980-06-02
JPS5790706U (en) * 1980-11-21 1982-06-04
JPS61139890U (en) * 1985-02-21 1986-08-29
JPS62106605U (en) * 1985-12-23 1987-07-08
JPH03109699U (en) * 1990-02-28 1991-11-11
JP2003117349A (en) * 2001-10-17 2003-04-22 Mitsubishi Heavy Ind Ltd Flue gas treating apparatus
JP2008207149A (en) * 2007-02-28 2008-09-11 Mitsubishi Heavy Ind Ltd Flue gas desulfurization system employing seawater
JP2009028571A (en) * 2007-07-24 2009-02-12 Mitsubishi Heavy Ind Ltd Flue gas desulfurizer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265140U (en) * 1975-10-24 1977-05-13
JPS5580010U (en) * 1978-11-27 1980-06-02
JPS5790706U (en) * 1980-11-21 1982-06-04
JPS61139890U (en) * 1985-02-21 1986-08-29
JPS62106605U (en) * 1985-12-23 1987-07-08
JPH03109699U (en) * 1990-02-28 1991-11-11
JP2003117349A (en) * 2001-10-17 2003-04-22 Mitsubishi Heavy Ind Ltd Flue gas treating apparatus
JP2008207149A (en) * 2007-02-28 2008-09-11 Mitsubishi Heavy Ind Ltd Flue gas desulfurization system employing seawater
JP2009028571A (en) * 2007-07-24 2009-02-12 Mitsubishi Heavy Ind Ltd Flue gas desulfurizer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102343209A (en) * 2011-09-28 2012-02-08 西安交通大学 Seawater flue gas desulphurization (FGD) system applying boiler blowdown water
CN102343209B (en) * 2011-09-28 2013-04-17 西安交通大学 Seawater flue gas desulphurization (FGD) system applying boiler blowdown water
WO2013118683A1 (en) * 2012-02-06 2013-08-15 三菱重工業株式会社 Desulfurization seawater processing system
EP2644252A1 (en) * 2012-03-29 2013-10-02 Doosan Lentjes GmbH A flue gas purification device
WO2013143788A1 (en) * 2012-03-29 2013-10-03 Doosan Lentjes Gmbh A flue gas purification device
JP2015514566A (en) * 2012-03-29 2015-05-21 ドゥーサン・レンチェス・ゲーエムベーハー Combustion exhaust gas purification device
TWI489064B (en) * 2012-03-29 2015-06-21 Doosan Lentjes Gmbh A flue gas purification device
US9421494B2 (en) 2012-03-29 2016-08-23 Doosan Lentjes Gmbh Flue gas purification device
CN114853250A (en) * 2022-06-06 2022-08-05 萍乡市新安环保工程有限公司 Coking desulfurization foam and waste liquid drying equipment and method for drying coking desulfurization foam and waste liquid by using same
CN114853250B (en) * 2022-06-06 2023-02-07 萍乡市新安环保工程有限公司 Coking desulfurization foam and waste liquid drying equipment and method for drying coking desulfurization foam and waste liquid by using same

Also Published As

Publication number Publication date
KR20110061597A (en) 2011-06-09
SA109300664B1 (en) 2014-10-15
MY170614A (en) 2019-08-21
KR101269707B1 (en) 2013-05-30

Similar Documents

Publication Publication Date Title
RU2435628C2 (en) Off-gas treatment
JP5773687B2 (en) Seawater flue gas desulfurization system and power generation system
WO2010116482A1 (en) Seawater desulfation treatment apparatus, method for treating desulfurized seawater, and power generation system to which the method has been applied
WO2010131327A1 (en) Equipment for the desulfurization of flue gas with seawater and process for treatment of the seawater used in the desufurization
JP4920993B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
WO2014156985A1 (en) Seawater flue-gas desulfurization device and method for operating same
TWI415798B (en) Oxidation tank, seawater treatment unit and seawater desulfurization system
JP2012179521A5 (en)
WO2013115107A1 (en) Seawater flue-gas desulfurization system and power generation system
JP2009166011A (en) Exhaust gas treatment system and its method of coal fired boiler
JP6462359B2 (en) Method and apparatus for desulfurization of exhaust gas containing sulfurous acid gas
JP2017006822A (en) Exhaust gas treatment device for coal-firing boiler and exhaust gas treatment method for coal-firing boiler
JP2010269248A (en) Apparatus for desulfurizing/absorbing flue gas, and method of treating flue gas
JP2017077537A (en) Device and method for treating sulfur absorptive solution
JP2012115764A (en) Wastewater channel of seawater desulfurization apparatus and seawater flue gas desulfurization system
WO2013115108A1 (en) Oxidation tank, seawater flue-gas desulfurization system and power generation system
JP2010269277A (en) Method and apparatus of suppressing mercury re-release in desulfurization apparatus
JP2010240624A (en) Flue gas desulfurization apparatus and exhaust gas treatment method
JP2009095711A (en) Method and device for treating exhaust gas
JP5591446B2 (en) Exhaust gas treatment method
JP3786786B2 (en) Flue gas desulfurization method
JP2008080261A (en) Exhaust gas treatment method
JP2013220376A (en) Apparatus and method for seawater desulfurization
KR20150032488A (en) Method and apparatus for catalyzing seawater aeration basins
JP2019156985A (en) Device for purifying gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844601

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117007344

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2892/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP