JP2008207149A - Flue gas desulfurization system employing seawater - Google Patents

Flue gas desulfurization system employing seawater Download PDF

Info

Publication number
JP2008207149A
JP2008207149A JP2007048657A JP2007048657A JP2008207149A JP 2008207149 A JP2008207149 A JP 2008207149A JP 2007048657 A JP2007048657 A JP 2007048657A JP 2007048657 A JP2007048657 A JP 2007048657A JP 2008207149 A JP2008207149 A JP 2008207149A
Authority
JP
Japan
Prior art keywords
seawater
wastewater
flue gas
oxidation
gas desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007048657A
Other languages
Japanese (ja)
Other versions
JP5259964B2 (en
Inventor
Tomoo Akiyama
知雄 秋山
Naoyuki Kamiyama
直行 神山
Shintaro Honjo
新太郎 本城
Susumu Okino
沖野  進
Motofumi Ito
基文 伊藤
Yoshio Nakayama
喜雄 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2007048657A priority Critical patent/JP5259964B2/en
Priority to PCT/JP2008/051341 priority patent/WO2008105212A1/en
Priority to MYPI20091660A priority patent/MY157783A/en
Priority to CN200880001077.3A priority patent/CN101557868B/en
Publication of JP2008207149A publication Critical patent/JP2008207149A/en
Priority to NO20091780A priority patent/NO20091780L/en
Application granted granted Critical
Publication of JP5259964B2 publication Critical patent/JP5259964B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/504Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/102Oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flue gas desulfurization system employing seawater capable of highly efficiently carrying out oxidation treatment of wastewater in a short time by preventing an extreme decrease of the concentration of sulfurous acid in wastewater discharged from a flue gas desulfurization apparatus employing seawater and a decrease of pH of the wastewater caused by the oxidation treatment. <P>SOLUTION: The flue gas desulfurization system employing seawater is constituted of a desulfurization/absorption tower 17 that employs seawater as an absorption liquid and a wastewater oxidation tank 20 for oxidizing sulfurous acid contained in the waste water discharged from the desulfurizaion/absorption tower 17. In the wastewater oxidation tank 20, sulfurous acid contained in the wastewater is oxidized by introducing air from an air introduction nozzle 33 at least in two separate steps to the wastewater containing sulfurous acid, and the wastewater is diluted by introducing seawater from a seawater feed port 26 at least in two separate steps in accordance with the stepwise progress of the oxidation of sulfurous acid. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、海水排煙脱硫システムに関する。   The present invention relates to a seawater flue gas desulfurization system.

一般に、発電所等においては、石炭焚きボイラ等から排出される排ガスから二酸化硫黄(SO2)を吸収除去する必要があり、排煙脱硫装置が設けられている。排煙脱硫装置としては、吸収剤として炭酸カルシウム(CaCO3)を用いた石灰石−石膏法が一般的であるが、この石灰石−石膏法に比べて低コストであるため、沿岸部の発電所等では、吸収液として海水を使用する海水法も利用されている。 Generally, in a power plant or the like, it is necessary to absorb and remove sulfur dioxide (SO 2 ) from exhaust gas discharged from a coal-fired boiler or the like, and a flue gas desulfurization device is provided. As a flue gas desulfurization device, a limestone-gypsum method using calcium carbonate (CaCO 3 ) as an absorbent is generally used, but since the cost is lower than that of the limestone-gypsum method, power plants in coastal areas, etc. In the seawater method, seawater is used as an absorbing solution.

海水法による排煙脱硫装置では、排ガス中のSO2を海水で吸収除去するため、脱硫に使用した海水中には亜硫酸イオン(SO3 2-)や重亜硫酸イオン(HSO3 -)、亜硫酸(H2SO3)といった亜硫酸類が高濃度に含まれている。よって、脱硫に使用した海水を海に排出するために、通常、HSO3 -やSO3 2-を化学的に無害な硫酸イオン(HSO4 -やSO4 2-)に酸化する処理が行われている。例えば、非特許文献1には、海水排煙脱硫吸収塔から排出したSO3 2-を含有する排水に、新しい海水を添加した後、これを酸化槽で曝気処理し、SO3 2-をSO4 2-に酸化するとともにpHを5.5〜6.0に調整して、海に排出することが記載されている。 In the flue gas desulfurization system using the seawater method, SO 2 in the exhaust gas is absorbed and removed by seawater, so the seawater used for desulfurization contains sulfite ions (SO 3 2− ), bisulfite ions (HSO 3 ), sulfite ( Sulfurous acid such as H 2 SO 3 ) is contained in a high concentration. Therefore, in order to discharge the seawater used for desulfurization into the sea, a process of oxidizing HSO 3 or SO 3 2− to chemically harmless sulfate ions (HSO 4 or SO 4 2− ) is usually performed. ing. For example, in Non-Patent Document 1, after adding fresh seawater to wastewater containing SO 3 2- discharged from a seawater flue gas desulfurization absorption tower, this is aerated in an oxidation tank, and SO 3 2- is converted into SO 3 4 It describes that it is oxidized to 2- and the pH is adjusted to 5.5-6.0 and discharged to the sea.

一方、石灰石−石膏法による排煙脱硫装置に関するものであるが、特許文献1には、排煙脱硫吸収塔の液溜め内のアルカリ吸収液を一部抜き出して、これを再び液溜め内のアルカリ吸収液に噴射する際に、配管にオリフィスとオリフィスの下流部に吸気管を付設することで、空気を混入させ、同時に気泡を微細化し、混合することで、アルカリ吸収液中のSO3 2-をSO4 2-に酸化する水流酸化装置が記載されている。
アラン・ビル(Alain Bill),「大気汚染規制、規制と技術の発展(Air Pollution Control Regulatory & Technology Development)」,アルストム(Alstom)社,2003年11月17日(第35頁) 特開2002−210326号公報
On the other hand, although it is related with the flue gas desulfurization apparatus by the limestone-gypsum method, in Patent Document 1, a part of the alkali absorbing liquid in the liquid reservoir of the flue gas desulfurization absorption tower is extracted, and this is again added to the alkali in the liquid reservoir. When injecting into the absorbing liquid, the air is mixed by adding an orifice to the piping and an inlet pipe downstream of the orifice, and at the same time, the bubbles are refined and mixed, so that SO 3 2- in the alkali absorbing liquid is mixed. A water flow oxidizer is described which oxidizes to SO 4 2- .
Alain Bill, “Air Pollution Control Regulatory & Technology Development”, Alstom, November 17, 2003 (page 35) JP 2002-210326 A

非特許文献1に記載されている方法では、排煙脱硫吸収塔から排出した排水を、新しい海水と混合して希釈することで、SO2の再放散防止とpHの上昇を図るとともに、その後、これを酸化槽で曝気することで、SO3 2-の酸化による無害化と、脱炭酸によるpH上昇と、溶存酸素の回復を図っている。しかしながら、酸化槽でのSO3 2-の酸化が進むと、SO4 2-濃度が増加することから、酸化槽内のpHが低下する。pHが6未満になると、酸化反応速度が急激に下がり、曝気処理を長い時間行わなければならなくなる。酸化槽での曝気処理は、ブロアにより多量の空気を吹き込む必要があり、これには多くの動力費がかかることから、曝気の時間が長くなれば、運転コストは顕著に増加するという問題がある。また、pHが6未満になると、海水中の亜硫酸(H2SO3)の平衡分圧が高くなり、SO2の再放散のリスクも高まる。一方、pHを高くに維持するために、排煙脱硫吸収塔からの排水を大量の海水で希釈しておくと、酸化の対象となるSO3 2-の濃度も大幅に低下することから、酸化反応速度も大幅に下がり、よって、曝気に長い時間が必要になることから、上記の問題は解消されない。 In the method described in Non-Patent Document 1, wastewater discharged from the flue gas desulfurization absorption tower is mixed with new seawater and diluted to prevent re-emission of SO 2 and increase the pH. This is aerated in an oxidation tank to detoxify SO 3 2− by oxidation, to increase pH by decarboxylation, and to recover dissolved oxygen. However, as the oxidation of SO 3 2- in the oxidation tank proceeds, the SO 4 2- concentration increases, so the pH in the oxidation tank decreases. When the pH is less than 6, the oxidation reaction rate is drastically reduced, and the aeration treatment must be performed for a long time. The aeration treatment in the oxidation tank requires a large amount of air to be blown by the blower, and this requires a lot of power costs. Therefore, if the aeration time is prolonged, there is a problem that the operation cost increases remarkably. . Moreover, when pH becomes less than 6, the equilibrium partial pressure of sulfurous acid (H 2 SO 3 ) in seawater increases, and the risk of re-emission of SO 2 increases. On the other hand, if the wastewater from the flue gas desulfurization absorption tower is diluted with a large amount of seawater in order to maintain a high pH, the concentration of SO 3 2- that is the object of oxidation will be greatly reduced. The reaction rate is also greatly reduced, and thus a long time is required for aeration, so the above problem cannot be solved.

そこで本発明は、上記の事情に鑑み、海水排煙脱硫装置から排出される排水中の亜硫酸類濃度の極端な低下や、酸化処理による排水のpHの低下を防いで、排水の酸化処理を高効率で短時間に行うことができる海水排煙脱硫システムを提供することを目的とする。   Therefore, in view of the above circumstances, the present invention prevents an extreme decrease in the concentration of sulfites in the wastewater discharged from the seawater flue gas desulfurization apparatus and a decrease in the pH of the wastewater due to the oxidation treatment, thereby improving the wastewater oxidation treatment. An object is to provide a seawater flue gas desulfurization system that can be performed efficiently and in a short time.

上記の目的を達成するために、本発明は、吸収液として海水を用いる海水排煙脱硫装置と、この海水排煙脱硫装置から排出される排水に含まれる亜硫酸類を酸化する排水酸化装置とを備えた海水排煙脱硫システムにおいて、前記排水酸化装置が、亜硫酸類を含有する前記排水に、少なくとも2段階に分けて空気を導入して、排水中の亜硫酸類を酸化するとともに、この段階的な酸化の進行に合わせて、少なくとも2段階に分けて海水を前記排水に投入し、前記排水を希釈するように構成されていることを特徴とする。   In order to achieve the above object, the present invention includes a seawater flue gas desulfurization device that uses seawater as an absorbent, and a wastewater oxidation device that oxidizes sulfites contained in wastewater discharged from the seawater flue gas desulfurization device. In the seawater flue gas desulfurization system provided, the wastewater oxidizer introduces air into the wastewater containing sulfites in at least two stages to oxidize sulfites in the wastewater. According to the progress of oxidation, seawater is poured into the wastewater in at least two stages, and the wastewater is diluted.

この構成によれば、段階的に進行する酸化に合わせて、段階的に排水が希釈されるので、酸化による排水のpHが低下したとしても、排水に海水が供給され、排水が希釈されることから、pHは直ぐに上昇し、所定のpHを維持することができる。また、段階的に進行する酸化に合わせて、段階的に排水が希釈されるので、排水中の亜硫酸塩濃度は徐々に低下するものの、極端に低下することはない。このように、酸化反応速度の急激な低下を防ぐことができ、よって、排水の酸化処理を高効率で短時間に行うことができる。   According to this configuration, since the wastewater is diluted step by step in accordance with the oxidation proceeding stepwise, even if the pH of the wastewater due to oxidation is lowered, seawater is supplied to the wastewater and the wastewater is diluted. Therefore, the pH immediately rises, and the predetermined pH can be maintained. Further, since the wastewater is diluted step by step in accordance with the oxidation that proceeds stepwise, the sulfite concentration in the wastewater gradually decreases, but does not extremely decrease. In this way, it is possible to prevent a rapid decrease in the oxidation reaction rate, and therefore, the waste water can be oxidized efficiently and in a short time.

本発明に係る海水排煙脱硫システムは、海から取水した海水を加熱して、この加熱した海水を前記希釈用の海水として前記排水酸化装置に送る加熱手段を更に備えることが好ましい。この構成によれば、加熱した海水によって排水を希釈するので、酸化反応速度および炭酸の放散を加速することができる。   The seawater flue gas desulfurization system according to the present invention preferably further includes heating means for heating seawater taken from the sea and sending the heated seawater as the dilution seawater to the wastewater oxidation apparatus. According to this configuration, since the waste water is diluted with heated seawater, the oxidation reaction rate and the carbon dioxide emission can be accelerated.

前記排水酸化装置には、この排水酸化装置内の排水のpHまたは排水中の亜硫酸類濃度を測定する計測手段が、前記段階的な排水の希釈に合わせて段階的に複数設けられているとともに、これら計測手段で測定するpHまたは亜硫酸類濃度の値に基づいて、前記少なくとも2段階に分けて投入する希釈用の海水の流量を調整する制御手段が設けられていることが好ましい。この構成によれば、海水による希釈率を制御することができるので、排水中の亜硫酸類濃度の極端な低下や、排水のpHの低下を確実に防ぐことができる。   In the wastewater oxidation apparatus, a plurality of measuring means for measuring the pH of the wastewater in the wastewater oxidation apparatus or the concentration of sulfites in the wastewater are provided stepwise according to the stepwise wastewater dilution, It is preferable to provide a control means for adjusting the flow rate of the seawater for dilution to be introduced in at least two stages based on the pH value or the concentration of sulfites measured by these measuring means. According to this configuration, since the dilution rate with seawater can be controlled, it is possible to reliably prevent an extreme decrease in the concentration of sulfites in the wastewater and a decrease in pH of the wastewater.

前記排水酸化装置は、前記少なくとも2段階に分けて酸化用の空気を導入する際に、これら段階の間で、異なる空塔速度で空気を導入するように構成されていることが好ましい。この構成によれば、亜硫酸類濃度の高い初期の段階では空塔速度を高くし、亜硫酸類濃度が低く溶存酸素濃度の高い後期の段階では空塔速度を低くできることから、無駄な通気設備の設置および使用を避けることができる。   The waste water oxidation apparatus is preferably configured to introduce air at different superficial velocities between the stages when the oxidation air is introduced in at least two stages. According to this configuration, it is possible to increase the superficial velocity at an early stage when the concentration of sulfites is high, and lower the superficial velocity at a later stage where the concentration of sulfurous acids is low and the concentration of dissolved oxygen is high. And can avoid use.

前記排水酸化装置には、前記酸化用の空気を前記希釈用の海水に混合した混合流を、前記排水中に導入する手段が設けられ、これにより、各々の段階において、前記空気の導入と前記海水の投入が同時に行われることが好ましい。この構成によれば、酸化用の空気が気泡として存在する海水が排水中に導入されることから、高い気液接触面積で空気と排水とが接触させることが可能となり、酸素利用率を向上することができる。前記手段としては、希釈用の海水の配管にオリフィスと、オリフィスの下流部に酸化用の空気の吸気管とを付設する構成を採用することで、気泡が微細化し、酸素利用率の更なる向上を図ることができる。   The wastewater oxidation apparatus is provided with means for introducing a mixed stream obtained by mixing the oxidation air into the dilution seawater into the wastewater, whereby, in each stage, the introduction of the air and the It is preferable that the seawater is charged simultaneously. According to this configuration, since the seawater in which the air for oxidation exists as bubbles is introduced into the wastewater, the air and the wastewater can be brought into contact with each other with a high gas-liquid contact area, and the oxygen utilization rate is improved. be able to. As the above-mentioned means, by adopting a configuration in which an orifice is attached to the seawater piping for dilution and an air intake pipe for oxidizing air is provided downstream of the orifice, the bubbles are made finer and the oxygen utilization rate is further improved. Can be achieved.

前記排水酸化装置が、同一段階にも複数設けられており、導入した前記混合流が重ならないように、千鳥状に配置されていることが好ましい。この構成によれば、導入した混合流が他の混合流と重ることで起きる気泡の合体による酸素利用率の低下を防ぐことができ、且つ排水酸化装置全体にわたって混合流を均一に導入することができる。   It is preferable that a plurality of the waste water oxidizers are provided at the same stage and arranged in a staggered manner so that the introduced mixed flows do not overlap. According to this configuration, it is possible to prevent a reduction in oxygen utilization rate due to coalescence of bubbles caused by the introduction of the introduced mixed flow with another mixed flow, and to introduce the mixed flow uniformly throughout the wastewater oxidation apparatus. Can do.

このように、本発明によれば、海水排煙脱硫装置から排出される排水中の亜硫酸類濃度の極端な低下や、酸化処理による排水のpHの低下を防いで、排水の酸化処理を高効率で短時間に行うことができる海水排煙脱硫システムを提供することができる。   As described above, according to the present invention, it is possible to prevent the sulfite concentration in the wastewater discharged from the seawater flue gas desulfurization apparatus from being extremely reduced and to prevent the pH of the wastewater from being lowered due to the oxidation treatment. It is possible to provide a seawater flue gas desulfurization system that can be performed in a short time.

以下、添付図面を参照して、本発明に係る海水排煙脱硫システムの一実施の形態について説明する。図1は、本発明に係る海水排煙脱硫システムの一実施の形態を示す模式図である。   Hereinafter, an embodiment of a seawater flue gas desulfurization system according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic diagram showing an embodiment of a seawater flue gas desulfurization system according to the present invention.

図1に示すように、本実施の形態の海水排煙脱硫システムは、石炭焚き又は重油焚きのボイラ10と、このボイラから排出される排ガス中のSO2を海水に吸収させて除去する海水脱硫吸収塔17と、この海水脱硫吸収塔から排出されるSO2を吸収した海水に、空気を吹き込んで酸化処理を行う排水酸化槽20とから主に構成されている。 As shown in FIG. 1, the seawater flue gas desulfurization system of the present embodiment is a seawater desulfurization system that absorbs and removes SO 2 in exhaust gas discharged from this boiler 10 and coal-fired or heavy oil-fired boiler. It is mainly composed of an absorption tower 17 and a wastewater oxidation tank 20 that performs oxidation treatment by blowing air into seawater that has absorbed SO 2 discharged from the seawater desulfurization absorption tower.

ボイラ10には、このボイラで生成した蒸気で駆動する蒸気タービン11と、この蒸気タービンの駆動により発電を行う発電機12と、蒸気タービンの駆動に用いた蒸気を、海1から取水する海水と熱交換により冷却、凝縮して水に戻す復水器13とが設けられている。また、ボイラ10と海水脱硫吸収塔17との間には、ボイラ排ガス中の粉塵を分離、捕集する電気集塵機14と、ボイラ排ガスを海水脱硫吸収塔17に送るブロア15とが設けられている。   The boiler 10 includes a steam turbine 11 that is driven by steam generated by the boiler, a generator 12 that generates power by driving the steam turbine, and seawater that takes the steam used to drive the steam turbine from the sea 1. A condenser 13 is provided that cools, condenses, and returns to water by heat exchange. Further, between the boiler 10 and the seawater desulfurization absorption tower 17, an electric dust collector 14 that separates and collects dust in the boiler exhaust gas and a blower 15 that sends the boiler exhaust gas to the seawater desulfurization absorption tower 17 are provided. .

復水器13と海水脱硫吸収塔17との間には、復水器13で蒸気の冷却に用いた海水の一部を海水脱硫吸収塔17に送る脱硫用海水配管19及びポンプ16が設けられている。そして、海水脱硫吸収塔17内には、この復水器からの海水を吸収液としてボイラ排ガスと気液接触させるための噴霧ノズルが複数設けられている。海水脱硫吸収塔17の排ガス出口には、脱硫処理したガスを大気に放出する煙突18が設けられている。海水脱硫吸収塔17と排水酸化槽20との間には、海水脱硫吸収塔17から排出されるSO2を吸収した海水(以下、単に「排水」という)を、排水酸化槽20の一端に送る排水導管21が敷設されている。 Between the condenser 13 and the seawater desulfurization absorption tower 17, there is provided a desulfurization seawater pipe 19 and a pump 16 for sending a part of the seawater used for cooling the steam in the condenser 13 to the seawater desulfurization absorption tower 17. ing. A plurality of spray nozzles are provided in the seawater desulfurization absorption tower 17 for bringing the seawater from the condenser into gas-liquid contact with the boiler exhaust gas as an absorption liquid. At the exhaust gas outlet of the seawater desulfurization absorption tower 17, a chimney 18 for releasing the desulfurized gas to the atmosphere is provided. Between the seawater desulfurization absorption tower 17 and the wastewater oxidation tank 20, seawater that has absorbed SO 2 discharged from the seawater desulfurization absorption tower 17 (hereinafter simply referred to as “drainage”) is sent to one end of the wastewater oxidation tank 20. A drainage conduit 21 is laid.

排水酸化槽20は、このSO2を含有する排水が、排水酸化槽20の一端から他端まで流れるように構成されている。排水酸化槽20の他端には、酸化処理した排水を海1に放出する放水口23が設置されている。なお、排水酸化槽20の規模は、各プラントにおける脱硫量、復水器の排水量、海水のアルカリ度、配置・配管計画に拠るが、例えば幅10m、深さ3m、長さ300mにすることができる。また、排水酸化槽20内を流れる排水の流速は、例えば10〜180m/分にすることができる。 The wastewater oxidation tank 20 is configured such that the wastewater containing SO 2 flows from one end of the wastewater oxidation tank 20 to the other end. At the other end of the wastewater oxidation tank 20, a water outlet 23 is provided for discharging the oxidized wastewater to the sea 1. The scale of the wastewater oxidation tank 20 depends on the desulfurization amount, the drainage amount of the condenser, the alkalinity of the seawater, and the arrangement / pipe plan in each plant. For example, the width may be 10 m, the depth is 3 m, and the length is 300 m. it can. Moreover, the flow rate of the waste water flowing through the waste water oxidation tank 20 can be set to 10 to 180 m / min, for example.

排水酸化槽20には、復水器13で蒸気の冷却に用いた海水の一部を排水酸化槽20に供給する希釈用海水配管25が敷設されている。この希釈用海水配管25には、排水の流れ方向に対して、海水を多段階に分けて排水に投入できるように、複数の海水投入口26a〜26nが順次設けられている。この海水投入口26の段階数nは、2〜50が好ましい。希釈用海水配管25の末端出口は、放水口23に接続されている。   The wastewater oxidation tank 20 is provided with a dilution seawater pipe 25 for supplying a part of the seawater used for cooling the steam by the condenser 13 to the wastewater oxidation tank 20. The dilution seawater piping 25 is provided with a plurality of seawater inlets 26a to 26n sequentially so that the seawater can be introduced into the wastewater in multiple stages with respect to the flow direction of the wastewater. The number n of stages of the seawater inlet 26 is preferably 2-50. The end outlet of the dilution seawater pipe 25 is connected to the water outlet 23.

排水酸化槽20内の底部には、排水の入口側から出口側に向かって空気配管32が敷設されている。そして、排水の流れ方向に対して、空気を多段階に分けて吹き込めるように、空気配管32には複数の空気吹込みノズル33a〜33nが順次設けられている。空気吹込みノズル33の段階数n及びその間隔は、各プラントにおける亜硫酸イオン濃度、溶存酸素濃度、流速、海水性状や海への放流口で守るべき排水基準を考慮して決定する。空気配管32には、大気中の空気を空気吹込みノズル33へと送る酸化空気用ブロア31が設置されている。   An air pipe 32 is laid on the bottom of the wastewater oxidation tank 20 from the inlet side to the outlet side of the wastewater. A plurality of air blowing nozzles 33a to 33n are sequentially provided in the air pipe 32 so that air can be blown in multiple stages with respect to the flow direction of the waste water. The number of stages n of the air blowing nozzle 33 and its interval are determined in consideration of the sulfite ion concentration, dissolved oxygen concentration, flow velocity, seawater properties and drainage standards to be protected at the outlet to the sea in each plant. The air pipe 32 is provided with an oxidizing air blower 31 that sends air in the atmosphere to the air blowing nozzle 33.

以上の構成よれば、先ず、ボイラ10では、復水器13から供給した水を蒸発させて蒸気とし、この蒸気を用いて蒸気タービン11を駆動し、発電機12で発電を行う。蒸気タービンで使用した蒸気は、復水器13で海水により冷却して水に戻し、再びボイラ10に供給する。ボイラ10からの排ガスは、電気集塵機14で除塵した後、海水脱硫吸収塔17に導入する。また、復水器13で蒸気により加熱された海水の一部は、脱硫用海水配管19を介して、海水脱硫吸収塔17に供給する。そして、海水脱硫吸収塔17では、この加熱された海水を吸収液としてボイラ排ガスに対して噴霧し、これにより、排ガス中のSO2は海水に吸収されて海水中で亜硫酸(H2SO3)、重亜硫酸イオン(HSO3 -)及び亜硫酸イオン(SO3 2-)といった亜硫酸類となる。SO2が除去された排ガスは、煙突18から大気へ開放する。SO2を吸収した海水は、海水脱硫吸収塔17から排出し、排水導管21を介して排水酸化槽20に導入する。 According to the above configuration, first, in the boiler 10, the water supplied from the condenser 13 is evaporated into steam, the steam turbine 11 is driven using the steam, and the generator 12 generates power. The steam used in the steam turbine is cooled with seawater by the condenser 13 and returned to water, and then supplied to the boiler 10 again. The exhaust gas from the boiler 10 is removed by the electric dust collector 14 and then introduced into the seawater desulfurization absorption tower 17. A part of the seawater heated by the steam in the condenser 13 is supplied to the seawater desulfurization absorption tower 17 via the desulfurization seawater pipe 19. Then, the seawater desulfurization absorption tower 17, the heated seawater is sprayed against boiler exhaust gas as an absorbing solution, thereby, sulfurous acid in SO 2 in the exhaust gas is absorbed by the sea water in sea water (H 2 SO 3) And sulfites such as bisulfite ions (HSO 3 ) and sulfite ions (SO 3 2− ). The exhaust gas from which SO 2 has been removed is released from the chimney 18 to the atmosphere. The seawater that has absorbed SO 2 is discharged from the seawater desulfurization absorption tower 17 and introduced into the wastewater oxidation tank 20 through the drainage conduit 21.

排水酸化槽20の排水入口側では、SO2を吸収した海水、すなわち、SO3 2-を含有する排水を導入するとともに、第1の海水投入口26aから、復水器13で加熱された多量の海水を導入し、排水の希釈を行う。海水脱硫吸収塔17から排出される排水は、通常、pHが低い。よって、この希釈により排水のpHを、曝気により酸化反応が迅速に進行する値(例えばpH6以上)にまで上げる。また、海水脱硫吸収塔17から排出される排水は、通常、SO3 2-濃度が高い。よって、この希釈により排水中のSO3 2-濃度を、SO2が気相に放散しない値(例えば1.2mmol/L以下)にまで下げる。一方、希釈によりSO3 2-濃度が下がり過ぎると、曝気によるSO3 2-の酸化反応速度が低下し、酸化効率が落ちる。よって、排水中のSO3 2-濃度を、高い酸化効率を維持できる値(例えば0.5mmol/L以上)に保つ。 On the drainage inlet side of the wastewater oxidation tank 20, seawater that has absorbed SO 2 , that is, wastewater containing SO 3 2− , is introduced, and a large amount of water heated by the condenser 13 from the first seawater inlet 26 a. Of seawater and dilute wastewater. The wastewater discharged from the seawater desulfurization absorption tower 17 usually has a low pH. Therefore, the pH of the waste water is increased by this dilution to a value (for example, pH 6 or more) at which the oxidation reaction proceeds rapidly by aeration. Further, the waste water discharged from the seawater desulfurization absorption tower 17 usually has a high SO 3 2− concentration. Therefore, by this dilution, the SO 3 2− concentration in the waste water is lowered to a value (for example, 1.2 mmol / L or less) at which SO 2 does not diffuse into the gas phase. On the other hand, if the SO 3 2− concentration decreases too much due to dilution, the oxidation reaction rate of SO 3 2− caused by aeration decreases, and the oxidation efficiency decreases. Therefore, the SO 3 2− concentration in the waste water is kept at a value (for example, 0.5 mmol / L or more) that can maintain high oxidation efficiency.

次に、この排水酸化槽20内を流れる排水中に、第1の空気吹込みノズル33aから空気を吹き込み、曝気処理を行う。これにより、排水中のSO3 2-をSO4 2-に酸化し、化学的に無害化する。なお、SO4 2-の生成により、排水中のpHが低下する。よって、第2の海水投入口26bから海水を投入し、再び排水の希釈を行う。この希釈によって排水のpHを、上記の曝気により酸化反応が迅速に進行するpHに維持する。なお、この希釈によりSO3 2-濃度が下がり過ぎると、上述したように酸化反応速度が低下することから、希釈はpHを維持できる最低限で行う。 Next, air is blown into the waste water flowing through the waste water oxidation tank 20 from the first air blowing nozzle 33a to perform an aeration process. As a result, SO 3 2- in the waste water is oxidized to SO 4 2- and chemically detoxified. Note that the SO 4 2-generation, pH in the waste water is reduced. Therefore, the seawater is introduced from the second seawater inlet 26b, and the wastewater is diluted again. By this dilution, the pH of the wastewater is maintained at a pH at which the oxidation reaction proceeds rapidly by the aeration described above. If the SO 3 2− concentration decreases too much due to this dilution, the oxidation reaction rate decreases as described above. Therefore, dilution is performed at the minimum so that the pH can be maintained.

そして、排水酸化槽20内を流れる排水中に、第2の空気吹込みノズル33bから空気を吹き込み、再び曝気処理を行う。これにより、排水中のSO3 2-はSO4 2-に酸化することから、無害化できる一方、やはり排水中のpHは低下する。よって、第3の海水投入口26cから海水を供給し、高い酸化効率を維持しつつ、pHを所定の値を維持するように、排水の希釈を行う。そして、第3の空気吹込みノズル33cから空気を排水に吹き込み、SO3 2-の酸化を行う。このようにして、第4段階から第n段階の海水投入口26d〜26n及び空気吹込みノズル33d〜33nにより海水の投入及び空気の吹き込みを繰り返し行う。なお、海水の投入量は、段階毎に下げることが好ましい。 Then, air is blown from the second air blowing nozzle 33b into the wastewater flowing in the wastewater oxidation tank 20, and the aeration process is performed again. As a result, SO 3 2− in the waste water is oxidized to SO 4 2− , so that it can be rendered harmless, while the pH in the waste water is also lowered. Accordingly, seawater is supplied from the third seawater inlet 26c, and the wastewater is diluted so that the pH is maintained at a predetermined value while maintaining high oxidation efficiency. Then, air is blown into the waste water from the third air blowing nozzle 33c to oxidize SO 3 2- . In this way, seawater is introduced and air is repeatedly blown by the seawater inlets 26d to 26n and the air blowing nozzles 33d to 33n from the fourth stage to the nth stage. In addition, it is preferable to reduce the input amount of seawater for each stage.

排水酸化槽20の排水出口側では、SO3 2-濃度が排出基準未満にまで下がった排水を放水口23により海1へ放出する。このとき、海水投入口26から投入されずに余った海水は、希釈用海水配管25の末端出口から放水口23中の排水に投入して、海1へと放出する。これにより、排水のpHを向上させることができる。 On the drain outlet side of the drain oxidation tank 20, drainage whose SO 3 2− concentration has dropped below the discharge standard is discharged to the sea 1 through the outlet 23. At this time, surplus seawater that has not been introduced from the seawater inlet 26 is introduced into the wastewater in the outlet 23 from the end outlet of the dilution seawater pipe 25 and discharged to the sea 1. Thereby, the pH of waste water can be improved.

このように、排水酸化槽20に、排水の流れ方向に対して、複数の海水投入口26a〜26nと複数の空気吹込みノズル33a〜33nをそれぞれ多段階に設けることで、排水中のSO3 2-の酸化の進行に合わせて、排水を希釈していくことができるので、排水中のSO3 2-濃度の極端な低下や、酸化処理による排水のpHの低下による酸化反応速度の低下を防ぐことができ、よって、高い効率で排水の酸化処理を行うことができる。 In this way, the wastewater oxidation tank 20 is provided with a plurality of seawater inlets 26a to 26n and a plurality of air blowing nozzles 33a to 33n in multiple stages with respect to the direction of wastewater flow, so that SO 3 in the wastewater is discharged. As wastewater can be diluted with the progress of oxidation of 2-, the reduction of SO 3 2- concentration in the wastewater and the reduction of oxidation reaction rate due to the reduction of wastewater pH due to oxidation treatment Therefore, the waste water can be oxidized with high efficiency.

なお、本発明は、上述した実施の形態に限定されず、種々変形して実施することができる。例えば、図2に示すように、排水酸化槽20には、排水の流れ方向に対して、複数の計測器35a〜35nを設けることができる。また、海水投入口26a〜26nには、海水の供給量を調節するバルブ27a〜27nをそれぞれ設けることができる。そして、計測器35a〜35nで測定した値に基づいて、バルブ27a〜27nを開閉して、海水投入口26a〜26nから投入する海水の流量を制御するように、計測器35a〜35n及びバルブ27a〜27n間と信号を送受信する制御装置37を設置することができる。なお、計測器35a〜35nとしては、排水のpHや酸化還元電位(ORP)に加えて、溶存酸素(DO)を測定できるものが好ましい。   The present invention is not limited to the above-described embodiment, and can be implemented with various modifications. For example, as shown in FIG. 2, the waste water oxidation tank 20 can be provided with a plurality of measuring instruments 35a to 35n with respect to the flow direction of the waste water. Moreover, the seawater inlets 26a-26n can each be provided with valves 27a-27n for adjusting the amount of seawater supplied. Then, based on the values measured by the measuring instruments 35a to 35n, the measuring instruments 35a to 35n and the valve 27a are controlled so as to control the flow rate of the seawater introduced from the seawater inlets 26a to 26n by opening and closing the valves 27a to 27n. It is possible to install a control device 37 that transmits / receives signals to / from 27n. In addition, as measuring instrument 35a-35n, what can measure dissolved oxygen (DO) in addition to pH of waste water or oxidation-reduction potential (ORP) is preferable.

以上の構成によれば、例えば、第4の計測器35dで排水のpHが所定の値を下回った場合、第4の計測器35dの上流側にある第2の海水投入口26bのバルブ27bを開き、海水の投入量を増やすように制御する。また、第2の計測器35bで排水のORPが所定の値を上回りSO3 2-濃度が大きく低下した場合、第2の計測器35bの上流側にある第1の海水投入口26aのバルブ27aを閉じて、海水の投入量を減らすように制御する。 According to the above configuration, for example, when the pH of the wastewater is lower than a predetermined value in the fourth measuring instrument 35d, the valve 27b of the second seawater inlet 26b on the upstream side of the fourth measuring instrument 35d is set. Open and control to increase the input of seawater. Further, when the ORP of the waste water exceeds a predetermined value in the second measuring instrument 35b and the SO 3 2- concentration is greatly reduced, the valve 27a of the first seawater inlet 26a on the upstream side of the second measuring instrument 35b. Is closed and control is performed to reduce the amount of seawater input.

このように、排水の流れ方向に対し、複数の計測器35a〜35nを多段階に設けるとともに、多段階に設けた海水投入口26a〜26nにそれぞれバルブ27a〜27nを設けることで、排水酸化槽20内を流れる排水中のpHやSO3 2-濃度に基づき、海水による排水の希釈率を制御することができるので、排水中のSO3 2-濃度の極端な低下や、排水のpHの低下による酸化反応速度の低下を確実に防ぐことができ、高い酸化効率を確実に維持することができる。 In this way, a plurality of measuring instruments 35a to 35n are provided in multiple stages with respect to the flow direction of the wastewater, and the valves 27a to 27n are provided in the seawater inlets 26a to 26n provided in multiple stages, respectively, so that the wastewater oxidation tank Since the dilution rate of wastewater with seawater can be controlled based on the pH and concentration of SO 3 2- in the waste water flowing through 20, the drastic decrease in the concentration of SO 3 2- in waste water and the pH of waste water Therefore, it is possible to reliably prevent a reduction in the oxidation reaction rate, and to maintain high oxidation efficiency.

また、図3に示すように、排水酸化槽20内に多段階に設けた空気吹込みノズル33a〜33nは、各段階間の距離を異なるようにすることができる。排水酸化槽20の上流側ではSO3 2-濃度が高く、酸化反応速度が大きいため、溶存酸素濃度が低下し易いことから、酸化用空気の空塔速度(排水酸化槽20の断面積当たりの通気量)を高くする必要があるが、排水酸化槽20の下流側では、SO3 2-濃度が低く酸化反応速度は減少していることから、酸化用空気の空塔速度は低くて構わない。 Moreover, as shown in FIG. 3, the air blowing nozzles 33a to 33n provided in multiple stages in the wastewater oxidation tank 20 can have different distances between the stages. Since the SO 3 2− concentration is high and the oxidation reaction rate is high on the upstream side of the wastewater oxidation tank 20, the dissolved oxygen concentration tends to decrease. However, since the SO 3 2− concentration is low and the oxidation reaction rate is decreasing on the downstream side of the wastewater oxidation tank 20, the superficial velocity of the oxidizing air may be low. .

よって、図3に示すように、排水酸化槽20の上流側の空気吹込みノズル33a、33bの間隔を狭くし、下流側の空気吹込みノズル33m、nの間隔を広くすることが好ましい。このように、排水酸化槽20の上流側と下流側とで、酸化用空気の空塔速度が異なるように空気吹込みノズル33を設けることで、無駄な通気設備の設置および使用を避けることができる。   Therefore, as shown in FIG. 3, it is preferable to narrow the space | interval of the air blowing nozzles 33a and 33b of the upstream of the wastewater oxidation tank 20, and widen the space | interval of the downstream air blowing nozzles 33m and n. Thus, by providing the air blowing nozzle 33 so that the superficial velocity of the oxidizing air is different between the upstream side and the downstream side of the wastewater oxidation tank 20, it is possible to avoid the installation and use of useless ventilation equipment. it can.

さらに、図4に示すように、排水酸化槽20には、排水の流れ方向に対して、酸化用空気を希釈用海水に混合して噴射する手段である、水流酸化装置40a〜40nを多段階に設けることができる。水流酸化装置40は、図5に示すように、排水酸化槽20において千鳥状に配置することが好ましい。水流酸化装置40の構造を図6に示す。   Furthermore, as shown in FIG. 4, the wastewater oxidation tank 20 is provided with water-flow oxidizers 40 a to 40 n that are means for mixing and injecting the oxidant air to the dilution seawater in the flow direction of the wastewater. Can be provided. As shown in FIG. 5, the water flow oxidation devices 40 are preferably arranged in a staggered manner in the wastewater oxidation tank 20. The structure of the water flow oxidizer 40 is shown in FIG.

図6に示すように、水流酸化装置40は、希釈用海水が供給される海水供給管41と、大気中の空気を吸引する空気吸引管43と、海水と空気の混相を排水中に噴射する噴射ノズル42と絞り(オリフィス)44とから主に構成されている。海水供給管41の一端は、各々の段階の海水投入口に接続しており(図示省略)、他端は、絞り44を介して噴射ノズル42の一端に接続している。絞り44は、海水供給管側の鍔45と、噴射ノズル側の鍔46と、これら鍔間に挟まれた絞り板47とから構成されている。絞り板47には、噴射ノズル42の内径よりも小さい内径の絞り穴48が形成されている。   As shown in FIG. 6, the water flow oxidizer 40 injects a seawater supply pipe 41 to which dilution seawater is supplied, an air suction pipe 43 for sucking air in the atmosphere, and a mixed phase of seawater and air into the drainage. It is mainly composed of an injection nozzle 42 and a throttle (orifice) 44. One end of the seawater supply pipe 41 is connected to a seawater inlet at each stage (not shown), and the other end is connected to one end of the injection nozzle 42 via a throttle 44. The throttle 44 includes a seam 45 on the seawater supply pipe side, a seam 46 on the injection nozzle side, and a diaphragm plate 47 sandwiched between these seams. A throttle hole 48 having an inner diameter smaller than the inner diameter of the injection nozzle 42 is formed in the diaphragm plate 47.

噴射ノズル41の側壁には、絞り44の下流側に、空気吸引管43が接合されている。噴射ノズル42と空気吸引管43とは、開口49を介して連通している。空気吸引管43の反対側の開口は、排水酸化槽内を流れる排水の水面より高い位置に配置されており、大気に開放されている。噴射ノズル42は、絞り44側よりも噴射口側が低くなるように傾斜しており、例えば、水平面に対して7〜15度傾斜している。なお、水流酸化装置40の材質としては、ステンレス鋼(SUS)の他、軽量で強度に優れた繊維強化プラスチック(FRP)や、ポリ塩化ビニル(PVC)等を使用することができる。   An air suction pipe 43 is joined to the side wall of the injection nozzle 41 on the downstream side of the throttle 44. The injection nozzle 42 and the air suction pipe 43 communicate with each other through an opening 49. The opening on the opposite side of the air suction pipe 43 is disposed at a position higher than the surface of the waste water flowing in the waste water oxidation tank, and is open to the atmosphere. The injection nozzle 42 is inclined so that the injection port side is lower than the throttle 44 side, and for example, is inclined by 7 to 15 degrees with respect to the horizontal plane. As a material for the water flow oxidizer 40, it is possible to use, in addition to stainless steel (SUS), lightweight and excellent strength fiber reinforced plastic (FRP), polyvinyl chloride (PVC), and the like.

以上の構成によれば、希釈用海水を海水供給管41に供給すると、この海水は、絞り44の絞り板47による抵抗を受けて絞り穴48を通り、噴射ノズル41内に流れ込む。その際に海水は絞り44の下流側で負圧になることから、絞り44の傍の開口49から、大気中の空気が空気吸引管43を通って海水中に勢いよく流れ込む。これにより、海水流中に微細な空気泡の流れが混在する、海水と空気の混相流が生成する。この混相流は、噴射ノズル42の噴射口から下向きの傾斜で噴射され、図4及び図5に示すように、排水酸化槽20の底面近くを流れた後、排水の中で広域に分散しつつ、浮上する。   According to the above configuration, when the seawater for dilution is supplied to the seawater supply pipe 41, the seawater receives resistance from the throttle plate 47 of the throttle 44 and flows into the injection nozzle 41 through the throttle hole 48. At that time, since seawater becomes negative pressure downstream of the throttle 44, air in the atmosphere flows into the seawater through the air suction pipe 43 from the opening 49 near the throttle 44. Thereby, a multiphase flow of seawater and air is generated in which a flow of fine air bubbles is mixed in the seawater flow. This multiphase flow is injected at a downward inclination from the injection port of the injection nozzle 42 and flows near the bottom surface of the wastewater oxidation tank 20 as shown in FIGS. , Surface.

このように、希釈用海水中に酸化用空気を微細な気泡として含む気液混相流を排水中に噴射する水流酸化装置40を、排水酸化槽20内に設けたことで、空気が高い気液接触面積で排水と接触することから、酸素利用率を大幅に向上することができる。また、酸化用空気は、空気吸引管43から取り込むことができるので、図1に示したような酸化空気用ブロア31は不要である。さらに、図5に示すように、水流酸化装置40から噴射された気液混相流51が重ならないように、水流酸化装置40を千鳥状に配置することで、微細な気泡の合体による酸素利用率の低下を防ぐとともに、排水酸化槽20内の気泡密度分布を均一にすることができる。   As described above, the water-flow oxidizer 40 that injects a gas-liquid mixed phase flow containing oxidizing air as fine bubbles into the seawater for dilution into the wastewater is provided in the wastewater oxidation tank 20, so that the air-liquid is high in air. Oxygen utilization rate can be greatly improved because it comes into contact with drainage at the contact area. Further, since the oxidizing air can be taken in from the air suction pipe 43, the oxidizing air blower 31 as shown in FIG. 1 is unnecessary. Further, as shown in FIG. 5, the oxygen utilization rate due to coalescence of fine bubbles is obtained by arranging the water flow oxidizers 40 in a staggered manner so that the gas-liquid mixed phase flows 51 ejected from the water flow oxidizers 40 do not overlap. In addition, the bubble density distribution in the wastewater oxidation tank 20 can be made uniform.

なお、これまで、排水を1つの排水酸化槽内に流して、多段階的に海水及び空気を排水に投入する場合について説明してきたが、直列に設けた複数の槽に排水を順に送り、各槽で多段階的に海水及び空気を投入してもよい。このような構成にしても、1つの排水酸化槽内に排水を流すのと同様の効果を得ることができる。   In the above, the case where the wastewater is flowed into one wastewater oxidation tank and seawater and air are introduced into the wastewater in a multistage manner has been described, but the wastewater is sequentially sent to a plurality of tanks provided in series. Seawater and air may be introduced in multiple stages in the tank. Even if it is such a structure, the effect similar to flowing waste_water | drain in one waste_water | drain oxidation tank can be acquired.

長さ140mの排水酸化槽において、海水希釈により、排水酸化槽の入口での排水中の亜硫酸・硫酸濃度を1.00mmol/Lとし、更に入口から20m、40m、60mの地点で、排水中の亜硫酸・硫酸濃度がそれぞれ0.90mmol/L、0.82mmol/L、0.75mmol/Lになる量の海水を追加した。酸化用空気の空塔速度は1.0cm/secと一定とした。この場合の排水酸化槽における亜硫酸残留率および溶存酸素飽和率の結果を表1および図7に示す。   In a 140m-long wastewater oxidation tank, the concentration of sulfurous acid and sulfuric acid in the wastewater at the inlet of the wastewater oxidation tank is set to 1.00mmol / L by dilution with seawater, and further, 20m, 40m, and 60m from the inlet. Seawater was added in such amounts that the sulfurous acid and sulfuric acid concentrations were 0.90 mmol / L, 0.82 mmol / L, and 0.75 mmol / L, respectively. The superficial velocity of the oxidizing air was fixed at 1.0 cm / sec. The results of the sulfurous acid residual rate and the dissolved oxygen saturation rate in the wastewater oxidation tank in this case are shown in Table 1 and FIG.

なお、参考のため、排水酸化槽の入口のみで海水希釈し、入口での排水中の亜硫酸・硫酸濃度を0.75mmol/L、1.00mmol/L、1.30mmol/Lとした参考例1〜3の結果も表1および図7に併記した。また、空塔速度を、酸化槽入口80mから140mの後流部で0.5cm/secに減らした参考例4の結果も表1に併記した。   For reference, reference example 1 in which seawater was diluted only at the inlet of the wastewater oxidation tank, and the sulfite and sulfuric acid concentrations in the wastewater at the inlet were 0.75 mmol / L, 1.00 mmol / L, and 1.30 mmol / L. The results of -3 are also shown in Table 1 and FIG. Table 1 also shows the results of Reference Example 4 in which the superficial velocity was reduced to 0.5 cm / sec at the downstream portion of the oxidation tank inlet from 80 m to 140 m.

表1および図7に示すように、実施例は、参考例1に比べて、希釈率低下により亜硫酸濃度が増大し、酸化速度が向上したとともに、参考例2に比べて、pH低下による酸化反応速度低下が抑えられ、よって、排水酸化槽入口から60m地点以降の亜硫酸残留率が最も低くなった。なお、排水酸化槽入口から80m地点以降の空塔速度を0.5m/secにした参考例4は、参考例2と比べて、亜硫酸残留率および溶存酸素飽和率に変化がなく、よってブロアの設備費・動力費を節減できる。   As shown in Table 1 and FIG. 7, compared to Reference Example 1, the Examples increased the concentration of sulfurous acid by decreasing the dilution rate, improved the oxidation rate, and compared with Reference Example 2, the oxidation reaction due to the decrease in pH. The speed reduction was suppressed, and therefore, the sulfurous acid residual rate after 60 m from the wastewater oxidation tank inlet was the lowest. In Reference Example 4 in which the superficial velocity after the point of 80 m from the waste water oxidation tank inlet was 0.5 m / sec, there was no change in the sulfurous acid residual rate and dissolved oxygen saturation rate as compared with Reference Example 2, and therefore the blower Equipment and power costs can be reduced.

本発明に係る海水排煙脱硫システムの一実施形態を示す模式図である。It is a mimetic diagram showing one embodiment of the seawater flue gas desulfurization system concerning the present invention. 本発明に係る海水排煙脱硫システムの別の実施形態を示す模式図である。It is a schematic diagram which shows another embodiment of the seawater flue gas desulfurization system which concerns on this invention. 本発明に係る海水排煙脱硫システムの別の実施形態を示す模式図である。It is a schematic diagram which shows another embodiment of the seawater flue gas desulfurization system which concerns on this invention. 本発明に係る海水排煙脱硫システムの別の実施形態を示す模式図である。It is a schematic diagram which shows another embodiment of the seawater flue gas desulfurization system which concerns on this invention. 図4に示した実施形態で用いる水流酸化装置の配置図である。FIG. 5 is a layout diagram of a water flow oxidizer used in the embodiment shown in FIG. 4. 図4に示した実施形態で用いる水流酸化装置を示す断面図である。It is sectional drawing which shows the water flow oxidation apparatus used in embodiment shown in FIG. 排水酸化槽における亜硫酸残留率および溶存酸素飽和率の変化を示すグラフである。It is a graph which shows the change of a sulfurous acid residual rate and a dissolved oxygen saturation rate in a waste-water oxidation tank.

符号の説明Explanation of symbols

1 海
10 ボイラ
11 蒸気タービン
12 発電機
13 復水器
14 電気集塵機
15 ブロア
16 海水ポンプ
17 海水脱硫吸収塔
18 煙突
19 脱硫用海水配管
20 排水酸化槽
21 吸収塔排水導管
23 放水口
25 希釈用海水配管
26 海水投入口
27 バルブ
31 酸化空気用ブロア
32 空気配管
33 空気吹込みノズル
35 計測器
37 制御装置
40 水流酸化装置
41 海水供給管
42 噴射ノズル
43 空気吸引管
44 絞り
45、46 鍔
47 絞り板
48 絞り穴
49 開口
DESCRIPTION OF SYMBOLS 1 Sea 10 Boiler 11 Steam turbine 12 Generator 13 Condenser 14 Electric dust collector 15 Blower 16 Seawater pump 17 Seawater desulfurization absorption tower 18 Chimney 19 Desulfurization seawater piping 20 Drain oxidation tank 21 Absorption tower drainage conduit 23 Drain outlet 25 Seawater for dilution Piping 26 Seawater inlet 27 Valve 31 Oxidized air blower 32 Air piping 33 Air blowing nozzle 35 Measuring instrument 37 Controller 40 Water flow oxidizer 41 Seawater supply pipe 42 Injection nozzle 43 Air suction pipe 44 Restriction 45, 46 鍔 47 Restriction plate 48 Aperture hole 49 Opening

Claims (6)

吸収液として海水を用いる海水排煙脱硫装置と、この海水排煙脱硫装置から排出される排水に含まれる亜硫酸類を酸化する排水酸化装置とを備えた海水排煙脱硫システムであって、
前記排水酸化装置が、亜硫酸類を含有する前記排水に、少なくとも2段階に分けて空気を導入して、排水中の亜硫酸類を酸化するとともに、この段階的な酸化の進行に合わせて、少なくとも2段階に分けて海水を前記排水に投入し、前記排水を希釈するように構成されている海水排煙脱硫システム。
A seawater flue gas desulfurization system comprising a seawater flue gas desulfurization device that uses seawater as an absorbent, and a wastewater oxidation device that oxidizes sulfites contained in wastewater discharged from the seawater flue gas desulfurization device,
The wastewater oxidation apparatus introduces air into the wastewater containing sulfites in at least two stages to oxidize the sulfites in the wastewater, and at least 2 in accordance with the progress of this staged oxidation. A seawater flue gas desulfurization system configured to inject seawater into the wastewater in stages and dilute the wastewater.
海から取水した海水を加熱して、この加熱した海水を前記希釈用の海水として前記排水酸化装置に送る加熱手段を更に備えた請求項1に記載の海水排煙脱硫システム。   The seawater flue gas desulfurization system according to claim 1, further comprising heating means for heating seawater taken from the sea and sending the heated seawater as dilution seawater to the wastewater oxidation apparatus. 前記排水酸化装置には、この排水酸化装置内の排水のpHまたは排水中の亜硫酸類濃度を測定する計測手段が、前記段階的な排水の希釈に合わせて段階的に複数設けられているとともに、これら計測手段で測定するpHまたは亜硫酸類濃度の値に基づいて、前記少なくとも2段階に分けて投入する希釈用の海水の流量を調整する制御手段が設けられている請求項1又は2に記載の海水排煙脱硫システム。   In the wastewater oxidation apparatus, a plurality of measuring means for measuring the pH of the wastewater in the wastewater oxidation apparatus or the concentration of sulfites in the wastewater are provided stepwise according to the stepwise wastewater dilution, 3. The control means according to claim 1, further comprising a control means for adjusting a flow rate of dilution seawater to be added in at least two steps based on a pH value or a sulfite concentration value measured by the measurement means. Seawater flue gas desulfurization system. 前記排水酸化装置は、前記少なくとも2段階に分けて酸化用の空気を導入する際に、これら段階の間で、異なる空塔速度で空気を導入するように構成されている請求項1〜3のいずれか一項に記載の海水排煙脱硫システム。   The waste water oxidation apparatus is configured to introduce air at different superficial velocities between the stages when the oxidation air is introduced in the at least two stages. Seawater flue gas desulfurization system as described in any one of Claims. 前記排水酸化装置には、前記酸化用の空気を前記希釈用の海水に混合した混合流を、前記排水中に導入する手段が設けられており、これにより、各々の段階において、前記空気の導入と前記海水の投入が同時に行われる請求項1〜4のいずれか一項に記載の海水排煙脱硫システム。   The waste water oxidation apparatus is provided with a means for introducing a mixed flow obtained by mixing the oxidation air into the dilution seawater into the waste water, thereby introducing the air at each stage. And the seawater flue gas desulfurization system according to any one of claims 1 to 4, wherein the seawater is charged simultaneously. 前記酸化用の空気を希釈用の海水に混合した混合流を導入する手段が、同一段階にも複数設けられており、導入した前記混合流が重ならないように、千鳥状に配置されている請求項5に記載の海水排煙脱硫システム。   A plurality of means for introducing a mixed stream in which the oxidizing air is mixed with dilution seawater are provided at the same stage, and are arranged in a staggered manner so that the introduced mixed streams do not overlap. Item 6. A seawater flue gas desulfurization system according to Item 5.
JP2007048657A 2007-02-28 2007-02-28 Seawater flue gas desulfurization system Active JP5259964B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007048657A JP5259964B2 (en) 2007-02-28 2007-02-28 Seawater flue gas desulfurization system
PCT/JP2008/051341 WO2008105212A1 (en) 2007-02-28 2008-01-30 System of flue-gas desulfurization with seawater
MYPI20091660A MY157783A (en) 2007-02-28 2008-01-30 Seawater flue gas desulfurization system
CN200880001077.3A CN101557868B (en) 2007-02-28 2008-01-30 System of flue-gas desulfurization with seawater
NO20091780A NO20091780L (en) 2007-02-28 2009-05-06 Sjovannavgassavsvovlingssystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007048657A JP5259964B2 (en) 2007-02-28 2007-02-28 Seawater flue gas desulfurization system

Publications (2)

Publication Number Publication Date
JP2008207149A true JP2008207149A (en) 2008-09-11
JP5259964B2 JP5259964B2 (en) 2013-08-07

Family

ID=39721050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007048657A Active JP5259964B2 (en) 2007-02-28 2007-02-28 Seawater flue gas desulfurization system

Country Status (5)

Country Link
JP (1) JP5259964B2 (en)
CN (1) CN101557868B (en)
MY (1) MY157783A (en)
NO (1) NO20091780L (en)
WO (1) WO2008105212A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010043083A1 (en) * 2008-10-17 2010-04-22 Peng Sigan Process and device for simultaneously desulfurizing and denitrating the flue gas with the seawater
WO2010095214A1 (en) * 2009-02-17 2010-08-26 月島機械株式会社 Wastewater treating system, and wastewater treating method
WO2010116482A1 (en) * 2009-04-06 2010-10-14 三菱重工業株式会社 Seawater desulfation treatment apparatus, method for treating desulfurized seawater, and power generation system to which the method has been applied
JP2010240624A (en) * 2009-04-09 2010-10-28 Mitsubishi Heavy Ind Ltd Flue gas desulfurization apparatus and exhaust gas treatment method
WO2010131327A1 (en) * 2009-05-11 2010-11-18 三菱重工業株式会社 Equipment for the desulfurization of flue gas with seawater and process for treatment of the seawater used in the desufurization
WO2012028607A3 (en) * 2010-08-30 2012-05-18 Babcock Borsig Steinmüller Gmbh System and method for the desalination of sea water
WO2012117586A1 (en) * 2011-02-28 2012-09-07 三菱重工業株式会社 Seawater flue-gas desulfurization system, and power generating system
WO2013115108A1 (en) * 2012-01-31 2013-08-08 三菱重工業株式会社 Oxidation tank, seawater flue-gas desulfurization system and power generation system
WO2013115107A1 (en) * 2012-01-31 2013-08-08 三菱重工業株式会社 Seawater flue-gas desulfurization system and power generation system
WO2013118683A1 (en) * 2012-02-06 2013-08-15 三菱重工業株式会社 Desulfurization seawater processing system
JP2014524830A (en) * 2011-07-01 2014-09-25 ペン, シーガン Acid seawater treatment method and apparatus
JP2014531315A (en) * 2011-10-07 2014-11-27 アルストム テクノロジー リミテッドALSTOM Technology Ltd Waste water treatment control method and system from combustion exhaust gas seawater purifier
WO2016035487A1 (en) * 2014-09-02 2016-03-10 富士電機株式会社 Exhaust gas treatment device and waste water treatment method for exhaust gas treatment device
US9630864B2 (en) 2015-06-17 2017-04-25 General Electric Technology Gmbh Seawater plant with inclined aeration and mixed auto recovery
KR101927076B1 (en) * 2017-03-02 2018-12-10 (주)오씨아드 Waste gas cleaning apparatus for thermoelectric power plant

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI124473B (en) 2009-12-15 2014-09-15 Wärtsilä Finland Oy Wiper Unit Arrangement and Method for Exhaust Gas Purification in Wiper Unit Arrangement
JP5535824B2 (en) * 2010-08-18 2014-07-02 三菱重工業株式会社 Aeration apparatus and seawater flue gas desulfurization apparatus equipped with the aeration apparatus
ES2590359T3 (en) * 2011-02-10 2016-11-21 General Electric Technology Gmbh A method and device for treating effluent seawater from a seawater gas scrubber
CN102557194B (en) * 2011-12-31 2013-07-10 国家海洋局天津海水淡化与综合利用研究所 Film method aeration industrial flue gas desulfurization seawater recovery process
JP2013208605A (en) * 2012-03-30 2013-10-10 Mitsubishi Heavy Ind Ltd Seawater desulfurization oxidation treatment device and seawater flue-gas desulfurization system
EP2703063A1 (en) 2012-09-04 2014-03-05 Alstom Technology Ltd Desulphurization and cooling of process gas
DK2937131T3 (en) * 2012-12-19 2018-07-09 Fuji Electric Co Ltd exhaust gas
US20150076079A1 (en) 2013-09-18 2015-03-19 Alstom Technology Ltd Method and system for seawter foam control
US20150321123A1 (en) * 2014-05-08 2015-11-12 Alstom Technology Ltd Antifoam device and method of use for seawater foam control
DE102014015036A1 (en) 2014-10-09 2016-04-28 Steinmüller Babcock Environment Gmbh Oxidation tank and method for treating effluent water of a seawater scrubber
US9771279B2 (en) 2015-03-31 2017-09-26 General Electric Technology Gmbh Foam intercept system
EP3132839A1 (en) 2015-08-20 2017-02-22 General Electric Technology GmbH Seawater flue gas desulfurization absorber system
EP3144281A1 (en) 2015-09-17 2017-03-22 General Electric Technology GmbH Integrated air distributor arrangement for effluent seawater treatment basin

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213495A (en) * 1983-05-20 1984-12-03 Kurita Water Ind Ltd Treatment of water
JP2001129352A (en) * 1999-11-02 2001-05-15 Fujikasui Engineering Co Ltd Exhaust gas desulfurization advanced treatment process using sea water
JP2002210326A (en) * 2000-11-17 2002-07-30 Mitsubishi Heavy Ind Ltd Wet flue gas desulfurization apparatus and wet desulfurization method
WO2006018911A1 (en) * 2004-08-20 2006-02-23 Mitsubishi Heavy Industries, Ltd. Method of seawater treatment and seawater treatment apparatus
JP2006095478A (en) * 2004-09-30 2006-04-13 Nippon Steel Corp Treatment method for wastewater containing sulfur compound

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29517697U1 (en) * 1995-07-29 1996-01-18 Gottfried Bischoff Gmbh & Co Flue gas desulfurization plant
JPH09248578A (en) * 1996-03-15 1997-09-22 Kurita Water Ind Ltd Ferrous ion containing water treating device
JP3251883B2 (en) * 1997-08-25 2002-01-28 株式会社荏原製作所 Exhaust gas desulfurization method and apparatus
CN1199712C (en) * 2000-11-23 2005-05-04 彭斯干 Liquid flowing type seawater method for desulfurizing fume and its equipment
CN2467167Y (en) * 2000-12-29 2001-12-26 清华大学 Seawater liquid column spray type desulfurizing device for flue gas
JP2004089770A (en) * 2002-08-29 2004-03-25 Masanori Tashiro Method and apparatus for cleaning exhaust gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213495A (en) * 1983-05-20 1984-12-03 Kurita Water Ind Ltd Treatment of water
JP2001129352A (en) * 1999-11-02 2001-05-15 Fujikasui Engineering Co Ltd Exhaust gas desulfurization advanced treatment process using sea water
JP2002210326A (en) * 2000-11-17 2002-07-30 Mitsubishi Heavy Ind Ltd Wet flue gas desulfurization apparatus and wet desulfurization method
WO2006018911A1 (en) * 2004-08-20 2006-02-23 Mitsubishi Heavy Industries, Ltd. Method of seawater treatment and seawater treatment apparatus
JP2006095478A (en) * 2004-09-30 2006-04-13 Nippon Steel Corp Treatment method for wastewater containing sulfur compound

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010043083A1 (en) * 2008-10-17 2010-04-22 Peng Sigan Process and device for simultaneously desulfurizing and denitrating the flue gas with the seawater
AU2008362984B2 (en) * 2008-10-17 2014-06-26 Sigan Peng Process and device for simultaneously desulfurizing and denitrating the flue gas with the seawater
WO2010095214A1 (en) * 2009-02-17 2010-08-26 月島機械株式会社 Wastewater treating system, and wastewater treating method
WO2010116482A1 (en) * 2009-04-06 2010-10-14 三菱重工業株式会社 Seawater desulfation treatment apparatus, method for treating desulfurized seawater, and power generation system to which the method has been applied
CN102387850A (en) * 2009-04-06 2012-03-21 三菱重工业株式会社 Seawater desulfation treatment apparatus, method for treating desulfurized seawater, and power generation system to which the method has been applied
JPWO2010116482A1 (en) * 2009-04-06 2012-10-11 三菱重工業株式会社 Seawater desulfation treatment apparatus, desulfurization seawater treatment method, and power generation system using the same
JP2010240624A (en) * 2009-04-09 2010-10-28 Mitsubishi Heavy Ind Ltd Flue gas desulfurization apparatus and exhaust gas treatment method
WO2010131327A1 (en) * 2009-05-11 2010-11-18 三菱重工業株式会社 Equipment for the desulfurization of flue gas with seawater and process for treatment of the seawater used in the desufurization
CN103097300B (en) * 2010-08-30 2014-05-28 巴布科克·博西格·施泰因米勒有限公司 System and method for the desalination of sea water
WO2012028607A3 (en) * 2010-08-30 2012-05-18 Babcock Borsig Steinmüller Gmbh System and method for the desalination of sea water
CN103097300A (en) * 2010-08-30 2013-05-08 巴布科克·博西格·施泰因米勒有限公司 System and method for the desalination of sea water
TWI482657B (en) * 2011-02-28 2015-05-01 Mitsubishi Hitachi Power Sys Seawater desulfurization system and power generation system
JP2012179521A (en) * 2011-02-28 2012-09-20 Mitsubishi Heavy Ind Ltd Seawater flue-gas desulfurization system, and power generating system
WO2012117586A1 (en) * 2011-02-28 2012-09-07 三菱重工業株式会社 Seawater flue-gas desulfurization system, and power generating system
JP2014524830A (en) * 2011-07-01 2014-09-25 ペン, シーガン Acid seawater treatment method and apparatus
JP2014531315A (en) * 2011-10-07 2014-11-27 アルストム テクノロジー リミテッドALSTOM Technology Ltd Waste water treatment control method and system from combustion exhaust gas seawater purifier
WO2013115107A1 (en) * 2012-01-31 2013-08-08 三菱重工業株式会社 Seawater flue-gas desulfurization system and power generation system
WO2013115108A1 (en) * 2012-01-31 2013-08-08 三菱重工業株式会社 Oxidation tank, seawater flue-gas desulfurization system and power generation system
WO2013118683A1 (en) * 2012-02-06 2013-08-15 三菱重工業株式会社 Desulfurization seawater processing system
WO2016035487A1 (en) * 2014-09-02 2016-03-10 富士電機株式会社 Exhaust gas treatment device and waste water treatment method for exhaust gas treatment device
JPWO2016035487A1 (en) * 2014-09-02 2017-04-27 富士電機株式会社 Exhaust gas treatment device and waste water treatment method of exhaust gas treatment device
US9821268B2 (en) 2014-09-02 2017-11-21 Fuji Electric Co., Ltd. Exhaust gas treatment device and waste water treatment method for exhaust gas treatment device
US9630864B2 (en) 2015-06-17 2017-04-25 General Electric Technology Gmbh Seawater plant with inclined aeration and mixed auto recovery
KR101927076B1 (en) * 2017-03-02 2018-12-10 (주)오씨아드 Waste gas cleaning apparatus for thermoelectric power plant

Also Published As

Publication number Publication date
MY157783A (en) 2016-07-29
JP5259964B2 (en) 2013-08-07
CN101557868B (en) 2013-04-10
CN101557868A (en) 2009-10-14
WO2008105212A1 (en) 2008-09-04
NO20091780L (en) 2009-05-06

Similar Documents

Publication Publication Date Title
JP5259964B2 (en) Seawater flue gas desulfurization system
TWI415798B (en) Oxidation tank, seawater treatment unit and seawater desulfurization system
JP6313945B2 (en) Air diffuser for seawater desulfurization, seawater desulfurizer equipped with the same, and water quality improvement method
JP6462359B2 (en) Method and apparatus for desulfurization of exhaust gas containing sulfurous acid gas
WO2002040137A1 (en) Method and apparatus for wet type flue-gas desulfurizaion
JP2012115764A (en) Wastewater channel of seawater desulfurization apparatus and seawater flue gas desulfurization system
JP5186396B2 (en) Seawater desulfurization equipment
EP2851344B1 (en) Method and system for seawater foam control
JP2009006245A (en) Gas-liquid contact apparatus
JP2014233702A (en) Seawater desulfurization device and seawater desulfurization system
US9771279B2 (en) Foam intercept system
JP5535823B2 (en) Aeration apparatus, seawater flue gas desulfurization apparatus equipped with the aeration apparatus, and operation method of aeration apparatus
JP6742830B2 (en) Seawater plant with tilted aeration and mixed automatic recovery
JP5535817B2 (en) Aeration apparatus, seawater flue gas desulfurization apparatus equipped with the aeration apparatus, and humidification method of aeration apparatus
EP3144281A1 (en) Integrated air distributor arrangement for effluent seawater treatment basin
JP2012152658A (en) Aeration apparatus, seawater flue gas desulfurization apparatus equipped with the same, and operation method of the aeration apparatus
JP2008155195A (en) Aerating device for combustion exhaust gas clarification equipment
JP2005342721A (en) Two-chamber type wet flue gas desulfurization apparatus and method
TW201208986A (en) Aeration apparatus, seawater flue gas desulphurization apparatus including the same, and method for operating aeration apparatus
Han Air injection techniques for seawater flue gas desulphurization (SWFGD) aeration system.
JP2012239922A (en) Seawater flue gas desulfurization apparatus
SA113340644B1 (en) Oxidation basin, seawater exhaust-gas desulfurization system, and power generation system
JPH04219121A (en) Wet flue gas desulfurizer having air supply means
JP2013022512A (en) Aeration device and seawater flue gas desulfurization apparatus
JPH0641827U (en) Wet flue gas desulfurization apparatus having air supply means

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5259964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350