JPS59213495A - Treatment of water - Google Patents
Treatment of waterInfo
- Publication number
- JPS59213495A JPS59213495A JP8888083A JP8888083A JPS59213495A JP S59213495 A JPS59213495 A JP S59213495A JP 8888083 A JP8888083 A JP 8888083A JP 8888083 A JP8888083 A JP 8888083A JP S59213495 A JPS59213495 A JP S59213495A
- Authority
- JP
- Japan
- Prior art keywords
- water
- tank
- treated
- bisulfite
- aeration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は重亜硫酸塩を含む水の処理方法に関し、さら
に詳しくは脱塩用の逆浸透膜分離装置から排出される重
亜硫酸塩を含む水の処理方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating water containing bisulfite, and more particularly to a method for treating water containing bisulfite discharged from a reverse osmosis membrane separation device for desalination. .
臨海地域や離島では海水や塩水から工業用水や飲料水を
得るのに高分子透過膜を用いた逆浸透膜分離装置が用い
られている。In coastal areas and remote islands, reverse osmosis membrane separation equipment using a polymer permeable membrane is used to obtain industrial water or drinking water from seawater or salt water.
海水脱塩に際しては、海水中の溶存酸素や、微生物対策
として添加される塩素削から発生する残留塩素などが逆
浸透膜によっては悪影響を割
及ばずところから、一般に還元Jチjを添加して、これ
らの溶存酸素や残留塩素を除去し、さらに酸を加えでp
l■を4〜7に調整してからj1!J/An1f、装置
に供給される。When desalinating seawater, dissolved oxygen in the seawater and residual chlorine generated from chlorine removal, which is added as a microbial countermeasure, do not have a negative effect on reverse osmosis membranes, so it is common to add reducing agents. , these dissolved oxygen and residual chlorine are removed, and acid is added to reduce p.
Adjust l■ to 4-7 and then j1! J/An1f, supplied to the device.
さらに、場合によっては、1日1回、10〜60分間、
重亜硫酸塩を、通常運転中の5〜8倍の濃度で添加し、
逆浸透膜装置内に微生物が繁殖するのを防止するショッ
ク処理方法が採用されている。In addition, in some cases, once a day for 10 to 60 minutes,
Adding bisulfite at a concentration 5 to 8 times that during normal operation,
Shock treatment methods have been adopted to prevent microorganisms from multiplying within reverse osmosis membrane devices.
また、逆浸透膜分離装置が停止すると、停止中空気の浸
入による膜の酸化劣化、微生物の増殖などにより使用に
耐えなくなるので、竹・止するときには、■亜硫酸塩全
500〜zooo+y、’召含むpH4〜7に1iJA
l整されだ液で逆浸透膜分離装置内の液を置換する方法
が採用されている1、これらの、いずれの方法に介いて
も、逆浸透膜分離装置からは運転開始直後又は運転中常
時、高濃度の1(亜硫酸塩を含む濃縮液が排出8!しる
。In addition, when the reverse osmosis membrane separation equipment is stopped, it becomes unusable due to oxidative deterioration of the membrane due to the infiltration of air while it is stopped, and the growth of microorganisms. 1iJA at pH 4-7
A method has been adopted in which the liquid in the reverse osmosis membrane separation device is replaced with the filtered liquid.1 Regardless of these methods, the reverse osmosis membrane separation device is drained immediately after the start of operation or at all times during operation. , 1 (concentrated liquid containing sulfites is discharged 8!).
この濃縮液は、従来無処理で希釈放流するか、酸化剤を
添加した後、放流する方法が採用され7ている。しかし
、CODの規制、または酸化剤(次亜塩素酸塩、さらし
粉、塩素ガスなど)の多量消費及び過剰添加時の毒性の
問題などがあり、適切とはされなかった。Conventionally, this concentrated liquid is diluted and discharged without treatment, or it is discharged after adding an oxidizing agent7. However, it was not considered appropriate due to COD regulations, large consumption of oxidizing agents (hypochlorite, bleaching powder, chlorine gas, etc.) and toxicity when added in excess.
この発明はこのような高CODを示す重亜硫酸塩含有濃
縮液の処理方法を提供するものであって、酸化剤として
空気を用いるだけで効率よ(CODを低減する方法であ
る。The present invention provides a method for treating such a bisulfite-containing concentrate exhibiting a high COD, and is a method for efficiently reducing COD by simply using air as an oxidizing agent.
ナなわら、この発明は脱塩用逆浸透膜分離装置から排出
される重亜硫酸塩を含む水のCODを空気曝気により低
減する方法であって、曝気しながらアルカリ剤を分注す
ることを特徴とする重亜硫酸塩を含む水の処理方法であ
る。However, this invention is a method for reducing the COD of water containing bisulfite discharged from a reverse osmosis membrane separation device for desalination by air aeration, and is characterized by dispensing an alkaline agent while aerating. This is a method for treating water containing bisulfite.
重亜硫酸塩含有水を、単に空気曝気すると、次の反応に
より5重亜硫酸イオンが酸化されて硫酸イオンとなるが
同時に、液のp■■も低下し、(1)式の右項への解離
が進行しにぐくな夛次第に(2)式の酸化反応が阻害さ
れる。When bisulfite-containing water is simply aerated with air, the pentabisulfite ion is oxidized to sulfate ion by the following reaction, but at the same time, the p■■ of the liquid decreases, causing dissociation to the right term in equation (1). As the reaction progresses slowly, the oxidation reaction of formula (2) is inhibited.
HS O3−材n−+−soM−(1)S(Ji−+(
U)→5c)1’−i2)従って、(2)式を促進する
ためにはpHを一定以上とすることが必要となる。HS O3-material n-+-soM-(1)S(Ji-+(
U) → 5c) 1'-i2) Therefore, in order to promote the formula (2), it is necessary to keep the pH above a certain level.
この現象はM亜硫酸塩の含有量が多いほど著しるしくな
る。例えば仁の発明においては、前述のショック処理又
は膜分離装置の運転開始直後に排出される、重亜硫酸イ
オンとして5001η/e以上含有する濃縮液を処理す
る場合にこのような現象が多発する。This phenomenon becomes more significant as the content of M sulfite increases. For example, in Jin's invention, such a phenomenon occurs frequently when treating a concentrated liquid containing 5001 η/e or more as bisulfite ions, which is discharged immediately after the above-mentioned shock treatment or the start of operation of the membrane separation device.
研究の結果、このような濃縮液を処理する場合、pHを
4以上に維持することが好ましく、′まだ、あまりにも
pI(が高くなると炭iソヵルンウムのスケールが析出
するので、上限はpH8が好ましい。As a result of research, when processing such a concentrated liquid, it is preferable to maintain the pH at 4 or higher; however, if the pI becomes too high, charcoal scale will precipitate, so an upper limit of pH 8 is preferable. .
重亜硫酸塩含有濃縮水は曝気水槽で空気曝気処理を施こ
すが、液のpHを4〜8に維持するだめのアルカリ剤の
添加には工夫が必要となる。Bisulfite-containing concentrated water is subjected to air aeration treatment in an aeration tank, but it is necessary to add an alkaline agent to maintain the pH of the liquid at 4 to 8.
すなわち、曝気水槽入口で、必要量を一度に添加すると
曝気水槽の位置によりpHの高低部が生じ、pf−1の
高い人口部ではスケールが発生すると共に、曝気水槽出
口側では酸化反応の進行に伴ってpHが低下し、そのた
め、酸化反応が阻害されて一部の重亜硫酸イ刺ン又は亜
硫酸イオンが未処理のまま排出されることになる。In other words, if the required amount is added all at once at the aeration tank inlet, high and low pH areas will occur depending on the position of the aeration tank, scale will occur in areas with high pf-1, and the oxidation reaction will not progress at the aeration tank outlet. The pH accordingly decreases, and as a result, the oxidation reaction is inhibited and some bisulfite or sulfite ions are discharged untreated.
そこで、この発明ではアルカリ剤注入点を複数設け、曝
気水槽のいずれの部分においても適正pf(が維持でき
るように考慮したものである。Therefore, in this invention, a plurality of alkali agent injection points are provided so that an appropriate pf can be maintained in any part of the aeration tank.
以下、図面を用いてこの発明の詳細な説明する。Hereinafter, the present invention will be explained in detail using the drawings.
第1図は曝気水槽を多段に設け、かつ、名僧にpHを設
け、pH計と連動して作動するポンプにより、各(”i
9へアルカリ剤を分注し、かつ、その注入量を開側1す
るようにした方式を示す。Figure 1 shows that aeration tanks are set up in multiple stages, the pH is set in the well, and each ("i"
This shows a method in which the alkaline agent is dispensed into the opening 9 and the injection amount is adjusted to the open side 1.
この方式では、曝気水槽1は3段(1a、lb+lc)
に設けられているが、3段に限定されず、必要な段数を
設けることができる。各曝気水槽にはプロワ2と連結さ
れた散気管3が設置されている(3a、3b、3c)。In this method, the aeration tank 1 has three stages (1a, lb+lc)
However, the number of stages is not limited to three, and any number of stages can be provided as required. Each aeration tank is equipped with an aeration pipe 3 connected to a blower 2 (3a, 3b, 3c).
また、上流側に例えば海水脱塩用逆浸透膜分離装置4の
濃縮(illと連絡された濃縮水供給管5が配設され、
名水(曹下流側にはpH1i6a、(ib、6cが設け
られている。Further, on the upstream side, for example, a concentrated water supply pipe 5 connected to the concentration (ill) of the reverse osmosis membrane separation device 4 for seawater desalination is arranged,
Famous water (pH 1i6a, (ib, 6c) is provided on the downstream side.
乙
さらに、3の各pH計と連動するアルカリ剤注入ポンプ
7a、7b、7cが設けられ、これらのポンプの作動に
より、アルカリ剤供給看Ra 、 )i b 。Furthermore, alkaline agent injection pumps 7a, 7b, and 7c are provided which are linked to each of the pH meters (3), and the alkali agent is supplied by the operation of these pumps.
8cから、水酸化ナトリ9ム、水酸化カリウムなどの適
尚なノ′ルカリFill l Oが供給ちれる。From 8c, a suitable alkali filler such as sodium hydroxide, potassium hydroxide, etc. is supplied.
各曝気水槽に設けられたpH計の七ンツ゛一部前面には
、pf(測定誤差をできるだりなくす/ζめに邪魔板9
a、9b、9cを設ける方が好城しい。There is a baffle plate 9 on the front of the pH meter installed in each aeration tank.
It would be better to provide a, 9b, and 9c.
このように設計された装置において、11Mに、運転初
期やショック処理時にf1σ水脱塩用逆浸透膜分離装置
4の濃縮側からは、重亜硫酸塩奮多餓含有する濃縮水が
排出式れ、1庁5を介して、曝気水槽1土流側に供託
コされる。曝気水槽にはブロワ2により散気管371・
ら空気が惧超され一部いゐQ
先す、vjk縮水は第1伯において処理を受V−)る。In a device designed in this way, at 11M, concentrated water containing a large amount of bisulfite is discharged from the concentration side of the reverse osmosis membrane separation device 4 for f1σ water desalination during the initial stage of operation or during shock treatment. The aeration water tank 1 is deposited to the earth flow side via the 1 agency 5. Aeration pipe 371 is connected to the aeration tank by blower 2.
First, the condensed water is treated in the first section (V-).
滞留時間は通常5〜lO分以内で比較的早Jす」に第2
槽に送られる。The residence time is relatively fast, usually within 5 to 10 minutes.
sent to the tank.
第1惰では、pI−■計6aによりpHが測定され、p
Hが4未満になると自動的にポンプ7aを起動し、アル
カリ剤を管8aを介して供給することによりpJ−14
〜7の範囲に調整される。次いで、第2槽に送られる。In the first inertia, pH is measured by pI-■ meter 6a, and p
When H becomes less than 4, the pump 7a is automatically started and the alkaline agent is supplied through the pipe 8a to reduce pJ-14.
It is adjusted to a range of ~7. Then, it is sent to the second tank.
第2槽での処理は基本的に第1僧と同一であるが、第1
憎が予備処理的な性格が強いのに対し、第2槽では本格
的な処理が施こされるように設定されているため、滞留
時間が60〜120分程度と、比較的長い。ここでも、
液のpHが4〜7の範囲内に維持されるように自動的に
アルカリ剤が注入されるようになっている。The processing in the second tank is basically the same as in the first tank, but
The second tank has a relatively long residence time of about 60 to 120 minutes because it is set to carry out full-scale treatment, whereas the second tank is more of a preliminary treatment. even here,
An alkaline agent is automatically injected to maintain the pH of the liquid within the range of 4 to 7.
こうして、はとんどの重亜硫酸塩が酸化された水は、次
いで後処理のために第3槽に供給される。The water, in which most of the bisulfite has been oxidized, is then fed to a third tank for after-treatment.
第3槽は、2の図面では最終段となっているため、残留
重亜硫酸イオンや亜硫酸イオンを最終的に処理すると共
に、放流水基準に合致した後埋水を得べく、pi−Iは
6〜8の範囲内に調整、維持される。そのrfij留時
間は通常5〜30分程度とする。The 3rd tank is the final stage in the 2nd drawing, so in order to finally process residual bisulfite ions and sulfite ions and to obtain buried water that meets the effluent standards, pi-I is 6. Adjusted and maintained within the range of ~8. The rfij residence time is usually about 5 to 30 minutes.
こうし−℃、c ODが大巾に低減され、放流水基準に
合致したCODとp i−Iを有する処理水す、(、i
[3槽から系外へ放流される。Treated water with COD and p i-I whose OD is greatly reduced and meets the effluent standards, (, i
[Discharged from tank 3 to the outside of the system.]
一方、第2図Co1、より簡略化したこの発明の別の実
施例を示づ゛ものである。第2図の装置C」曝気水槽ば
」段とし、そのかわりに、アルカリ剤供給管を多段に設
けるようにしだものであって、曝気水(曹11.ブロワ
12と連結された散気管工3、曝気水槽11の下流部に
設けられたpH計16、及び単−又は複数のノズルを有
するアルカリ剤供給菅18 a 、 l 8 b 、
I 8c (第2図では3段と乃゛っているが必要に
応じて設けることができる〕と連絡されたアルカリ剤注
入ポンプ17a、17b、17c (同)を含む方式で
あり、ポンプ■7の起動はp i−を計16によって行
なわれる。On the other hand, FIG. 2 Co1 shows another simpler embodiment of the present invention. The device C in Fig. 2 has an aeration water tank with a multi-stage alkali agent supply pipe instead. , a pH meter 16 provided downstream of the aeration water tank 11, and an alkali agent supply tube 18a, l8b having one or more nozzles,
This system includes alkaline agent injection pumps 17a, 17b, and 17c (same) connected to pump I8c (three stages are shown in Fig. 2, but they can be provided as necessary), and pump Activation is performed by a total of 16 p i-.
このように設計された装置において、海水脱塩用逆浸透
膜分離装置14の濃縮側から被処理水が管15を介して
曝気槽11の上流側に供給される。曝気水槽には上流か
ら下流側にわたって必要なだけ散気管13が設けられ、
プロワ12により空気が供給され、被処理水は漸次酸化
処理を受ける。In the device designed in this manner, water to be treated is supplied from the concentration side of the reverse osmosis membrane separation device 14 for seawater desalination to the upstream side of the aeration tank 11 via the pipe 15. The aeration tank is provided with as many aeration pipes 13 as necessary from the upstream to the downstream side,
Air is supplied by the blower 12, and the water to be treated is gradually oxidized.
第2図の方式では、下流側の放流口近くにpf(計16
を設置し、検出されたpH値に応じてポンプ1.7a、
17b、1Ficを起動させてアルカリ剤20を供給す
る。図中、19は邪魔板で、設ける方が望ましい。In the system shown in Fig. 2, a pf (total of 16
and pump 1.7a, depending on the detected pH value.
17b and 1Fic are activated to supply the alkali agent 20. In the figure, reference numeral 19 indicates a baffle plate, which is preferably provided.
なお、各ポンプに連結されたアルカリ剤供給管端部には
1つ以上のノズルが配置されるものであるが、このよう
なノズルは第2図のように曝気水槽の流れの方向(上流
τljlから下流側へ)にそうように設ける方が好まし
い。Note that one or more nozzles are arranged at the end of the alkaline agent supply pipe connected to each pump, and these nozzles are arranged in the direction of flow in the aeration tank (upstream τljl) as shown in Figure 2. It is preferable to provide it in such a way (from the downstream side).
ポンプの運転方法の1例を示すと、検出されるpHが4
未溝の場合には全ポンプを起動し、多量のアルカリ剤が
分注されるように1−る。また、検出されるpllが6
〜7の場合には1〜2 台を起動する。pHが8以上を
示す場合には、全ポンプを停止する。An example of how to operate a pump is when the detected pH is 4.
If the groove is not yet filled, start all the pumps so that a large amount of alkaline agent is dispensed. Also, the detected pll is 6
-7, start 1 or 2 units. If the pH shows 8 or higher, stop all pumps.
要するに、ポンプの運転は、放流水のpllが6〜8と
なるように制御すれば艮い。滞留時間は30〜200分
程度が標準であり、処理水質のCODに応じで加減すれ
ばよい。In short, the operation of the pump can be easily controlled so that the pll of discharged water is 6 to 8. The standard residence time is about 30 to 200 minutes, and may be adjusted depending on the COD of the treated water.
以上、第1図、第2図に示した実施例では、いずれもア
ルカリ剤を酸化処理にあわせて分注J゛るものであり、
そうすることによって重!11!、 (Iiit酸塩の
酸化反応が滞りなく進行し、曝気水槽を出る頃にはCO
Dは十分に低減される。また、pHもそのまま放θ1仁
することができるようにrA 整される。As mentioned above, in the embodiments shown in FIGS. 1 and 2, the alkaline agent is dispensed in accordance with the oxidation treatment.
Heavy by doing so! 11! (The oxidation reaction of the IIIt salt proceeds smoothly, and by the time it leaves the aeration tank, CO
D is sufficiently reduced. In addition, the pH is adjusted to rA so that the temperature can be released as is.
このように、従来、経済的、効率的に処理しにくかった
重亜硫酸塩を高濃度含む海水脱塩用逆浸透膜分離装置か
ら排出されるl迫縮水は、この発明により簡単に、かつ
経済的に十分処理することかり能となり、逆浸透j摸装
置を用いた海水脱塩装置の1・−タルンヌテムを提供す
ることが可能となった。In this way, with this invention, condensate water discharged from reverse osmosis membrane separators for seawater desalination, which contains high concentrations of bisulfite and which has conventionally been difficult to treat economically and efficiently, can be easily and economically treated. It became possible to provide a seawater desalination system using a reverse osmosis machine using a reverse osmosis machine.
実施例
運転開始直後の海水脱塩川逆浸透膜分離装置から排出さ
れた濃縮水について、第1図に示した装置を用いて処理
した。EXAMPLE Concentrated water discharged from a seawater desalination river reverse osmosis membrane separation apparatus immediately after the start of operation was treated using the apparatus shown in FIG.
濃縮水中の重亜硫酸ソーダ濃度は1,200mV/召で
あった。The concentration of sodium bisulfite in the concentrated water was 1,200 mV/min.
第1槽〜第3伯とも槽容量は3にとした□、又、空気供
給量は0−1n!/77f・mjnとした。The tank capacity was set to 3 for both tanks 1 to 3, and the air supply amount was 0-1n! /77f・mjn.
第1槽の滞留時間は7分、$2槽は70分、第3槽は5
分とした。第1槽に設けられたpf(計が6未満となる
とアルカリ剤(水酸化ナトリウム)を注入した。第1僧
出口水をサンプリングし残留亜硫酸イオン(重亜硫酸イ
オン士亜硫酸イオン)量を6111足したところ、1,
020■/I3 であった。又1)Hは6.2であっ
た。Residence time in tank 1 is 7 minutes, tank 2 is 70 minutes, and tank 3 is 5 minutes.
It was a minute. When the pf (total) provided in the first tank was less than 6, an alkaline agent (sodium hydroxide) was injected.The water at the first tank outlet was sampled and the amount of residual sulfite ions (bisulfite ions and sulfite ions) was added to 6111. However, 1,
It was 020■/I3. Also, 1) H was 6.2.
次に第2伯でもpHは6以上となるように制御した。同
じく第241出口でサンプリングすると、残留亜硫酸イ
オン駕は30■/召、pf(は6.4であった。Next, in the second case, the pH was controlled to be 6 or more. Similarly, when sampling was performed at exit 241, the residual sulfite ion concentration was 30 μ/min, and the pf (pf) was 6.4.
第3槽ではpHは6〜8になるように制御した。In the third tank, the pH was controlled to be 6-8.
最終放流水はIA粕亜硫歌イオンhorny/43未満
、pL(7,oであった。The final effluent had an IA lees sulfite ion horny/43 less than pL (7,000 pL).
比 較 例
9eの曝気水槽に上記と同一の水を供伶し、ioo分間
空気曝気した。曝気開始後、40分でpHは2,6に急
落し、最終処理水中の残留前(tffi I’1″2イ
オン濃;ルも500η/召でめった。Comparison The same water as above was supplied to the aeration tank of Example 9e, and the water was aerated with air for io minutes. 40 minutes after the start of aeration, the pH suddenly dropped to 2.6, and the residual ion concentration (tffi I'1''2 ion concentration) in the final treated water was 500 η/min.
父、入口部で水酸化す) l)ラムを一度に添加したと
きには入口部にかなりのスケールが析出したうえに、1
20分間曝気して、−やつと残留i+r;硫1俊イオニ
/濃IWは50η/τになった。1) When rum was added all at once, a considerable amount of scale precipitated at the inlet, and 1
After aeration for 20 minutes, the residual i+r and sulfur ion/concentrated IW became 50η/τ.
以上の実施例、比較例から明らかなように、この発明で
は11−気しながらアルカリ剤を分注するようにしたた
め比較例にあるような問題は発生することなく効率的に
処理することができる。As is clear from the above Examples and Comparative Examples, in this invention, the alkaline agent is dispensed with care, so that the problems described in the Comparative Examples do not occur and processing can be carried out efficiently. .
第1図、第2図はこの発明の実施態様を示すものであっ
て、第1図おいて、1(la、lb。
lc)は曝気水槽、3(3a、3b、3c)は散気管、
6(6a、6b、6c)はpf(計、7(7a、7b、
7c)はアルカリ剤注入ポンプ、8(8a、Fib、8
cJはアルカリ剤供給管をそれぞれ示す。
一方、第2図においては、11は曝気水槽、131’、
!、’ 11ケ気背、3.7(17a、I7b、17c
)はアルカリ剤注入ポンプ、18(18a、1FJb、
18c)はアルカリ剤供給管をそれぞれ示す。
特t゛「出願人 栗田工業株式会社FIG. 1 and FIG. 2 show embodiments of the present invention, and in FIG. 1, 1 (la, lb, lc) is an aeration tank, 3 (3a, 3b, 3c) is an aeration pipe,
6 (6a, 6b, 6c) is pf (total, 7 (7a, 7b,
7c) is an alkali injection pump, 8 (8a, Fib, 8
cJ indicates an alkali agent supply pipe. On the other hand, in FIG. 2, 11 is an aeration tank, 131',
! ,' 11 questions, 3.7 (17a, I7b, 17c
) is alkali injection pump, 18 (18a, 1FJb,
18c) each shows an alkali agent supply pipe. Special feature: Applicant: Kurita Water Industries, Ltd.
Claims (1)
む水のCODを空気曝気にょし低減する方法であって、
曝気しながらアルカリ剤を分注することを特徴とする重
亜硫酸塩を含む水の処理方法A method for reducing COD of water containing bisulfite discharged from a reverse osmosis membrane separation device for desalination by air aeration, the method comprising:
A method for treating water containing bisulfite, characterized by dispensing an alkaline agent while aerating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8888083A JPS59213495A (en) | 1983-05-20 | 1983-05-20 | Treatment of water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8888083A JPS59213495A (en) | 1983-05-20 | 1983-05-20 | Treatment of water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59213495A true JPS59213495A (en) | 1984-12-03 |
JPH0116558B2 JPH0116558B2 (en) | 1989-03-24 |
Family
ID=13955312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8888083A Granted JPS59213495A (en) | 1983-05-20 | 1983-05-20 | Treatment of water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59213495A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61249505A (en) * | 1985-04-27 | 1986-11-06 | Toyobo Co Ltd | Method for preserving fluid separator |
JPS6458396A (en) * | 1987-08-31 | 1989-03-06 | Shikoku Elec Power | Method for treating aqueous solution of sodium hydrogensulfite |
JP2007260638A (en) * | 2006-03-30 | 2007-10-11 | Hitachi Zosen Corp | Water treatment method using reverse osmosis membrane |
WO2008105212A1 (en) * | 2007-02-28 | 2008-09-04 | Mitsubishi Heavy Industries, Ltd. | System of flue-gas desulfurization with seawater |
JP2010234334A (en) * | 2009-03-31 | 2010-10-21 | Mitsubishi Heavy Ind Ltd | Oxidation tank, apparatus for treating seawater, and system for desulfurizing seawater |
WO2012057188A1 (en) | 2010-10-29 | 2012-05-03 | 東レ株式会社 | Fresh water generation method and fresh water generation device |
CN102557194A (en) * | 2011-12-31 | 2012-07-11 | 国家海洋局天津海水淡化与综合利用研究所 | Film method aeration industrial flue gas desulfurization seawater recovery process |
EP2578544A1 (en) * | 2011-10-07 | 2013-04-10 | Alstom Technology Ltd | Method and system for controlling treatment of effluent from seawater flue gas scrubber |
KR20160093619A (en) | 2013-12-02 | 2016-08-08 | 도레이 카부시키가이샤 | Water treatment method |
US9630864B2 (en) | 2015-06-17 | 2017-04-25 | General Electric Technology Gmbh | Seawater plant with inclined aeration and mixed auto recovery |
-
1983
- 1983-05-20 JP JP8888083A patent/JPS59213495A/en active Granted
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61249505A (en) * | 1985-04-27 | 1986-11-06 | Toyobo Co Ltd | Method for preserving fluid separator |
JPH0472569B2 (en) * | 1985-04-27 | 1992-11-18 | Toyo Boseki | |
JPS6458396A (en) * | 1987-08-31 | 1989-03-06 | Shikoku Elec Power | Method for treating aqueous solution of sodium hydrogensulfite |
JP2007260638A (en) * | 2006-03-30 | 2007-10-11 | Hitachi Zosen Corp | Water treatment method using reverse osmosis membrane |
WO2008105212A1 (en) * | 2007-02-28 | 2008-09-04 | Mitsubishi Heavy Industries, Ltd. | System of flue-gas desulfurization with seawater |
JP2008207149A (en) * | 2007-02-28 | 2008-09-11 | Mitsubishi Heavy Ind Ltd | Flue gas desulfurization system employing seawater |
JP2010234334A (en) * | 2009-03-31 | 2010-10-21 | Mitsubishi Heavy Ind Ltd | Oxidation tank, apparatus for treating seawater, and system for desulfurizing seawater |
WO2012057188A1 (en) | 2010-10-29 | 2012-05-03 | 東レ株式会社 | Fresh water generation method and fresh water generation device |
EP2578544A1 (en) * | 2011-10-07 | 2013-04-10 | Alstom Technology Ltd | Method and system for controlling treatment of effluent from seawater flue gas scrubber |
WO2013050988A1 (en) * | 2011-10-07 | 2013-04-11 | Alstom Technology Ltd | Method and system for controlling treatment of effluent from seawater flue gas scrubber |
CN103958419A (en) * | 2011-10-07 | 2014-07-30 | 阿尔斯通技术有限公司 | Method and system for controlling treatment of effluent from seawater flue gas scrubber |
JP2014531315A (en) * | 2011-10-07 | 2014-11-27 | アルストム テクノロジー リミテッドALSTOM Technology Ltd | Waste water treatment control method and system from combustion exhaust gas seawater purifier |
CN102557194A (en) * | 2011-12-31 | 2012-07-11 | 国家海洋局天津海水淡化与综合利用研究所 | Film method aeration industrial flue gas desulfurization seawater recovery process |
KR20160093619A (en) | 2013-12-02 | 2016-08-08 | 도레이 카부시키가이샤 | Water treatment method |
US9630864B2 (en) | 2015-06-17 | 2017-04-25 | General Electric Technology Gmbh | Seawater plant with inclined aeration and mixed auto recovery |
Also Published As
Publication number | Publication date |
---|---|
JPH0116558B2 (en) | 1989-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009172462A (en) | Water quality modifying apparatus, water treating system, and recycling system of drainage | |
WO2015156242A1 (en) | Water treatment method and water treatment apparatus each using membrane | |
JPS59213495A (en) | Treatment of water | |
JPS62294484A (en) | Reverse osmosis treatment of water containing silica at high concentration | |
AU2009201616A1 (en) | A Process and System for Reducing Arsenic Levels in Aqueous Solutions | |
US5096589A (en) | Hydrogen sulfide removal from reverse osmosis product water | |
CN216890542U (en) | Nitrate ion exchange resin regeneration waste liquid treatment device | |
JPS6344989A (en) | Treatment of washing waste water containing oxidizing agent | |
JP5091515B2 (en) | Sewage treatment method and sewage treatment apparatus | |
JPH0561992B2 (en) | ||
JP6968682B2 (en) | Manufacturing method of permeated water, water treatment device and operation method of the water treatment device | |
CN107055907A (en) | A kind of GTCC power plant wastewater zero discharge processing unit and handling process | |
KR0184385B1 (en) | Method and apparatus for removing heavy metal from waste water | |
JPH0957067A (en) | Separation with reverse osmotic membrane and apparatus therefor | |
RU2785349C1 (en) | Method and system for reducing the total coal consumption during the generation of purified streams with low chemical oxygen demand | |
JP2000350997A (en) | Method and apparatus for treating sewage | |
JP2514676B2 (en) | Treatment method of organic waste liquid | |
JPS62237907A (en) | Membrane separation method | |
CN219585945U (en) | RO reverse osmosis sewage treatment system | |
CN216472645U (en) | Soaking type full-automatic regeneration soft water preparation system | |
JP2000107777A (en) | Method of water treatment and apparatus therefor | |
CN110590071B (en) | Wastewater zero-discharge treatment method based on medicament softening and ion exchange hardness removal | |
JP2560167Y2 (en) | Hydrogen peroxide water decomposition equipment | |
JP4700859B2 (en) | HAZARDOUS SUBSTANCE TREATMENT METHOD, ITS DEVICE, AND WASTEWATER TREATMENT SYSTEM | |
JP3340311B2 (en) | Operating method of water treatment equipment using immersion type membrane filtration device |