WO2010130765A1 - Structure de couplage pour gyrometre resonnant - Google Patents

Structure de couplage pour gyrometre resonnant Download PDF

Info

Publication number
WO2010130765A1
WO2010130765A1 PCT/EP2010/056514 EP2010056514W WO2010130765A1 WO 2010130765 A1 WO2010130765 A1 WO 2010130765A1 EP 2010056514 W EP2010056514 W EP 2010056514W WO 2010130765 A1 WO2010130765 A1 WO 2010130765A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupling structure
masses
axis
patterns
seismic masses
Prior art date
Application number
PCT/EP2010/056514
Other languages
English (en)
Inventor
Karim Yacine
Original Assignee
Commissariat à l'énergie atomique et aux énergies alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat à l'énergie atomique et aux énergies alternatives filed Critical Commissariat à l'énergie atomique et aux énergies alternatives
Priority to JP2012510283A priority Critical patent/JP5690817B2/ja
Priority to EP10718223.0A priority patent/EP2430397B1/fr
Priority to US13/319,581 priority patent/US8544594B2/en
Publication of WO2010130765A1 publication Critical patent/WO2010130765A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/574Structural details or topology the devices having two sensing masses in anti-phase motion
    • G01C19/5747Structural details or topology the devices having two sensing masses in anti-phase motion each sensing mass being connected to a driving mass, e.g. driving frames

Definitions

  • the present invention relates to an inertial sensor for measuring angular velocity along two axes in the plane (or more). It is a gyrometer and more particularly a micro-machined gyrometer.
  • gyrometers The use of gyrometers is multiple: automobile, aeronautics, robotics, ...
  • micro-machined gyrometers in silicon is already widespread.
  • This type of component typically comprises 2 moving masses coupled in antiphase, vibrating in the plane at resonance. The masses are excited by means of electrostatic or piezoelectric forces applied via interdigital comb structures or a piezoelectric actuator.
  • US Patent 5,895,850 discloses a resonant gyroscope comprising a substrate, a first and a second resonant mass vibrating in phase opposition in a preferred direction and direction, a first and a second spring connected to the substrate and to the resonators, the springs being more flexible in the desired direction of vibration of the resonators.
  • Sensing elements make it possible to measure the effect of Coriolis acting on the resonator in a direction perpendicular to the direction of vibration.
  • a coupling region couples the two vibrating masses, this region including a coupling mass and at least one coupling resonator.
  • WO-A-2006/037 928 discloses a resonator with oscillating masses.
  • Other structures of the prior art use pivot links and implement a coupling in antiphase (see for example the documents US 2004/154 397 and US 2005/072 231). However, these structures do not make it possible to modulate the amplitudes of displacement. In the case of 2-axis gyrometers in the plane, there are some studies carried out on specific structures. The first identified study was published in T.
  • These gyrometers are based on a strong coupling of 4 tuning forks by the link of central anchorage in excitation and detection. If a tuning fork is excited, the other 3 tuning forks will vibrate at the same frequency and in phase with the tuned fork. This is a motion transmission link.
  • These structures have a common central anchorage with the substrate, which induces operation in rotation and not in translation.
  • US 6,134,961 discloses a gyroscope an axis comprising a set of beams (coupling structure) allowing an antiphase coupling between the two sensing masses of the gyroscope.
  • the coupling structure has indirect anchoring to the substrate via spring beams.
  • the coupling structure (called “quadrilateral loop") is connected to a frame (called “coupling frame”) via springs (called “spring beams”) and the frame is anchored, via springs (called “spring beams”) to anchors (called “floater anchors”).
  • No. 6,349,597 discloses a coupling structure of a gyroscope with axis detection in the plane of the support substrate.
  • the coupling structure is anchored by means of springs at the level of the excitation means.
  • a spring allowing movement in the detection direction (rotation along the y axis) is included in the coupling structure. This configuration makes it difficult to manufacture a gyroscope for detection along the z axis.
  • a closed assembly coupling structure of beams may for example be formed of patterns having a diamond shape, square or ellipse, constituting for example a star comprising several diamonds or ellipses
  • the subject of the invention is therefore a resonant microgyrometer coupling structure formed on a substrate, the coupling structure making it possible to collect a vibratory motion supplied by excitation means along a first axis and to transmit it to seismic masses arranged in a a plane comprising the first axis, characterized in that the coupling structure comprises a closed beam assembly connected to the seismic masses so as to be anchored only thereto, the assembly being arranged to collect the vibratory motion supplied by the excitation means and to transmit it to the seismic masses according to at least a second axis contained in said plane, the coupling structure having no point anchoring to the substrate.
  • the gyrometer according to the invention allows a decorrelation between the excitation amplitude and the displacement amplitude of the masses.
  • the gyro of the invention can be single-axis or multiaxis.
  • the geometry of the coupling structure allows in particular a mass vibration substantially identical in phase and amplitude.
  • the closed assembly of beams may comprise at least one closed pattern having a shape chosen from a rhombus and an ellipse, the pattern being arranged to collect the vibratory movement along one of the axes of the rhombus or of the ellipse and transmit it according to the other axis of the rhombus or ellipse.
  • the vibratory movement can be collected along the long axis of the diamond or ellipse and transmitted along the short axis of the diamond or ellipse.
  • the closed assembly of beams may comprise at least one closed pattern having a square shape, the pattern being arranged to collect the vibratory motion along one of the diagonals of the square and transmit it along the other diagonal of the square.
  • the coupling structure can, to vibrate at least four seismic masses under the effect of four excitation means, to understand four closed patterns, the closed patterns being connected by one of their vertices to a point constituting the center of symmetry of the coupling structure, so as to have opposite patterns and aligned in pairs, two opposite and aligned patterns being orthogonal the two other opposite and aligned patterns, two consecutive patterns being intended to be each connected by a beam to one of said masses so that two opposite seismic masses are located on the same axis passing through the center of symmetry.
  • the vertices of the units opposite to the center of symmetry of the coupling structure may each be integral with an excitation means.
  • the two axes of the seismic masses can be orthogonal to each other and offset by 45 ° with respect to the opposite and aligned patterns.
  • the coupling structure may comprise eight diamond-shaped patterns juxtaposed , the patterns being connected by one of their vertices to a point constituting the center of symmetry of the coupling structure, so as to have opposing patterns and aligned in pairs, the vertices of the units opposite the center of symmetry being intended to be integral each of one of said six seismic masses.
  • the subject of the invention is also a resonant microgyrometer formed on the surface of a substrate, comprising at least two seismic masses capable of moving relative to the substrate, and comprising excitation means intended to bring about vibrating seismic masses via at least one coupling structure, wherein the coupling structure is one of the structures described above.
  • FIGS. 1A-1C are schematic diagrams of an axis-resonant gyrometer according to the present invention
  • FIG. 2 is a block diagram of a two-axis, anti-phase coupling resonant gyrometer with amplified displacement amplitude, the invention
  • FIGS. 3A to 3C are schematic diagrams of a resonant gyrometer with four seismic masses arranged in the same plane and implementing a symmetrical coupling structure according to the invention
  • FIG. 3A ' is a variant of the resonant gyrometer shown in FIG. in FIG. 3A
  • FIG. 4 is a schematic diagram of a resonant gyrometer with six seismic masses deposited in the same plane and implementing a six-star star-shaped coupling structure according to the invention
  • Figure 5 is a block diagram of a resonant gyrometer using three coupling structures according to the present invention.
  • each seismic mass is represented anchored to the substrate by connecting means known to those skilled in the art.
  • These connecting means are for example springs. They make it possible to limit certain displacements of the seismic masses.
  • the means for actuating (or exciting) the seismic masses may be of the capacitive comb type, as shown in the accompanying figures or of another type known to those skilled in the art.
  • Fig. 1A is a block diagram of a resonant gyrometer using a coupling structure according to the present invention.
  • the gyro comprises a first seismic mass 1 and a second seismic mass 2 able to move along a first axis with respect to a support substrate, each in the direction indicated by arrows in FIGS. 1B and 1C.
  • Seismic masses 1 and 2 are vibrated by interdigitated capacitive comb structures 3 and 4 as is well known in the art.
  • the comb structure 3 comprises two fixed combs 31 and 33 integral with the support substrate and a movable comb 32 able to move relative to the fixed combs 31 and 33.
  • the comb structure 4 comprises two fixed combs 41 and 43 integral with the support substrate.
  • the movable combs 32 and 42 move along a second axis relative to the support substrate.
  • the first and second axes are orthogonal to each other and parallel to the substrate.
  • the resonant gyroscope comprises a coupling structure 5 formed of four beams 51, 52, 53 and 54 placed end to end to form a rhombus whose axis coincides with the axis of displacement of the seismic masses 1 and 2 and whose the second axis is coincident with the axis of movement of the moving combs 32 and 42.
  • the coupling structure 5 is fixed by opposite angles of the diamond to the moving combs 32 and 42 and by the two other angles opposite to the seismic masses 1 and 2 .
  • FIG. 1A represents the resonant gyrometer in the idle state.
  • Fig. 1B shows the resonant gyrometer in an excited state such that the movable combs 32 and 42 come closer to each other. The deformation of the coupling structure 5 then forces the masses 1 and 2 to move apart from each other.
  • Figure 1C shows the resonant gyrometer in an excited state such that the moving combs 32 and 42 separate from each other. The deformation of the coupling structure 5 then forces the masses 1 and 2 to come closer to each other.
  • an elongated rhombus makes it possible to transmit a modulated movement (amplified or decreased) and to guide antiphase (amplified or diminished) in the orthogonal direction by suppressing degrees of freedom.
  • This link does not does not have an anchor. It is this which produces the excitation by axial translation of the apices forming an acute angle for example.
  • This makes it possible to transmit an amplified displacement in the orthogonal direction equal to each other and modulated in antiphase on the two masses connected to the two apices forming an obtuse angle for example.
  • the amplitude of each mass is regulated: by the overall rigidity of the whole system in the direction of excitation and reduced to the mass number, - the force applied on the central link the overall quality coefficient of the system.
  • the coupling structure shown in FIG. 1 could be in the form of an ellipse rather than a diamond. Simply replace each straight beam of the coupling structure by an arched beam.
  • a gimbal-type gimbal with excitation of four seismic masses at resonance but in two axes, and generation of Coriolis forces in a direction orthogonal to these axes of vibration and to both axes. rotation, respectively.
  • An unanchored central link that can take several forms (inverted square, circle, star) allows a strong coupling of each axisymmetric seismic mass (in antiphase).
  • the present invention differs from the state of the art in that it proposes the strong coupling of two or more directions of excitation of cardan seismic masses producing an axisymmetric movement (in opposition of phase) by the means of an unanchored central link having at least two axes of symmetry.
  • This aspect offers the advantage of reducing the number of independent architectures to produce an inertial matrix 3 (6) axes to reduce the area and therefore the manufacturing cost thereof.
  • FIG. 2 is a block diagram of another resonant gyrometer using a coupling structure according to the present invention. It is a two-axis, antiphase coupling gyrometer with amplified displacement amplitude.
  • the gyrometer comprises two seismic masses
  • Each seismic mass is able to move along the axis on which it is located.
  • the seismic masses are vibrated by interdigitated capacitive comb structures 130, 140, 150 and 160. These combs have been shown in a simplified manner so as not to overload FIG. 2.
  • the comb structure 130 comprises a fixed comb 131, secured to the support substrate, and a movable comb 132 adapted to move relative to the fixed comb 131.
  • the comb structure 140 comprises a fixed comb 141, integral with the support substrate, and a movable comb 142 able to move by relative to the fixed comb 141.
  • the comb structure 150 comprises a fixed comb 151, integral with the support substrate, and a movable comb 152 able to move relative to the fixed comb 151.
  • the comb structure 160 comprises a fixed comb 161, integral. of the support substrate, and a mobile comb 162 adapted to move relative to the fixed comb 161.
  • the resonant gyroscope comprises a coupling structure 100 constituted by a complex lattice.
  • This lattice comprises four lozenges 101, 102, 103 and 104 each constituted by a beam assembly as in FIG. 1.
  • the diamonds 101 and 103 are placed end to end and their major axes are aligned.
  • the diamonds 102 and 104 are also placed end to end and their major axes are also aligned.
  • the major axes of the diamonds 101 and 103 are orthogonal to the major axes of the diamonds 102 and 104.
  • the meeting point of the diamonds 101 to 104 constitutes the center of symmetry of the coupling structure 100.
  • each comb structure is arranged so that the axis of movement of its moving comb is merged with the large one. axis of the diamond which is integral with this mobile comb.
  • the displacement axes of the masses 11 to 14 and the excitation axes of the comb structures 130, 140, 150 and 160 are therefore shifted by 45 °.
  • the coupling structure 100 comprises other beams for attaching it to the seismic masses 11 to 14. This attachment is similar for each mass at the same point of the mass located on its axis of displacement.
  • the mass 11 is attached by beams 111 and 112 to the diamonds which are closest to it, that is to say the diamonds
  • gyrometers The use of gyrometers is multiple: in automobile, aeronautics, robotics, ...
  • This type of component typically comprises two coupled mobile masses vibrating in the plane at resonance (tuning fork).
  • the masses are excited by means of electrostatic forces applied via interdigitated comb structures. If we admit that the vibration of the masses is exerted along the x axis, when the gyro rotates with a certain angular velocity around the y axis (orthogonal to the x axis), the composition of the forced vibration with the velocity angular forces (Coriolis forces) that put the moving masses in vibration following z.
  • the vibration is then detected by means of capacitive means by electrodes placed above moving masses and allows to go back to the value of the speed of rotation about the y axis.
  • the coupling structure of Figure 2 implements diamonds. These diamonds may according to the present invention be replaced by ellipses, provided that the coupling structure remains symmetrical.
  • FIGS. 3A to 3C are schematic diagrams of a resonant gyrometer with four seismic masses arranged in the same plane and implementing a symmetrical coupling structure.
  • FIG. 3A represents the resonant gyrometer in the idle state.
  • the gyroscope comprises two seismic masses 211 and 213 located on a first axis parallel to the support substrate and two seismic masses 212 and 214 located on a second axis parallel to the support substrate and orthogonal to the first axis. Each seismic mass is able to move along the axis on which it is located.
  • the seismic masses are vibrated by interdigitated capacitive comb structures 230, 240, 250 and 260.
  • the comb structure 230 comprises a fixed comb 231, integral with the support substrate, and a comb 232 secured to the mass 211.
  • the comb structure 240 comprises a fixed comb 241, integral with the support substrate, and a comb 242 integral with the mass 212.
  • the comb structure 250 comprises a fixed comb 251, integral with the support substrate, and a comb 252 secured to the mass 213
  • the comb structure 260 includes a fixed comb 261, integral with the support substrate, and a comb 262 integral with the mass 214.
  • the resonant gyrometer comprises a coupling structure 200 in the form of a square rotated by 45 °.
  • the square forming the coupling structure comprises a beam 201 connecting the masses 211 and 212, a beam 202 connecting the masses 212 and 213, a beam 203 connecting the masses 213 and 214 and a beam 204 connecting the masses 214 and 211.
  • the figures 3B and 3C represent the resonant gyrometer when an excitation signal is sent to the interdigitated comb structures 230 and 250, for example.
  • the coupling structure 200 is then deformed: it changes from square to diamond.
  • Figure 3B shows a state where masses 211 and 213 deviate from each other. In this case, the masses 212 and 214 come closer to each other.
  • the coupling structure 200 forms a rhombus whose major axis corresponds to the axis of the masses 211 and 213, and whose minor axis corresponds to the axis of the masses 212 and 214.
  • the coupling structure 200 is represented in solid line in its deformed state and broken line in its undistorted state, that is to say at rest.
  • FIG. 3C represents a state where the masses 211 and 213 come closer to each other. In this case, the masses 212 and 214 deviate from each other.
  • the coupling structure 200 forms a rhombus whose major axis corresponds to the axis of the masses 212 and 214, and whose minor axis corresponds to the axis of the masses 211 and 213.
  • the coupling structure 200 is shown in full line in its deformed state and broken line in its undistorted state, that is to say at rest.
  • Figure 3A is a variant of the resonant gyroscope shown in Figure 3A.
  • the elements of this gyrometer which are identical to those of FIG. 3A are referenced identically.
  • the two pairs of masses of this gyrometer are represented at rest.
  • a single pair of masses is excited: the masses 212 and 214.
  • the mass 212 is also excited by the capacitive comb structure 270 and the mass 214 is also excited by the structure
  • the structure 270 comprises a fixed comb 271, integral with the support substrate, and a comb 272 integral with the mass 212.
  • the structure 280 comprises a fixed comb 281, integral with the support substrate, and a comb 282 integral with the mass 214.
  • FIG. 4 is a schematic diagram of a resonant gyroscope with six seismic masses deposited in the same plane and implementing an eight-branched star-shaped coupling structure according to the invention.
  • the coupling structure 300 consists of assembled beams to obtain eight identical diamonds 301 to 308, juxtaposed and having a common vertex constituting the center of symmetry of the coupling structure.
  • the vertices of a first group of three juxtaposed lozenges 301, 302 and 303, these vertices being opposite to the center of symmetry of the coupling structure, are each integral with a seismic mass 311, 312 and 313, respectively.
  • the vertices of a second group of three juxtaposed lozenges 305, 306 and 307, these vertices being opposite to the center of symmetry of the coupling structure, are each integral with a seismic mass 314, 315 and 316, respectively.
  • the two groups of lozenges juxtaposed are symmetrical with respect to the center of symmetry of the coupling structure 300.
  • the actuators are represented by rectangles. These are for example capacitive comb structures.
  • the gyrometer comprises four actuating devices 330, 340, 350 and 360.
  • the actuating devices 330 and 340 respectively act on the opposite vertices of the rhombs 308 and 304. They are aligned on a straight line passing through the center of symmetry of the coupling structure.
  • the actuating devices 350 and 360 respectively act on the opposite vertices of the diamonds 302 and 306 via masses 312 and 315 respectively. They are aligned on a straight line passing through the center of symmetry of the coupling structure and perpendicular to the line on which the actuating devices 330 and 340 are aligned.
  • Each seismic mass makes it possible to detect a vibratory movement in one of the directions x, y or z as indicated in FIG. 4.
  • FIG. 5 is a block diagram of a resonant gyrometer using three coupling structures according to the invention.
  • a first coupling structure 400 consisting of beams and having the shape of a square rotated 45 ° in the state of rest.
  • a first diagonal of the square forming the coupling structure 400 constitutes a first axis x for the gyrometer while a second diagonal of the square forming the coupling structure 400 constitutes a second axis y for the gyro, orthogonal to the first axis.
  • the coupling structure 400 couples, along the x axis, two devices 501, 502 such as that represented in FIG.
  • the coupling structure 400 is made integral, by a first vertex of the square located on the x axis, of one of the two masses of a first device such as that shown in Figure IA.
  • the coupling structure 400 is also made integral, by a second vertex of the square located on the x-axis, of one of the two masses of a second device such as that represented in FIG.
  • the coupling structure 400 also couples, along the y axis, two seismic masses 411 and 412.
  • the coupling structure 400 is made integral, by a first vertex of the square located on the y axis, of the seismic mass. 411.
  • the coupling structure 400 is also made integral, by a second vertex of the square located on the y axis of the seismic mass 412.
  • Such a microgyrometer having the coupling structure according to the invention can be produced on an SOI substrate according to techniques known to those skilled in the art.
  • Other alternative embodiments are possible.
  • a coupling structure in the form of an eight-pointed star, constituting a lattice, makes it possible to envisage an amplification of the displacements in four directions of the space at the same time as the realization of a two-axis gyrometer on the same principle as described previously.
  • the excitation must be enslaved on four branches but does not require central anchoring.
  • a coupling structure having a star with at least six branches enables a coupling in at least six directions, however the masses facing each other are in phase.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

L'invention concerne une structure de couplage (5) pour microgyromètre résonnant réalisé sur un substrat, la structure de couplage permettant de recueillir un mouvement vibratoire fourni par des moyens d'excitation (3, 4) selon un premier axe et à le transmettre à des masses sismiques (1, 2) disposées dans un plan comprenant le premier axe. La structure de couplage comprend un assemblage fermé de poutres (5) relié aux masses sismiques de façon à être ancré uniquement à celles-ci, l'assemblage étant disposé pour recueillir le mouvement vibratoire fourni par les moyens d'excitation et le transmettre aux masses sismiques (1, 2) selon au moins un deuxième axe contenu dans ledit plan, la structure de couplage ne présentant pas de point d'ancrage au substrat.

Description

STRUCTURE DE COUPLAGE POUR GYROMETRE RESONNANT
DESCRIPTION
DOMAINE TECHNIQUE
La présente invention se rapporte à un capteur inertiel destiné à la mesure de vitesse angulaire suivant deux axes dans le plan (ou plus) . Il s'agit d'un gyromètre et plus particulièrement d'un gyromètre micro-usiné.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
L'utilisation des gyromètres est multiple : automobile, aéronautique, robotique, ...
Comme tout produit entrant dans le domaine grand public comme l'automobile, où le coût est une donnée majeure, la réalisation collective de tels composant en technologie microélectronique devient très attractive .
La réalisation de gyromètres micro-usinés dans du silicium est déjà largement répandue. Ce type de composant comprend typiquement 2 masses mobiles couplées en antiphase, vibrant dans le plan à la résonance. Les masses sont excitées par le biais de forces électrostatiques ou piézoélectriques appliquées par l'intermédiaire de structures en peignes interdigités ou d'un actionneur piézoélectrique.
Si on admet que la vibration des masses s'exerce suivant l'axe x, lorsque le gyromètre tourne avec une certaine vitesse angulaire autour de l'axe y (orthogonal à l'axe x) , la composition de la vibration forcée avec la vitesse angulaire induit des forces
(forces de Coriolis) qui mettent les masses mobiles en vibration suivant z. La vibration est alors détectée par le biais de moyens capacitifs par des électrodes placées au-dessus des masses mobiles et permet de remonter à la valeur de la vitesse de rotation autour de l'axe y. L'intérêt d'avoir un couplage en antiphase des masse permet de différencier l'effet de l'accélération translationnelle suivant les axes y ou z, de l'effet Coriolis généré par une rotation suivant y ou z, la première provoquant un mouvement en phase des masses la seconde générant un mouvement en antiphase des masses, dans les sens de détection y ou z.
Cet état de l'art se décompose en deux parties : l'application à un gyromètre 1 axe selon lequel il n'existe a priori aucun système gyrométrique permettant à la fois de générer une antiphase naturelle (existante) et de pouvoir moduler l'amplitude de déplacement des masses indépendamment du déplacement imposé dans la zone d' actionnement ; l'application à un gyromètre 2 - 3-6 axes pour lesquels il n'existe pas de moyens comparables permettant de coupler mécaniquement en amplitude et en antiphase le mouvement d'excitation de 4 masses formant deux gyromètres parfaitement couplés en phase et amplitudes de déplacement en excitation. La littérature sur les gyromètres 1 axe est très dense. Il existe notamment de nombreux brevets concernant la génération de couplage entre masse en détection ou en excitation. Des couplages qui se réalisent en antiphase en couplage modal fort ou faible (amplitude de mouvement) .
Le brevet US 5 895 850 divulgue un gyromètre résonnant comprenant un substrat, une première et une deuxième masse résonnante vibrant en opposition de phase dans une direction et un sens privilégiés, un premier et un deuxième ressort reliés au substrat et aux résonateurs, les ressorts étant plus souples dans la direction souhaitée de vibration des résonateurs. Des éléments de détection permettent de mesurer l'effet de Coriolis agissant sur le résonateur dans une direction perpendiculaire à la direction de vibration. Une région de couplage couple les deux masses vibrantes, cette région incluant une masse de couplage et au moins un résonateur de couplage. Le document WO-A-2006/037 928 divulgue un résonateur à masses oscillantes. Il s'agit d'un type de structure permettant d' avoir un couplage modal préférentiel en antiphase (c'est-à-dire que le mode d' antiphase précède de plusieurs kHz le mode en phase) en utilisant un réseau de poutres de forme carrée ou elliptique, ce réseau étant maintenu de part et d'autre par deux poutres droites de flexion ancrées. La structure reste cependant sensible aux modes parasites hors plan. D'autres structures de l'art connu utilisent des liaisons pivot et mettent en œuvre un couplage en antiphase (voir par exemple les documents US 2004/154 397 et US 2005/072 231) . Cependant, ces structures ne permettent pas de moduler les amplitudes de déplacement. Dans le cas de gyromètres à 2 axes dans le plan, il existe quelques études menées sur des structures spécifiques. La première étude identifiée a été publiée dans T. Juneau et al., « Dual axis opération of a micromachined rate gyroscope », Transducers, 1997 International Conférence on Solid State Sensors and Actuators, vol. 2, 16-19 juin 1997, pages 883 à 886. Cette première étude a été suivie d'autres études sur les disques à masses oscillantes. Le gyromètre divulgué dans l'article de T. Juneau et al. présente en effet le défaut d'être très sensible au couplage entre axes transversaux (directions d'excitation et de détection).
Les études sur les disques à masses oscillantes ont donné lieu à diverses publications. On peut noter :
- l'article « Decoupled microgyros and the design principle DAVED » de W. Geiger et al., Sensors and Actuators A : Physical, vol. 95, n°2-3, 2002, pages 239 à 249 ; - US 2005/0 210 978 ;
- l'article « Dual-axis microgyroscope with closed-loop détection » de S. An et al., The Eleventh Annual International Workshop on Micro Electro Mechanical Systems, 1998, 25 au 29 janvier 1998, pages 328 à 333. Dans les structures décrites dans ces publications, il n'y a pas de couplage mécanique entre des différentes masses. L'ensemble des mouvements est commandé par un asservissement électrostatique. On connaît aussi des gyromètres 2 axes basés sur le couplage de 4 diapasons. De tels gyromètres sont par exemple décrits dans les documents US 2007/0 013 464, WO 2008/021 534, US 5 763 781 et WO 2007/105 211. Ces gyromètres sont basés sur un couplage fort de 4 diapasons par la liaison d'ancrage central en excitation et en détection. Si un diapason est excité, les 3 autres diapasons vibreront à la même fréquence et en phase par rapport au diapason excité. Il s'agit d'une liaison de transmission de mouvement. Ces structures ont un ancrage central commun avec le substrat, ce qui induit un fonctionnement en rotation et non en translation.
US 6 134 961 divulgue un gyroscope un axe comprenant un ensemble de poutres (structure de couplage) permettant un couplage en antiphase entre les deux masses de détection du gyroscope. La structure de couplage présente un ancrage indirect au substrat par l'intermédiaire de poutres formant ressorts. Ainsi, la structure de couplage (appelée « quadrilatéral loop ») est reliée à un cadre (appelé « coupling frame ») par l'intermédiaire de ressorts (appelés « spring beams ») et le cadre est ancré, par l'intermédiaire de ressorts (appelés « spring beams ») à des ancrages (appelés « floater anchors ») . US 6 349 597 divulgue une structure de couplage d'un gyroscope à détection d'axe dans le plan du substrat support. La structure de couplage est ancrée par l'intermédiaire de ressorts au niveau des moyens d'excitation. Un ressort permettant un mouvement dans la direction de détection (rotation selon l'axe y) est inclus dans la structure de couplage. Cette configuration rend assez difficile la fabrication d'un gyroscope pour une détection selon l'axe z.
EXPOSÉ DE L'INVENTION La présente invention est proposée pour améliorer les dispositifs gyroscopiques de l'art antérieur. Pour cela, il est proposé une structure de couplage à assemblage fermé de poutres pouvant par exemple être constitué de motifs ayant une forme de losange, de carré ou d'ellipse, constituant par exemple une étoile comprenant plusieurs losanges ou ellipses
(sous la forme d'un treillis hyperstatique) , sans ancrage au substrat, permettant de transmettre un déplacement axial en couplage fort dans au moins 4 directions et permettant de générer un mouvement d' antiphase naturelle, symétrique et modulé en amplitude pour au moins une paire de masses.
L'invention a donc pour objet une structure de couplage pour microgyromètre résonnant réalisé sur un substrat, la structure de couplage permettant de recueillir un mouvement vibratoire fourni par des moyens d'excitation selon un premier axe et à le transmettre à des masses sismiques disposées dans un plan comprenant le premier axe, caractérisée en ce que la structure de couplage comprend un assemblage fermé de poutres relié aux masses sismiques de façon à être ancré uniquement à celles-ci, l'assemblage étant disposé pour recueillir le mouvement vibratoire fourni par les moyens d'excitation et le transmettre aux masses sismiques selon au moins un deuxième axe contenu dans ledit plan, la structure de couplage ne présentant pas de point d'ancrage au substrat.
Le gyromètre selon l'invention permet une décorrélation entre l'amplitude d'excitation et l'amplitude de déplacement des masses. Par ailleurs, le gyromètre de l'invention peut être monoaxe ou multiaxe. La géométrie de la structure de couplage permet notamment une vibration des masses sensiblement identique en phase et en amplitude.
L'assemblage fermé de poutres peut comprendre au moins un motif fermé ayant une forme choisie parmi un losange et une ellipse, le motif étant agencé pour recueillir le mouvement vibratoire selon l'un des axes du losange ou de l'ellipse et le transmettre selon l'autre axe du losange ou de l'ellipse. Le mouvement vibratoire peut être recueilli selon le grand axe du losange ou de l'ellipse et transmis selon le petit axe du losange ou de l'ellipse.
L'assemblage fermé de poutres peut comprendre au moins un motif fermé ayant une forme de carré, le motif étant agencé pour recueillir le mouvement vibratoire selon l'une des diagonales du carré et le transmettre selon l'autre diagonale du carré .
La structure de couplage peut, pour mettre en vibration au moins quatre masses sismiques sous l'effet de quatre moyens d'excitation, comprendre quatre motifs fermés, les motifs fermés étant reliés par l'un de leurs sommets en un point constituant le centre de symétrie de la structure de couplage, de façon à présenter des motifs opposés et alignés deux à deux, deux motifs opposés et alignés étant orthogonaux aux deux autres motifs opposés et alignés, deux motifs consécutifs étant destinés à être reliés chacun par une poutre à une desdites masses de façon que deux masses sismiques opposées sont situées sur un même axe passant par le centre de symétrie. Les sommets des motifs opposés au centre de symétrie de la structure de couplage peuvent être solidaires chacun d'un moyen d'excitation. Les deux axes des masses sismiques peuvent être orthogonaux entre eux et décalés de 45° par rapport aux motifs opposés et alignés.
Dans le cas où le motif fermé a une forme de losange, et pour mettre en vibration au moins six masses sismiques sous l'effet d'au moins quatre moyens d'excitation, la structure de couplage peut comprendre huit motifs en forme de losange juxtaposés, les motifs étant reliés par l'un de leurs sommets en un point constituant le centre de symétrie de la structure de couplage, de façon à présenter des motifs opposés et alignés deux à deux, les sommets des motifs opposés au centre de symétrie étant destinés à être solidaires chacun de l'une desdites six masses sismiques.
L'invention a aussi pour objet un microgyromètre résonnant formé à la surface d'un substrat, comprenant au moins deux masses sismiques aptes à se déplacer par rapport au substrat, et comprenant des moyens d'excitation destinés à mettre les masses sismiques en vibration par l'intermédiaire d'au moins une structure de couplage, dans lequel la structure de couplage est l'une des structures décrites ci-dessus .
BRÈVE DESCRIPTION DES DESSINS
L'invention sera mieux comprise et d'autres avantages et particularités apparaîtront à la lecture de la description qui va suivre, donnée à titre d'exemple non limitatif, accompagnée des dessins annexés parmi lesquels :
- les figures IA à IC sont des schémas de principe d'un gyromètre résonnant un axe selon la présente invention, - la figure 2 est un schéma de principe d'un gyromètre résonnant deux axes, à couplage antiphase avec amplitude de déplacement amplifiée, selon l'invention,
- les figures 3A à 3C sont des schémas de principe d'un gyromètre résonnant à quatre masses sismiques disposées dans un même plan et mettant en œuvre une structure de couplage symétrique selon 1' invention, la figure 3A' est une variante du gyromètre résonnant représenté à la figure 3A, la figure 4 est un schéma de principe d'un gyromètre résonnant à six masses sismiques déposées dans un même plan et mettant en œuvre une structure de couplage en forme d'étoile à six branches selon l'invention, la figure 5 est un schéma de principe d'un gyromètre résonnant utilisant trois structures de couplage selon la présente invention.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
Dans toutes les figures décrites ci-après, chaque masse sismique est représentée ancrée au substrat par des moyens de liaison connus de l'homme de l'art. Ces moyens de liaison, référencés R sur les figures, sont par exemple des ressorts. Ils permettent de limiter certains déplacements des masses sismiques. Les moyens d' actionnement (ou d'excitation) des masses sismiques peuvent être du type à peignes capacitifs, comme représenté sur les figures annexées ou d'un autre type connu de l'homme de l'art.
La figure IA est un schéma de principe d'un gyromètre résonnant utilisant une structure de couplage selon la présente invention. Le gyromètre comprend une première masse sismique 1 et une deuxième masse sismique 2 apte à se déplacer, selon un premier axe par rapport à un substrat support, chacune selon la direction indiquée par des flèches sur les figure IB et IC. Les masses sismiques 1 et 2 sont mises en vibration grâce à des structures de peignes capacitifs interdigités 3 et 4 comme il est bien connu dans la technique. La structure de peignes 3 comprend deux peignes fixes 31 et 33 solidaires du substrat support et un peigne mobile 32 apte à se déplacer par rapport aux peignes fixes 31 et 33. La structure de peignes 4 comprend deux peignes fixes 41 et 43 solidaires du substrat support et un peigne mobile 42 apte à se déplacer par rapport aux peignes fixes 41 et 43. Les peignes mobiles 32 et 42 se déplacent selon un deuxième axe par rapport au substrat support. Les premier et deuxièmes axes sont orthogonaux entre eux et parallèles au substrat.
Le gyromètre résonnant comprend une structure de couplage 5 formée de quatre poutres 51, 52, 53 et 54 mises bout à bout pour constituer un losange dont l'un des axes est confondu avec l'axe de déplacement des masses sismiques 1 et 2 et dont le deuxième axe est confondu avec l'axe de déplacement des peignes mobiles 32 et 42. La structure de couplage 5 est fixée par des angles opposés du losange aux peignes mobiles 32 et 42 et par les deux autres angles opposés aux masses sismiques 1 et 2.
La figure IA représente le gyromètre résonnant à l'état de repos. La figure IB représente le gyromètre résonnant dans un état excité tel que les peignes mobiles 32 et 42 se rapprochent l'un de l'autre. La déformation de la structure de couplage 5 force alors les masses 1 et 2 à s'écarter l'une de l'autre. La figure IC représente le gyromètre résonnant dans un état excité tel que les peignes mobiles 32 et 42 s'écartent l'un de l'autre. La déformation de la structure de couplage 5 force alors les masses 1 et 2 à se rapprocher l'une de l'autre.
L'utilisation d'un losange allongé permet de transmettre un mouvement modulé (amplifié ou diminué) et de guider en antiphase (de manière amplifiée ou diminuée) dans la direction orthogonale en supprimant des degrés de liberté. Cette liaison ne dispose pas de point d'ancrage. C'est elle qui produit l'excitation par translation axiale des apex formant un angle aigu par exemple. Ceci permet de transmettre un déplacement amplifié dans la direction orthogonale égale de part et d' autre et modulé en antiphase sur les deux masses reliées aux deux apex formant un angle obtus par exemple.
Ceci permet de dissocier l' actionnement de la surface des masses et de dissocier l'amplitude d'excitation générée par un dispositif électrostatique thermique ou piézoélectrique de l'amplitude des mouvements de chacune des masses, en garantissant la conservation de la phase et de l'amplitude du mouvement des deux masses quelles que soient les dissymétries technologiques.
L'amplitude de chaque masse est réglée : par la rigidité globale de l'ensemble du système suivant la direction d'excitation et ramené au nombre de masse, - la force appliquée sur la liaison centrale le coefficient de qualité globale du système.
La structure de couplage représentée à la figure 1 pourrait être en forme d'ellipse plutôt que de losange. Il suffit pour cela de remplacer chaque poutre droite de la structure de couplage par une poutre arquée .
L'utilisation d'une forme carrée, circulaire, en étoile, etc. pour la structure de couplage permet d'envisager la réalisation d'un gyromètre deux axes dans le plan, parfaitement couplé en excitation. En particulier, les formes orthosymétriques ou à symétrie radiale permettent une transmission de déplacement de même amplitude dans plusieurs directions.
L'utilisation d'une forme en étoile permet d'envisager la réalisation d'une matrice inertielle parfaitement couplée en excitation. L'utilisation de toute forme géométrique de ce type permet d'envisager 1' actionnement d'un système de masses à travers cette liaison de couplage qui lie les masses entres elles. Le paramétrage des dimensions de ces formes géométriques de manière orthotropique permet d'envisager, à déplacement imposé dans une direction, de pouvoir paramétrer les amplitudes de déplacements générés dans les autres directions.
On propose également, selon la présente invention, un gyromètre de type structure à cardan, avec excitation de quatre masses sismiques à la résonance mais suivant deux axes, et génération de forces de Coriolis suivant une direction orthogonale à ces axes de vibration et aux deux axes de rotation, respectivement .
Une liaison centrale non ancrée qui peut prendre plusieurs formes (carré inversé, cercle, étoile) permet un couplage fort de chaque masse sismique axisymétrique (en antiphase) .
Si une masse est excitée, les 3 autres vibreront à la même fréquence, la même amplitude et en anti-phase par rapport à la masse excitée. Ainsi, grâce à un couplage fort multi-masse pour l'excitation, une seule unité de détection (par « feedback ») de l'excitation électronique est nécessaire . Seules deux masses peuvent être excitées, la détection pouvant être réalisée sur les deux autres.
La présente invention se différentie de l'état de l'art en ce qu'elle propose le couplage fort de deux ou plusieurs directions d'excitation de masses sismiques à cardan produisant un mouvement axisymétrique (en opposition de phase) par le moyen d'une liaison centrale non ancrée possédant au moins deux axes de symétries. Cet aspect offre entre autres l'avantage de réduire le nombre d'architectures indépendantes pour produire une matrice inertielle 3 (6) axes permettant de réduire la superficie et donc le coût de fabrication de celle-ci.
Sur le principe du couplage fort, le déplacement d'une masse sera reproduit à l'identique sur l'ensemble des autres masses. Ceci permet de réduire le nombre d'asservissements électroniques, de transmettre une amplitude d'excitation et une fréquence de résonance égale sur toute les masses suivant la relation suivante :
Figure imgf000016_0001
In1 et kx représentant les masses et raideurs respectives de chacune des masses
Quelles que soient les masses In1 et constantes k± de raideur relative, en supposant des défauts de masse ou de raideur relative, la sommation de l'ensemble des masses, s'il s'agit de structure répliquée permet de réduire l'impact des imperfections sur les caractéristiques programmées du gyromètre. L'amplitude XeχC du déplacement de la masse excitée est :
js~ ∑iexc exe exe avec Qexc = facteur de qualité de la masse excitée, keXc = raideur dans le sens d'excitation,
Feχc = force d'excitation ?
La Force de Coriolis Frioiis transmise par le mouvement d'excitation pour l'ensemble des masses ne différera que par les défauts des masses découplées de détection .
** Coriolis = ^ ' mdcti ' ^ exe ' ^ exe avec : mdeti = masse de chacun des éléments de détection,
exc : pulsation d'excitation.
La variation de sensibilité entre les axes devient uniquement dépendante des paramètres de masses sismiques de détection
Figure imgf000017_0001
avec : Qdet : facteur de qualité de détection, kx : raideur de chaque élément de détection. L'utilisation de formes en treillis plus complexes tel que l'assemblage de losanges de dimensions variables permettrait de réaliser en même temps l'amplification du déplacement imposé et le couplage des déplacements en opposition de phases respectives . La figure 2 est un schéma de principe d'un autre gyromètre résonnant utilisant une structure de couplage selon la présente invention. Il s'agit d'un gyromètre deux axes, à couplage antiphase avec amplitude de déplacement amplifiée. Le gyromètre comprend deux masses sismiques
11 et 13 situées sur un premier axe parallèle au substrat support, et deux masses sismiques 12 et 14 situées sur un deuxième axe parallèle au substrat support et orthogonal au premier axe. Chaque masse sismique est apte à se déplacer selon l'axe sur lequel elle se trouve.
Les masses sismiques sont mises en vibration grâce à des structures de peignes capacitifs interdigités 130, 140, 150 et 160. Ces peignes ont été représentés de manière simplifiée pour ne pas surcharger la figure 2. La structure de peignes 130 comprend un peigne fixe 131, solidaire du substrat support, et un peigne mobile 132 apte à se déplacer par rapport au peigne fixe 131. La structure de peignes 140 comprend un peigne fixe 141, solidaire du substrat support, et un peigne mobile 142 apte à se déplacer par rapport au peigne fixe 141. La structure de peignes 150 comprend un peigne fixe 151, solidaire du substrat support, et un peigne mobile 152 apte à se déplacer par rapport au peigne fixe 151. La structure de peignes 160 comprend un peigne fixe 161, solidaire du substrat support, et un peigne mobile 162 apte à se déplacer par rapport au peigne fixe 161.
Le gyromètre résonnant comprend une structure de couplage 100 constituée par un treillis complexe. Ce treillis comprend quatre losanges 101, 102, 103 et 104 constitués chacun par un assemblage de poutres comme pour la figure 1. Les losanges 101 et 103 sont mis bout à bout et leurs grands axes sont alignés. Les losanges 102 et 104 sont également mis bout à bout et leurs grands axes sont également alignés. Les grands axes des losanges 101 et 103 sont orthogonaux aux grands axes des losanges 102 et 104. Le point de rencontre des losanges 101 à 104 constitue le centre de symétrie de la structure de couplage 100. Les sommets des losanges 101, 102, 103 et
104, opposés au centre de symétrie de la structure de couplage, sont solidaires des peignes mobiles respectivement 162, 132, 142 et 152. Chaque structure de peignes est disposée de sorte que l'axe de déplacement de son peigne mobile est confondu avec le grand axe du losange qui est solidaire de ce peigne mobile .
Les axes de déplacement des masses 11 à 14 et les axes d'excitation des structures de peignes 130, 140, 150 et 160 sont donc décalés de 45°. La structure de couplage 100 comprend d'autres poutres permettant de la rattacher aux masses sismiques 11 à 14. Ce rattachement se fait de manière similaire pour chaque masse à un même point de la masse situé sur son axe de déplacement. Ainsi, la masse 11 est rattachée par des poutres 111 et 112 aux losanges qui lui sont le plus proches, c'est-à-dire les losanges
101 et 102. Ce rattachement se fait aux apex les plus proches des losanges concernés et qui font un angle obtus.
L'utilisation des gyromètres est multiple : en automobile, en aéronautique, en robotique, ...
Comme tout produit entrant dans le domaine grand public comme l'automobile, où le coût est une donnée majeure, la réalisation collective de tels composant en technologie microélectronique devient très attractive .
La réalisation d'un gyromètre micro-usiné dans du silicium est déjà largement répandue. Ce type de composant comprend typiquement deux masses mobiles couplées, vibrant dans le plan à la résonance (montage en diapason) . Les masses sont excitées par le biais de forces électrostatiques appliquées par l'intermédiaire de structures en peignes interdigités . Si on admet que la vibration des masses s'exerce suivant l'axe x, lorsque le gyromètre tourne avec une certaine vitesse angulaire autour de l'axe y (orthogonal à l'axe x) , la composition de la vibration forcée avec la vitesse angulaire induit des forces (forces de Coriolis) qui mettent les masses mobiles en vibration suivant z. La vibration est alors détectée par le biais de moyens capacitifs par des électrodes placées au-dessus des masses mobiles et permet de remonter à la valeur de la vitesse de rotation autour de l'axe y. La structure de couplage de la figure 2 met en œuvre des losanges. Ces losanges peuvent selon la présente invention être remplacés par des ellipses, pourvu que la structure de couplage reste symétrique.
Les figures 3A à 3C sont des schémas de principe d'un gyromètre résonnant à quatre masses sismiques disposées dans un même plan et mettant en œuvre une structure de couplage symétrique.
La figure 3A représente le gyromètre résonnant à l'état de repos. Le gyromètre comprend deux masses sismiques 211 et 213 situées sur un premier axe parallèle au substrat support et deux masses sismiques 212 et 214 situées sur un deuxième axe parallèle au substrat support et orthogonal au premier axe. Chaque masse sismique est apte à se déplacer selon l'axe sur lequel elle se trouve.
Les masses sismiques sont mises en vibration grâce à des structures de peignes capacitifs interdigités 230, 240, 250 et 260. La structure de peignes 230 comprend un peigne fixe 231, solidaire du substrat support, et un peigne 232 solidaire de la masse 211. La structure de peignes 240 comprend un peigne fixe 241, solidaire du substrat support, et un peigne 242 solidaire de la masse 212. La structure de peignes 250 comprend un peigne fixe 251, solidaire du substrat support, et un peigne 252 solidaire de la masse 213. La structure de peignes 260 comprend un peigne fixe 261, solidaire du substrat support, et un peigne 262 solidaire de la masse 214.
Le gyromètre résonnant comprend une structure de couplage 200 de la forme d'un carré pivoté de 45°. Le carré formant la structure de couplage comprend une poutre 201 reliant les masses 211 et 212, une poutre 202 reliant les masses 212 et 213, une poutre 203 reliant les masses 213 et 214 et une poutre 204 reliant les masses 214 et 211. Les figures 3B et 3C représentent le gyromètre résonnant lorsqu'un signal d'excitation est envoyé aux structures de peignes interdigités 230 et 250, par exemple. La structure de couplage 200 se déforme alors : elle se transforme de carré en losange. La figure 3B représente un état où les masses 211 et 213 s'écartent l'une de l'autre. Dans ce cas, les masses 212 et 214 se rapprochent l'une de l'autre. La structure de couplage 200 forme un losange dont le grand axe correspond à l'axe des masses 211 et 213, et dont le petit axe correspond à l'axe des masses 212 et 214. La structure de couplage 200 est représentée en trait plein dans son état déformé et en trait interrompu dans son état non déformé, c'est-à- dire au repos. La figure 3C représente un état où les masses 211 et 213 se rapprochent l'une de l'autre. Dans ce cas, les masses 212 et 214 s'écartent l'une de l'autre. La structure de couplage 200 forme un losange dont le grand axe correspond à l'axe des masses 212 et 214, et dont le petit axe correspond à l'axe des masses 211 et 213. La structure de couplage 200 est représentée en trait plein dans son état déformé et en trait interrompu dans son état non déformé, c'est-à- dire au repos.
La figure 3A' est une variante du gyromètre résonnant représenté à la figure 3A. Les éléments de ce gyromètre qui sont identiques à ceux de la figure 3A sont référencés à l'identique. Les deux paires de masses de ce gyromètre sont représentées au repos. Dans cette variante, une seule paire de masses est excitée : les masses 212 et 214. Par rapport au schéma de la figure 3A, la masse 212 est aussi excitée par la structure de peignes capacitifs 270 et la masse 214 est aussi excitée par la structure de peignes capacitifs 280. La structure 270 comprend un peigne fixe 271, solidaire du substrat support, et un peigne 272 solidaire de la masse 212. La structure 280 comprend un peigne fixe 281, solidaire du substrat support, et un peigne 282 solidaire de la masse 214.
La figure 4 est un schéma de principe d'un gyromètre résonnant à six masses sismiques déposées dans un même plan et mettant en œuvre une structure de couplage en forme d'étoile à huit branches selon 1' invention .
La structure de couplage 300 est constituée de poutres assemblées pour obtenir huit losanges identiques 301 à 308, juxtaposés et ayant un sommet commun constituant le centre de symétrie de la structure de couplage. Les sommets d'un premier groupe de trois losanges juxtaposés 301, 302 et 303, ces sommets étant opposés au centre de symétrie de la structure de couplage, sont chacun solidaires d'une masse sismique 311, 312 et 313, respectivement. Les sommets d'un deuxième groupe de trois losanges juxtaposés 305, 306 et 307, ces sommets étant opposés au centre de symétrie de la structure de couplage, sont chacun solidaires d'une masse sismique 314, 315 et 316, respectivement .
Les deux groupes de losanges juxtaposés sont symétriques par rapport au centre de symétrie de la structure de couplage 300. Sur la figure 4, les dispositifs d' actionnement sont représentés par des rectangles. Ce sont par exemple des structures à peignes capacitifs. Le gyromètre comprend quatre dispositifs d' actionnement 330, 340, 350 et 360. Les dispositifs d' actionnement 330 et 340 agissent respectivement sur les sommets opposés des losanges 308 et 304. Ils sont alignés sur une droite passant par le centre de symétrie de la structure de couplage. Les dispositifs d' actionnement 350 et 360 agissent respectivement sur les sommets opposés des losanges 302 et 306 par l'intermédiaire, respectivement, des masses 312 et 315. Ils sont alignés sur une droite passant par le centre de symétrie de la structure de couplage et perpendiculaire à la droite sur laquelle sont alignés les dispositifs d' actionnement 330 et 340.
Chaque masse sismique permet de détecter un mouvement vibratoire selon l'une des directions x, y ou z comme indiqué sur la figure 4.
La figure 5 est un schéma de principe d'un gyromètre résonnant utilisant trois structures de couplage selon l'invention. Dans cette figure, on trouve une première structure de couplage 400 constituée de poutres et ayant la forme d'un carré pivoté de 45° à l'état de repos. Une première diagonale du carré formant la structure de couplage 400 constitue un premier axe x pour le gyromètre tandis qu'une deuxième diagonale du carré formant la structure de couplage 400 constitue un deuxième axe y pour le gyromètre, orthogonal au premier axe . La structure de couplage 400 couple, selon l'axe x, deux dispositifs 501, 502 tel que celui représenté à la figure IA. Pour cela, la structure de couplage 400 est rendue solidaire, par un premier sommet du carré situé sur l'axe x, de l'une des deux masses d'un premier dispositif tel que celui représenté à la figure IA. La structure de couplage 400 est aussi rendue solidaire, par un deuxième sommet du carré situé sur l'axe x, de l'une des deux masses d'un deuxième dispositif tel que celui représenté à la figure IA. La structure de couplage 400 couple aussi, selon l'axe y, deux masses sismiques 411 et 412. Pour cela, la structure de couplage 400 est rendue solidaire, par un premier sommet du carré situé sur l'axe y, de la masse sismique 411. La structure de couplage 400 est aussi rendue solidaire, par un deuxième sommet du carré situé sur l'axe y de la masse sismique 412.
Un tel microgyromètre possédant la structure de couplage selon l'invention peut être réalisé sur un substrat SOI selon des techniques connues de l'homme de l'art. D'autres variantes de réalisation sont possibles. Une structure de couplage sous forme d'étoile à huit branches, constituant un treillis, permet d'envisager une amplification des déplacements dans quatre directions de l'espace en même temps que la réalisation d'un gyromètre deux axes sur le même principe que décrit précédemment. Cependant, l'excitation doit être asservie sur quatre branches mais ne nécessite pas d'ancrage central. Une structure de couplage présentant une étoile à au moins six branches permet de réaliser un couplage dans au moins six directions, cependant les masses en vis-à-vis sont en phases.

Claims

REVENDICATIONS
1. Structure de couplage pour microgyromètre résonnant réalisé sur un substrat, la structure de couplage permettant de recueillir un mouvement vibratoire fourni par des moyens d'excitation
(3, 4, 130, 140, 150, 160) selon un premier axe et à le transmettre à des masses sismiques (1, 2, 11, 12, 13,
14) disposées dans un plan comprenant le premier axe, caractérisée en ce que la structure de couplage comprend un assemblage fermé de poutres (5, 100) relié aux masses sismiques de façon à être ancré uniquement à celles-ci, l'assemblage étant disposé pour recueillir le mouvement vibratoire fourni par les moyens d'excitation et le transmettre aux masses sismiques selon au moins un deuxième axe contenu dans ledit plan, la structure de couplage ne présentant pas de point d'ancrage au substrat.
2. Structure de couplage selon la revendication 1, dans laquelle l'assemblage fermé de poutres comprend au moins un motif fermé ayant une forme choisie parmi un losange et une ellipse, le motif étant agencé pour recueillir le mouvement vibratoire selon l'un des axes du losange ou de l'ellipse et le transmettre selon l'autre axe du losange ou de 1' ellipse .
3. Structure de couplage selon la revendication 2, dans laquelle le mouvement vibratoire est recueilli selon le grand axe du losange ou de l'ellipse et transmis selon le petit axe du losange ou de l'ellipse.
4. Structure de couplage selon la revendication 1, dans laquelle l'assemblage formé de poutres comprend au moins un motif fermé ayant une forme de carré, le motif étant agencé pour recueillir le mouvement vibratoire selon l'une des diagonales du carré et le transmettre selon l'autre diagonale du carré.
5. Structure de couplage selon l'une quelconque des revendications 2 à 4, pour mettre en vibration au moins quatre masses sismiques (11, 12, 13, 14) sous l'effet de quatre moyens d'excitation (130, 140, 150, 160), comprenant quatre motifs fermés (101 à 104), les motifs fermés étant reliés par l'un de leurs sommets en un point constituant le centre de symétrie de la structure de couplage, de façon à présenter des motifs opposés et alignés deux à deux, deux motifs opposés et alignés étant orthogonaux aux deux autres motifs opposés et alignés, deux motifs consécutifs
(101, 102) étant destinés à être reliés chacun par une poutre (111, 112) à une desdites masses (11) de façon que deux masses sismiques opposées sont situées sur un même axe passant par le centre de symétrie.
6. Structure de couplage selon la revendication 5, dans laquelle les sommets des motifs opposés au centre de symétrie de la structure de couplage sont solidaires chacun d'un moyen d' excitation .
7. Structure de couplage selon l'une des revendication 5 ou 6, dans laquelle les deux axes des masses sismiques sont orthogonaux entre eux et décalés de 45° par rapport aux motifs opposés et alignés.
8. Structure de couplage selon la revendication 2 lorsque le motif fermé a une forme de losange, pour mettre en vibration au moins six masses sismiques sous l'effet d'au moins quatre moyens d'excitation, la structure de couplage comprenant huit motifs en forme de losange juxtaposés, les motifs étant reliés par l'un de leurs sommets en un point constituant le centre de symétrie de la structure de couplage, de façon à présenter des motifs opposés et alignés deux à deux, les sommets des motifs opposés au centre de symétrie étant destinés à être solidaires chacun de l'une desdites six masses sismiques.
9. Microgyromètre résonnant formé à la surface d'un substrat, comprenant au moins deux masses sismiques aptes à se déplacer par rapport au substrat, et comprenant des moyens d'excitation destinés à mettre les masses sismiques en vibration par l'intermédiaire d'au moins une structure de couplage, caractérisé en ce que la structure de couplage est une structure selon l'une quelconque des revendications 1 à 8.
PCT/EP2010/056514 2009-05-15 2010-05-12 Structure de couplage pour gyrometre resonnant WO2010130765A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012510283A JP5690817B2 (ja) 2009-05-15 2010-05-12 共振ジャイロスコープの連結構造
EP10718223.0A EP2430397B1 (fr) 2009-05-15 2010-05-12 Structure de couplage pour gyromètre resonnant
US13/319,581 US8544594B2 (en) 2009-05-15 2010-05-12 Coupling structure for resonant gyroscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0953228A FR2945621B1 (fr) 2009-05-15 2009-05-15 Structure de couplage pour gyrometre resonnant
FR0953228 2009-05-15

Publications (1)

Publication Number Publication Date
WO2010130765A1 true WO2010130765A1 (fr) 2010-11-18

Family

ID=41376408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/056514 WO2010130765A1 (fr) 2009-05-15 2010-05-12 Structure de couplage pour gyrometre resonnant

Country Status (5)

Country Link
US (1) US8544594B2 (fr)
EP (1) EP2430397B1 (fr)
JP (1) JP5690817B2 (fr)
FR (1) FR2945621B1 (fr)
WO (1) WO2010130765A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102147423A (zh) * 2011-02-25 2011-08-10 东南大学 双轴集成全解耦硅微谐振式加速度计
FR2986865A1 (fr) * 2012-02-15 2013-08-16 Commissariat Energie Atomique Dispositif de detection compact d'au moins une acceleration et une vitesse de rotation
WO2014184225A1 (fr) * 2013-05-14 2014-11-20 Robert Bosch Gmbh Capteur de vitesse de rotation doté d'un substrat possédant un plan d'extension principale pour détecter une vitesse de rotation
US11692824B2 (en) 2020-11-20 2023-07-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Vibration-resistant gyrometer

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1394007B1 (it) 2009-05-11 2012-05-17 St Microelectronics Rousset Struttura microelettromeccanica con reiezione migliorata di disturbi di accelerazione
FR2974896B1 (fr) 2011-05-02 2013-11-22 Commissariat Energie Atomique Centrale inertielle a plusieurs axes de detection
JP5822177B2 (ja) * 2011-05-20 2015-11-24 セイコーエプソン株式会社 ジャイロセンサー、電子機器
ITTO20110806A1 (it) * 2011-09-12 2013-03-13 St Microelectronics Srl Dispositivo microelettromeccanico integrante un giroscopio e un accelerometro
DE102011057081A1 (de) * 2011-12-28 2013-07-04 Maxim Integrated Products, Inc. Mikro-Drehratensensor und Verfahren zum Betreiben eines Mikro-Drehratensensors
US9038456B2 (en) * 2012-07-02 2015-05-26 Src, Inc. Gravity gradiometer
US10132630B2 (en) * 2013-01-25 2018-11-20 MCube Inc. Multi-axis integrated MEMS inertial sensing device on single packaged chip
US10036635B2 (en) 2013-01-25 2018-07-31 MCube Inc. Multi-axis MEMS rate sensor device
US9404747B2 (en) 2013-10-30 2016-08-02 Stmicroelectroncs S.R.L. Microelectromechanical gyroscope with compensation of quadrature error drift
FI126071B (en) * 2014-01-28 2016-06-15 Murata Manufacturing Co Improved gyroscope structure and gyroscope
JP6344033B2 (ja) 2014-04-22 2018-06-20 セイコーエプソン株式会社 角速度センサー、電子機器及び移動体
KR101645940B1 (ko) * 2014-04-28 2016-08-05 주식회사 티엘아이 링 스프링을 가지는 3축 마이크로 자이로스코프
WO2015167066A1 (fr) * 2014-04-28 2015-11-05 주식회사 티엘아이 Microgyroscope à trois axes doté d'un ressort à bague
FI127202B (en) * 2015-04-16 2018-01-31 Murata Manufacturing Co Three axis gyroscope
CN205593534U (zh) 2015-04-24 2016-09-21 意法半导体股份有限公司 微机电陀螺仪和电子系统
EP3298414A1 (fr) 2015-05-20 2018-03-28 Lumedyne Technologies Incorporated Extraction d'informations d'inertie à partir de signaux périodiques non linéaires
CN105242782B (zh) * 2015-09-25 2019-03-29 联想(北京)有限公司 电子设备和信息处理方法
JP6514790B2 (ja) * 2016-01-27 2019-05-15 株式会社日立製作所 ジャイロスコープ
US10696541B2 (en) 2016-05-26 2020-06-30 Honeywell International Inc. Systems and methods for bias suppression in a non-degenerate MEMS sensor
US10371521B2 (en) 2016-05-26 2019-08-06 Honeywell International Inc. Systems and methods for a four-mass vibrating MEMS structure
US10234477B2 (en) 2016-07-27 2019-03-19 Google Llc Composite vibratory in-plane accelerometer
TWI669267B (zh) * 2017-04-04 2019-08-21 日商村田製作所股份有限公司 用於角速度的微機械感測器元件
JP2019066224A (ja) * 2017-09-29 2019-04-25 セイコーエプソン株式会社 物理量センサー、慣性計測装置、移動体測位装置、携帯型電子機器、電子機器および移動体

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763781A (en) 1995-02-23 1998-06-09 Netzer; Yishay Coupled resonator vibratory rate sensor
US5895850A (en) 1994-04-23 1999-04-20 Robert Bosch Gmbh Micromechanical resonator of a vibration gyrometer
US6134961A (en) 1998-06-24 2000-10-24 Aisin Seiki Kabushiki Kaisha Angular velocity sensor
US6349597B1 (en) 1996-10-07 2002-02-26 Hahn-Schickard-Gesellschaft Fur Angewandte Forschung E.V. Rotation rate sensor with uncoupled mutually perpendicular primary and secondary oscillations
US20040154397A1 (en) 2003-02-07 2004-08-12 Platt William P. Methods and systems for controlling movement within MEMS structures
US20050072231A1 (en) 2003-09-25 2005-04-07 Kionix, Inc. Z-axis angular rate sensor
US20050210978A1 (en) 2004-03-27 2005-09-29 Markus Lang Sensor having integrated actuation and detection means
WO2006037928A1 (fr) 2004-10-06 2006-04-13 Commissariat A L'energie Atomique Resonateur a masses oscillantes
US20070013464A1 (en) 2005-07-15 2007-01-18 Zhiyu Pan In-plane mechanically coupled microelectromechanical tuning fork resonators
WO2007105211A2 (fr) 2006-03-13 2007-09-20 Yishay Sensors Ltd. Gyroscope à résonateur à deux axes
WO2008021534A1 (fr) 2006-08-18 2008-02-21 Robert Bosch Gmbh Capteur de vitesse de lacet à deux axes ayant une disposition de gyroscope de type diapason

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834646A (en) * 1995-04-12 1998-11-10 Sensonor Asa Force sensor device
US6651498B1 (en) * 1997-10-06 2003-11-25 Ngk Insulators, Ltd. Vibratory gyroscope, vibrator used in this gyroscope, method for analyzing vibration of the vibrator, method for supporting the vibrator, and method for manufacturing the vibratory gyroscope
FR2770899B1 (fr) * 1997-11-07 1999-12-10 Commissariat Energie Atomique Microgyrometre vibrant
US6955084B2 (en) * 2001-08-10 2005-10-18 The Boeing Company Isolated resonator gyroscope with compact flexures
US7926614B2 (en) * 2004-03-03 2011-04-19 Pgs Americas, Inc. Particle motion sensor mounting for marine seismic sensor streamers
DE112005002196B4 (de) * 2004-09-27 2023-12-21 Conti Temic Microelectronic Gmbh Drehratensensor
US7360423B2 (en) * 2005-01-29 2008-04-22 Georgia Tech Research Corp. Resonating star gyroscope
EP1994363A1 (fr) * 2006-03-10 2008-11-26 Contitemic Microelectronic GmbH Capteur de vitesse de rotation micromécanique
US8561466B2 (en) * 2006-08-07 2013-10-22 Northrop Grumman Systems Corporation Vibratory gyro bias error cancellation using mode reversal
FI122397B (fi) * 2008-04-16 2011-12-30 Vti Technologies Oy Värähtelevä mikromekaaninen kulmanopeusanturi
US8187902B2 (en) * 2008-07-09 2012-05-29 The Charles Stark Draper Laboratory, Inc. High performance sensors and methods for forming the same
DE102008043742A1 (de) * 2008-11-14 2010-05-20 Robert Bosch Gmbh Auswertelektronik für einen Drehratensensor
DE102010040514A1 (de) * 2009-09-09 2011-04-21 Continental Teves Ag & Co. Ohg Doppelaxialer, schockrobuster Drehratensensor mit linearen und rotatorischen seismischen Elementen

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895850A (en) 1994-04-23 1999-04-20 Robert Bosch Gmbh Micromechanical resonator of a vibration gyrometer
US5763781A (en) 1995-02-23 1998-06-09 Netzer; Yishay Coupled resonator vibratory rate sensor
US6349597B1 (en) 1996-10-07 2002-02-26 Hahn-Schickard-Gesellschaft Fur Angewandte Forschung E.V. Rotation rate sensor with uncoupled mutually perpendicular primary and secondary oscillations
US6134961A (en) 1998-06-24 2000-10-24 Aisin Seiki Kabushiki Kaisha Angular velocity sensor
US20040154397A1 (en) 2003-02-07 2004-08-12 Platt William P. Methods and systems for controlling movement within MEMS structures
US20050072231A1 (en) 2003-09-25 2005-04-07 Kionix, Inc. Z-axis angular rate sensor
US20050210978A1 (en) 2004-03-27 2005-09-29 Markus Lang Sensor having integrated actuation and detection means
WO2006037928A1 (fr) 2004-10-06 2006-04-13 Commissariat A L'energie Atomique Resonateur a masses oscillantes
US20070013464A1 (en) 2005-07-15 2007-01-18 Zhiyu Pan In-plane mechanically coupled microelectromechanical tuning fork resonators
WO2007105211A2 (fr) 2006-03-13 2007-09-20 Yishay Sensors Ltd. Gyroscope à résonateur à deux axes
WO2008021534A1 (fr) 2006-08-18 2008-02-21 Robert Bosch Gmbh Capteur de vitesse de lacet à deux axes ayant une disposition de gyroscope de type diapason

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
S. AN ET AL.: "Dual-axis microgyroscope with closed-loop detection", THE ELEVENTH ANNUAL INTERNATIONAL WORKSHOP ON MICRO ELECTRO MECHANICAL SYSTEMS, 25 January 1998 (1998-01-25), pages 328 - 333
T. JUNEAU ET AL.: "Dual axis operation of a micromachined rate gyroscope", INTERNATIONAL CONFERENCE ON SOLID STATE SENSORS AND ACTUATORS, vol. 2, 16 June 1997 (1997-06-16), pages 883 - 886, XP010240616, DOI: doi:10.1109/SENSOR.1997.635243
W. GEIGER ET AL.: "Decoupled microgyros and the design principle DAVED", SENSORS AND ACTUATORS A : PHYSICAL, vol. 95, no. 2-3, 2002, pages 239 - 249

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102147423A (zh) * 2011-02-25 2011-08-10 东南大学 双轴集成全解耦硅微谐振式加速度计
CN102147423B (zh) * 2011-02-25 2012-06-13 东南大学 双轴集成全解耦硅微谐振式加速度计
FR2986865A1 (fr) * 2012-02-15 2013-08-16 Commissariat Energie Atomique Dispositif de detection compact d'au moins une acceleration et une vitesse de rotation
US9766259B2 (en) 2012-02-15 2017-09-19 Commissariat à l'énergie atomique et aux énergies alternatives Compact device for detecting at least one acceleration and one speed of rotation
WO2014184225A1 (fr) * 2013-05-14 2014-11-20 Robert Bosch Gmbh Capteur de vitesse de rotation doté d'un substrat possédant un plan d'extension principale pour détecter une vitesse de rotation
US9823073B2 (en) 2013-05-14 2017-11-21 Robert Bosch Gmbh Rotation-rate sensor having a substrate having a main extension plane for detecting a rotation rate
CN105324634B (zh) * 2013-05-14 2019-06-07 罗伯特·博世有限公司 具有带有主延伸平面的衬底的用于探测转速的转速传感器
US11692824B2 (en) 2020-11-20 2023-07-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Vibration-resistant gyrometer

Also Published As

Publication number Publication date
JP2012526974A (ja) 2012-11-01
FR2945621A1 (fr) 2010-11-19
US20120061172A1 (en) 2012-03-15
US8544594B2 (en) 2013-10-01
JP5690817B2 (ja) 2015-03-25
EP2430397B1 (fr) 2014-06-18
EP2430397A1 (fr) 2012-03-21
FR2945621B1 (fr) 2011-08-26

Similar Documents

Publication Publication Date Title
EP2430397B1 (fr) Structure de couplage pour gyromètre resonnant
EP1626282B1 (fr) Micro gyromètre a détection frequentielle
EP2520940B1 (fr) Centrale inertielle à plusieurs axes de détection
EP1963783B1 (fr) Microsysteme, plus particulierement microgyrometre, avec au moins deux masses oscillantes couplees mecaniquement
EP2607907B1 (fr) Dispositif micro/nano capteur inertiel multiaxial de mouvements
EP0915323B1 (fr) Microgyromètre vibrant
EP3394564B1 (fr) Système de suspension d'une masse mobile comprenant des moyens de liaison de la masse mobile à linéarité optimisée
FR2859528A1 (fr) Gyrometre micro-usine a double diapason et a detection dans le plan de la plaque usinee
CA2470840A1 (fr) Capteur inertiel micro-usine pour la mesure de mouvements de rotation
EP2679952B1 (fr) Gyroscope micro-usiné à détection dans le plan de la plaque usinée
EP2064559B1 (fr) Accelerometre a poutre resonante avec bras de levier articule en rotation
WO2012085456A2 (fr) Structure planaire pour gyromètre tri-axe
EP2949621B1 (fr) Dispositif microelectronique et/ou nanoelectronique capacitif a compacite augmentee
EP1151246B1 (fr) Structure monolithique de gyrometre vibrant
EP1515118B1 (fr) Gyromètre micro-usine à structure vibrante et à détection dans le plan de la plaque usinée
WO2020008157A2 (fr) Gyrometre micromecanique resonant performant a encombrement reduit
CA3211022A1 (fr) Gyrometre vibrant a structure plane
EP1245960A2 (fr) Accéléromètre à lames vibrantes.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10718223

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012510283

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010718223

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13319581

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13319581

Country of ref document: US