WO2010130370A1 - Fotolithographisch strukturierter dickschichtsensor - Google Patents

Fotolithographisch strukturierter dickschichtsensor Download PDF

Info

Publication number
WO2010130370A1
WO2010130370A1 PCT/EP2010/002791 EP2010002791W WO2010130370A1 WO 2010130370 A1 WO2010130370 A1 WO 2010130370A1 EP 2010002791 W EP2010002791 W EP 2010002791W WO 2010130370 A1 WO2010130370 A1 WO 2010130370A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
layer
sensor
microns
layer pattern
Prior art date
Application number
PCT/EP2010/002791
Other languages
English (en)
French (fr)
Inventor
Karlheinz Wienand
Tim Asmus
Angela Maier
Karlheinz Ullrich
Original Assignee
Heraeus Sensor Technology Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Sensor Technology Gmbh filed Critical Heraeus Sensor Technology Gmbh
Priority to US13/319,767 priority Critical patent/US9068913B2/en
Publication of WO2010130370A1 publication Critical patent/WO2010130370A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making

Definitions

  • the present invention relates to sensors whose electrodes of composite oxide and platinum resist an aggressive medium.
  • Impedance sensors in particular based on an electrode comb structure, contain at least two non-contacting platinum electrodes on ceramic substrates, for example on Al 2 O 3 substrates. In contrast to heating resistors or measuring resistors, such. As temperature sensors, the two electrodes are each connected only to a potential of an electrical voltage source, so that between the electrodes, a voltage can be applied. A change in the dielectric between the electrodes is measured. The electrodes are brought into contact with the medium to be measured and are therefore arranged on an outer side of a chip. When the electrodes are exposed to an aggressive medium, such as soot sensors, only electrodes made in thick film technology are suitable. However, such electrodes are inaccurate compared to the less resistant, manufacturable in thin-film technology or resin technology sensors.
  • the web width is between 5 and 70 microns. In particular, it is at least 20 microns or at most 60 microns.
  • the distance between the webs is also between 5 and 70 microns and is preferably at least 15 and at most 60 microns.
  • the edge area around the strip conductor edge varies less than 10 ⁇ m, in particular 2 to 5 ⁇ m. According to the invention, a precision of measurement is achieved with these fine and accurate structures, as previously achievable only with thin-film technology. The effort for this is reduced compared to thin-film technology.
  • the externally arranged electrode layer structure is formed as a composite of metal, in particular based on the platinum group metals Pt, Ir or Pd and inorganic oxide, in particular on glass and possibly ceramic base with a layer thickness of 0.5 to 20 .mu.m, in particular 1 to 4 microns.
  • the resistance of the electrodes to aggressive media corresponds to the thick-film technique.
  • the metal in particular precious metal, causes the electrical conductivity of the composite and must be resistant to aggressive media. It contains more than 50% by weight of platinum group metal and optionally less than 50% by weight of further noble metal Au or Ag, for example as PtRh, IrPt or PdAg alloy. Of the preferred platinum group metals, Os is excluded because of the formation of the volatile and toxic tetroxide.
  • the total of less than 50 wt .-% applicable metals Ag and Au are preferably less than 30 wt .-%.
  • the inorganic oxide of the composite causes the substrate adhesion and a particularly high resistance to abrasive and aggressive media.
  • the outer layer structure consists of two electrically isolated from each other electrodes. These are for this purpose mounted on an electrically insulating substrate, in particular an electrically insulating substrate.
  • the two electrodes are insulated by an electrically insulating layer, in particular an Al 2 O 3 thin film.
  • an electrode structure composed of an electrode is covered with an electrically insulating thin film, and a single external electrode is formed on the electrically insulating thin film.
  • the covered electrode may alternatively be produced using thin-film technology.
  • the senor has a heating resistor. This allows self-cleaning by burning the sensor.
  • pastes of metal and inorganic oxide are first applied to electrically insulating oxidic substrates, in particular ceramic substrates, to form paste layers with a thickness of 0.5 to 20 ⁇ m. Only after the full-surface printing of the paste are webs structured from the printed layers. In this way, their widths and distances between 5 and 70 microns can be adjusted, and the fluctuating around the conductor edge edge area be kept below 10 microns.
  • the paste layer is fired on the substrate.
  • the organic portions of the paste are removed.
  • the glass component of the paste binds the inorganic components of the paste to the substrate.
  • the paste additionally contains ceramic material in order to increase its resistance to abrasive substances and aggressive chemicals.
  • the layer thickness of the printed layer is reduced, for example by sputter etching.
  • sputter etching When structuring by means of etching, it has proven useful to carry out the reduction of the layer thickness before structuring, since the structuring becomes less accurate as the layer thickness increases.
  • laser structuring it has proven useful to reduce the layer thickness only after structuring. In doing so, burrs formed during the laser structuring are smoothed out again.
  • sputter etching the layer is used as a target.
  • a conductive paste over 7 microns thick and according to the invention to less than 5 microns, in particular to reduce under 4 micron layer thickness.
  • a multiplicity of electrode structures are produced on a substrate, for example over 100 on a 2 ⁇ 2 inch substrate or over 1,000 on a 4 ⁇ 4 inch substrate.
  • a heating resistor is integrated in the chip.
  • Screen resistors can be printed on the back of the substrate.
  • heating resistors are printed on a separate substrate and attached to these heating resistors, the substrate of the electrodes.
  • the heating resistors are arranged next to the electrodes in a layer by, for example, in addition to the full-surface paste application for the electrodes operable as a heating conductor track is arranged, or the conductor for the heating resistor simultaneously with the structuring of the electrodes from the full-surface paste printing.
  • a paste of flux, glass ceramic and one of the metals Pt or PtRhIO or Ir or PdAg is screen-printed all over on a 2 x 2 or 4 x 4 inch substrate of 96% Al 2 O 3 thinly and fired to a 8 micron thick layer.
  • the 3 ⁇ m thick layer is patterned photolithographically at 2 ⁇ 2 inches to 300 or at 4 ⁇ 4 inches to 1200 electrode comb pairs with a web width of 50 ⁇ m web width and 30 ⁇ m distance between the webs.
  • the chips are connected to suitable measuring devices for soot measurement in exhaust systems of diesel engines.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

Bei einem Sensor, insbesondere Impedanzsensor, z. B. Rußsensor, der zwei voneinander elektrisch isolierte Elektroden aufweist, wobei wenigstens eine äußere Elektrode aus einem Verbund aus Metall und anorganischem Oxid als Schichtmuster mit einer Schichtdicke von 0,5 bis 20 μm ausgebildet ist, beträgt erfindungsgemäß die Bahnbreite des Schichtmusters und der Abstand zwischen den Bahnen 5 bis 70 μm und der Randbereich schwankt um die Leiterbahnkante weniger als 10 μm. Beide Elektroden können in einer Ebene als Schichtmuster nebeneinander angeordnet werden. Der Sensor weist vorzugsweise einen Heizer auf. Zur Massenproduktion werden Elektroden auf elektrisch isolierenden oxidischen Untergründen zu einem Schichtmuster mit einer Schichtdicke von 0,5 bis 20 μm erzeugt und die Elektroden nach vollflächigem Aufdrucken einer Metallpulver und Oxid aufweisenden Paste aus der gedruckten Schicht zu Bahnen besonders genau strukturiert. Insbesondere wird die Schichtdicke der gedruckten Schicht reduziert.

Description

Fotolithographisch strukturierter Dickschichtsensor
Die vorliegende Erfindung betrifft Sensoren, deren Elektroden aus einem Verbundmaterial aus Oxid und Platin einem aggressiven Medium standhalten.
Mit Pastenauftrag in Siebdrucktechnik werden 100 μm breite Leiterbahnen mit einer Dicke von 10 bis 100 μm erzeugt. Mit dieser Dickschichttechnik sind auch noch 8 μm dicke und 80 μm breite Leiterbahnen erhältlich. Allerdings fransen beim Siebdruck die Leiterbahnen unter 20 μm Schichtdicke umso mehr an ihren Rändern aus, je dünner der Auftrag ist. Bei 8 μm Schichtdicke beträgt der ausgefranste Randbereich ungefähr 30 μm der Breite. Die feineren Strukturen der aufwändigeren Dünnschicht- oder Resinattechnik sind gegenüber aggressiven Medien nicht beständig.
Impedanzsensoren, insbesondere auf Basis einer Elektrodenkammstruktur, enthalten wenigstens zwei sich nicht berührende Platinelektroden auf keramischen Substraten, beispielsweise auf AI2O3-Substraten. Im Unterschied zu Heizwiderständen oder Messwiderständen, wie z. B. Temperatursensoren, sind die beiden Elektroden jeweils nur an ein Potenzial einer elektrischen Spannungsquelle anzuschließen, so dass zwischen den Elektroden eine Spannung angelegt werden kann. Gemessen wird eine Veränderung des Dielektrikums zwischen den Elektroden. Die Elektroden werden in Kontakt mit dem zu messenden Medium gebracht und sind deshalb auf einer Außenseite eines Chips angeordnet. Wenn die Elektroden einem aggressiven Medium ausgesetzt werden, wie z.B. Rußsensoren, eignen sich nur in Dickschichttechnik hergestellte Elektroden. Derartige Elektroden sind aber ungenau gegenüber den wenig resistenten, in Dünnschichttechnik oder Resinattechnik herstellbaren Sensoren.
Es ist die Aufgabe der vorliegenden Erfindung, gedruckte, hoch sensitive Sensoren in Massenproduktion bereitzustellen. Zur Lösung der Aufgabe werden feinere Elektrodenstrukturen mit geringer ausgefranstem Randbereich erzeugt.
Die Lösung der Aufgabe erfolgt mit den unabhängigen Ansprüchen. In den abhängigen Ansprüchen sind bevorzugte Ausführungen beschrieben.
Erfindungsgemäß liegt die Bahnbreite zwischen 5 und 70 μm. Insbesondere beträgt sie mindestens 20 μm oder höchstens 60 μm. Der Abstand zwischen den Bahnen liegt ebenfalls zwischen 5 und 70 μm und beträgt vorzugsweise mindestens 15 und höchstens 60 μm.
Der Randbereich um die Leiterbahnkante schwankt weniger als 10 μm, insbesondere 2 bis 5 μm. Erfindungsgemäß wird mit diesen feinen und genauen Strukturen eine Messgenauigkeit erzielt, wie sie bisher nur mit Dünnschichttechnik erreichbar war. Der Aufwand hierfür ist gegenüber der Dünnschichttechnik reduziert.
Die außen angeordnete Elektrodenschichtstruktur ist als Verbund aus Metall insbesondere auf Basis der Platingruppenmetalle Pt, Ir oder Pd und anorganischem Oxid, insbesondere auf Glas- und ggf. Keramikbasis mit einer Schichtdicke von 0,5 bis 20 μm, insbesondere 1 bis 4 μm ausgebildet. Erfindungsgemäß entspricht die Resistenz der Elektroden gegenüber aggressiven Medien der Dickschichttechnik.
Das Metall, insbesondere Edelmetall, bewirkt die elektrische Leitfähigkeit des Verbunds und muss gegenüber aggressiven Medien resistent sein. Es enthält über 50 Gew.-% Platingruppenmetall und ggf. unter 50 Gew.-% weiteres Edelmetall Au oder Ag, beispielsweise als PtRh-, IrPt- oder PdAg-Legierung. Von den bevorzugten Platingruppenmetallen ist Os wegen der Bildung des flüchtigen und giftigen Tetroxids ausgenommen. Die insgesamt unter 50 Gew.-% anwendbaren Metalle Ag und Au betragen vorzugsweise weniger als 30 Gew.-%.
Das anorganische Oxid des Verbunds bewirkt die Substrathaftung und eine besonders hohe Resistenz gegenüber abrasiven und aggressiven Medien. Bewährt haben sich Mischungen aus Glas, insbesondere auf SiO2-Basis und keramischem Material, beispielsweise AI2O3 oder MgO.
Vorzugsweise besteht die äußere Schichtstruktur aus zwei elektrisch voneinander isolierten Elektroden. Diese sind hierfür auf einem elektrisch isolierenden Untergrund, insbesondere einem elektrisch isolierenden Substrat befestigt. Alternativ sind die zwei Elektroden durch eine elektrisch isolierende Schicht, insbesondere eine AI2O3-Dünnschicht isoliert. Beispielsweise wird eine aus einer Elektrode bestehende Elektrodenstruktur mit einer elektrisch isolierenden Dünnschicht abgedeckt und auf der elektrisch isolierenden Dünnschicht eine einzelne äußere Elektrode erzeugt. Die abgedeckte Elektrode kann alternativ in Dünnschichttechnik erzeugt werden.
Insbesondere weist der Sensor einen Heizwiderstand auf. Dies ermöglicht eine Selbstreinigung durch Freibrennen des Sensors.
Zur Herstellung der Sensoren werden zuerst Pasten aus Metall und anorganischem Oxid auf elektrisch isolierenden oxidischen Untergründen, insbesondere Keramiksubstraten, vollflächig zu Pastenschichten mit einer Dicke von 0,5 bis 20 μm aufgetragen. Erst nach dem vollflächigen Aufdrucken der Paste werden aus den gedruckten Schichten Bahnen strukturiert. Auf diese Weise können deren Breiten und Abstände zwischen 5 und 70 μm eingestellt werden, und der um die Leiterbahnkante schwankende Randbereich unter 10 μm gehalten werden.
Die Pastenschicht wird auf das Substrat gebrannt. Dabei werden die organischen Anteile der Paste entfernt. Die Glaskomponente der Paste bindet dabei die anorganischen Komponenten der Paste an das Substrat. Vorzugsweise enthält die Paste neben den anorganischen Komponenten Glas und Metall zusätzlich keramisches Material, um die Widerstandsfähigkeit gegen abrasive Stoffe und aggressive Chemikalien zu erhöhen.
Vorzugsweise wird die Schichtdicke der gedruckten Schicht reduziert, beispielsweise durch Sputterätzen. Bei Strukturierung mittels Ätzen hat es sich bewährt, die Reduzierung der Schichtdicke vor der Strukturierung durchzuführen, da die Strukturierung bei zunehmender Schichtdicke ungenauer wird. Bei einer Laser-Strukturierung hat es sich bewährt, die Schichtdicke erst nach der Strukturierung zu reduzieren. Dabei werden bei der Laserstrukturierung gebildete Grate wieder etwas geglättet. Beim Sputterätzen wird die Schicht als Target eingesetzt.
Hierzu hat es sich bewährt, eine Leitpaste über 7 μm dick aufzutragen und erfindungsgemäß auf unter 5 μm, insbesondere unter 4μm Schichtdicke zu reduzieren. Zur Massenproduktion wird auf einem Substrat eine Vielzahl an Elektrodenstrukturen erzeugt, beispielsweise über 100 auf einem 2 x 2 Zoll Substrat oder über 1.000 auf einem 4 x 4 Zoll Substrat.
Auf diese Weise wird gleichzeitig eine Vielzahl von Sensoren hergestellt, die nach ihrer gemeinsamen Herstellung vereinzelt werden.
Vorzugsweise wird ein Heizwiderstand im Chip integriert. Per Siebdruck hergestellte Heizwiderstände können auf der Rückseite des Substrats aufgedruckt werden. Alternativ werden Heizwiderstände auf ein separates Substrat gedruckt und auf diesen Heizwiderständen das Substrat der Elektroden befestigt. Als weitere Alternative werden die Heizwiderstände neben den Elektroden in einer Schicht angeordnet, indem beispielsweise neben dem vollflächigen Pastenauftrag für die Elektroden eine als Heizwiderstand betreibbare Leiterbahn angeordnet wird, oder die Leiterbahn für den Heizwiderstand gleichzeitig mit der Strukturierung der Elektroden aus dem vollflächigen Pastendruck erfolgt.
Beispiel Massenproduktion
Eine Paste aus Flußmittel, Glaskeramik und einem der Metalle Pt oder PtRhIO oder Ir oder PdAg wird per Siebdruck vollflächig auf einem 2 x 2 oder 4 x 4 Zoll Substrat aus 96 % AI2O3 dünn aufgetragen und zu einer 8 μm dicken Schicht gebrannt.
Hierauf wird ganzflächig auf 3 μm Schichtdicke mittels Sputterätzverfahren geätzt, indem die gebrannte Schicht als Target gepolt wird (trocken ätzen).
Die 3μm dicke Schicht wird photolithographisch bei 2 x 2 Zoll zu 300 oder bei 4 x 4 Zoll zu 1.200 Elektrodenkammpaaren mit einer Bahnbreite von 50 μm Bahnbreite und 30 μm Abstand zwischen den Bahnen strukturiert.
Dann erfolgt eine Vereinzelung zu 300 bzw. 1.200 Chips und Bestückung von Trägern mit jeweils einem Chip.
Die Chips werden zur Rußmessung in Abgasanlagen von Dieselmotoren an geeignete Messgeräte angeschlossen.

Claims

Patentansprüche
1. Sensor, insbesondere Impedanzsensor, der zwei voneinander elektrisch isolierte Elektroden aufweist, wobei wenigstens eine äußere Elektrode aus einem Verbund aus Metall und anorganischem Oxid als Schichtmuster mit einer Schichtdicke von 0,5 bis 20 μm ausgebildet ist, dadurch gekennzeichnet, dass die Bahnbreite des Schichtmusters und der Abstand zwischen den Bahnen 5 bis 70 μm beträgt, wobei der Randbereich um die Leiterbahnkante weniger als 10 μm schwankt.
2. Sensor nach Anspruch 1 , dadurch gekennzeichnet, dass beide Elektroden in einer Ebene als Schichtmuster nebeneinander angeordnet sind.
3. Sensor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Sensor einen Heizwiderstand aufweist.
4. Verfahren zur Massenproduktion von Sensoren, bei dem Elektroden auf elektrisch isolierenden oxidischen Untergründen zu einem Schichtmuster mit einer Schichtdicke von 0,5 bis 20 μm erzeugt werden, dadurch gekennzeichnet, dass die Elektroden nach vollflächigem Aufdrucken einer Metallpulver und Oxid aufweisenden Paste aus den gedruckten Schichten zu Bahnen so genau strukturiert werden, dass deren Breiten und Abstände zwischen 5 und 70 μm eingestellt werden, und der Randbereich um die Leiterbahnkante weniger als 10 μm schwankt.
5. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Schichtdicke der gedruckten Schicht reduziert wird.
6. Verwendung eines Sensors nach einem der Ansprüche 1 bis 3 als Rußsensor.
PCT/EP2010/002791 2009-05-11 2010-05-06 Fotolithographisch strukturierter dickschichtsensor WO2010130370A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/319,767 US9068913B2 (en) 2009-05-11 2010-05-06 Photolithographic structured thick layer sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009020743A DE102009020743A1 (de) 2009-05-11 2009-05-11 Fotolithographisch strukturierter Dickschichtsensor
DE102009020743.0 2009-05-11

Publications (1)

Publication Number Publication Date
WO2010130370A1 true WO2010130370A1 (de) 2010-11-18

Family

ID=42634882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/002791 WO2010130370A1 (de) 2009-05-11 2010-05-06 Fotolithographisch strukturierter dickschichtsensor

Country Status (3)

Country Link
US (1) US9068913B2 (de)
DE (1) DE102009020743A1 (de)
WO (1) WO2010130370A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014222844B4 (de) * 2014-11-10 2018-05-09 Continental Automotive Gmbh Rußsensor
EP3475690A4 (de) * 2016-10-05 2019-05-08 Hewlett-Packard Development Company, L.P. Isolierte sensoren
DE102016226275A1 (de) * 2016-12-28 2018-06-28 Robert Bosch Gmbh Sensorelement zur Erfassung von Partikeln eines Messgases in einem Messgasraum

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19845041A1 (de) * 1998-09-30 2000-04-20 Siemens Ag Verfahren zur Erzeugung photostrukturierbarer Schichten mit Strukturgrößen im Mikrobereich
EP1167955A2 (de) * 2000-06-30 2002-01-02 DaimlerChrysler AG Hochtemperaturstoffsensor
DE10041921A1 (de) * 2000-08-25 2002-03-21 Dornier Gmbh Stoffsensor
DE10308799A1 (de) * 2003-02-27 2004-09-09 Daimlerchrysler Ag Gassensor und Verfahren zur Detektion von Kohlenwasserstoffen, insbesondere im Abgas von Kraftfahrzeugen
WO2007085838A1 (en) * 2006-01-27 2007-08-02 Intellitect Water Limited An interdigitated microelectrode and a process for producing the interdigitated microelectrode
WO2009021734A1 (de) * 2007-08-15 2009-02-19 Heraeus Sensor Technology Gmbh Russsensor mit glatter, reiner ai2o3-oberfläche

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6437551B1 (en) * 1999-11-02 2002-08-20 The Regents Of The University Of California Microfabricated AC impedance sensor
KR20040052479A (ko) * 2001-11-12 2004-06-23 닛폰 세이키 가부시키가이샤 액면검출장치
US6504226B1 (en) * 2001-12-20 2003-01-07 Stmicroelectronics, Inc. Thin-film transistor used as heating element for microreaction chamber
US6734686B2 (en) * 2002-04-08 2004-05-11 Nanmat Technology Co. Ltd. Method for detecting quantity variation of high purity liquid chemicals and devices to carry out the method
US20060177349A1 (en) * 2003-03-18 2006-08-10 Jacob Thaysen Chemical sensor
KR20070036058A (ko) * 2004-06-30 2007-04-02 스미토모 긴조쿠 고잔 가부시키가이샤 도파로형 광제어 소자와 그 제조방법
US7939873B2 (en) * 2004-07-30 2011-05-10 Semiconductor Energy Laboratory Co., Ltd. Capacitor element and semiconductor device
DE102005029219A1 (de) * 2005-06-22 2006-12-28 Heraeus Sensor Technology Gmbh Rußsensor
US20090278556A1 (en) * 2006-01-26 2009-11-12 Nanoselect, Inc. Carbon Nanostructure Electrode Based Sensors: Devices, Processes and Uses Thereof
DE102006043092A1 (de) * 2006-09-14 2008-03-27 Robert Bosch Gmbh Verfahren zur Herstellung eines Sensorelements
DE102007021913A1 (de) * 2007-05-10 2008-11-20 Robert Bosch Gmbh Verfahren und Sensor zur Detektion von Teilchen in einem Gasstrom sowie deren Verwendung
US7609068B2 (en) * 2007-10-04 2009-10-27 Delphi Technologies, Inc. System and method for particulate sensor diagnostic

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19845041A1 (de) * 1998-09-30 2000-04-20 Siemens Ag Verfahren zur Erzeugung photostrukturierbarer Schichten mit Strukturgrößen im Mikrobereich
EP1167955A2 (de) * 2000-06-30 2002-01-02 DaimlerChrysler AG Hochtemperaturstoffsensor
DE10041921A1 (de) * 2000-08-25 2002-03-21 Dornier Gmbh Stoffsensor
DE10308799A1 (de) * 2003-02-27 2004-09-09 Daimlerchrysler Ag Gassensor und Verfahren zur Detektion von Kohlenwasserstoffen, insbesondere im Abgas von Kraftfahrzeugen
WO2007085838A1 (en) * 2006-01-27 2007-08-02 Intellitect Water Limited An interdigitated microelectrode and a process for producing the interdigitated microelectrode
WO2009021734A1 (de) * 2007-08-15 2009-02-19 Heraeus Sensor Technology Gmbh Russsensor mit glatter, reiner ai2o3-oberfläche

Also Published As

Publication number Publication date
DE102009020743A1 (de) 2010-12-09
US20120062254A1 (en) 2012-03-15
US9068913B2 (en) 2015-06-30

Similar Documents

Publication Publication Date Title
DE69822770T2 (de) Dickschicht-Piezoresistive-Fühleranordnung
EP2089696B1 (de) Verfahren zur Herstellung eines Sensors und nach diesem Verfahren hergestellter Sensor
DE3720189C1 (de) Taupunkt-Sensor
EP1756537B1 (de) Temperaturfühler und verfahren zu dessen herstellung
EP1144968B1 (de) Platintemperatursensor und herstellungsverfahren für denselben
WO2017076632A1 (de) Sensorelement und verfahren zur herstellung eines sensorelements
EP0944816A1 (de) Elektrischer widerstand mit wenigstens zwei anschlusskontaktfeldern auf einem keramik-substrat sowie verfahren zu dessen herstellung
DE19753800A1 (de) Verfahren zur Herstellung eines elektrischen Widerstandes sowie eines mechanisch-elektrischen Wandlers
DE3930623A1 (de) Verfahren zur herstellung eines monolitischen keramik-kondensators
WO2010130370A1 (de) Fotolithographisch strukturierter dickschichtsensor
EP2327284B1 (de) Sensorvorrichtung und verfahren zur herstellung
AT405591B (de) Heizelement und verfahren zu dessen herstellung
EP3994710A1 (de) Ntc-dünnschichtthermistor und verfahren zur herstellung eines ntc-dünnschichtthermistors
EP0234487A2 (de) Dünnschichtschaltung und ein Verfahren zu ihrer Herstellung
DE4300995C2 (de) Kraftsensor und Verfahren zu seiner Herstellung
EP0016263B1 (de) Dünnschichtwiderstand mit grossem Temperaturkoeffizienten und Verfahren zu dessen Herstellung
DE2615473B2 (de) Meßwiderstand für ein Widerstandsthermometer
DE2553763B2 (de) Verfahren zur Herstellung einer elektronischen Schaltung
DE3246412C2 (de)
DE19859998C2 (de) Gassensor und Verfahren zu dessen Herstellung
DE102022126523B3 (de) Sensorelement und Verfahren zur Herstellung eines Sensorelements
DE4040333A1 (de) Sensor zur messung der elektrolytischen leitfaehigkeit
EP0964230A2 (de) Elektrischer Widerstand mit wenigstens zwei Anschlusskontaktfeldern auf einem Keramik-Substrat sowie Verfahren zu dessen Herstellung
DE112020004741T5 (de) Keramikstruktur mit eingebetteter Elektrode
DE1915756C3 (de) Verfahren zur Herstellung dimensionsgenauer Dickfilmstrukturen auf Substraten

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10725010

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13319767

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10725010

Country of ref document: EP

Kind code of ref document: A1