WO2010130111A1 - 一种数字式电容触控屏 - Google Patents

一种数字式电容触控屏 Download PDF

Info

Publication number
WO2010130111A1
WO2010130111A1 PCT/CN2009/073115 CN2009073115W WO2010130111A1 WO 2010130111 A1 WO2010130111 A1 WO 2010130111A1 CN 2009073115 W CN2009073115 W CN 2009073115W WO 2010130111 A1 WO2010130111 A1 WO 2010130111A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
electrode
detecting
signal
circuit
Prior art date
Application number
PCT/CN2009/073115
Other languages
English (en)
French (fr)
Inventor
陈其良
刘海平
陈梅英
Original Assignee
智点科技(深圳)有限公司
智点科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 智点科技(深圳)有限公司, 智点科技有限公司 filed Critical 智点科技(深圳)有限公司
Priority to EP09844523A priority Critical patent/EP2315108A1/en
Priority to JP2012510090A priority patent/JP2012526333A/ja
Publication of WO2010130111A1 publication Critical patent/WO2010130111A1/zh
Priority to US13/105,906 priority patent/US20110210944A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04186Touch location disambiguation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Definitions

  • the present invention relates to a touch screen, and more particularly to a capacitive touch screen. Background technique
  • Touch is the most important way of human perception, the most natural way for people to interact with machines. Touch screen development has been widely used in many fields such as personal computers, smart phones, public information, smart home appliances, industrial control and so on. In the current touch field, there are mainly resistive touch screens, photoelectric touch screens, ultrasonic touch screens, and flat capacitive touch screens. In recent years, projected capacitive touch screens have developed rapidly.
  • Resistive touch screen is still the leading product on the market, but the structure of the two-layer substrate of the resistive touch screen makes the reflection of the touch screen greatly affect the brightness of the display when the touch screen and the display panel are stacked together. Display quality such as contrast, color saturation, etc., greatly degrades the overall display quality, and increases the brightness of the backlight of the display panel, which also causes the power consumption to rise; the analog resistive touch screen also has the problem of positioning drift, from time to time. Position calibration; In addition, the working mode of the resistive touch screen electrode makes the life of the touch screen shorter.
  • Infrared touch screens and ultrasonic touch screens do not affect display quality.
  • the infrared touch screen and the ultrasonic touch screen are costly, and water droplets and dust can affect the reliability of the touch screen operation, especially the infrared touch screen and the ultrasonic touch screen mechanism are complicated, and the power consumption is large, so that the infrared Touch screens and ultrasonic touch screens are basically not available on portable products.
  • the structure of the single-layer substrate of the flat capacitive touch screen makes the touch screen have little effect on the display quality when the touch screen and the display panel are stacked together.
  • the planar capacitive touch screen also has the problem of positioning drift. Position calibration is performed from time to time. Water droplets also affect the reliability of the touch screen operation; especially the planar capacitive touch screen consumes a lot of power and costs, and also makes the plane Capacitive touch screens are basically not available on portable products.
  • the projected capacitive touch screen can still be a single-layer substrate structure, and when the touch screen and the display panel are stacked together, the touch screen has little effect on the display quality.
  • the projected capacitive touch screen measures the influence of the finger or other touch object on the coupling capacitance between the electrodes of the touch screen.
  • the finger is detected by measuring the influence of the finger or other touch object on the charging and discharging of the touch screen electrode. Or the location of other touch objects on the touch screen.
  • the anchor point needs to be simulated, not a real digital touch screen.
  • the distributed capacitance in the manufacturing and use environment will affect the reliability of the touch screen operation.
  • the interference of the display drive signal and other electrical signals will affect the operation of the touch screen.
  • the projected capacitive touch screen has high requirements on the resistance value of the detecting electrode line, so that the detecting electrode line of the projected capacitive touch screen used in combination with the display panel is It is not possible to have only a low-conductivity transparent electrode layer such as ITO, and a high-conductivity electrode layer such as a metal, which has a complicated manufacturing process and high cost, and is particularly expensive in terms of a large-sized or even a large-sized touch screen.
  • the present invention is to achieve a truly high resolution digital capacitive touch screen.
  • the invention applies the touch excitation signal to the plurality of electrode lines at the same time, reduces the crosstalk flow between the detection electrodes and between the detection electrodes and the non-detection electrodes, controls the flow direction of the touch signals, and improves the judgment of the touched electrodes.
  • the digital capacitive touch screen of the present invention determines the contacted electrode line by detecting the relative value of the change amount of the touch signal on each electrode line, reduces the resistance value of the electrode line, and realizes a large size or even an oversized size. Capacitive touch screen.
  • a digital capacitive touch screen includes a touch substrate and a touch circuit, the touch circuit has a touch excitation source and a touch signal detection circuit; and the touch substrate is provided with not less than two sets of intersecting electrode groups, Each of the electrode lines of the electrode group is connected to the touch excitation source.
  • the touch excitation source simultaneously applies a touch signal to more than two electrode lines, and the touch signal detection circuit Selecting at least one of the shielded electrode lines as a detecting electrode; the detecting electrode means detecting a change of a touch signal flowing through the electrode while applying a touch signal to the electrode;
  • the electrode refers to an electrode to which a touch signal is applied on an electrode line adjacent to or adjacent to the electrode line, or an electrode to which a touch signal is applied on an electrode line intersecting the electrode line.
  • a partial electrode line is selected as a detecting electrode at each moment, and a touch signal is applied to the detecting electrode line and a change of the touch signal on the detecting electrode line is detected, and the non-detecting electrode is also The touch signal is applied to the line; the non-detection electrode for applying the touch signal is the non-detection electrode or part of the non-detection electrode except the detection electrode.
  • a touch signal is also applied to the other electrodes intersecting the detecting electrode; the intersecting with the detecting electrode.
  • the other electrodes are all of the electrodes that intersect the detection electrode or a portion of the electrode that intersects the detection electrode.
  • a touch signal when a touch signal is applied to the detecting electrode and a change in the touch signal flowing through the detecting electrode is detected, a touch signal is also applied to other electrodes that do not intersect the detecting electrode; and the detecting electrode
  • the other electrodes that do not intersect are all electrodes that do not intersect the detection electrode or partial electrodes that do not intersect the detection electrode.
  • a touch signal is also applied to other electrodes that intersect the detecting electrode and do not intersect the detecting electrode.
  • the other electrode intersecting the detecting electrode and not intersecting the detecting electrode is all electrodes intersecting the detecting electrode and not intersecting the detecting electrode, or a partial electrode intersecting the detecting electrode and not intersecting the detecting electrode .
  • the touch signal output by the touch circuit to the electrode line is an AC signal having a frequency of not less than 50K Hz and including zero amplitude.
  • the amplitude, phase, frequency or encoding of the touch signal applied to the electrode to which the touch signal is applied is the same.
  • At least one of amplitude, phase, frequency or encoding of the touch signal applied to the electrode to which the touch signal is applied is different.
  • the touch control circuit selects the detection electrode, and selects a portion of the display electrode line as a set of detection electrodes at a time to detect a change in the touch signal flowing through the detection electrode.
  • the touch circuit detects a touch signal on the electrode line, and detects It is at least one of amplitude, time, phase, frequency signal, and pulse number.
  • the touch control circuit determines the touched electrode line by detecting a difference between a touch signal or a touch signal change amount or a touch signal change rate on each electrode line.
  • the touch circuit detects the touch on each electrode line.
  • the control signal or the change of the touch signal or the change rate of the touch signal is used to calculate the touch between the electrode lines according to another specific aspect of the present invention to detect the change of the touch signal or the touch signal.
  • the position where the rate of change of the touch signal is the largest is the touched position, or the detected position of the touch signal or the touch signal or the change rate of the touch signal exceeds a certain threshold is the touched position, or the touch is detected.
  • the position where the control signal or the touch signal change amount or the touch signal change rate is the largest and exceeds a certain set threshold is the touched position.
  • the electrode group connected to the touch circuit on the touch substrate is two sets of orthogonal electrode groups.
  • an edge of the electrode line connecting the touch circuit on the touch substrate is a fold line, and an angle between two adjacent straight lines on the fold line is greater than 20° and less than 160°.
  • the electrode on the touch substrate has an electrode that is not connected to the touch circuit, in addition to the electrode line connected to the touch circuit.
  • each set of electrodes is disposed on a different substrate.
  • not less than two sets of intersecting electrode groups on the touch substrate are disposed on different layers of the same substrate, and the electrodes of the layers are separated by an insulating layer.
  • an electrode line connecting the touch control circuit on the touch substrate is disposed on a touch surface of the touch control substrate.
  • an electrode line connecting the touch control circuit on the touch substrate is disposed on a non-touch surface of the touch control substrate.
  • the touch substrate is a flexible or rigid transparent substrate.
  • the invention can realize a high resolution digital capacitive touch screen.
  • the capacitive touch screen of the present invention by simultaneously applying a touch signal to the detecting electrode and the non-detecting electrode, the touch signal is reduced between the detecting electrodes and the detecting electrode and The flow between the non-detection electrodes controls the flow direction of the touch signal, and the accuracy of the judgment of the touched electrodes is improved to distinguish each electrode line, and the digital capacitive touch screen is truly realized.
  • the invention can realize a large-size capacitive touch screen.
  • the digital capacitive touch screen of the present invention detects the difference between the change amount of the touch signal or the touch signal or the change rate of the touch signal on each electrode line, that is, by detecting the relative relationship between the touch signals between the electrode lines. The value is used to determine the touched electrode line. There is no excessive requirement on the resistance value of the electrode line. When the electrode line of the large-size touch screen becomes longer and the resistance value becomes larger, the touch between the electrode lines can still be measured. The relative value of the signal to accurately determine the touched electrode line, to achieve a large size, or even an oversized capacitive touch screen.
  • FIG. 1 is a schematic diagram of electrical connections according to a first embodiment, a second mode, and a third mode of the present invention
  • FIG. 4 is a schematic structural view of a seventh embodiment of the present invention.
  • Figure 5 is a schematic structural view of a eighth embodiment of the present invention.
  • Figure 6 is a schematic structural view of a ninth embodiment of the present invention.
  • Fig. 7 is a schematic structural view of a tenth embodiment of the present invention. detailed description
  • the digital capacitive touch screen 100 shown in FIG. 1 includes a touch panel 110, a touch circuit 140, and the like.
  • the touch panel 110 is provided with two sets of mutually orthogonal row electrode groups 120 (having row electrode lines 121, 122, ..., 12m) and columns The pole group 130 (the column electrode lines 131, 132, ..., 13n).
  • the touch circuit 140 has a row touch circuit 141, a column touch circuit 142, a control judging circuit 143, and the like.
  • Each of the electrode lines of the row electrode group 120 is connected to the row touch circuit 141.
  • the electrode lines of the column electrode group 130 are connected to the column touch circuit 142, the row touch circuit 141, and the column touch circuit 142 are connected and controlled. Circuit 143.
  • the touch circuit 140 performs touch detection on the row electrode group 120, and the touch control circuit 141 simultaneously selects all the row electrode lines 121, 122, ..., 12m of the row electrode group 120 as line detection electrodes, and simultaneously
  • the row electrode line applies a touch signal
  • the column touch circuit 142 applies the same touch signal to the row electrode of the column electrode group 130 to the row electrode
  • the touch circuit 141 is respectively Detecting a change of the touch signal flowing through each of the row electrode lines
  • the control determining circuit 143 detects that the row electrode line that has the largest amount of change in the touch signal flowing through the touch control circuit 141 and exceeds a certain threshold value is touched.
  • the touch circuit 140 performs touch detection on the column electrode group 130, and the column touch circuit 142 simultaneously selects all the column electrode lines 131, 132, ..., 13n of the column electrode group 130 as column detection electrodes, and simultaneously A touch signal is applied to all of the column electrode lines, and the touch control circuit 141 applies exactly the same touch applied to the column electrodes of the column touch circuit 142 for all the row electrode lines of the row electrode group 120.
  • the column touch circuit 142 detects the change of the touch signal flowing through each of the column electrode lines, and the control determining circuit 143 detects that the amount of the touch signal flowing through the column touch circuit 142 is the largest and exceeds a certain setting.
  • the column electrode line of the threshold is the touched electrode line.
  • the touch circuit 140 repeatedly performs the touch detection between the row electrode group 120 and the column electrode group 130, and determines the position of the contact by the intersection of the detected touched electrode line and the touched electrode line. Forming a digital capacitive touch screen that recognizes mxn touch points.
  • the condition of the touched electrode line is determined, and the electrode line that detects the maximum amount of change of the touch signal and exceeds a certain threshold is detected as the touched electrode line, and the amount of change of the touch signal detected is exceeded.
  • the average value of the position-weighted touch signal change amount of the first three electrode lines of a certain threshold is the touch position, so that the calculated touch position is often not at the center position of an electrode line, thereby obtaining a more precise recognition.
  • the amount of change of the touch signal is large enough to resist the interference and facilitate measurement, so that the touch signal has sufficient penetrating power, and the touch circuit has a touch on the electrode line output.
  • the frequency of the control signal should not be less than 50K Hz.
  • the touch detection circuit detects the touch signal on the electrode line, and the detection may be a voltage signal or a current signal; the detected value may be an amplitude, or may be a phase or a frequency signal, and the detection may also be at the electrode line pair. Electricity The number of pulses recorded by the counter during the charge and discharge period.
  • the condition of the touched electrode line is determined, and only the electrode line whose detected touch signal change exceeds a certain threshold is detected as the touched electrode line, so that the digital capacitive touch screen allows simultaneous multi-touch.
  • the digital capacitive touch screen 100 shown in FIG. 1 includes a touch panel 110 and a touch circuit 140.
  • the touch panel 110 is provided with two sets of mutually orthogonal row electrode groups 120 (having row electrode lines 121, 122, ..., 12m) and column electrode groups 130 (with column electrode lines 131, 132, ..., 13n).
  • the touch circuit 140 has a row touch circuit 141, a column touch control circuit 142, a control judging circuit 143, and the like.
  • Each of the electrode lines of the row electrode group 120 is connected to the row touch circuit 141.
  • the electrode lines of the column electrode group 130 are connected to the column touch circuit 142, the row touch circuit 141, and the column touch circuit 142 are connected and controlled. Circuit 143.
  • the touch circuit 140 simultaneously performs touch detection on the row electrode group 120 and the column electrode group 130.
  • the row touch circuit 141 simultaneously selects all the row electrode lines 121, 122, ..., 12m of the row electrode group 120 as the row detecting electrodes, and simultaneously applies touch signals to all the row electrode lines, and the column touch circuit 142 pairs the column electrodes All of the column electrode lines of the group 130 also apply the same touch signals as those applied to the row electrodes of the row touch circuit 141, and the touch circuits 141 are respectively detected to detect changes of the touch signals flowing through the respective row electrode lines, and the control is performed.
  • the determining circuit 143 detects, by the line touch circuit 141, that the row electrode line that has the largest amount of change in the touch signal flowing through and exceeds a certain threshold value is the touched electrode line;
  • the column touch circuit 142 also selects all the column electrode lines 131, 132, ..., 13n of the column electrode group 130 as the column detecting electrodes, and simultaneously applies touch signals to all the column electrode lines, and the row touch circuit 141 is aligned. All of the row electrode lines of the electrode group 120 also apply the same touch signals as those applied to the column electrodes by the column touch circuit 142, and the touch control circuit 142 detects the changes of the touch signals flowing through the column electrode lines, respectively.
  • the control determination circuit 143 detects, by the column touch circuit 142, that the column electrode line having the largest amount of change in the touch signal flowing through and exceeding a certain threshold value is the touched electrode line.
  • the touch circuit 140 repeatedly repeats the touch detection of the row electrode group 120 and the column electrode group 130, and determines the position of the contact by the intersection of the detected touched electrode line and the touched electrode line to form an identification. Mxn touch point digital capacitive touch screen.
  • the condition of the touched electrode line is determined, and the electrode line that detects the maximum amount of change of the touch signal and exceeds a certain threshold is detected as the touched electrode line, and the amount of change of the touch signal detected is exceeded.
  • the average value of the position-weighted touch signal change amount of the first three electrode lines of a certain threshold is the touch position, so that the calculated touch position is often not at the center position of an electrode line, thereby obtaining a more precise recognition.
  • the touch detection circuit detects the touch signal on the electrode line, and the detected signal may be a voltage signal or a current
  • the signal may be detected by amplitude or phase or frequency signal, and the detected number may be the number of pulses recorded by the counter during the charging and discharging period of the electrode line to the capacitor.
  • the digital capacitive touch screen 100 shown in FIG. 1 includes a touch panel 110 and a touch circuit 140.
  • the touch panel 110 is provided with two sets of mutually orthogonal row electrode groups 120 (having row electrode lines 121, 122, ..., 12m) and column electrode groups 130 (with column electrode lines 131, 132, ..., 13n).
  • the touch circuit 140 has a row touch circuit 141, a column touch control circuit 142, a control judging circuit 143, and the like.
  • Each of the electrode lines of the row electrode group 120 is connected to the row touch circuit 141.
  • the electrode lines of the column electrode group 130 are connected to the column touch circuit 142, the row touch circuit 141, and the column touch circuit 142 are connected and controlled. Circuit 143.
  • the touch circuit 140 performs touch detection on the row electrode group 120, and the touch control circuit 141 selects one of the row electrode lines 121, 122, ..., 12m as a line detection at each time in a scanning manner.
  • the touch signal is applied to the electrode, and the change of the touch signal flowing through the electrode line is detected.
  • the touch circuit 141 applies the touch signal applied to the detection electrode to the row electrode lines of all the non-detection electrodes.
  • the column touch circuit 142 applies the same touch signal to the column electrode line as the touch signal applied to the detecting electrode, and the control determining circuit 143 detects the flowing through the touch circuit 141.
  • the row electrode line having the largest amount of touch signal change and exceeding a certain threshold is the touched electrode line; then, the touch circuit 140 performs touch detection on the column electrode group 130, and the column touch circuit 142 scans each manner. At one time, one of the column electrode lines 131, 132, ..., 13n is selected as a column detecting electrode to apply a touch signal, and the touch signal flowing through the electrode line is detected. At the same time, the column touch circuit 142 applies the same touch signal to the column electrode lines of all the non-detection electrodes as the touch signals applied to the detection electrodes, and the touch control circuit 141 also applies to all the row electrode lines.
  • the control signal 142 is detected by the column touch circuit 142, and the column electrode line that exceeds a certain threshold is detected and touched by the column touch circuit 142.
  • the touch circuit 140 repeatedly performs the touch detection between the row electrode group 120 and the column electrode group 130, and determines the position of the contact by the intersection of the detected touched electrode line and the touched electrode line. Forming a digital capacitive touch screen that recognizes mxn touch points.
  • the amplitude, phase, frequency of the touch signal applied to the non-detecting electrode and the amplitude, phase, and frequency of the touch signal applied to the detecting electrode may be adjusted to be different, so that Finer control of the flow of the touch signal.
  • Applying a touch signal to the detecting electrode and applying a touch to the non-detecting electrode The difference in signal may be different in amplitude, phase, or frequency, or it may be only one or two of amplitude, phase, and frequency.
  • the touch detection circuit detects the touch signal on the electrode line, and the detection may be a voltage signal or a current signal; the detected value may be an amplitude, or may be a phase or a frequency signal, and the detection may also be at the electrode line pair.
  • the condition of the touched electrode line is determined, and the electrode line that detects the maximum amount of change of the touch signal and exceeds a certain threshold is detected as the touched electrode line, and the amount of change of the touch signal detected is exceeded.
  • the average value of the position-weighted touch signal change amount of the first three electrode lines of a certain threshold is the touch position, so that the calculated touch position is often not at the center position of an electrode line, thereby obtaining a more precise recognition.
  • the condition of the touched electrode line is determined, and only the electrode line whose detected touch signal change exceeds a certain threshold is detected as the touched electrode line, so that the digital capacitive touch screen allows simultaneous multi-touch.
  • the control judging circuit can eliminate the touch control circuit, although the detected touch signal changes the maximum amount and exceeds a certain threshold, but the touch signal changes excessively with time (too fast and false touch) or The electrode line whose touch rate changes too slowly with time (too slow to be touched) is the touched electrode line.
  • the digital capacitive touch screen 200 shown in FIG. 2 includes a touch panel 210 and a touch circuit 240. touchpad
  • 210 is provided with two sets of mutually orthogonal row electrode groups 220 (with row electrode lines 221, 222 22i, 22 ⁇ +1)
  • the touch circuit 240 has a line touch circuit 241, a column touch circuit 242, a control judging circuit 243, and the like.
  • the electrode lines of the row electrode group 220 are connected to the row touch circuit 241, and the electrode lines of the column electrode group 230 are connected to the column touch circuit 242, the row touch circuit 241, and the column touch circuit 242 are connected and controlled. Circuit 243.
  • the touch control circuit 240 performs touch detection on the row electrode group 220, and the touch control circuit 241 selects one electrode line as the detection electrode from each of the row electrode lines 221, 222, ..., 22i in a scanning manner. Applying a touch signal, selecting another electrode line from the row electrode lines 22i+1, ..., 22m also applies a touch signal as a detecting electrode, and detecting changes in the touch signals flowing through the two electrode lines, respectively. At the same time, the touch control circuit 241 applies touch signals having the same amplitude, phase and frequency to the row electrode lines of all the non-detection electrodes. The column touch circuit 242 also applies amplitude and phase to all the column electrode lines.
  • the control signals 243 are detected by the touch control circuit 241 in all the row electrode lines 221, 222, ..., 22i, 22i+1, ..., 22m.
  • the row electrode line whose touch signal changes the most and exceeds a certain threshold is the touched electrode line; then, the touch The circuit 240 performs touch detection on the column electrode group 230.
  • the column touch circuit 242 selects one electrode line from the column electrode lines 231, 232, ..., 23j as a detecting electrode to apply a touch signal in a scanning manner.
  • Selecting another electrode line from the column electrode lines 23j+1, ..., 23n also applies a touch signal as a detecting electrode, and detects changes in the touch signals flowing through the two electrode lines, respectively, and simultaneously
  • the control circuit 242 also applies touch signals having the same amplitude, phase and frequency to the column electrode lines of all the non-detection electrodes, and the touch control circuit 241 applies the amplitude, phase and frequency to all the row electrode lines.
  • the control judging circuit 243 detects the change of the touch signal flowing through the column touch circuit 242 in all the column electrode lines 231, 232, ..., 23j, 23j+1, ..., 23n.
  • the column electrode line that exceeds a certain set threshold is the touched electrode line.
  • the touch circuit 240 repeatedly performs the touch detection between the row electrode group 220 and the column electrode group 230, and determines the position of the contact by the intersection of the detected touched electrode line and the touched electrode line. Forming a digital capacitive touch screen that recognizes mxn touch points.
  • both the touch control circuit 241 and the column touch control circuit 242 select two electrode lines as the detection electrodes at the same time, the touch detection is performed by scanning the partitions simultaneously, thereby shortening the time for detecting the touch points on the entire touch screen.
  • the amplitude, phase, frequency of the touch signal applied to the non-detecting electrode and the amplitude, phase, and frequency of the touch signal applied to the detecting electrode may be adjusted to be different, so that Finer control of the flow of the touch signal.
  • the touch signal applied to the detecting electrode is different from the touch signal applied to the non-detecting electrode, and may be different in amplitude, phase, or frequency, or may be one or two different in amplitude, phase, and frequency. .
  • the condition of the touched electrode line is determined, and the electrode line that changes the touch signal that is the largest and exceeds a certain threshold is detected as the touched electrode line, and only the detected touch signal changes more than a certain
  • the electrode line for setting the threshold is the touched electrode line, so that the touch panel display allows simultaneous multi-touch.
  • the control judging circuit can eliminate the touch control circuit, although the detected touch signal changes the maximum amount and exceeds a certain threshold, but the touch signal changes excessively with time (too fast and false touch) or The electrode line whose touch rate changes too slowly with time (too slow to be touched) is the touched electrode line.
  • 210 is provided with two sets of mutually orthogonal row electrode groups 220 (with row electrode lines 221, 222 22i, 22 ⁇ +1)
  • the touch circuit 240 has a row touch circuit 241, a column touch circuit 242, a control judging circuit 243, and the like.
  • the electrode lines of the row electrode group 220 are connected to the row touch circuit 241, and the electrode lines of the column electrode group 230 are connected to the column touch circuit 242, the row touch circuit 241, and the column touch circuit 242 are connected and controlled. Circuit 243.
  • the touch control circuit 240 performs touch detection on the row electrode group 220, and the touch control circuit 241 selects one electrode line as the detection electrode from each of the row electrode lines 221, 222, ..., 22i in a scanning manner.
  • the touch control circuit 241 applies touch signals having the same amplitude, phase and frequency to the row electrode lines of all the non-detection electrodes, and the column touch circuit 242 applies amplitude to all the column electrode lines.
  • the touch signal having the same phase and frequency is the same, and the control determining circuit 243 detects that the touch signal flowing through the row electrode lines 221, 222, ..., 22i is the largest and exceeds a certain setting.
  • the row electrode line of the threshold is the touched electrode line
  • the control judging circuit 243 also detects the row electrode that changes the touch signal that flows the most in the row electrode line 22i+1, ..., 22m and exceeds a certain threshold.
  • the line is the touched electrode line;
  • the touch circuit 240 performs touch detection on the column electrode group 230, and the column touch circuit 242 scans each time from the column electrode lines 231, 232, ..., 23j, 23j+1, ... And selecting one of the electrode lines as the detecting electrode to apply the touch signal, and detecting the change of the touch signal flowing through the electrode line, and simultaneously, the column touch circuit 242 applies the amplitude to the column electrode lines of all the other non-detecting electrodes.
  • the amplitude, phase, frequency of the touch signal applied to the non-detecting electrode and the amplitude, phase, and frequency of the touch signal applied to the detecting electrode may be adjusted to be different, so that Finer control of the flow of the touch signal.
  • the touch signal applied to the detecting electrode is different from the touch signal applied to the non-detecting electrode, and may be different in amplitude, phase, or frequency, or may be one or two different in amplitude, phase, and frequency. .
  • the control judging circuit can eliminate the touch control circuit, although the detected touch signal changes the maximum amount and exceeds a certain threshold, but the touch signal changes excessively with time (too fast and false touch) or The electrode line whose touch rate changes too slowly with time (too slow to be touched) is the touched electrode line.
  • the touch panel 300 of the digital capacitive touch screen shown in FIG. 3 includes an upper substrate 310 and a lower substrate 320.
  • the substrate 310 and the lower substrate 320 are bonded together by an adhesive material 330.
  • a strip electrode group 340 (with electrode lines 341, 342, ..., 34m) composed of electrode lines having straight edges is disposed on the inner surface of the upper substrate 310, and the inner surface of the lower substrate 320 is provided with a line on the inner side surface.
  • a strip electrode group 350 (having electrode lines 351, 352, ..., 35n) composed of electrode lines, the direction of which is perpendicular to the direction of the electrode group 340.
  • the electrode group 340 and the electrode group 350 are used to connect the terminals of the touch circuit, and are respectively disposed on two perpendicular edges of the upper substrate 310 and the lower substrate 320.
  • the touch panel 400 of the digital capacitive touch screen is used for the purpose of using the touch panel 400 in front of the display, so that the touch panel 400 minimizes the influence on the display effect, and the substrate adopts a single transparent substrate.
  • a strip electrode group 420 (with electrode lines 421, 422, ..., 42m) composed of electrode lines whose edges are broken lines is disposed on the upper surface of the substrate 410, and the lower surface of the substrate 410 is provided with an edge as a fold line.
  • a strip electrode group 430 (having electrode lines 431, 432, ..., 43n) composed of electrode lines, and a direction of a center line of each electrode line of the electrode group 430 is perpendicular to a direction of a center line of each electrode line of the electrode group 420.
  • the angle ⁇ between two adjacent straight lines on the fold line of the electrode group 420 and the electrode group 430 is greater than 20° and less than 160°.
  • the electrode group 420 and the electrode group 430 are used to connect the terminals of the touch circuit, and are respectively disposed on two perpendicular edges of the substrate 410.
  • an insulating layer 440 is disposed outside the electrode group 420.
  • the touch panel 500 of the digital capacitive touch screen shown in FIG. 5 is used for the purpose of using the touch panel 500 in front of the display, so that the touch panel 500 minimizes the influence on the display effect, and the substrate adopts a single transparent substrate.
  • a strip electrode group 520 (with electrode lines 521, 522, ..., 52m) and a strip electrode group 530 (with electrode lines) composed of electrode lines having straight edges are provided on the surface of the non-touch surface of the substrate 510. 531, 532, ..., 53n), the electrode group 520 and the electrode group 530 are on different layers, and the electrode layers 520 and the electrode group 530 are separated by an insulating layer 540.
  • the touch panel 500 In order to use the touch panel 500 in front of the display, the touch panel 500 has similar transmittances as much as possible, and the area on the substrate 510 that is not covered by the projection of the electrode group 520 and the electrode group 530 is on the same layer of the electrode group 520.
  • a dispersion electrode group 550 is provided.
  • the direction of the center line of each electrode line of the electrode group 520 is perpendicular to the direction of the center line of each electrode line of the electrode group 530.
  • the electrode group 520 and the electrode group 530 are used to connect the terminals of the touch circuit, and are respectively disposed on two perpendicular edges of the substrate 510.
  • DETAILED DESCRIPTION OF THE INVENTION The touch panel 600 of the digital capacitive touch screen shown in FIG.
  • a strip electrode group 620 (with electrode lines 621, 622, ..., 62m) and a strip electrode group 630 (with electrode lines) composed of electrode lines having straight edges are provided on the surface of the non-touch surface of the substrate 610. 631, 632, ..., 63 ⁇ ), the electrode group 620 and the electrode group 630 are on different layers, and the electrodes 620 and the electrode group 630 are separated by an insulating layer 640.
  • the touch panel 600 In order to use the touch panel 600 in front of the display, the touch panel 600 has similar transmittances as much as possible, and the surface of the substrate 610 that is not covered by the projection of the electrode group 620 and the electrode group 630 is on the same layer of the electrode group 620.
  • a dispersion electrode group 650 is provided.
  • the direction of the center line of each electrode line of the electrode group 620 is perpendicular to the direction of the center line of each electrode line of the electrode group 630.
  • the electrode group 620 and the electrode group 630 are used to connect the terminals of the touch circuit, and are respectively disposed on two perpendicular edges of the substrate 610.
  • a shielding electrode 660 is further disposed on the inner side of the electrode group 630, and the insulating layer 670 is disposed between the shielding electrode 660 and the electrode of the electrode group 630.
  • the touch panel 700 of the digital capacitive touch screen shown in FIG. 7 is used for the purpose of using the touch panel 700 in front of the display, so that the touch panel 700 minimizes the influence on the display effect, and the substrate adopts a single transparent substrate. 710.
  • a strip electrode group 720 (with electrode lines 721, 722, ..., 72m) and a strip electrode group 730 (with electrode lines 731) composed of electrode lines having straight edges are provided on the surface on the touch surface side of the substrate 710. , 732, ..., 73 ⁇ ), the electrode group 720 and the electrode group 730 are on different layers, and the electrode groups 720 and the electrode group 730 are separated by an insulating layer 740.
  • an insulating layer 760 is disposed outside the electrode group 730.
  • the touch panel 700 has similar transmittance as much as possible, and the area of the substrate 710 not covered by the projection of the electrode group 720 and the electrode group 730 is on the same layer of the electrode group 730.
  • a dispersion electrode group 750 is provided.
  • the direction of the center line of each electrode line of the electrode group 720 is perpendicular to the direction of the center line of each electrode line of the electrode group 730.
  • the electrode group 720 and the electrode group 730 are used to connect the terminals of the touch circuit, and are respectively disposed on two perpendicular edges of the substrate 710.
  • a shielding electrode 770 is disposed on the surface of the substrate 710 on the non-touch side.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Description

一种数字式电容触控屏 技术领域
本发明涉及触控屏, 尤其涉及电容式触控屏。 背景技术
触摸是人类最重要的感知方式,是人与机器进行互动的最自然的方式。 触控屏发展 至今已广泛用于个人计算机、 智能电话、 公共信息、 智能家电、 工业控制等众多领域。 在目前的触控领域, 主要有电阻式触控屏、 光电式触控屏、 超声波式触控屏、 平面电 容式触控屏, 近年来投射电容式触控屏发展迅速。
电阻式触控屏仍是目前市场上的主导产品, 但电阻式触控屏的双层基板的结构, 使得触控屏和显示面板层叠在一起使用时, 触控屏的反光非常影响显示的亮度、 对比 度、 色饱和度等显示品质, 使整个显示质量大大下降, 而加大显示面板背光的亮度, 还会使功耗大涨; 模拟式电阻触控屏还存在定位漂移的问题, 不时要进行位置校准; 另外, 电阻式触控屏电极接触的工作方式, 又使得触控屏的寿命较短。
红外线式触控屏和超声波式触控屏不会影响显示质量。 但红外线式触控屏和超声 波式触控屏成本高, 水滴和尘埃都会影响触控屏工作的可靠性, 特别是红外线式触控 屏和超声波式触控屏机构复杂、 功耗大, 使得红外线式触控屏和超声波式触控屏基本 无法应用在便携式产品上。
平面电容式触控屏的单层基板的结构, 使得触控屏和显示面板层叠在一起使用时, 触控屏对显示质量的影响不大。 但平面电容式触控屏也存在定位漂移的问题, 不时要 进行位置校准; 水滴也会影响触控屏工作的可靠性; 特别是平面电容式触控屏功耗大、 成本高, 也让平面电容式触控屏基本无法应用在便携式产品上。
投射电容式触控屏仍然可以是单层基板结构, 也使得触控屏和显示面板层叠在一 起使用时, 触控屏对显示质量的影响不大。 但投射电容式触控屏是通过测量手指或其 他触控物对触控屏电极间耦合电容的影响, 实际是通过测量手指或其他触控物对触控 屏电极充放电的影响, 来探测手指或其他触控物在触控屏上的位置。 定位点需要经过 模拟计算, 而非真正的数字式触控屏。 制造和使用环境中的分布电容都会影响触控屏 工作的可靠性, 显示驱动信号及其他电信号的干扰都会影响触控屏的工作, 水滴也会 影响触控屏工作的可靠性; 另外, 投射电容式触控屏对探测电极线的电阻值方面有较 高要求, 使得和显示面板层叠在一起使用的投射电容式触控屏的探测电极线, 不能只 有如 ITO样的低电导率透明电极层, 还要有如金属类的高电导率电极层, 制做工艺复 杂、 成本高, 特别是在大尺寸、 甚至超大尺寸触控屏方面成本过高。 发明内容
本发明就是为了实现真正高分辨率的数字式电容触控屏。
本发明的数字式电容触控屏基本工作原理是, 在触控基板上设置两组相交的电极 组, 电极组的各条电极线连接触控激励源, 触控激励源向电极线施加交流的触控激励 信号。 当人的手指或其他触控物靠近或接某条电极线时, 手指或其他触控物与电极间 形成耦合电容, 电极线上的触控激励信号就会通过此耦合电容部分泄漏出去。 触控电 路通过探测各条电极线触控信号变化的大小, 找出漏电流最大的或漏电流超过某阈值 的电极线, 从而找出手指或其他触控物在触控基板上的位置。
本发明通过同时对多条电极线施加触控激励信号, 减少触控信号在检测电极之间 及检测电极和非检测电极之间的串扰流动, 控制触控信号的流向, 提高对被触电极判 断的准确性, 真正实现数字式的电容触控屏。
本发明的数字式电容触控屏, 通过检测各条电极线上触控信号变化量的相对值来 确定被触电极线, 降低对电极线的电阻值方面的要求, 实现大尺寸、 甚至超大尺寸的 电容触控屏。
本发明的技术问题通过以下的技术方案予以解决:
一种数字式电容触控屏, 包括触控基板和触控电路, 触控电路具有触控激励源和 触控信号检测电路; 在触控基板上设置有不少于两组相交的电极组, 电极组的各条电 极线连接触控激励源, 在触控电路工作的时段中, 至少一时刻, 触控激励源对多于两 条电极线同时施加有触控信号, 且触控信号检测电路选择其中至少一条有屏蔽保护的 电极线为检测电极; 所述检测电极是指在对该电极施加有触控信号的同时, 还检测流 经该电极触控信号的变化; 所述有屏蔽保护的电极是指在该电极线相邻或不相邻两侧 的电极线上施加有触控信号的电极, 或者在与该电极线相交的电极线上施加有触控信 号的电极。
本发明的技术问题通过以下的技术方案进一步予以解决:
根据本发明的另一个具体方面, 每一时刻选择部分电极线作为检测电极, 在对检 测电极线施加触控信号并检测检测电极线上触控信号的变化的同时, 也对非检测电极 线施加触控信号; 所述施加触控信号的非检测电极, 是连接触控电路的各条电极线中, 除检测电极外所有的非检测电极或部分的非检测电极。
根据本发明的另一个具体方面, 在对检测电极施加触控信号并检测流经检测电极 触控信号变化的同时, 也对与检测电极相交的其他电极施加触控信号; 所述与检测电 极相交的其他电极, 是与检测电极相交的所有电极或与检测电极相交的部分电极。
根据本发明的另一个具体方面, 在对检测电极施加触控信号并检测流经检测电极 触控信号变化的同时, 也对与检测电极不相交的其他电极施加触控信号; 所述与检测 电极不相交的其他电极, 是与检测电极不相交的所有电极或与检测电极不相交的部分 电极。
根据本发明的另一个具体方面, 在对检测电极施加触控信号并检测流经检测电极 触控信号变化的同时, 也对与检测电极相交的和与检测电极不相交的其他电极施加触 控信号; 所述与检测电极相交的和与检测电极不相交的其他电极, 是与检测电极相交 的和与检测电极不相交的所有电极, 或是与检测电极相交的和与检测电极不相交的部 分电极。
根据本发明的另一个具体方面, 所述触控电路对电极线输出的触控信号是频率不 小于 50K Hz、 包括零幅值的交流信号。
根据本发明的另一个具体方面, 所述施加有触控信号的电极上所施加触控信号的 幅值、 相位、 频率或编码是相同的。
根据本发明的另一个具体方面, 所述施加有触控信号的电极上所施加触控信号的 幅值、 相位、 频率或编码中的至少一项是不同的。
根据本发明的另一个具体方面, 所述触控电路选择检测电极, 是一时刻选择一部 分显示屏电极线作为一组检测电极, 检测流经检测电极触控信号的变化。
根据本发明的另一个具体方面, 所述触控电路选择检测电极, 是同一时刻选择两 部分或多于两部分电极线分别作为两组或多于两组的检测电极, 分别检测流经各组检 测电极触控信号的变化。
根据本发明的另一个具体方面, 所述每一组检测电极是由一条或多条电极线组成。 根据本发明的另一个具体方面, 所述触控电路选择检测电极是以扫描的方式进行 的, 不同时刻选择不同部分的电极线作为检测电极。
根据本发明的另一个具体方面, 所述触控电路检测电极线上的触控信号, 检测的 是电流信号和电压信号中的至少一种。
根据本发明的另一个具体方面, 所述触控电路检测电极线上的触控信号, 检测的 是幅值、 时间、 相位、 频率信号和脉冲数中的至少一种。
根据本发明的另一个具体方面, 触控电路是通过检测各条电极线上的触控信号或 触控信号变化量或触控信号变化率的差别, 来确定被触电极线。
根据本发明的另一个具体方面, 为了能更精细地确定触控物的位置, 或为了减少 触控基板上连接触控电路电极线的数量, 触控电路是通过检测各条电极线上的触控信 号或触控信号变化量或触控信号变化率的差别, 来计算确定触控物位于电极线间的触 根据本发明的另一个具体方面, 以检测到触控信号或触控信号变化量或触控信号 变化率最大的位置为被触位置, 或以检测到触控信号或触控信号变化量或触控信号变 化率超过某设定阈值的位置为被触位置, 或以检测到触控信号或触控信号变化量或触 控信号变化率最大并超过某设定阈值的位置为被触位置。
根据本发明的另一个具体方面, 所述触控基板上连接触控电路的电极组, 是两组 正交的电极组。
根据本发明的另一个具体方面, 所述触控基板上连接触控电路的电极线的边缘为 折线, 折线上两相邻直线的夹角大于 20°小于 160°。
根据本发明的另一个具体方面, 所述触控基板上的电极, 除具有连接触控电路的 电极线外, 还具有不连接触控电路的电极。
根据本发明的另一个具体方面, 所述触控基板上不少于两组相交的电极组, 各组 电极设置在不同基板上。
根据本发明的另一个具体方面, 所述触控基板上不少于两组相交的电极组, 是设 置在同一基板的不同层上, 各层电极间以绝缘层相间隔。
根据本发明的另一个具体方面, 所述触控基板上设置有与相交电极组绝缘隔离的 屏蔽电极。
根据本发明的另一个具体方面, 所述触控基板上连接触控电路的电极线设置于触 控基板的触摸面。
根据本发明的另一个具体方面, 所述触控基板上连接触控电路的电极线设置于触 控基板的非触摸面。
根据本发明的另一个具体方面, 所述触控基板是挠性的或硬性的透明基板。 本发明与现有技术对比的有益效果是:
本发明可以实现高分辨率的数字式电容触控屏。 本发明的电容触控屏, 通过对检 测电极和非检测电极同时施加触控信号, 减少触控信号在检测电极之间及检测电极和 非检测电极之间的流动, 控制了触控信号的流向, 将对被触电极判断的准确性, 提高 到可分辨每一条电极线, 真正实现数字式的电容触控屏。
对各检测电极所施加触控信号的幅值、 相位、 频率或编码也可以调整为不同, 对 非检测电极所施加触控信号的幅值、 相位、 频率或编码与对检测电极所施加的触控信 号的幅值、 相位、 频率或编码也可以调整为不同, 以便更精细地控制触控信号的流向。
本发明可以实现大尺寸电容触控屏。 本发明的数字式电容触控屏, 通过检测各条 电极线上触控信号或触控信号变化量或触控信号变化率的差别, 也就是通过检测各条 电极线之间触控信号的相对值, 来确定被触电极线, 对电极线的电阻值方面没有过高 要求, 在大尺寸触控屏电极线变长、 电阻值变大时, 仍然可以通过测量各条电极线之 间触控信号的相对值, 来准确确定被触电极线, 实现大尺寸、 甚至超大尺寸的电容触 控屏。
判断被触电极线的条件, 可以检测到触控信号变化最大并超过某设定阈值的电极 线为被触电极线, 触控式平板显示器以单点触控。 判断被触电极线的条件, 也可只以 检测到触控信号变化超过某设定阈值的电极线为被触电极线, 让本发明的数字式电容 触控屏允许同时多点触控。
本发明的数字式电容触控屏结构简单,目前显示器和触控屏的惯用制造工艺容易实 现, 使得触控屏的成本低、 可靠性高。 附图说明
图 1是本发明具体实施方式一、 方式二和方式三的电气连接示意图;
图 2是本发明具体实施方式四和方式五的电气连接示意图;
图 3是本发明具体实施方式六的结构示意图;
图 4是本发明具体实施方式七的结构示意图;
图 5是本发明具体实施方式八的结构示意图;
图 6是本发明具体实施方式九的结构示意图;
图 7是本发明具体实施方式十的结构示意图。 具体实施方式
具体实施方式一
如图 1所示的数字式电容触控屏 100, 包括触控板 110和触控电路 140等。触控板 110上设置有两组相互正交的行电极组 120 (有行电极线 121、 122、 ...、 12m)和列电 极组 130 (有列电极线 131、 132、 ...、 13n)。 触控电路 140具有行触控电路 141、 列触 控电路 142和控制判断电路 143等。行电极组 120的各电极线均连接到行触控电路 141, 列电极组 130的各电极线均连接到列触控电路 142,行触控电路 141,和列触控电路 142 均连接控制判断电路 143。所述触控电路, 包括行触控电路和列触控电路, 无论是行触 控电路还是列触控电路, 均包括有触控激励源和触控信号检测电路。 本实施方式后续 的叙述中, 包括后续其他实施方式的叙述中, 都不再细分触控激励源和触控信号检测 电路, 均用"触控电路"、 "行触控电路 "或"列触控电路"来统称。
首先, 触控电路 140对行电极组 120进行触控探测, 行触控电路 141同时选择行 电极组 120的所有行电极线 121、 122、 ...、 12m作为行检测电极, 同时对所有的行电 极线施加触控信号, 列触控电路 142对列电极组 130所有的列电极线也施加与行触控 电路 141对行电极施加的完全相同的触控信号, 行触控电路 141并分别检测流经各条 行电极线的触控信号的变化, 控制判断电路 143 以行触控电路 141检测到流经的触控 信号变化量最大并超过某设定阈值的行电极线为被触行电极线; 然后, 触控电路 140 对列电极组 130进行触控探测, 列触控电路 142同时选择列电极组 130的所有列电极 线 131、 132、 ...、 13η作为列检测电极, 同时对所有的列电极线施加触控信号, 行触 控电路 141对行电极组 120所有的行电极线也施加与列触控电路 142对列电极施加的 完全相同的触控信号, 列触控电路 142并分别检测流经各条列电极线的触控信号的变 化, 控制判断电路 143 以列触控电路 142检测到流经的触控信号变化量最大并超过某 设定阈值的列电极线为被触列电极线。 触控电路 140反复在对行电极组 120和对列电 极组 130进行触控探测间转换, 由探测到的被触行电极线和被触列电极线的交叉点, 确定出被触点位置, 形成识别 mxn触控点的数字式电容触控屏。
判断被触电极线的条件, 也可不以检测到流经的触控信号变化量最大并超过某设 定阈值的电极线为被触电极线, 而以检测到流经的触控信号变化量超过某设定阈值的 前三大电极线的位置加权触控信号变化量的平均值为触控位置, 这样计算得出的触控 位置往往不在某电极线的中心位置, 从而得到识别更精细的、 多于 mxn触控点的数字 式电容触控屏。
为了让操作者触摸数字式电容触控屏时, 触控信号的变化量足够大, 以抵抗干扰 便于测量, 就要让触控信号有足够的穿透力, 触控电路对电极线输出的触控信号的频 率不要小于 50K Hz。
触控探测电路检测电极线上的触控信号, 检测的可以是电压信号, 也可以是电流 信号; 检测的可以是幅值、 也可以是相位或频率信号, 检测的也可以是在电极线对电 容充放电时间段内计数器记录的脉冲数。
判断被触电极线的条件, 也可只以检测到流经的触控信号变化量超过某设定阈值 的电极线为被触电极线, 让数字式电容触控屏允许同时多点触控。 具体实施方式二
如图 1所示的数字式电容触控屏 100, 包括触控板 110和触控电路 140等。触控板 110上设置有两组相互正交的行电极组 120 (有行电极线 121、 122、 ...、 12m)和列电 极组 130 (有列电极线 131、 132、 ...、 13n)。 触控电路 140具有行触控电路 141、 列触 控电路 142和控制判断电路 143等。行电极组 120的各电极线均连接到行触控电路 141, 列电极组 130的各电极线均连接到列触控电路 142,行触控电路 141,和列触控电路 142 均连接控制判断电路 143。
触控电路 140同时对行电极组 120和列电极组 130进行触控探测。行触控电路 141 同时选择行电极组 120的所有行电极线 121、 122、 ...、 12m作为行检测电极, 同时对 所有的行电极线施加触控信号, 列触控电路 142对列电极组 130所有的列电极线也施 加与行触控电路 141对行电极施加的完全相同的触控信号, 行触控电路 141并分别检 测流经各条行电极线的触控信号的变化, 控制判断电路 143 以行触控电路 141检测到 流经的触控信号变化量最大并超过某设定阈值的行电极线为被触行电极线;
列触控电路 142也同时选择列电极组 130的所有列电极线 131、 132、 ...、 13η作 为列检测电极, 同时对所有的列电极线施加触控信号,行触控电路 141对行电极组 120 所有的行电极线也施加与列触控电路 142对列电极施加的完全相同的触控信号, 列触 控电路 142并分别检测流经各条列电极线的触控信号的变化, 控制判断电路 143 以列 触控电路 142检测到流经的触控信号变化量最大并超过某设定阈值的列电极线为被触 列电极线。 触控电路 140不断重复对行电极组 120和对列电极组 130的触控探测, 由 探测到的被触行电极线和被触列电极线的交叉点, 确定出被触点位置, 形成识别 mxn 触控点的数字式电容触控屏。
判断被触电极线的条件, 也可不以检测到流经的触控信号变化量最大并超过某设 定阈值的电极线为被触电极线, 而以检测到流经的触控信号变化量超过某设定阈值的 前三大电极线的位置加权触控信号变化量的平均值为触控位置, 这样计算得出的触控 位置往往不在某电极线的中心位置, 从而得到识别更精细的、 多于 mxn触控点的数字 式电容触控屏。
触控探测电路检测电极线上的触控信号, 检测的可以是电压信号, 也可以是电流 信号; 检测的可以是幅值、 也可以是相位或频率信号, 检测的也可以是在电极线对电 容充放电时间段内计数器记录的脉冲数。
判断被触电极线的条件, 也可只以检测到流经的触控信号变化量超过某设定阈值 的电极线为被触电极线, 让数字式电容触控屏允许同时多点触控。 具体实施方式三
如图 1所示的数字式电容触控屏 100, 包括触控板 110和触控电路 140等。触控板 110上设置有两组相互正交的行电极组 120 (有行电极线 121、 122、 ...、 12m)和列电 极组 130 (有列电极线 131、 132、 ...、 13n)。 触控电路 140具有行触控电路 141、 列触 控电路 142和控制判断电路 143等。行电极组 120的各电极线均连接到行触控电路 141, 列电极组 130的各电极线均连接到列触控电路 142,行触控电路 141,和列触控电路 142 均连接控制判断电路 143。
首先, 触控电路 140对行电极组 120进行触控探测, 行触控电路 141 以扫描的方 式, 每一时刻选择行电极线 121、 122、 ...、 12m中的一条电极线作为行检测电极施加 触控信号, 并检测流经此条电极线的触控信号的变化, 同时, 行触控电路 141 对其余 所有非检测电极的行电极线也施加与对检测电极施加的触控信号完全相同的触控信 号, 列触控电路 142对所有的列电极线也施加与对检测电极施加的触控信号完全相同 的触控信号, 控制判断电路 143 以行触控电路 141检测到流经的触控信号变化量最大 并超过某设定阈值的行电极线为被触行电极线; 然后, 触控电路 140对列电极组 130 进行触控探测, 列触控电路 142以扫描的方式, 每一时刻选择列电极线 131、 132、 ...、 13η中的一条电极线作为列检测电极施加触控信号,并检测流经此条电极线的触控信号 的变化, 同时, 列触控电路 142对其余所有非检测电极的列电极线也施加与对检测电 极施加的触控信号完全相同的触控信号, 行触控电路 141 对所有的行电极线也施加与 对检测电极施加的触控信号完全相同的触控信号,控制判断电路 143以列触控电路 142 检测到流经的触控信号变化量最大并超过某设定阈值的列电极线为被触列电极线。 触 控电路 140反复在对行电极组 120和对列电极组 130进行触控探测间转换, 由探测到 的被触行电极线和被触列电极线的交叉点, 确定出被触点位置, 形成识别 mxn触控点 的数字式电容触控屏。
对检测电极施加触控信号的同时, 对非检测电极所施加触控信号的幅值、 相位、 频率与对检测电极所施加的触控信号的幅值、 相位、 频率也可以调整为不同, 以便更 精细地控制触控信号的流向。 对检测电极施加触控信号的与对非检测电极所施加触控 信号的不同, 可以是幅值、 相位、 频率都不相同, 也可以只是幅值、 相位、 频率中的 一项或两项不同。
触控探测电路检测电极线上的触控信号, 检测的可以是电压信号, 也可以是电流 信号; 检测的可以是幅值、 也可以是相位或频率信号, 检测的也可以是在电极线对电 容充放电时间段内计数器记录的脉冲数。
判断被触电极线的条件, 也可不以检测到流经的触控信号变化量最大并超过某设 定阈值的电极线为被触电极线, 而以检测到流经的触控信号变化量超过某设定阈值的 前三大电极线的位置加权触控信号变化量的平均值为触控位置, 这样计算得出的触控 位置往往不在某电极线的中心位置, 从而得到识别更精细的、 多于 mxn触控点的数字 式电容触控屏。
判断被触电极线的条件, 也可只以检测到流经的触控信号变化量超过某设定阈值 的电极线为被触电极线, 让数字式电容触控屏允许同时多点触控。
为了避免误触控, 控制判断电路可以排除, 行触控电路虽然检测到的触控信号变 化量最大并超过某设定阈值, 但触控信号随时间变化率过大 (过快误触) 或触控信号 随时间变化率过小 (过慢误触) 的电极线为被触电极线。 具体实施方式四
如图 2所示的数字式电容触控屏 200,包括触控板 210和触控电路 240等。触控板
210上设置有两组相互正交的行电极组 220 (有行电极线 221、 222 22i、 22Ϊ+1
22m) 和列电极组 230 (有列电极线 231、 232、 ...、 23j、 23j+l、 ...、 23n)。 触控电路 240具有行触控电路 241、 列触控电路 242和控制判断电路 243等。 行电极组 220的各 电极线均连接到行触控电路 241, 列电极组 230的各电极线均连接到列触控电路 242, 行触控电路 241, 和列触控电路 242均连接控制判断电路 243。
首先, 触控电路 240对行电极组 220进行触控探测, 行触控电路 241 以扫描的方 式, 每一时刻从行电极线 221、 222、 ...、 22i中选择一条电极线作为检测电极施加触控 信号,从行电极线 22i+l、 ...、 22m中选择另一条电极线也作为检测电极施加触控信号, 并分别检测流经此两条电极线的触控信号的变化, 同时, 行触控电路 241 对其余所有 非检测电极的行电极线也施加幅值、 相位、 频率都完全相同的触控信号, 列触控电路 242对所有的列电极线也施加幅值、相位、频率都完全相同的触控信号, 控制判断电路 243以行触控电路 241在所有行电极线 221、 222、 ...、 22i、 22i+l、 ...、 22m中检测到 流经的触控信号变化最大并超过某设定阈值的行电极线为被触行电极线; 然后, 触控 电路 240对列电极组 230进行触控探测, 列触控电路 242以扫描的方式, 每一时刻从 列电极线 231、 232、 ...、 23j中选择一条电极线作为检测电极施加触控信号, 从列电极 线 23j+l、 ...、 23η中选择另一条电极线也作为检测电极施加触控信号, 并分别检测流 经此两条电极线的触控信号的变化, 同时, 列触控电路 242对其余所有非检测电极的 列电极线也施加幅值、 相位、 频率都完全相同的触控信号, 行触控电路 241 对所有的 行电极线也施加幅值、 相位、 频率都完全相同的触控信号, 控制判断电路 243 以列触 控电路 242在所有列电极线 231、 232、 ...、 23j、 23j+l、 ...、 23η中检测到流经的触控 信号变化最大并超过某设定阈值的列电极线为被触列电极线。 触控电路 240反复在对 行电极组 220和对列电极组 230进行触控探测间转换, 由探测到的被触行电极线和被 触列电极线的交叉点,确定出被触点位置,形成识别 mxn触控点的数字式电容触控屏。
由于行触控电路 241和列触控电路 242都是同时选择了两条电极线作为检测电极, 以分区同时扫描的方式进行触控探测, 缩短了探测整个触控屏上触摸点的时间。
对检测电极施加触控信号的同时, 对非检测电极所施加触控信号的幅值、 相位、 频率与对检测电极所施加的触控信号的幅值、 相位、 频率也可以调整为不同, 以便更 精细地控制触控信号的流向。 对检测电极施加触控信号的与对非检测电极所施加触控 信号的不同, 可以是幅值、 相位、 频率都不相同, 也可以只是幅值、 相位、 频率中的 一项或两项不同。
判断被触电极线的条件, 也可不以检测到流经的触控信号变化最大并超过某设定 阈值的电极线为被触电极线, 而只以检测到流经的触控信号变化超过某设定阈值的电 极线为被触电极线, 让触控式平板显示器允许同时多点触控。
为了避免误触控, 控制判断电路可以排除, 行触控电路虽然检测到的触控信号变 化量最大并超过某设定阈值, 但触控信号随时间变化率过大 (过快误触) 或触控信号 随时间变化率过小 (过慢误触) 的电极线为被触电极线。 具体实施方式五
如图 2所示的数字式电容触控屏 200,包括触控板 210和触控电路 240等。触控板
210上设置有两组相互正交的行电极组 220 (有行电极线 221、 222 22i、 22Ϊ+1
22m) 和列电极组 230 (有列电极线 231、 232、 ...、 23j、 23j+l、 ...、 23n)。 触控电路 240具有行触控电路 241、 列触控电路 242和控制判断电路 243等。 行电极组 220的各 电极线均连接到行触控电路 241, 列电极组 230的各电极线均连接到列触控电路 242, 行触控电路 241, 和列触控电路 242均连接控制判断电路 243。 首先, 触控电路 240对行电极组 220进行触控探测, 行触控电路 241 以扫描的方 式, 每一时刻从行电极线 221、 222、 ...、 22i中选择一条电极线作为检测电极施加触控 信号,从行电极线 22i+l、 ...、 22m中选择另一条电极线作也为检测电极施加触控信号, 并分别检测流经此两条电极线的触控信号的变化, 同时, 行触控电路 241 对其余所有 非检测电极的行电极线也施加幅值、 相位、 频率都完全相同的触控信号, 列触控电路 242对所有的列电极线也施加幅值、相位、频率都完全相同的触控信号, 控制判断电路 243以行触控电路 241在行电极线 221、 222、 ...、 22i中检测到流经的触控信号变化最 大并超过某设定阈值的行电极线为被触行电极线, 控制判断电路 243 也以行电极线 22i+l、 ...、 22m中检测到流经的触控信号变化最大并超过某设定阈值的行电极线为被 触行电极线; 然后, 触控电路 240对列电极组 230进行触控探测, 列触控电路 242以 扫描的方式, 每一时刻从列电极线 231、 232、 ...、 23j、 23j+l、 ...、 23η中选择一条电 极线作为检测电极施加触控信号, 并检测流经此条电极线的触控信号的变化, 同时, 列触控电路 242对其余所有非检测电极的列电极线也施加幅值、 相位、 频率都完全相 同的触控信号, 行触控电路 241 对所有的行电极线也施加幅值、 相位、 频率都完全相 同的触控信号, 控制判断电路 243以列触控电路 242在所有列电极线 231、 232、 ...、 23j、 23j+l、 ...、 23η中检测到流经的触控信号变化最大并超过某设定阈值的列电极线 为被触列电极线。 触控电路 240反复在对行电极组 220和对列电极组 230进行触控探 测间转换, 由探测到的被触行电极线和被触列电极线的交叉点, 确定出被触点位置, 形成以行电极线 22i为分界, 分别在触控板 210上下半区识别 ixn触控点和 (m-i)xn触 控点的数字式电容触控屏。
对检测电极施加触控信号的同时, 对非检测电极所施加触控信号的幅值、 相位、 频率与对检测电极所施加的触控信号的幅值、 相位、 频率也可以调整为不同, 以便更 精细地控制触控信号的流向。 对检测电极施加触控信号的与对非检测电极所施加触控 信号的不同, 可以是幅值、 相位、 频率都不相同, 也可以只是幅值、 相位、 频率中的 一项或两项不同。
为了避免误触控, 控制判断电路可以排除, 行触控电路虽然检测到的触控信号变 化量最大并超过某设定阈值, 但触控信号随时间变化率过大 (过快误触) 或触控信号 随时间变化率过小 (过慢误触) 的电极线为被触电极线。 具体实施方式六
如图 3所示的数字式电容触控屏的触控板 300, 包括上基板 310和下基板 320, 上 基板 310和下基板 320由粘接材料 330粘接成一体。 上基板 310的内侧表面上设置有 边缘为直线的电极线组成的条形电极组 340 (有电极线 341、 342、 ...、 34m), 下基板 320的内侧表面上设置有边缘为直线的电极线组成的条形电极组 350 (有电极线 351、 352、 ...、 35η), 电极组 350的方向与电极组 340的方向相垂直。 电极组 340和电极组 350用于连接触控电路的引出端,分别设置在上基板 310和下基板 320的两个相垂直的 边缘上。 具体实施方式七
如图 4所示的数字式电容触控屏的触控板 400,为了触控板 400置于显示器前使用 的目的, 让触控板 400尽量减少对显示效果的影响, 基板采用单片透明基板 410。基板 410的上侧表面上设置有边缘为折线的电极线组成的条形电极组 420 (有电极线 421、 422、 ...、 42m), 基板 410的下侧表面上设置有边缘为折线的电极线组成的条形电极组 430 (有电极线 431、 432、 ...、 43η), 电极组 430各电极线的中心线的方向与电极组 420各电极线的中心线的方向相垂直。电极组 420和电极组 430边缘的折线上两相邻直 线的夹角 α大于 20°小于 160°。 电极组 420和电极组 430用于连接触控电路的引出端, 分别设置在基板 410的两个相垂直的边缘上。 为了让使用者不要直接触碰电极组 420, 在电极组 420的外侧设置有绝缘层 440。 具体实施方式八
如图 5所示的数字式电容触控屏的触控板 500,为了触控板 500置于显示器前使用 的目的, 让触控板 500尽量减少对显示效果的影响, 基板采用单片透明基板 510。基板 510非触摸面一侧的表面上设置有边缘均为直线的电极线组成的条形电极组 520 (有电 极线 521、 522、 ...、 52m) 和条形电极组 530 (有电极线 531、 532、 ...、 53η), 电极 组 520和电极组 530处于在不同层上, 电极组 520和电极组 530两层电极间以绝缘层 540相间隔。为了触控板 500在显示器前使用时,触控板 500各处尽量具有相近的透射 率, 基板 510面上未被电极组 520和电极组 530的投影覆盖的区域, 在电极组 520的 同一层设置有分散电极组 550。电极组 520各电极线的中心线的方向与电极组 530各电 极线的中心线的方向相垂直。 电极组 520和电极组 530用于连接触控电路的引出端, 分别设置在基板 510的两个相垂直的边缘上。 具体实施方式九 如图 6所示的数字式电容触控屏的触控板 600,为了触控板 600置于显示器前使用 的目的, 让触控板 600尽量减少对显示效果的影响, 基板采用单片透明基板 610。基板 610非触摸面一侧的表面上设置有边缘均为直线的电极线组成的条形电极组 620 (有电 极线 621、 622、 ...、 62m) 和条形电极组 630 (有电极线 631、 632、 ...、 63η), 电极 组 620和电极组 630处于在不同层上, 电极组 620和电极组 630两层电极间以绝缘层 640相间隔。为了触控板 600在显示器前使用时,触控板 600各处尽量具有相近的透射 率, 基板 610面上未被电极组 620和电极组 630的投影覆盖的区域, 在电极组 620的 同一层设置有分散电极组 650。电极组 620各电极线的中心线的方向与电极组 630各电 极线的中心线的方向相垂直。 电极组 620和电极组 630用于连接触控电路的引出端, 分别设置在基板 610 的两个相垂直的边缘上。 为了防止显示器内或机器内电信号对触 控板 600上触控信号的干扰, 再在电极组 630的内侧增设一层屏蔽电极 660, 屏蔽电极 660与电极组 630两层电极间以绝缘层 670相间隔。 具体实施方式十
如图 7所示的数字式电容触控屏的触控板 700,为了触控板 700置于显示器前使用 的目的, 让触控板 700尽量减少对显示效果的影响, 基板采用单片透明基板 710。基板 710触摸面一侧的表面上设置有边缘均为直线的电极线组成的条形电极组 720 (有电极 线 721、 722、 ...、 72m) 和条形电极组 730 (有电极线 731、 732、 ...、 73η), 电极组 720和电极组 730处于在不同层上, 电极组 720和电极组 730两层电极间以绝缘层 740 相间隔。 为了让使用者不要直接触碰电极组 730, 在电极组 730 的外侧设置有绝缘层 760。 为了触控板 700在显示器前使用时, 触控板 700各处尽量具有相近的透射率, 基 板 710面上未被电极组 720和电极组 730的投影覆盖的区域, 在电极组 730的同一层 设置有分散电极组 750。电极组 720各电极线的中心线的方向与电极组 730各电极线的 中心线的方向相垂直。 电极组 720和电极组 730用于连接触控电路的引出端, 分别设 置在基板 710的两个相垂直的边缘上。为了防止显示器内或机器内电信号对触控板 700 上触控信号的干扰, 在基板 710非触摸面一侧的表面上设置一层屏蔽电极 770。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能认定 本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或替换, 都应当视为属于本 发明的保护范围。

Claims

权 利 要 求 书
1、 一种数字式电容触控屏, 包括触控基板和触控电路, 触控电路具有触控激励源 和触控信号检测电路; 其特征在于:
在触控基板上设置有不少于两组相交的电极组, 电极组的各条电极线连接触控电 路, 在触控电路工作的时段中, 至少一时刻, 触控激励源对多于两条电极线同时施加 有触控信号, 且触控信号检测电路选择其中至少一条有屏蔽保护的电极线为检测电极; 所述检测电极是指在对该电极施加有触控信号的同时, 还检测流经该电极触控信号的 变化; 所述有屏蔽保护的电极是指在该电极线相邻或不相邻两侧的电极线上施加有触 控信号的电极, 或者在与该电极线相交的电极线上施加有触控信号的电极。
2、 根据权利要求 1所述的数字式电容触控屏, 其特征在于:
每一时刻选择部分电极线作为检测电极, 在对检测电极线施加触控信号并检测检 测电极线上触控信号的变化的同时, 也对非检测电极线施加触控信号; 所述施加触控 信号的非检测电极, 是连接触控电路的各条电极线中, 除检测电极外所有的非检测电 极或部分的非检测电极。
3、 根据权利要求 1所述的数字式电容触控屏, 其特征在于:
在对检测电极施加触控信号并检测流经检测电极触控信号变化的同时, 也对与检 测电极相交的其他电极施加触控信号; 所述与检测电极相交的其他电极, 是与检测电 极相交的所有电极或与检测电极相交的部分电极。
4、 根据权利要求 1所述的数字式电容触控屏, 其特征在于:
在对检测电极施加触控信号并检测流经检测电极触控信号变化的同时, 也对与检 测电极不相交的其他电极施加触控信号; 所述与检测电极不相交的其他电极, 是与检 测电极不相交的所有电极或与检测电极不相交的部分电极。
5、 根据权利要求 1所述的数字式电容触控屏, 其特征在于:
在对检测电极施加触控信号并检测流经检测电极触控信号变化的同时, 也对与检 测电极相交的和与检测电极不相交的其他电极施加触控信号; 所述与检测电极相交的 和与检测电极不相交的其他电极, 是与检测电极相交的和与检测电极不相交的所有电 极, 或是与检测电极相交的和与检测电极不相交的部分电极。
6、 根据权利要求 1或 2所述的数字式电容触控屏, 其特征在于:
所述触控电路对电极线输出的触控信号是频率不小于 50K Hz、 包括零幅值的交流 信号。
7、 根据权利要求 1所述的数字式电容触控屏, 其特征在于:
所述施加有触控信号的电极上所施加触控信号的幅值、 相位、 频率或编码是相同 的, 或所施加触控信号的幅值、 相位、 频率或编码中的至少一项是不同的。
8、 根据权利要求 1所述的数字式电容触控屏, 其特征在于:
所述触控电路选择检测电极, 是一时刻选择一部分显示屏电极线作为一组检测电 极, 检测流经检测电极触控信号的变化; 或是同一时刻选择两部分或多于两部分电极 线分别作为两组或多于两组的检测电极, 分别检测流经各组检测电极触控信号的变化。
9、 根据权利要求 1或 8所述的数字式电容触控屏, 其特征在于:
所述每一组检测电极是由一条或多条电极线组成。
10、 根据权利要求 1或 8所述的数字式电容触控屏, 其特征在于:
所述触控电路选择检测电极是以扫描的方式进行的, 不同时刻选择不同部分的电 极线作为检测电极。
11、 根据权利要求 1所述的数字式电容触控屏, 其特征在于:
所述触控电路检测电极线上的触控信号, 检测的是幅值、 时间、 相位、 频率信号 和脉冲数中的至少一种。
12、 根据权利要求 1所述的数字式电容触控屏, 其特征在于:
触控电路是通过检测各条电极线上的触控信号或触控信号变化量或触控信号变化 率的差别, 来确定被触电极线。
13、 根据权利要求 1所述的数字式电容触控屏, 其特征在于:
触控电路是通过检测各条电极线上的触控信号或触控信号变化量或触控信号变化 率的差别, 来计算确定电极线之间的被触位置。
14、 根据权利要求 12或 13所述的数字式电容触控屏, 其特征在于:
以检测到触控信号或触控信号变化量或触控信号变化率最大的位置为被触位置, 或以检测到触控信号或触控信号变化量或触控信号变化率超过某设定阈值的位置为被 触位置, 或以检测到触控信号或触控信号变化量或触控信号变化率最大并超过某设定 阈值的位置为被触位置。
15、 根据权利要求 1所述的数字式电容触控屏, 其特征在于:
所述触控基板上连接触控电路的电极线的边缘为折线, 折线上两相邻直线的夹角 大于 20 ° 小于 160 ° 。
16、 根据权利要求 1所述的数字式电容触控屏, 其特征在于:
所述触控基板上的电极, 除具有连接触控电路的电极线外, 还具有不连接触控电 路的电极。
17、 根据权利要求 1所述的数字式电容触控屏, 其特征在于:
所述触控基板上不少于两组相交的电极组, 各组电极设置在不同基板上, 或设置 在同一基板以绝缘层相间隔的不同层上。
18、 根据权利要求 1所述的数字式电容触控屏, 其特征在于:
所述触控基板上设置有与相交电极组绝缘隔离的屏蔽电极。
19、 根据权利要求 1所述的数字式电容触控屏, 其特征在于:
所述触控基板上连接触控电路的电极线设置于触控基板的触摸面或非触摸面。
20、 根据权利要求 1所述的数字式电容触控屏, 其特征在于:
所述触控基板是挠性的或硬性的透明基板。
PCT/CN2009/073115 2009-05-11 2009-08-06 一种数字式电容触控屏 WO2010130111A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09844523A EP2315108A1 (en) 2009-05-11 2009-08-06 Digital capacitive touch control screen
JP2012510090A JP2012526333A (ja) 2009-05-11 2009-08-06 デジタル静電容量式タッチスクリーン
US13/105,906 US20110210944A1 (en) 2009-05-11 2011-05-12 Digital capacitive touch screen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910140965XA CN101887333A (zh) 2009-05-11 2009-05-11 一种数字式电容触控屏
CN200910140965.X 2009-05-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/105,906 Continuation US20110210944A1 (en) 2009-05-11 2011-05-12 Digital capacitive touch screen

Publications (1)

Publication Number Publication Date
WO2010130111A1 true WO2010130111A1 (zh) 2010-11-18

Family

ID=43073273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073115 WO2010130111A1 (zh) 2009-05-11 2009-08-06 一种数字式电容触控屏

Country Status (5)

Country Link
US (1) US20110210944A1 (zh)
EP (1) EP2315108A1 (zh)
JP (1) JP2012526333A (zh)
CN (1) CN101887333A (zh)
WO (1) WO2010130111A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130100043A1 (en) * 2011-10-24 2013-04-25 General Electric Company Method for determining valid touch screen inputs

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110199328A1 (en) * 2010-02-18 2011-08-18 Flextronics Ap, Llc Touch screen system with acoustic and capacitive sensing
TWI430162B (zh) * 2010-12-30 2014-03-11 Egalax Empia Technology Inc 電容式觸摸屏的書寫方法與電容式書寫系統
US20130342801A1 (en) * 2011-03-03 2013-12-26 Sharp Kabushiki Kaisha Liquid crystal display device
JP5667960B2 (ja) * 2011-10-14 2015-02-12 株式会社ジャパンディスプレイ 表示装置、タッチ検出装置、および電子機器
CN103294293B (zh) * 2012-07-27 2016-04-06 上海天马微电子有限公司 内嵌式电容触控屏的触控图形结构
US9733293B1 (en) * 2012-09-21 2017-08-15 Qualcomm Incorporated Differential pixel test for capacitive touch screens
CN103729081B (zh) * 2012-10-15 2017-07-28 宸鸿科技(厦门)有限公司 触控面板及其制作方法
CN103941109B (zh) * 2013-01-21 2017-07-28 宸鸿科技(厦门)有限公司 触控面板的测试装置
CN103226424A (zh) * 2013-04-17 2013-07-31 敦泰科技有限公司 电容式触控设备检测方法和装置以及电容式触控设备
CN103257771A (zh) * 2013-04-25 2013-08-21 潘兴修 一种应用于大尺寸的人机交互设备上的电容式触摸屏
CN103336635B (zh) * 2013-05-13 2016-08-10 京东方科技集团股份有限公司 一种电容式内嵌触摸屏及显示装置
CN103488342A (zh) * 2013-09-26 2014-01-01 北京京东方光电科技有限公司 触控显示装置及其驱动方法
CN104035638B (zh) * 2014-05-27 2017-02-15 上海天马微电子有限公司 触控电极结构、触控面板、显示装置和定位触控点的方法
KR102371820B1 (ko) * 2015-04-17 2022-03-07 주식회사 엘엑스세미콘 멀티칩 터치시스템 및 그 제어방법
US9921743B2 (en) * 2015-08-20 2018-03-20 International Business Machines Corporation Wet finger tracking on capacitive touchscreens
CN106708328A (zh) * 2017-02-13 2017-05-24 京东方科技集团股份有限公司 触控模块、显示面板、显示装置和触摸控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000242429A (ja) * 1999-02-18 2000-09-08 Canon Inc タッチパネル装置及びその制御方法
CN2901418Y (zh) * 2005-06-22 2007-05-16 深圳市联思精密机器有限公司 触控式平板显示屏
CN101118470A (zh) * 2006-08-02 2008-02-06 陈其良 触控式平板显示器电极结构
CN101122838A (zh) * 2006-08-13 2008-02-13 陈其良 有源触控平板显示器
CN101149654A (zh) * 2006-09-22 2008-03-26 陈其良 一种触控式有源平板显示屏
CN101634917A (zh) * 2008-07-21 2010-01-27 智点科技(深圳)有限公司 一种触控式平板显示器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3061115B2 (ja) * 1996-11-15 2000-07-10 アルプス電気株式会社 電荷電流検出回路およびこれを利用した座標入力装置
TW408277B (en) * 1996-11-15 2000-10-11 Alps Electric Co Ltd Small current detector circuit and locator device using the same
JP3394187B2 (ja) * 1997-08-08 2003-04-07 シャープ株式会社 座標入力装置および表示一体型座標入力装置
US7663607B2 (en) * 2004-05-06 2010-02-16 Apple Inc. Multipoint touchscreen
WO1999038149A1 (en) * 1998-01-26 1999-07-29 Wayne Westerman Method and apparatus for integrating manual input
US6919882B2 (en) * 2003-01-02 2005-07-19 Holylite Microelectronics Corp. Position detection method and device
US7864160B2 (en) * 2005-10-05 2011-01-04 3M Innovative Properties Company Interleaved electrodes for touch sensing
US7812827B2 (en) * 2007-01-03 2010-10-12 Apple Inc. Simultaneous sensing arrangement
JP4356757B2 (ja) * 2007-03-13 2009-11-04 セイコーエプソン株式会社 液晶装置、電子機器および位置特定方法
JP4453710B2 (ja) * 2007-03-19 2010-04-21 セイコーエプソン株式会社 液晶装置、電子機器および位置検出方法
JP4998919B2 (ja) * 2007-06-14 2012-08-15 ソニーモバイルディスプレイ株式会社 静電容量型入力装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000242429A (ja) * 1999-02-18 2000-09-08 Canon Inc タッチパネル装置及びその制御方法
CN2901418Y (zh) * 2005-06-22 2007-05-16 深圳市联思精密机器有限公司 触控式平板显示屏
CN101118470A (zh) * 2006-08-02 2008-02-06 陈其良 触控式平板显示器电极结构
CN101122838A (zh) * 2006-08-13 2008-02-13 陈其良 有源触控平板显示器
CN101149654A (zh) * 2006-09-22 2008-03-26 陈其良 一种触控式有源平板显示屏
CN101634917A (zh) * 2008-07-21 2010-01-27 智点科技(深圳)有限公司 一种触控式平板显示器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130100043A1 (en) * 2011-10-24 2013-04-25 General Electric Company Method for determining valid touch screen inputs

Also Published As

Publication number Publication date
US20110210944A1 (en) 2011-09-01
JP2012526333A (ja) 2012-10-25
CN101887333A (zh) 2010-11-17
EP2315108A1 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
WO2010130111A1 (zh) 一种数字式电容触控屏
JP5633565B2 (ja) 能動タッチシステム
CN104216584B (zh) 触控显示面板和显示装置
CN105335031A (zh) 触摸板和触摸检测电路
TW200842681A (en) Touch pattern structure of a capacitive touch panel
TW201303671A (zh) 觸控顯示裝置
TW201001010A (en) Display device provided with touch sensor
TW201322097A (zh) 有源觸控系統的驅動方法
TW201416929A (zh) 可重組感測點之觸控面板裝置及感測方法
US9317149B2 (en) Method for detecting touch position of touch screen and touch screen using same
KR101472080B1 (ko) 터치 센싱 장치 및 방법
TW201616320A (zh) 電容式觸控板之高透光及高感度觸控圖型結構
CN101930143B (zh) 电子墨水显示面板及其形成方法
CN104035249B (zh) 集成触控功能的液晶显示装置及其触控位置的检测方法
CN102117158A (zh) 触摸屏
TW201344544A (zh) 具有可減少負載的氧化銦錫層之觸控螢幕裝置
WO2015192597A1 (zh) 触摸面板及其驱动方法、显示装置
US20130016051A1 (en) Touch Panel Device Having a Divided ITO layer for Reducing Loading
TW201246041A (en) Multi-touch detection method and device thereof
CN201425741Y (zh) 一种数字式电容触控屏
US10528178B2 (en) Capacitive touch sensing with conductivity type determination
CN101078961B (zh) 线面电极式触控屏
WO2011156953A1 (zh) 一种触控屏的信号处理方案
CN102339190B (zh) 一种在手机上实现电阻触摸屏两点触摸识别的方法
TWI658384B (zh) 觸控面板及觸控偵測電路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009844523

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844523

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012510090

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE