WO2010128637A1 - 加算器、比較器、及び、δς型アナログデジタル変換器 - Google Patents

加算器、比較器、及び、δς型アナログデジタル変換器 Download PDF

Info

Publication number
WO2010128637A1
WO2010128637A1 PCT/JP2010/057538 JP2010057538W WO2010128637A1 WO 2010128637 A1 WO2010128637 A1 WO 2010128637A1 JP 2010057538 W JP2010057538 W JP 2010057538W WO 2010128637 A1 WO2010128637 A1 WO 2010128637A1
Authority
WO
WIPO (PCT)
Prior art keywords
adder
transistor
transistors
signal
comparator
Prior art date
Application number
PCT/JP2010/057538
Other languages
English (en)
French (fr)
Inventor
芳雄 西田
Original Assignee
国立大学法人豊橋技術科学大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人豊橋技術科学大学 filed Critical 国立大学法人豊橋技術科学大学
Priority to JP2011512342A priority Critical patent/JPWO2010128637A1/ja
Publication of WO2010128637A1 publication Critical patent/WO2010128637A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/436Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type
    • H03M3/438Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type the modulator having a higher order loop filter in the feedforward path
    • H03M3/452Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type the modulator having a higher order loop filter in the feedforward path with weighted feedforward summation, i.e. with feedforward paths from more than one filter stage to the quantiser input
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • G06G7/12Arrangements for performing computing operations, e.g. operational amplifiers
    • G06G7/14Arrangements for performing computing operations, e.g. operational amplifiers for addition or subtraction 
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • H03K3/356104Bistable circuits using complementary field-effect transistors
    • H03K3/356113Bistable circuits using complementary field-effect transistors using additional transistors in the input circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/412Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution
    • H03M3/422Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only
    • H03M3/43Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only the quantiser being a single bit one

Definitions

  • the present invention relates to an adder, a comparator, and a ⁇ type analog-digital converter. More specifically, an adder usable for a feedforward type ⁇ type analog-digital converter, a comparator including the adder, and a ⁇ type analog-digital converter using the adder or the comparator About.
  • a feedforward type delta-sigma analog-to-digital converter (hereinafter, the delta-sigma analog-to-digital converter is also referred to as a “ ⁇ type AD converter”) is a circuit proposed by Non-Patent Document 1 for the first time.
  • the feedforward type ⁇ AD converter 1 includes a subtractor 101, a loop filter 102, an adder 103, a quantizer 104, and a digital-analog converter (hereinafter referred to as “DAC”). 105.
  • the ⁇ AD converter 1 is currently widely used as an analog-digital converter that is optimal for high-frequency signal processing.
  • An analog signal (voltage: V in ) supplied from the outside is input to the loop filter 102 via the subtractor 101.
  • the adder 103 adds the voltage of the analog signal supplied from the outside and the voltage of the signal output from the loop filter 102.
  • the adder 103 outputs the added signal to the quantizer 104.
  • the quantizer 104 quantizes the input signal by an internal comparator and outputs the quantized signal.
  • the DAC 105 converts the quantized signal into an analog signal and feeds it back to the subtractor 101.
  • a non-feed forward type ⁇ AD converter is known.
  • the non-feed forward type ⁇ AD converter is a ⁇ AD converter in which an analog signal supplied from the outside is not directly input to the adder 103 (there is no signal line 106 and adder 103).
  • the signal is distorted by the frequency characteristic of the loop filter 102.
  • the loop filter 102 does not directly process an analog signal supplied from the outside.
  • the signal transfer function of the ⁇ AD converter 1 is ideally constant regardless of the frequency. Therefore, in the ⁇ AD converter 1, no signal distortion occurs. Furthermore, the ⁇ AD converter 1 can greatly relieve the performance required for the amplifier circuit constituting the loop filter 102.
  • Non-Patent Document 1 proposes a capacitive coupling circuit.
  • a capacitive coupling circuit does not require an operational amplifier for signal addition.
  • Non-Patent Document 2 proposes an active addition circuit using an operational amplifier.
  • Non-Patent Documents 3 and 4 propose a circuit using a high-speed amplifier or a high-gain amplifier. This circuit can improve the performance when adding analog signals.
  • Non-Patent Documents 5 to 7 propose a circuit in which an adder is provided on the input side of the operational amplifier. This circuit eliminates the need for an additional operational amplifier required for addition.
  • Non-Patent Document 8 proposes a circuit in which a part of analog addition is replaced with digital addition. In this circuit, signal attenuation can be reduced.
  • the capacitive coupling method described in Non-Patent Document 1 has a problem that, in principle, the signal is attenuated due to a parasitic capacitance on the input side of the quantizer.
  • the active addition method described in Non-Patent Document 2 has a problem that an operational amplifier for addition is required.
  • an expensive amplifier circuit is required, and there is a problem that the application is limited.
  • the final-stage operational amplifier must be able to process an output signal having a large amplitude.
  • the amplitude of the output signal cannot be increased.
  • an extra quantizer is required. For this reason, there exists a problem that power consumption increases. There is also a problem that circuit design becomes complicated.
  • An object of the present invention is to provide an adder having a simple circuit configuration and good input / output characteristics, a comparator including the adder, and a ⁇ analog-digital converter.
  • the adder according to the first aspect of the present invention is an adder that adds and outputs the voltages of a plurality of differential signals, and is provided in association with each of the signals constituting the plurality of differential signals.
  • a load resistor unit having a second load resistor unit commonly connected to each other, the source of the first transistor is connected to the ground, and the drain of the first transistor is connected to the load resistor unit And said negative Resistance unit is characterized by being connected to a power source.
  • the adder can realize the addition function with a minimum number of transistors, and thus the circuit configuration can be simplified. Therefore, the adder can be reduced in size.
  • the adder since the adder adds the signals not by the capacitors but by the transistors, the input differential signal can be prevented from being attenuated by the influence of the parasitic capacitance. Therefore, the adder has good input / output characteristics.
  • the first load resistance unit and the second load resistance unit may each include a diode-connected second transistor.
  • the adder can adjust the multiplier of the signal to be added by adjusting the size of the transistor. Further, since the load resistance portion can be configured by the transistor, it is possible to prevent the manufacturing process from being complicated when the adder is manufactured.
  • the comparator according to the second aspect of the present invention includes the adder and a pair of third transistors, and the gate of the third transistor is included in the first load resistor unit. And the drain of one of the third transistors is connected to the drain of the second transistor included in the second load resistor unit, and the gate of the other third transistor is included in the second load resistor unit. Connected to the gate of the second transistor, the drain of the other third transistor is connected to the drain of the second transistor included in the first load resistance unit, and the source of the pair of third transistors to the power source It is connected.
  • the comparator can incorporate an adder inside.
  • the comparator can amplify the differential signal added by the adder with a desired amplification degree. Even when the input differential signal is very small, the differential signals can be added without mounting a preamplifier or the like. Since an amplifier circuit is unnecessary, the circuit configuration can be simplified.
  • an offset cancel circuit including a capacitor inserted in series with a signal line for transmitting the signal and a switch for switching a conduction state of the signal line may be provided.
  • the comparator can store a charge corresponding to the offset voltage in the capacitor by turning the switch ON / OFF.
  • the offset cancel circuit can remove the offset component of the signal.
  • the comparator can accurately add the input differential signals.
  • the capacitor may be provided on at least one of a front stage side or a rear stage side of the adder.
  • the dynamic range of the differential signal supplied to the comparator can be increased.
  • the differential signal output from the comparator can follow the differential signal supplied to the adder at high speed.
  • a ⁇ analog-to-digital converter is a ⁇ analog-to-digital converter including the adder, a loop filter, and a quantizer, and the adder passes through the loop filter.
  • the differential signal and the voltage of the differential signal directly input from the outside are added, and the quantizer quantizes the signal output from the adder.
  • the ⁇ analog-digital converter can be reduced in size.
  • an operational amplifier having a small output range can be used as the operational amplifier constituting the loop filter.
  • a ⁇ analog-to-digital converter is a ⁇ analog-to-digital converter including the comparator and a loop filter, and the comparator is provided on a subsequent stage side of the adder.
  • the differential signal that has passed through the loop filter and the voltage of the differential signal that is directly input from the outside are added by the adder, and the signal output from the adder is Quantization is performed by a latch circuit.
  • the comparator can add the input differential signals and quantize the differential signals by the latch circuit. Since the circuit configuration of the ⁇ analog-digital converter can be simplified, the ⁇ analog-digital converter can be downsized. In addition, an operational amplifier having a small output range can be used as the operational amplifier constituting the loop filter.
  • FIG. 3 is a circuit diagram of an adder 107.
  • FIG. 3 is a block diagram showing a ⁇ AD converter 2.
  • FIG. 2 is a circuit diagram of a comparator 117.
  • FIG. 2 is a circuit diagram of a comparator 118.
  • FIG. 3 is a circuit diagram illustrating a ⁇ AD converter 3.
  • FIG. 5 is a graph showing an output signal spectrum of a ⁇ AD converter 3 employing a comparator 117.
  • 3 is a graph showing an output signal spectrum of a ⁇ AD converter 3 employing a comparator 118. It is a graph which shows the relationship between SNDR and an offset voltage.
  • 1 is a block diagram showing a ⁇ AD converter 1.
  • FIG. 1 is a block diagram showing a ⁇ AD converter 1.
  • FIG. 1 is a block diagram showing a ⁇ AD converter 1.
  • FIG. 1 is a block diagram showing a ⁇ AD converter 1.
  • FIG. 1 is a block diagram showing a ⁇ AD converter 1.
  • the adder 107 includes N-type MOS transistors 201 to 204 and P-type MOS transistors 205 and 206 (hereinafter, the N-type MOS transistor and the P-type MOS transistor are also simply referred to as “transistors”).
  • Transistors 201 and 202 are paired.
  • Transistors 203 and 204 are paired.
  • Transistors 205 and 206 are paired.
  • the source of the transistor 201 and the source of the transistor 202 are connected, and each source is connected to the ground.
  • the source of the transistor 203 and the source of the transistor 204 are connected, and each source is connected to the ground.
  • the drain of the transistor 201 and the drain of the transistor 203 are connected to the drain of the transistor 205, respectively.
  • the drain of the transistor 202 and the drain of the transistor 204 are connected to the drain of the transistor 206, respectively.
  • the gates and drains of the transistors 205 and 206 are connected to each other.
  • the transistor 205 and the transistor 206 are diode-connected, respectively.
  • the source of the transistor 205 and the source of the transistor 206 are connected to a power supply (voltage: V DD ).
  • the first differential signal (Sp1, Sm1) and the second differential signal (Sp2, Sm2) are supplied to the adder 107.
  • Sp1 is input to the gate of the transistor 201.
  • Sm1 is input to the gate of the transistor 202.
  • Sp2 is input to the gate of the transistor 203.
  • Sm2 is input to the gate of the transistor 204.
  • the difference voltage between Sp1 and Sm1 (V INP1 ⁇ V INM1 ) and the difference voltage between Sp2 and Sm2 (V INP2 ⁇ V INM2 ) are multiplied by coefficients and added.
  • An inverted signal Sop as a result of the addition is output from the drain of the transistor 205.
  • the added non-inverted signal Som is output from the drain of the transistor 206.
  • the two transistors (201 and 202, 203 and 204, 205 and 206) constituting the pair have the same channel length (L) and channel width (W).
  • the voltage between the differential signals (Sop, Som) output from the adder 107 (hereinafter, the voltage between the differential signals is also referred to as “differential voltage”) (V OP ⁇ V OM ) is represented by the following formula 1.
  • ⁇ n is the carrier mobility of the N-type MOS transistor.
  • ⁇ p is a carrier mobility of the P-type MOS transistor.
  • C ox is a gate capacitance per unit area.
  • V AI and V AO are represented by the following equations 2 and 3.
  • V thn is a threshold voltage of the N-type MOS transistor.
  • V thp is a threshold voltage of the P-type MOS transistor.
  • V IN-CM is a common mode voltage of the input differential signal.
  • V OUT-CM is a common mode voltage of the output differential signal.
  • the differential signal voltage (V OP ⁇ V OM ) output from the adder 107 is equal to the differential signal voltages “V INP1 ⁇ V INM1 ” and “ “V INP2 ⁇ V INM2 ” is multiplied by a coefficient (K n / K p ) and added. This coefficient can be adjusted by the channel width to channel length ratio (W / L) of the transistor. In this way, the adder 107 can multiply and output a plurality of input differential voltages by multiplying them by a constant.
  • the adder 107 does not need to include an operational amplifier, the configuration can be simplified. Since the adder 107 can eliminate the influence of the parasitic capacitance, it is possible to prevent the signal voltage from being attenuated by the parasitic capacitance. In the adder 107, the sources of the transistors 201 to 204 are directly connected to the ground. Therefore, even when the voltage of the differential signal supplied to the adder 107 is large, the voltage of the differential signal can be added while maintaining linearity.
  • the adder 107 has two transistor pairs. Two differential signals were supplied to the adder 107. However, the present invention is not limited to this.
  • the adder 107 may include three or more transistor pairs. Thus, the adder 107 can add three or more differential signal voltages.
  • the outline of the ⁇ AD converter 2 will be described with reference to FIG.
  • the same components as those of the ⁇ AD converter 1 are denoted by the same reference numerals, and description thereof is omitted or simplified.
  • the ⁇ AD converter 2 includes a subtractor 101, a loop filter 102, a quantizer 111, and a DAC 105.
  • the ⁇ AD converter 2 is different from the ⁇ AD converter 1 in that an adder 112 is incorporated in the comparator 113 in the quantizer 111.
  • the adder 112 By incorporating the adder 112 into the comparator 113, the configuration of the ⁇ AD converter 2 can be further simplified, and the ⁇ AD converter 2 can be downsized.
  • the comparator 117 includes an adder 21, a gain boost circuit 22, offset cancel circuits 23 and 24, and a latch circuit 25.
  • the adder 21 adds the voltages of a plurality of input differential signals.
  • the gain boost circuit 22 amplifies the added signal.
  • the offset cancel circuits 23 and 24 remove the offset component of the differential signal output from the adder 21.
  • the adder 21 includes N-type MOS transistors 301 to 306 and P-type MOS transistors 307 and 308.
  • the transistor 301 and the transistor 302 are paired.
  • the transistor 303 and the transistor 304 are paired.
  • the transistor 305 and the transistor 306 are paired.
  • the gain boost circuit 22 includes P-type MOS transistors 309 and 310.
  • the source of the transistor 301 and the source of the transistor 302 are connected, and each source is connected to the ground.
  • the source of the transistor 303 and the source of the transistor 304 are connected, and each source is connected to the ground.
  • the source of the transistor 305 and the source of the transistor 306 are connected, and each source is connected to the ground.
  • the drains of the transistors 301, 303, and 305 are connected to the drain of the transistor 307 and the drain of 310, respectively.
  • the drains of the transistors 302, 304, and 306 are connected to the drain of the transistor 308 and the drain of 309, respectively.
  • the gate of the transistor 307 and the gate of the transistor 309 are connected, and each gate is connected to the drain of the transistor 307.
  • the gate of the transistor 308 and the gate of the transistor 310 are connected to each other, and each gate is connected to the drain of the transistor 308.
  • Each source of the transistors 307 to 310 is connected to a power source (V DD ).
  • the first differential signal (Sp1, Sm1), the second differential signal (Sp2, Sm2), and the third differential signal (Sp3, Sm3) are input to the gates of the transistors 301 to 306, respectively.
  • Reference voltage sources (Rp1, Rm1, Rp2, Rm2, Rp3, Rm3) are connected to respective gates of transistors 301 to 306 with reference voltages (V RP1 , V RM1 , V RP2 , V RM2 , V RP3 , V RM3 ). Can be applied.
  • the reference voltage source (Rp1, Rm1) corresponds to the first differential signal (Sp1, Sm1).
  • the reference voltage source (Rp2, Rm2) corresponds to the second differential signal (Sp2, Sm2).
  • the reference voltage source corresponds to the third differential signal (Sp3, Sm3).
  • the differential voltages of Sp1 and Sm1, Sp2 and Sm2, and Sp3 and Sm3 (V INP1 ⁇ V INM1 , V INP2 ⁇ V INM2 , V INP3 ⁇ V INM3 ) are multiplied by coefficients, added, and amplified.
  • the inverted signal Sop resulting from the addition and amplification is output from the drain of the transistor 307.
  • the non-inverted signal Som resulting from the addition and amplification is output from the drain of the transistor 308.
  • reference voltage sources corresponding to the first to third differential signals are provided separately.
  • the reference voltage corresponding to each of the first differential signal to the third differential signal may be common.
  • the offset cancel circuit 23 is provided before the adder 21.
  • the offset cancel circuit 23 includes switches 311 to 322.
  • the switches 312 and 313 can switch presence / absence of input of the first differential signal (Sp1, Sm1) to the transistors 301 and 302.
  • the switches 316 and 317 can switch the presence / absence of an input of the second differential signal (Sp2, Sm2) to the transistors 303 and 304.
  • the switches 320 and 321 can switch the presence / absence of a third differential signal (Sp3, Sm3) to the transistors 305 and 306.
  • the switches 311 and 314 can switch whether to apply a voltage from the reference voltage source (Rp1, Rm1) to the transistors 301 and 302.
  • the switches 315 and 318 can switch whether to apply a voltage from the reference voltage source (Rp2, Rm2) to the transistors 303 and 304.
  • the switches 319 and 322 can switch whether to apply a voltage from the reference voltage source (Rp3, Rm3) to the transistors 305 and 306.
  • the offset cancel circuit 24 is provided at the subsequent stage of the adder 21.
  • the offset cancel circuit 24 includes capacitors 325 and 326 and switches 323 and 324.
  • a capacitor 325 is connected to the drain of the transistor 307.
  • the capacitor 325 is inserted in series with a signal line 327 through which an output signal from the adder 21 is transmitted.
  • the capacitor 325 is connected to the latch circuit 25.
  • a switch 323 is connected to a connection portion between the capacitor 325 and the latch circuit 25.
  • the switch 323 is connected to a common mode power supply (V COM ).
  • the switch 323 can switch a conduction state between the capacitor 325 and the common mode power supply.
  • a capacitor 326 is connected to the drain of the transistor 308.
  • the capacitor 326 is inserted in series with a signal line 328 through which an output signal from the adder 21 is transmitted.
  • the capacitor 326 is connected to the latch circuit 25.
  • a switch 324 is connected to a connection portion between the capacitor 326 and the latch circuit 25.
  • the switch 324 is connected to a common mode power supply. The switch 324 can switch a conduction state between the capacitor 326 and the common mode power supply.
  • the switches 311 to 324 are turned on / off in synchronization with the clock signal.
  • the switches 312, 313, 316, 317, 320, and 321 have the timing of the period ⁇ 1 . in to ON, the OFF with the timing of the period [Phi 2.
  • the switches 311, 314, 315, 318, 319, 322, 323 and 324 are turned on at the timing of the cycle ⁇ 2 and turned off at the timing of the cycle ⁇ 1 . Thereby, the offset component of the differential signal output from the adder 21 can be removed.
  • the operation principle of the comparator 117 will be described. If the period of the clock signal becomes the period [Phi 2, the voltage reference voltage and the offset voltage is added is applied to the capacitor 325 and 326. As a result, charges are accumulated in the capacitors 325 and 326. If the period of the clock signal becomes the period [Phi 1, a differential signal to the adder 21 (Sp1, Sm1, Sp2, Sm2, Sp3, Sm3) is input. The voltages of the input differential signals are added by the adder 21 and simultaneously amplified by the gain boost circuit 22. Capacitors 325 and 326 remove the offset voltage from the signal output from the adder 21. The signal from which the offset voltage has been removed is input to the latch circuit 25. The differential signal is converted from an analog signal to a digital signal by the latch circuit 25.
  • the comparator 117 In the comparator 117, the signal added by the adder 21 is directly amplified by the gain boost circuit 22. Therefore, a preamplifier for amplifying the signal supplied to the adder 21 becomes unnecessary. Thereby, the configuration of the comparator 117 can be simplified, and the comparator 117 can be downsized. Since the comparator 117 includes the offset cancel circuits 23 and 24, the offset component of the signal output from the adder 21 can be removed. Accordingly, the comparator 117 can accurately add and quantize the voltage of the supplied differential signal. Further, since the capacitors 325 and 326 have no feedback and are provided at the subsequent stage of the adder 21, the differential signal output from the adder 21 is changed to a differential signal supplied to the adder 21 at a high speed. Can be followed.
  • the capacitors 325 and 326 included in the offset cancel circuit 24 are provided in the subsequent stage of the adder 21.
  • the present invention is not limited to this.
  • the capacitor may be provided before the adder.
  • the comparator 118 includes an adder 41, a gain boost circuit 22, an offset cancellation circuit 43, and a latch circuit 25.
  • the adder 41 includes transistors 301 to 308, similar to the adder 21 (see FIG. 3).
  • the adder 41 is different from the adder 21 in that the transistors 301 to 306 include switches 401 to 406 between the drain and the gate, respectively.
  • the switches 401 to 406 can switch the conduction state between the drain and gate of each transistor. Switches 401-406 are turned ON at the timing of the period [Phi 2, is OFF at the timing of the period [Phi 1.
  • the offset cancel circuit 43 includes switches 401 to 406 and capacitors 407 to 412 in addition to the offset cancel circuit 23 (see FIG. 3).
  • Capacitors 407 and 408 are provided between the first differential signal (Sp 1 and Sm 1) and the transistors 301 and 302.
  • Capacitors 409 and 410 are provided between the second differential signal (Sp2, Sm2) and the transistors 303 and 304.
  • Capacitors 411 and 412 are provided between the third differential signal (Sp3 and Sm3) and the transistors 305 and 306, respectively.
  • Capacitors 407 to 412 are inserted in series in signal lines 413 to 418 through which supplied differential signals are transmitted.
  • the comparator 118 includes the capacitors 407 to 412 in the preceding stage of the adder 41. Therefore, the differential signal to be supplied is compared with the comparator 117 having the capacitor in the subsequent stage of the adder. Can increase the dynamic range.
  • the subtractor 101 includes switches 511 and 512 and a capacitor 531.
  • the loop filter 102 includes switches 513 to 520, capacitors 532 to 534, and operational amplifiers 541 and 542.
  • the loop filter 102 operates by a so-called switched capacitor method. Switches 521 and 522 are provided on the signal line 543 that directly transmits the supplied differential signal to the comparator 113.
  • the comparator 113 for example, the above-described comparator 117 (see FIG. 3) or the comparator 118 (see FIG. 4) is used.
  • the switches 511 to 522 are turned ON / OFF in synchronization with the clock signal.
  • the pulse period of the clock signal is indicated as “ ⁇ 1 , ⁇ 2 , ⁇ 1 , ⁇ 2 ,...”
  • the switches 511, 513, 515, 517, 519, and 521 have the timing of the period ⁇ 1 . in to ON, the OFF timing of the period [Phi 2.
  • Switches 512,514,516,518,520, and 522 ON at the timing of the period [Phi 2 is OFF at the timing of the period [Phi 1.
  • the loop filter 102 operates as a filter having a predetermined frequency characteristic.
  • the common-mode voltage of the differential signal supplied to the ⁇ AD converter 3 and the common-mode voltage of the output signals of the operational amplifiers 541 and 542 are set to the center value (V DD / 2) of the power supply voltage. . Therefore, the input signal range of the comparator 113 can be increased.
  • the coefficients (“1”, “1”, “0.4” in the figure) multiplied by the input signal to the comparator 113 are the channel width and channel length of the N-type MOS transistor included in the adder 112. It can be adjusted by the ratio (W / L).
  • each signal can be multiplied by a desired coefficient by adjusting the size of the N-type MOS transistor of the adder. .
  • an optimum value of this coefficient is determined by system design so that the ⁇ AD converter 3 can realize desired noise shaping.
  • the characteristics of the ⁇ AD converter 3 were evaluated by circuit simulation. SPICE was used as a circuit simulator. As a circuit model to be evaluated, a ⁇ AD converter 3 (see FIG. 5) including a switched capacitor type loop filter 102 was used. As the comparator 113, the comparator 117 (see FIG. 3) and the comparator 118 (see FIG. 4) were referred to.
  • a TSMC CMOS transistor model (0.18 ⁇ m) parameter was used as a transistor parameter at the time of simulation.
  • the operational amplifiers 541 and 542, the switches 511 to 522, and the DAC 105 included in the loop filter 102 are replaced with analog function blocks.
  • a total of seven comparators 117 or 118 are provided in the quantizer 111.
  • the simulation was performed under conditions where the oversampling ratio was 16.
  • the frequency characteristics of the output signal spectrum (PSD) when a differential signal (frequency: 2.4 kHz) was supplied to the ⁇ AD converter 3 were evaluated.
  • FIG. 6 shows the frequency characteristics of the output signal spectrum in the circuit configuration based on the comparator 117.
  • the frequency characteristics of the output signal spectrum in the circuit configuration based on the comparator 118 are shown in FIG.
  • the signal-to-noise + distortion ratio was calculated.
  • an offset voltage may be added to the common-mode voltage of the differential signal input to the comparator due to influence on circuit performance or semiconductor manufacturing.
  • the common-mode voltage deviates from the center value (V DD / 2) of the power supply voltage set by design. Therefore, in the following, in order to verify the influence, the relationship between the calculated SNDR and the offset voltage was examined (see FIG. 8). For the analysis, a comparator 118 including an adder 41 was used.
  • the slope of the output signal spectrum in the high frequency band (10 kHz to) was about 40 dB / dec in both cases.
  • the slope of the frequency characteristic of PSD in a ⁇ converter of second-order noise shaping is about 40 dB / dec. From these results, it was found that the ⁇ AD converter 3 is functioning normally as a ⁇ AD converter.
  • Vin, Vop1, and Vop2 are ⁇ AD conversions when the signals input via the signal lines 541, 542, and 543 have an offset from the design set value, respectively.
  • the SNDR of the vessel is shown. From the results of FIG. 8, it was found that SNDR always showed a good value stably even when the offset voltage of the supplied differential signal changed. From this result, it can be said that the comparator 118 is a circuit that can expect a design margin and is resistant to manufacturing variations.

Abstract

加算器107は、N型MOSトランジスタ201~204、及び、P型MOSトランジスタ205,206を備えている。トランジスタ201、203のドレインは、トランジスタ205のドレインに接続されている。トランジスタ202、204のドレインは、トランジスタ206のドレインに接続されている。第一の差動信号(Sp1、Sm1)は、トランジスタ201,202のゲートに入力される。第二の差動信号(Sp2、Sm2)は、トランジスタ203,204のゲートに入力される。Sp1とSm1の差電圧、及びSp2とSm2の差電圧は加算され、トランジスタ205、206のドレインから出力される。

Description

加算器、比較器、及び、ΔΣ型アナログデジタル変換器
 本発明は、加算器、比較器、及び、ΔΣ型アナログデジタル変換器に関する。より詳細には、フィードフォワード型のΔΣ型アナログデジタル変換器に使用可能な加算器、該加算器を備えた比較器、及び、該加算器又は該比較器が使用されたΔΣ型アナログデジタル変換器に関する。
 フィードフォワード型のデルタシグマアナログデジタル変換器(以下、デルタシグマアナログデジタル変換器を「ΔΣ型AD変換器」ともいう。)は、非特許文献1によりはじめて提案された回路である。図9に示されるように、フィードフォワード型のΔΣ型AD変換器1は、減算器101、ループフィルタ102、加算器103、量子化器104、及びデジタルアナログ変換器(以下「DAC」という。)105を備えている。ΔΣ型AD変換器1は、高周波信号処理に最適なアナログデジタル変換器として、現在広く使われている。
 外部から供給されるアナログ信号(電圧:Vin)は、減算器101を介してループフィルタ102に入力される。加算器103は、外部から供給されるアナログ信号の電圧と、ループフィルタ102から出力された信号の電圧とを加算する。加算器103は、加算された信号を量子化器104に出力する。量子化器104は、入力された信号を、内部の比較器によって量子化し出力する。DAC105は、量子化された信号をアナログ信号に変換し、減算器101にフィードバックする。
 非フィードフォワード型のΔΣ型AD変換器が知られている。非フィードフォワード型のΔΣ型AD変換器とは、外部から供給されるアナログ信号が直接加算器103に入力されない(信号線106及び加算器103が無い)ΔΣ型AD変換器である。非フィードフォワード型のΔΣ型AD変換器では、ループフィルタ102の周波数特性によって信号が歪む。しかしながら上述したフィードフォワード型のΔΣ型AD変換器1では、ループフィルタ102は、外部から供給されるアナログ信号を直接処理しない。ΔΣ型AD変換器1の信号伝達関数は、理想的には周波数にかかわらず一定となる。従ってΔΣ型AD変換器1では、信号の歪が生じない。さらにΔΣ型AD変換器1は、ループフィルタ102を構成するアンプ回路に対して要求される性能を大幅に緩和できる。
 加算器103の回路について議論が重ねられており、幾つかの回路が提案されている。例えば、非特許文献1では、容量カップリング方式の回路が提案されている。容量カップリング方式の回路では、信号加算用のオペアンプが不要である。また、非特許文献2では、オペアンプを用いるアクティブ加算方式の回路が提案されている。また、非特許文献3と4では、高速なアンプや高利得なアンプを用いる回路が提案されている。この回路では、アナログ信号を加算する場合の性能を改善できる。
 従来のフィードフォワード形のΔΣ型AD変換器では、ループフィルタ102の最終段に設けられた積分器を構成するオペアンプの出力側に加算器が設けられていた。近年、このオペアンプの入力側に加算器を設けた回路が提案されている(例えば、非特許文献5から7を参照)。この回路では、加算に必要となる追加のオペアンプが不要となる。また非特許文献8では、アナログ加算の一部をデジタル加算に置き換えた回路が提案されている。この回路では、信号の減衰を小さくできる。
Silva, J., Moon, U.-K., Steensgaard, J., and Temes, G.C., "Wideband low-distortion delta-sigma ADC topology", IEE Electron. Lett., Vol.37, No.12, 2001, pp. 737-738. Zhang, Z., Steensgaard, J., Temes, G.C., and Wu, J.-Y., "A split 2-0 MASH with dual digital error correction", Symp. VLSI Circ. Dig. Tech. Papers, 2007, pp. 242-243. Balmelli, P., and Huang, Q., "A 25-MS/s 14-b 200-mW ΔΣ modulator in 0.18-μm CMOS", IEEE J. Solid-State Circuits, Vol.39, No.12, 2004, pp. 2161-2169. Nam, K., Lee, S.-M., David, K.S., and Wooley B.A., "A low-voltage low-power sigma-delta modulator for broadband analog-to-digital conversion", IEEE J. Solid-State Circuits, Vol.40, No.9, 2005, pp. 1855-2005. Gharbiya, A., and Johns, D.A., "On the implementation of input- feedforward delta-sigma modulators", IEEE Trans. Circuits Syst. II, Vol.53, No.6, 2006, pp. 453-457. San, H., Konagaya, H., Xu, F., Motozawa, A., Kobayashi, H., Ando, K., Yoshida, H., and Murayama, C., "Second-order ΔΣAD modulator with novel feedforward architecture", 50th Midwest Symp. Circuits Syst., 2007, pp. 148-151. Oberst, M., and Weigel, R., "Delta-sigma feedforward topology", IET Electron. Lett., Vol.44, No.8, 2008, pp. 514-515. Tang, Y., Gupta, S., Paramesh, J., and Allstot, D. J., "A digital-summing feedforward Σ-Δ modulator and its application to a cascade ADC", Proc. of IEEE Int. Symp. Circuits Syst., 2007, pp.485-488.
 非特許文献1に記載の容量カップリング方式では、原理上、更に量子化器の入力側の寄生容量も原因で、信号が減衰するという問題点がある。非特許文献2に記載のアクティブ加算方式では、加算用のオペアンプが必要となるという問題がある。非特許文献3及び4に記載の方式では、高価なアンプ回路が必要となり、用途が限定されてしまうという問題点がある。非特許文献5から7に記載の方式では、最終段のオペアンプは、振幅の大きな出力信号を処理できなければならない。最終段のオペアンプが低電圧で駆動する場合、出力信号の振幅を大きくできないという問題点がある。非特許文献8に記載の方法では、余分な量子化器が必要となる。このため、消費電力が増加するという問題点がある。また、回路の設計が複雑になるという問題がある。
 本発明の目的は、回路構成が簡単で、且つ入出力特性の良好な加算器、該加算器を備えた比較器、及びΔΣ型アナログデジタル変換器を提供することにある。
 本発明の第一態様に係る加算器は、複数の差動信号の電圧を加算して出力する加算器であって、複数の前記差動信号を構成する其々の信号に対応付けて設けられる複数の第一トランジスタであって、前記信号がゲートに入力される複数の第一トランジスタと、複数の前記第一トランジスタに対して共通に接続される負荷抵抗部であって、前記差動信号のうち一方の前記信号が入力される複数の前記第一トランジスタの其々に対して共通に接続される第一負荷抵抗部、及び、他方の前記信号が入力される複数の前記第一トランジスタの其々に対して共通に接続される第二負荷抵抗部を備えた負荷抵抗部とを備え、前記第一トランジスタのソースはグランドに接続され、前記第一トランジスタのドレインは、前記負荷抵抗部に接続され、前記負荷抵抗部は、電源に接続されることを特徴とする。
 第一態様によれば、加算器は、最小限のトランジスタで加算機能を実現できるので、回路構成を簡単にできる。従って、加算器を小型化できる。また加算器は、容量ではなくトランジスタによって信号が加算されるので、入力される差動信号が寄生容量の影響によって減衰してしまうことを防止できる。従って加算器は、入出力特性が良好となる。
 また、第一態様において、前記第一負荷抵抗部及び前記第二負荷抵抗部は、其々、ダイオード接続した第二トランジスタを備えていてもよい。加算器は、トランジスタのサイズを調整することで、加算される信号の乗数を調節できる。また、トランジスタによって負荷抵抗部を構成できるので、加算器の製造時における製造プロセスの複雑化を防止できる。
 本発明の第二態様に係る比較器は、前記加算器と、一対の第三トランジスタとを備え、一方の前記第三トランジスタのゲートは、前記第一負荷抵抗部が備える前記第二トランジスタのゲートに接続され、一方の前記第三トランジスタのドレインは、前記第二負荷抵抗部が備える前記第二トランジスタのドレインに接続され、他方の前記第三トランジスタのゲートは、前記第二負荷抵抗部が備える前記第二トランジスタのゲートに接続され、他方の前記第三トランジスタのドレインは、前記第一負荷抵抗部が備える前記第二トランジスタのドレインに接続され、一対の前記第三トランジスタのソースは、電源に接続されることを特徴とする。
 第二態様によれば、比較器は、加算器を内部に組み込むことができる。比較器は、加算器によって加算された差動信号を所望の増幅度で増幅できる。入力される差動信号が非常に小さい場合でも、プリアンプ等を実装することなく、差動信号を加算できる。増幅回路が不要になるので、回路構成を簡単にできる。
 また、第二態様において、前記信号を伝送する信号線に直列に挿入されたコンデンサと、前記信号線の導通状態を切り替えるスイッチとを含むオフセットキャンセル回路を備えていてもよい。比較器は、スイッチをON/OFFすることで、オフセット電圧に相当する電荷をコンデンサに蓄積させることができる。これによってオフセットキャンセル回路は、信号のオフセット成分を取り除くことができる。比較器は、入力される差動信号を正確に加算できる。
 また、第二態様において、前記コンデンサは、前記加算器の前段側又は後段側のうち少なくとも一方に設けられていてもよい。加算器の前段側にコンデンサを設けることによって、比較器に供給する差動信号のダイナミックレンジを大きくできる。また、加算器の後段側にコンデンサを設けることによって、比較器から出力される差動信号を、加算器に対して供給される差動信号に高速に追従させることができる。
 本発明の第三態様に係るΔΣ型アナログデジタル変換器は、前記加算器、ループフィルタ、及び量子化器を備えたΔΣ型アナログデジタル変換器であって、前記加算器は、前記ループフィルタを通過した前記差動信号、及び、外部から直接入力される前記差動信号の電圧を加算し、前記量子化器は、前記加算器から出力される信号を量子化することを特徴とする。第三態様によれば、加算器の回路構成を簡単にできるので、ΔΣ型アナログデジタル変換器を小型化できる。また、ループフィルタを構成するオペアンプとして、出力レンジの小さいオペアンプを使用できる。
 本発明の第四態様に係るΔΣ型アナログデジタル変換器は、前記比較器、及びループフィルタを備えたΔΣ型アナログデジタル変換器であって、前記比較器は、前記加算器の後段側に設けられたラッチ回路を備え、前記ループフィルタを通過した前記差動信号、及び、外部から直接入力される前記差動信号の電圧を、前記加算器によって加算し、前記加算器から出力される信号を前記ラッチ回路によって量子化することを特徴とする。
 第四態様よれば、比較器は、入力される差動信号を加算し、且つラッチ回路によって差動信号を量子化できる。ΔΣ型アナログデジタル変換器の回路構成を簡単にできるので、ΔΣ型アナログデジタル変換器を小型化できる。また、ループフィルタを構成するオペアンプとして、出力レンジの小さいオペアンプを使用できる。
加算器107の回路図である。 ΔΣ型AD変換器2を示すブロック図である。 比較器117の回路図である。 比較器118の回路図である。 ΔΣ型AD変換器3を示す回路図である。 比較器117が採用されたΔΣ型AD変換器3の出力信号スペクトラムを示すグラフである。 比較器118が採用されたΔΣ型AD変換器3の出力信号スペクトラムを示すグラフである。 SNDRとオフセット電圧との関係を示すグラフである。 ΔΣ型AD変換器1を示すブロック図である。
 本発明の一実施形態における加算器、比較器、及びフィードフォワード型のΔΣ型AD変換器について、図面を参照して説明する。
 図1を参照し、加算器103(図9参照)の一例である、加算器107の回路構成について説明する。加算器107は、N型MOSトランジスタ201~204、及び、P型MOSトランジスタ205、206を備えている(以下、N型MOSトランジスタ及びP型MOSトランジスタを、単に「トランジスタ」ともいう。)。トランジスタ201、202は対になっている。トランジスタ203、204は対になっている。トランジスタ205、206は対になっている。
 トランジスタ201のソース、及びトランジスタ202のソースは接続され、且つ其々のソースはグランドに接続されている。トランジスタ203のソース、及びトランジスタ204のソースは接続され、且つ其々のソースはグランドに接続されている。トランジスタ201のドレイン、及びトランジスタ203のドレインは、其々、トランジスタ205のドレインに接続されている。トランジスタ202のドレイン、及びトランジスタ204のドレインは、其々、トランジスタ206のドレインに接続されている。トランジスタ205、及びトランジスタ206は、其々、ゲートとドレインとが接続されている。トランジスタ205、及びトランジスタ206は、其々、ダイオード接続されている。トランジスタ205のソース、及びトランジスタ206のソースは、電源(電圧:VDD)に接続されている。
 第一の差動信号(Sp1、Sm1)、及び、第二の差動信号(Sp2、Sm2)は、加算器107に供給される。Sp1は、トランジスタ201のゲートに入力される。Sm1は、トランジスタ202のゲートに入力される。Sp2は、トランジスタ203のゲートに入力される。Sm2は、トランジスタ204のゲートに入力される。Sp1とSm1の差電圧(VINP1-VINM1)、及びSp2とSm2の差電圧(VINP2-VINM2)は、それぞれ係数が乗算されて加算される。加算された結果の反転信号Sopは、トランジスタ205のドレインから出力される。加算された結果の非反転信号Somは、トランジスタ206のドレインから出力される。
 対を構成する2つのトランジスタ(201及び202、203及び204、205及び206)は、同一のチャネル長(L)及びチャネル幅(W)を備えている。チャネル長変調効果を無視すると、加算器107から出力される差動信号(Sop、Som)間の電圧(以下、差動信号間の電圧を「差動電圧」ともいう。)(VOP-VOM)は、以下の数1にて示される。
Figure JPOXMLDOC01-appb-M000001
 K(=μox(W/L))は、N型MOSトランジスタのトランスコンダクタンスである。K(=μox(W/L))は、P型MOSトランジスタのトランスコンダクタンスである。μは、N型MOSトランジスタのキャリア移動度である。μは、P型MOSトランジスタのキャリア移動度である。Coxは、単位面積あたりのゲート容量である。VAI及びVAOは、以下の数2、及び数3にて示される。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 Vthnは、N型MOSトランジスタの閾値電圧である。Vthpは、P型MOSトランジスタの閾値電圧である。VIN-CMは、入力される差動信号の同相モード電圧である。VOUT-CMは、出力される差動信号の同相モード電圧である。
 数1から明らかなように、加算器107から出力される差動信号の電圧(VOP-VOM)は、加算器107に入力される差動信号の電圧「VINP1-VINM1」及び「VINP2-VINM2」に、其々係数(K/K)が乗算されて加算される。この係数は、トランジスタのチャネル幅対チャネル長比(W/L)によって調整可能である。このように加算器107は、入力される複数の差動電圧に定数を乗算して加算し、出力できる。
 加算器107は、オペアンプを備える必要がないので、構成を簡単にできる。加算器107は、寄生容量の影響を排除できるので、寄生容量による信号電圧の減衰を防止できる。加算器107では、トランジスタ201~204のソースは直接グランドに接続される。従って、加算器107に供給される差動信号の電圧が大きい場合であっても、線形性を維持しつつ、差動信号の電圧を加算できる。
 なお上述では、加算器107は2つのトランジスタの対を備えていた。加算器107には、2つの差動信号が供給されていた。しかしながら本発明はこれに限定されない。加算器107は、トランジスタの対を3つ以上備えていてもよい。これによって加算器107は、3つ以上の差動信号の電圧を加算できる。
 なお上述では、量子化器104(図9参照)の前段に設けられる加算器107の構成の一例について説明した。しかしながら本発明はこれに限定されない。加算器は、量子化器104が備える比較器の中に組み込まれていてもよい。以下、図を参照して説明する。
 図2を参照し、ΔΣ型AD変換器2の概要について説明する。ΔΣ型AD変換器1と同様の構成部分については、同一符号を付し、説明を省略又は簡略している。ΔΣ型AD変換器2は、減算器101、ループフィルタ102、量子化器111、及びDAC105を備えている。ΔΣ型AD変換器2は、量子化器111内の比較器113に加算器112が組み込まれている点において、ΔΣ型AD変換器1と異なっている。加算器112を比較器113に組み込むことで、ΔΣ型AD変換器2の構成を更に簡単にでき、ΔΣ型AD変換器2を小型化できる。
 図3を参照し、比較器113(図2参照)の一例である比較器117の回路構成について説明する。比較器117は、加算器21、利得ブースト回路22、オフセットキャンセル回路23、24、及びラッチ回路25を備えている。加算器21は、入力される複数の差動信号の電圧を加算する。利得ブースト回路22は、加算された信号を増幅する。オフセットキャンセル回路23、24は、加算器21から出力される差動信号のオフセット成分を取り除く。
 加算器21は、N型MOSトランジスタ301~306、及びP型MOSトランジスタ307,308を備えている。トランジスタ301、及びトランジスタ302は対になっている。トランジスタ303、及びトランジスタ304は対になっている。トランジスタ305、及びトランジスタ306は対になっている。利得ブースト回路22は、P型MOSトランジスタ309、310を備えている。
 トランジスタ301のソース、及びトランジスタ302のソースは接続され、且つ其々のソースはグランドに接続されている。トランジスタ303のソース、及びトランジスタ304のソースは接続され、且つ其々のソースはグランドに接続されている。トランジスタ305のソース、及びトランジスタ306のソースは接続され、且つ其々のソースはグランドに接続されている。トランジスタ301、303、及び305の其々のドレインは、トランジスタ307のドレイン、及び310のドレインに接続されている。トランジスタ302、304、及び306の其々のドレインは、トランジスタ308のドレイン、及び309のドレインと接続されている。
 トランジスタ307のゲート、及びトランジスタ309のゲートは接続され、且つ、其々のゲートは、トランジスタ307のドレインと接続されている。トランジスタ308のゲート、及びトランジスタ310のゲートは接続され、且つ、其々のゲートは、トランジスタ308のドレインと接続されている。トランジスタ307~310の其々のソースは、電源(VDD)に接続されている。
 第一の差動信号(Sp1、Sm1)、第二の差動信号(Sp2、Sm2)、第三の差動信号(Sp3、Sm3)は、トランジスタ301~306の其々のゲートに入力される。基準電圧源(Rp1、Rm1、Rp2、Rm2、Rp3、Rm3)は、トランジスタ301~306の其々のゲートに基準電圧(VRP1、VRM1、VRP2、VRM2、VRP3、VRM3
を印加できる。基準電圧源(Rp1、Rm1)は、第一の差動信号(Sp1、Sm1)に対応する。基準電圧源(Rp2、Rm2)は、第二の差動信号(Sp2、Sm2)に対応する。基準電圧源(Rp3、Rm3)は、第三の差動信号(Sp3、Sm3)に対応する。Sp1とSm1、Sp2とSm2、及びSp3とSm3の其々の差動電圧(VINP1-VINM1、VINP2-VINM2、VINP3-VINM3)は係数乗算され、加算、及び増幅される。加算、及び増幅された結果の反転信号Sopは、トランジスタ307のドレインから出力される。加算、及び増幅された結果の非反転信号Somは、トランジスタ308のドレインから出力される。
 なお本実施の形態では、第一の差動信号~第三の差動信号の其々に対応する基準電圧源を別々に設けている。しかしながら本発明はこの構成に限定されない。第一の差動信号~第三の差動信号の其々に対応する基準電圧は、共通であってもよい。
 オフセットキャンセル回路23は、加算器21の前段に設けられている。オフセットキャンセル回路23は、スイッチ311~322を備えている。スイッチ312、313は、トランジスタ301、302に対する第一の差動信号(Sp1、Sm1)の入力の有無を切り替えることができる。スイッチ316、317は、トランジスタ303、304に対する第二の差動信号(Sp2、Sm2)の入力の有無を切り替えることができる。スイッチ320、321は、トランジスタ305、306に対する第三の差動信号(Sp3、Sm3)の入力の有無を切り替えることができる。スイッチ311、314は、トランジスタ301、302に対する基準電圧源(Rp1、Rm1)からの電圧印加の可否を切り替えることができる。スイッチ315、318は、トランジスタ303、304に対する基準電圧源(Rp2、Rm2)からの電圧印加の可否を切り替えることができる。スイッチ319、322は、トランジスタ305、306に対する基準電圧源(Rp3、Rm3)からの電圧印加の可否を切り替えることができる。
 オフセットキャンセル回路24は、加算器21の後段に設けられている。オフセットキャンセル回路24は、コンデンサ325、326、及び、スイッチ323、324を備えている。トランジスタ307のドレインにコンデンサ325が接続されている。コンデンサ325は、加算器21からの出力信号が伝達する信号線327に直列に挿入されている。コンデンサ325は、ラッチ回路25に接続されている。コンデンサ325とラッチ回路25との接続部分に、スイッチ323が接続されている。スイッチ323は、コモンモード電源(VCOM)に接続されている。スイッチ323は、コンデンサ325とコモンモード電源との導通状態を切り替えることができる。
 トランジスタ308のドレインにコンデンサ326が接続されている。コンデンサ326は、加算器21からの出力信号が伝達する信号線328に直列に挿入されている。コンデンサ326は、ラッチ回路25に接続されている。コンデンサ326とラッチ回路25との接続部分にスイッチ324が接続されている。スイッチ324は、コモンモード電源に接続されている。スイッチ324は、コンデンサ326とコモンモード電源との導通状態を切り替えることができる。
 スイッチ311~324は、クロック信号に同期してON/OFFする。クロック信号のパルス周期を「Φ、Φ、Φ、Φ、・・・」のように示した場合、スイッチ312、313、316、317、320、及び321は、周期ΦのタイミングでONし、周期ΦのタイミングでOFFする。スイッチ311、314、315、318、319、322、323、及び324は、周期ΦのタイミングでONし、周期ΦのタイミングでOFFする。これによって、加算器21から出力される差動信号のオフセット成分を取り除くことができる。
 比較器117の動作原理について説明する。クロック信号の周期が周期Φとなった場合、基準電圧及びオフセット電圧が加算された電圧が、コンデンサ325、326に印加される。これによって、コンデンサ325、326に電荷が蓄積される。クロック信号の周期が周期Φとなった場合、加算器21に対して差動信号(Sp1、Sm1、Sp2、Sm2、Sp3、Sm3)が入力される。入力された其々の差動信号の電圧は、加算器21によって加算され、同時に、利得ブースト回路22によって増幅される。コンデンサ325、326は、加算器21から出力された信号からオフセット電圧を取り除く。オフセット電圧が取り除かれた信号は、ラッチ回路25に入力される。ラッチ回路25によって、差動信号がアナログ信号からデジタル信号に変換される。
 比較器117では、加算器21によって加算された信号は、利得ブースト回路22によって直接増幅される。従って、加算器21に対して供給される信号を増幅するためのプリアンプが不要となる。これによって、比較器117の構成を簡単にでき、比較器117を小型化できる。また比較器117は、オフセットキャンセル回路23,24を備えているので、加算器21から出力される信号のオフセット成分を取り除くことができる。これによって比較器117は、供給される差動信号の電圧を正確に加算して量子化できる。また、コンデンサ325、326は、帰還が無く、加算器21の後段に設けられているので、加算器21から出力される差動信号を、加算器21に対して供給される差動信号に高速に追従させることができる。
 なお上述では、オフセットキャンセル回路24が備えるコンデンサ325,326は、加算器21の後段に設けられていた。本発明はこれに限定されない。コンデンサは、加算器の前段に設けられていてもよい。以下、本発明の変形例について説明する。
 図4を参照し、比較器113(図2参照)の変形例である比較器118について説明する。比較器117(図3参照)と同一の構成部分については、同一符号を付し、説明を省略又は簡略する。比較器118は、加算器41、利得ブースト回路22、オフセットキャンセル回路43、及びラッチ回路25を備えている。
 加算器41は、加算器21(図3参照)と同様、トランジスタ301~308を備えている。加算器41は、トランジスタ301~306が、其々、ドレインとゲートとの間にスイッチ401~406を備えている点において、加算器21と異なっている。スイッチ401~406は、其々のトランジスタのドレインとゲートとの間の導通状態を切り替えることができる。スイッチ401~406は、周期ΦのタイミングでONし、周期ΦのタイミングでOFFする。
 オフセットキャンセル回路43は、オフセットキャンセル回路23(図3参照)に加えて、スイッチ401~406と、コンデンサ407~412を備えている。第一の差動信号(Sp1、Sm1)とトランジスタ301、302との間に、コンデンサ407、408が設けられている。第二の差動信号(Sp2、Sm2)とトランジスタ303、304との間に、コンデンサ409、410が設けられている。第三の差動信号(Sp3、Sm3)とトランジスタ305,306との間に、コンデンサ411,412が設けられている。コンデンサ407~412は、供給される差動信号が伝達する信号線413~418に直列に挿入されている。
 以上説明したように、比較器118は、加算器41の前段に、コンデンサ407~412を備えているので、加算器の後段にコンデンサを備えた比較器117と比較して、供給する差動信号のダイナミックレンジを大きくできる。
 図5を参照し、ΔΣ型AD変換器2(図2参照)の一実施形態であるΔΣ型AD変換器3の回路構成について説明する。ΔΣ型AD変換器2と同一の構成部分については、同一符号を付し、説明を省略又は簡略する。減算器101は、スイッチ511、512、及びコンデンサ531を備えている。ループフィルタ102は、スイッチ513~520、コンデンサ532~534、及び、オペアンプ541、542を備えている。ループフィルタ102は、所謂スイッチドキャパシター方式で動作する。供給される差動信号を直接比較器113へ伝達する信号線543には、スイッチ521,及び522が設けられている。比較器113としては、例えば上述した比較器117(図3参照)や比較器118(図4参照)が使用される。
 スイッチ511~522は、クロック信号に同期してON/OFFする。クロック信号のパルス周期を「Φ、Φ、Φ、Φ、・・・」のように示した場合、スイッチ511、513、515、517、519、及び521は、周期ΦのタイミングでONし、周期ΦのタイミングでOFFする。スイッチ512、514、516、518、520、及び522は、周期ΦのタイミングでONし、周期ΦのタイミングでOFFする。これによってループフィルタ102は、所定の周波数特性を有するフィルタとして動作する。
 ΔΣ型AD変換器3に対して供給される差動信号の同相モード電圧、及び、オペアンプ541、542の出力信号の同相モード電圧は、電源電圧の中心値(VDD/2)に設定される。従って、比較器113の入力信号レンジを大きくとることが出来る。なお、比較器113への入力信号に対して乗算される係数(図中「1」「1」「0.4」)は、加算器112が備えるN型MOSトランジスタのチャネル幅とチャネル長との比(W/L)によって調整可能である。このようにΔΣ型AD変換器3では、加算器112において信号が加算される場合に、加算器のN型MOSトランジスタのサイズを調整することで、所望の係数を各信号に乗算することができる。またこの係数は、ΔΣ型AD変換器3が所望のノイズシェーピングを実現可能なように、システム設計によって最適値が決定される。
 ΔΣ型AD変換器3の特性が、回路シミュレーションによって評価された。回路シミュレータとして、SPICEが使用された。評価する回路モデルとして、スイッチドキャパシター方式のループフィルタ102を備えたΔΣ型AD変換器3(図5参照)が使用された。比較器113として、比較器117(図3参照)、及び比較器118(図4参照)が参照された。
 シミュレーション時におけるトランジスタのパラメータとして、TSMC製CMOSトランジスタモデル(0.18μm)のパラメータが使用された。ループフィルタ102が備えるオペアンプ541及び542、スイッチ511~522、及び、DAC105は、アナログ機能ブロックに置き換えられた。量子化器111内には、比較器117もしくは比較器118が合計7つ設けられた。シミュレーションは、オーバーサンプリング比を16とした条件下で実行された。差動信号(周波数:2.4kHz)がΔΣ型AD変換器3に供給された場合における、出力信号スペクトラム(PSD)の周波数特性が評価された。比較器117に基づいた回路構成での出力信号スペクトラムの周波数特性を、図6に示す。比較器118に基づいた回路構成での出力信号スペクトラムの周波数特性を、図7に示す。またこれらの結果に基づいて、信号対雑音+歪比(SNDR)を算出した。また、回路性能上あるいは半導体製造上の影響で、比較器に入力される差動信号の同相モード電圧に、オフセット電圧が加算される場合がある。この場合、同相モード電圧は、設計上設定された電源電圧の中心値(VDD/2)に対してずれる。従って以下では、その影響を検証するために、算出したSNDRとオフセット電圧との関係を検討した(図8参照)。解析は、加算器41を備えた比較器118が用いられた。
 図6及び図7に示されるように、高周波帯域(10kHz~)における出力信号スペクトラムの傾きは、いずれの場合も約40dB/decであった。一般的に、二次のノイズシェーピングのΔΣ型変換器におけるPSDの周波数特性は、傾きが約40dB/decとなることが知られている。これら結果から、ΔΣ型AD変換器3がΔΣ型AD変換器として正常に機能していることがわかった。
 図6の結果から、比較器117に基づいた回路構成でのSNDRは57.43dBとなることがわかった。また図7の結果から、比較器118に基づいた回路構成でのSNDRは60.88dBとなった。これらの結果から、比較器113としていずれの構成が採用された場合でも、ΔΣ型AD変換器3は良好なSNDRを示すことがわかった。
 図8に示す結果のうち、Vin、Vop1及びVop2は、其々、信号線541,542、及び543を介して入力される信号が設計上の設定値からオフセットを持った時のΔΣ型AD変換器のSNDRを示している。図8の結果から、供給される差動信号のオフセット電圧が変化した場合でも、、SNDRは常に安定して良好な値を示すことがわかった。この結果から、比較器118は設計上のマージンを見込むことが可能であり、また製造上のばらつきに対しても強い回路であることがいえる。

Claims (7)

  1.  複数の差動信号の電圧を加算して出力する加算器であって、
     複数の前記差動信号を構成する其々の信号に対応付けて設けられる複数の第一トランジスタであって、前記信号がゲートに入力される複数の第一トランジスタと、
     複数の前記第一トランジスタに対して共通に接続される負荷抵抗部であって、前記差動信号のうち一方の前記信号が入力される複数の前記第一トランジスタの其々に対して共通に接続される第一負荷抵抗部、及び、他方の前記信号が入力される複数の前記第一トランジスタの其々に対して共通に接続される第二負荷抵抗部を備えた負荷抵抗部と
    を備え、
     前記第一トランジスタのソースはグランドに接続され、
     前記第一トランジスタのドレインは、前記負荷抵抗部に接続され、
     前記負荷抵抗部は、電源に接続されることを特徴とする加算器。
  2.  前記第一負荷抵抗部及び前記第二負荷抵抗部は、其々、ダイオード接続した第二トランジスタを備えたことを特徴とする請求項1に記載の加算器。
  3.  請求項2に記載の前記加算器と、
     一対の第三トランジスタと
    を備え、
     一方の前記第三トランジスタのゲートは、前記第一負荷抵抗部が備える前記第二トランジスタのゲートに接続され、一方の前記第三トランジスタのドレインは、前記第二負荷抵抗部が備える前記第二トランジスタのドレインに接続され、
     他方の前記第三トランジスタのゲートは、前記第二負荷抵抗部が備える前記第二トランジスタのゲートに接続され、他方の前記第三トランジスタのドレインは、前記第一負荷抵抗部が備える前記第二トランジスタのドレインに接続され、
     一対の前記第三トランジスタのソースは、電源に接続されることを特徴とする比較器。
  4.  前記信号を伝送する信号線に直列に挿入されたコンデンサと、前記信号線の導通状態を切り替えるスイッチとを含むオフセットキャンセル回路を更に備えたことを特徴とする請求項3に記載の比較器。
  5.  前記コンデンサは、
     前記加算器の前段側又は後段側のうち少なくとも一方に設けられていることを特徴とする請求項4に記載の比較器。
  6.  請求項1又は2に記載の前記加算器、ループフィルタ、及び量子化器を備えたΔΣ型アナログデジタル変換器であって、
     前記加算器は、
     前記ループフィルタを通過した前記差動信号、及び、外部から直接入力される前記差動信号の電圧を加算し、
     前記量子化器は、
     前記加算器から出力される信号を量子化することを特徴とするΔΣ型アナログデジタル変換器。
  7.  請求項3から5のいずれかに記載の前記比較器、及びループフィルタを備えたΔΣ型アナログデジタル変換器であって、
     前記比較器は、
     前記加算器の後段側に設けられたラッチ回路を備え、
     前記ループフィルタを通過した前記差動信号、及び、外部から直接入力される前記差動信号の電圧を、前記加算器によって加算し、前記加算器から出力される信号を前記ラッチ回路によって量子化することを特徴とするΔΣ型アナログデジタル変換器。
PCT/JP2010/057538 2009-05-03 2010-04-28 加算器、比較器、及び、δς型アナログデジタル変換器 WO2010128637A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011512342A JPWO2010128637A1 (ja) 2009-05-03 2010-04-28 加算器、比較器、及び、δς型アナログデジタル変換器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009112382 2009-05-03
JP2009-112382 2009-05-03

Publications (1)

Publication Number Publication Date
WO2010128637A1 true WO2010128637A1 (ja) 2010-11-11

Family

ID=43050138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057538 WO2010128637A1 (ja) 2009-05-03 2010-04-28 加算器、比較器、及び、δς型アナログデジタル変換器

Country Status (2)

Country Link
JP (1) JPWO2010128637A1 (ja)
WO (1) WO2010128637A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055401A (ja) * 2011-09-01 2013-03-21 Mitsubishi Electric Corp Δς変調器およびそれを用いたa/d変換器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05252035A (ja) * 1992-03-05 1993-09-28 Mitsubishi Electric Corp 差動増幅器,比較器およびa/d変換器
JPH07297720A (ja) * 1994-04-25 1995-11-10 Hitachi Ltd コンパレータ
JPH0974340A (ja) * 1995-09-04 1997-03-18 Toshiba Corp コンパレータ回路
JP2000156616A (ja) * 1998-11-19 2000-06-06 Sony Corp 多入力差動増幅回路
JP2001285037A (ja) * 2000-03-28 2001-10-12 Fuji Electric Co Ltd コンパレータ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05252035A (ja) * 1992-03-05 1993-09-28 Mitsubishi Electric Corp 差動増幅器,比較器およびa/d変換器
JPH07297720A (ja) * 1994-04-25 1995-11-10 Hitachi Ltd コンパレータ
JPH0974340A (ja) * 1995-09-04 1997-03-18 Toshiba Corp コンパレータ回路
JP2000156616A (ja) * 1998-11-19 2000-06-06 Sony Corp 多入力差動増幅回路
JP2001285037A (ja) * 2000-03-28 2001-10-12 Fuji Electric Co Ltd コンパレータ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BEHZAD RAZAVI, ANALOG CMOS SHUSEKI KAIRO NO SEKKEI KISOHEN, 30 March 2003 (2003-03-30), pages 127 *
J.SILVA ET AL.: "Wideband low-distortion delta-sigma ADC topology", IEE ELECTRONICS LETTERS, vol. 37, no. 12, 1 June 2001 (2001-06-01), pages 737 - 738 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055401A (ja) * 2011-09-01 2013-03-21 Mitsubishi Electric Corp Δς変調器およびそれを用いたa/d変換器

Also Published As

Publication number Publication date
JPWO2010128637A1 (ja) 2012-11-01

Similar Documents

Publication Publication Date Title
Karmakar et al. A 280$\mu $ W Dynamic Zoom ADC With 120 dB DR and 118 dB SNDR in 1 kHz BW
JP4302672B2 (ja) Ad変換器
Gönen et al. A continuous-time zoom ADC for low-power audio applications
US8890608B2 (en) Digital input class-D audio amplifier
US7880654B2 (en) Continuous-time sigma-delta modulator with multiple feedback paths having independent delays
US8502719B2 (en) Continuous-time oversampled converter having passive filter
Lee et al. A low-power incremental delta–sigma ADC for CMOS image sensors
US7289055B2 (en) Analog-digital converter with gain adjustment for high-speed operation
Custódio et al. A 1.2-V 165-/spl mu/W 0.29-mm 2 multibit sigma-delta ADC for hearing aids using nonlinear DACs and with over 91 dB dynamic-range
CN111342840B (zh) 精密的电流到数字转换器
EP1158663A3 (en) Digital switching amplifier
US9013342B2 (en) Low-power sigma-delta converter
JP6358267B2 (ja) 積分器、デルタシグマ変調器および通信装置
WO2010128637A1 (ja) 加算器、比較器、及び、δς型アナログデジタル変換器
KR20160072282A (ko) 2차 노이즈 쉐이핑 기법을 적용한 sar adc
US8860491B1 (en) Integrator output swing reduction technique for sigma-delta analog-to-digital converters
Manivannan et al. A 1 MHz bandwidth, filtering continuous-time delta-sigma ADC with 36 dBFS out-of-band IIP 3 and 76 dB SNDR
Liao et al. A 1 V 175 μW 94.6 dB SNDR 25 kHz bandwidth delta-sigma modulator using segmented integration techniques
JP2007300225A (ja) デルタシグマad変換器および電子機器
ElShater et al. Gm-free assisted opamp technique for continuous time delta-sigma modulators
Fouto et al. A 3rd order MASH switched-capacitor ΣΔM using ultra incomplete settling employing an area reduction technique
Kwon et al. A Single-Bit 2nd-Order Delta-Sigma Modulator with 10-㎛ Column-Pitch for a Low Noise CMOS Image Sensor
Tambussi et al. Trade-Offs in Active and Passive NS-SAR ADCs Architectures for Ultra-Low Power Audio Activity Detection Applications
Chen et al. A 3rd-order 1-bit Σ-Δ modulator with a 2-tap FIR filter embedded
Maghami et al. A hybrid CT/DT double-sampled SMASH Σ∆ modulator for broadband applications in 90 nm CMOS technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10772156

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2011512342

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10772156

Country of ref document: EP

Kind code of ref document: A1