WO2010127623A1 - 探测参考信号发送功率配置方法、网络侧设备及ue - Google Patents

探测参考信号发送功率配置方法、网络侧设备及ue Download PDF

Info

Publication number
WO2010127623A1
WO2010127623A1 PCT/CN2010/072468 CN2010072468W WO2010127623A1 WO 2010127623 A1 WO2010127623 A1 WO 2010127623A1 CN 2010072468 W CN2010072468 W CN 2010072468W WO 2010127623 A1 WO2010127623 A1 WO 2010127623A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
transmission power
cell
srs transmission
path loss
Prior art date
Application number
PCT/CN2010/072468
Other languages
English (en)
French (fr)
Inventor
高秋彬
沈祖康
缪德山
潘学明
孙韶辉
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US13/319,031 priority Critical patent/US9042932B2/en
Priority to KR1020117028848A priority patent/KR101348595B1/ko
Priority to EP10772026.0A priority patent/EP2429244B1/en
Publication of WO2010127623A1 publication Critical patent/WO2010127623A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels

Definitions

  • the present invention relates to the field of 3GPP long-term evolution system technologies, and in particular, to a sounding reference signal (SRS, Sounding Reference Signal) transmission power configuration method, a network side device, and a UE.
  • SRS Sounding Reference Signal
  • the UE sends an SRS on the time and frequency resources specified by the camping cell, and the Sounding Reference Signal detects the camped cell, and the evolved base station (eNodeB) in the cell receives the signal according to the SRS and the eNodeB sent by the UE.
  • the channel information from the UE to the eNodeB is estimated as the basis for uplink frequency scheduling, MCS selection, and resource allocation.
  • the power of the SRS sent by the UE is calculated according to the indication of the eNodeB and the path loss of the UE to the camping cell, and the specific formula (1) is adopted:
  • P SRS (0 is the transmit power of the SRS, is the subframe number where the SRS is located, / ⁇ « is the maximum transmit power of 1 ⁇ , / ⁇ is the power parameter of 1 ⁇ , and M SRS is the bandwidth of the SRS transmission, P - PUSCH ( ) and / (0 are the same as the corresponding power parameters of the PUSCH channel, PL is the path loss of the UE to its camping cell, and W.PL is the path loss compensation amount.
  • the eNodeB sends the power parameter of the SRS through the parameter configuration command ( Including RS - ⁇ , M SRS , P 0 _ PUSCH (J) ⁇ « and ) are indicated to the UE; the UE calculates the PL, and then uses the PL, P CMAX , and the received SRS transmission power parameters, and calculates according to the equation (1) SRS transmission power.
  • multi-point coordinated transmission Transmission technology to improve the quality of service for users at the edge of the community.
  • the multi-point coordinated transmission technology improves the quality of the received signals and reduces the interference between the cells through the joint scheduling or coordinated transmission of multiple cells separated geographically, thereby effectively improving the system capacity and the spectral efficiency of the edge users.
  • channel information of a UE to multiple cells is an important factor affecting system performance.
  • channel detection needs to be performed on multiple cells, that is, SRS is transmitted to multiple cells.
  • the transmission power of the SRS is still determined by using the formula (1); however, since the distances of the multiple UEs to the UE are different, the path loss of the corresponding UE to each cell is also different, and the UE still resides according to the UE.
  • the path loss of the cell calculates the transmit power of the SRS, which causes the SRS signal transmitted by the UE received by the far eNodeB to be weak, resulting in poor channel estimation accuracy.
  • the embodiments of the present invention provide two SRS transmission power configuration methods, which can ensure that the cell with poor channel quality receives the power of the SRS, thereby ensuring the accuracy of the channel estimation.
  • the embodiment of the present invention further provides a network side device and a UE, which can ensure that the cell with poor channel quality receives the power of the SRS, thereby ensuring channel estimation accuracy.
  • a sounding reference signal (SRS) transmission power configuration method includes:
  • the network side device determines the SRS transmission power parameter according to the power level of the signal sent by the to-be-detected cell before receiving the user equipment UE and/or the cell information that the UE needs to detect, and sends the SRS transmission power parameter to the UE.
  • a method for configuring a SRS transmission power method includes:
  • the UE calculates the path loss of each cell to be detected to the UE, and calculates the SRS transmission power by using the path loss and the SRS transmission power parameter.
  • a network side device is configured to determine an SRS transmission power parameter according to a power level of a signal that is sent by the UE to be detected before receiving the UE and/or a cell information that the UE needs to detect, and send the SRS transmission power parameter to the UE.
  • a UE is configured to receive an SRS transmission power parameter sent by a network side device, calculate a path loss of each to-be-detected cell to the UE, and calculate the SRS transmission power by using the path loss and the SRS transmission power parameter.
  • the SRS transmission power configuration method, the network side device, and the UE proposed by the present invention can comprehensively consider the path loss of multiple cells that need to be detected when calculating the SRS transmission power, and ensure that the cell with poor channel quality receives the power of the SRS, thereby ensuring the channel. Estimated accuracy. BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic structural diagram of an application system according to an embodiment of the present invention. Mode for carrying out the invention
  • the SRS transmission power configuration method and system of the present invention comprehensively considers the path loss of multiple cells to be detected when calculating the SRS transmission power, and ensures that the cell with poor channel quality receives the power of the SRS, thereby ensuring the accuracy of the channel estimation.
  • the path loss of multiple cells to be detected there are several ways to consider the path loss of multiple cells to be detected, such as:
  • the network side device sends the signal to the UE according to the path loss of the UE to multiple to-be-detected cells.
  • SRS transmission power parameters (including RS - QFFSET , M SRS , ⁇ . - PUSCH ( ), and / «) are adjusted (of course, due to the characteristics of the parameters themselves, the network side device can only adjust some of the parameters), the UE adopts adjustment
  • the SRS transmission power parameter calculates the SRS transmission power
  • the network side device calculates the power adjustment amount according to the SRS or other signals sent by the UE to be detected before receiving the UE, and sends the SRS transmission power parameter and A to the UE; the UE calculates the SRS transmission power and then uses P d to adjust; Or, the UE calculates a path loss of each to-be-detected cell and considers the path loss when calculating the SRS transmission power;
  • the UE calculates the SRS transmission power and adjusts according to the pre-agreed adjustment amount; or, combines the foregoing several situations.
  • FIG. 1 is a schematic structural diagram of an application system according to an embodiment of the present invention.
  • the UE resides in cell 1 and probes cells 1, 2 and 3.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • Step 101 The network side device determines an SRS transmission power parameter, and determines an SRS transmission power parameter according to the power level of the signal sent by the UE to be detected before the UE or the number of cells that the UE needs to detect, and sends the SRS transmission power parameter to the UE.
  • the signal previously sent by the UE may be an SRS or other signal; the network side device may send the P SRS in the power parameter to the SRS .
  • FFSET or / (0 to adjust;
  • the SRS transmission power parameters include: P SRS QFFSET , M srs , ⁇ . - PUSCH ( ), ⁇ ) and / ( ); wherein the p Q - PUSCH ( ), and / (o are power levels and/or UEs of the signal transmitted by the network side device according to each of the to-be-detected cells before receiving the UE
  • the SRS transmission power parameter adjusted by the cell information to be detected; wherein the cell information may be information such as the number of cells, the cell location, the cell radius, and the cell topology.
  • the network side device may send the adjusted SRS transmission power parameter to the UE through a dedicated parameter configuration command, or may be sent through an existing parameter configuration command; and may further include indicating whether the UE performs the Multi-cell channel sounding or includes a set of cells that require channel sounding.
  • the network side device may specifically be a resident cell of the UE.
  • MME mobility management entity
  • the set of cells to be detected is a set of cells 1 2 and 3.
  • Step 103 The UE feeds back the SRS transmission power to the eNodeB of the cell 1, the cell 1
  • the eNodeB sends the SRS transmission power to the eNodeBs of all the cells to be detected (ie, cells 2 and 3); or the eNodeB of the cell 1 calculates the SRS transmission power according to other information fed back by the UE, such as the Power Head Room, and sends the SRS transmission power.
  • the eNodeB to the cells 2 and 3.
  • the UE directly feeds the SRS transmission power to the eNodeB of all the cells to be detected.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • Step 201 Same as step 101.
  • Step 202 When the UE sends the SRS to detect 3 cells once, the UE calculates the path loss PL1 of the cell 1, the path loss PL1 to the cell 2, and the path loss PL3 to the cell 3.
  • the path loss PL2 of the UE to the cell 2 is taken as PL, or the average value of PL2 and PL1 is taken as PL;
  • the UE calculates the SRS transmission power using the formula (1):
  • Embodiment 3 Step 301: The network side receives the device to be detected in each cell to the power level of a signal transmitted from the user equipment UE before the UE or the number of cells to be detected SRS transmission power parameter is determined; the SRS transmission parameters and the transmission power P d to the UE.
  • the SRS transmission power parameters include: P SRS — QFFSET , M SRS , ⁇ . – PUSCH ( ), ⁇ ( ⁇ , / (0 and where, the amount of power adjustment determined for the network side device;
  • the signal previously sent by the UE may be an SRS or other signal.
  • the network side device may send the SRS transmission power parameter to the UE through a dedicated parameter configuration command, or may transmit through an existing parameter configuration command; and may further include indicating whether the UE performs the multi-cell channel.
  • Step 302 The UE calculates the path loss PL of the camped cell (ie, cell 1), and uses the received SRS transmission power parameter and the calculated PL to calculate the SRS transmission power by using the following formula:
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • Step 401 Same as step 301.
  • Step 402 When the UE sends the SRS to detect 3 cells once, the UE calculates the path loss PL1 of the cell 1, the path loss PL1 to the cell 2, and the path loss PL3 to the cell 3.
  • the path loss PL2 of the UE to the cell 2 is taken as PL, or the average value of PL2 and PL1 is taken as PL;
  • the UE uses the received SRS transmission power parameter and the calculated PL, using the following formula Calculate the SRS transmit power:
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • Step 501 The UE receives an SRS transmission power parameter sent by the network side device.
  • this step it may further include indicating whether the UE performs multi-cell channel sounding or includes a set of cells that need to perform channel sounding.
  • Step 502 The UE determines the path loss PL, and the specific calculation manner is:
  • the path loss PL2 of the UE to the cell 2 is taken as a PL, or the average value of the PL2 and the PL1 is used as a PL UE to use the received SRS transmission power parameter and determined.
  • PL using formula (1) to calculate SRS transmit power:
  • P SRS ( ) min ⁇ P CMAX , SRS _OFFSET + 10 log 10 ( SRS ) + P 0 PUSCH ( j) + a( j) ⁇ PL + f ( ⁇ ) ⁇ Step 503: Same as step 103.
  • Step 601 The same as step 501.
  • Step 602 The UE calculates the path loss to the camped cell (Cell 1), and uses the received SRS transmit power parameter and the calculated path loss of the UE to the camped cell, and calculates the SRS transmit power by using the following formula:
  • the pre-agreed adjustment value may be determined according to the number of cells to be detected.
  • Step 603 Same as step 103.
  • Step 701 The same as step 601.
  • Step 702 The UE determines the path loss PL, and the specific calculation manner is:
  • the path loss PL2 of the UE to the cell 2 is taken as PL, or the average value of PL2 and PL1 is taken as PL.
  • the UE uses the received SRS transmission power parameter and the determined PL to calculate the SRS transmission power using the following formula:
  • Step 703 Same as step 103.
  • Step 801 The same as step 301.
  • the pre-agreed adjustment value may be determined according to the number of cells to be detected.
  • Step 803 Same as step 103.
  • Step 901 The same as step 801.
  • Step 902 The UE determines the path loss PL, and the specific calculation manner is:
  • the path loss PL2 of the UE to the cell 2 is taken as PL, or the average value of PL2 and PL1 is taken as PL.
  • the UE uses the received SRS transmission power parameter and the determined PL to calculate the SRS transmission power using the following formula:
  • P S RS (0 min ⁇ P CMAX , SRS _OFFSET + 101og 10 (M SRS ) + 0 _PUSCH U) + «(7) ⁇ PL + f (i) + P D + P F
  • the adjustment value may be determined according to the number of cells to be detected.
  • Step 903 Same as step 103.
  • the present invention further provides a network side device, configured to determine an SRS transmission power parameter according to a power level of a signal sent by a UE to be detected before receiving a UE and/or a cell information that the UE needs to detect, and send the SRS transmission power parameter. To the UE.
  • the embodiment of the present invention further provides a UE, which is configured to receive an SRS sent by a network side device.
  • the power parameter is sent, and the path loss of each cell to be detected to the UE is calculated, and the SRS transmission power is calculated by using the path loss and the SRS transmission power parameter.
  • the SRS transmission power configuration method and system proposed by the present invention comprehensively consider the path loss of multiple cells that need to be detected, and the path loss is limited as much as possible under the premise of ensuring the received signal quality of the cell with the largest path loss.
  • the SRS transmission power according to the present invention it is possible to ensure that the cell with poor channel quality receives the power of the SRS, thereby ensuring the accuracy of the channel estimation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Quality & Reliability (AREA)

Description

探测参考信号发送功率配置方法、 网络侧设备及 UE 技术领域
本发明涉及 3GPP长期演进系统技术领域, 特别涉及探测参考信号 (SRS, Sounding Reference Signal)发送功率配置方法、 网络侧设备及 UE„ 发明背景
LTE系统中, UE在其驻留小区指定的时间和频率资源上发送 SRS, Sounding Reference Signal对驻留小区进行探测, 小区中的演进型基站 ( eNodeB )根据 UE发送的 SRS和 eNodeB接收到的信号估计出 UE到 eNodeB的信道信息,作为上行频率调度、 MCS选择和资源分配的依据。
UE发送 SRS的功率是根据 eNodeB的指示以及 UE到其驻留小区的 路径损失计算得出的, 具体采用式( 1 ):
Figure imgf000003_0001
PSRS— OFFSET +10 log10(MSRS) + PO FVSCR(j) + a(j) · PL + f(i)}
(1)
其中, PSRS(0是 SRS的发送功率, 是 SRS所在子帧号, /^«是1^最 大的发送功率, /^ ^^是1^的功率参数, MSRS是 SRS发送的带宽, P。― PUSCH( )和 /(0与 PUSCH信道的相应功率参数相同, PL是 UE到其驻 留小区的路径损失, W.PL是路损补偿量。 eNodeB通过参数配置命令 将 SRS发送功率参数 (包括 RS―。 ΕΤ、 MSRS、 P0_PUSCH(J) ^ « 和 ) 指示给 UE; UE计算 PL, 然后利用 PL、 PCMAX、 以及接收的上述 SRS发 送功率参数, 根据式( 1 )计算 SRS的发送功率。
在 3GPP长期演进升级( LTE- Advanced ) 系统中, 采用多点协同传 输技术来提高小区边缘用户的服务质量。 多点协同传输技术通过地理位 置上分离的多个小区的联合调度或者协同传输, 提高用户接收信号的质 量, 降低小区间的干扰, 从而有效提高系统容量和边缘用户频谱效率。 在多点协同传输技术中, UE到多个小区的信道信息是影响系统性能的 一个重要因素。 对于一个支持多点协同传输技术的 UE, 需要对多个小 区进行信道探测, 即向多个小区发送 SRS。 UE发送 SRS时, 仍采用式 ( 1 )确定 SRS的发送功率; 但是, 由于多个小区到 UE的距离不同, 相应的 UE到各小区的路径损失也不同, 此时仍然按照 UE到其驻留小 区的路径损失计算 SRS的发送功率, 就会造成较远的 eNodeB接收到的 UE发送的 SRS信号弱, 导致信道估计的精度也会较差。 发明内容
本发明实施例提出两种 SRS发送功率配置方法, 能够保证信道质量 较差的小区接收 SRS的功率, 从而保证信道估计的精度。
本发明实施例还提出一种网络侧设备和 UE, 能够保证信道质量较 差的小区接收 SRS的功率, 从而保证信道估计的精度。
本发明实施例的技术方案是这样实现的:
一种探测参考信号 (SRS )发送功率配置方法, 包括:
网络侧设备根据各待探测小区接收到用户设备 UE之前发送的信号 的功率水平和 /或 UE需要探测的小区信息确定 SRS发送功率参数,将所 述 SRS发送功率参数发送至 UE。
一种 SRS发送功率配置方法方法包括:
UE接收网络侧设备发送的 SRS发送功率参数;
UE计算各待探测小区到 UE的路径损失,采用所述路径损失和 SRS 发送功率参数计算 SRS发送功率。 一种网络侧设备, 用于根据各待探测小区接收到 UE之前发送的信 号的功率水平和 /或 UE需要探测的小区信息确定 SRS发送功率参数,将 所述 SRS发送功率参数发送至 UE。
一种 UE, 用于接收网络侧设备发送的 SRS发送功率参数, 计算各 待探测小区到 UE的路径损失, 采用所述路径损失和 SRS发送功率参数 计算 SRS发送功率。
本发明提出的 SRS发送功率配置方法、 网络侧设备和 UE, 能够在 计算 SRS发送功率时综合考虑需要探测的多个小区的路径损失,保证信 道质量较差的小区接收 SRS的功率, 从而保证信道估计的精度。 附图简要说明
图 1为本发明实施例应用系统的结构示意图。 实施本发明的方式
本发明提 SRS发送功率配置方法和系统, 在计算 SRS发送功率时 综合考虑需要探测的多个小区的路径损失, 保证信道质量较差的小区接 收 SRS的功率, 从而保证信道估计的精度。 其中, 考虑多个待探测小区 路径损失的方式可以有几种情况, 如:
网络侧设备根据 UE到多个待探测小区的路径损失对发送给 UE的
SRS发送功率参数(包括 RSQFFSET、 MSRS、 Ρ。— PUSCH( )、 和 /« )进行 调整(当然, 由于参数本身的特性, 网络侧设备只能调整其中的部分参 数), UE采用调整后的 SRS发送功率参数计算 SRS发送功率;
或者, 网络侧设备根据各待探测小区接收到 UE之前发送的 SRS或 其他信号, 计算功率调整量 ,将 SRS发送功率参数和 A发送至 UE; UE计算 SRS发送功率后采用 Pd进行调整; 或者, UE计算各个待探测小区的路径损失并在计算 SRS发送功率 时考虑该路径损失;
或者, UE计算出 SRS发送功率后根据预先约定的调整量进行调整; 或者, 采用前述几种情况结合的方式。
以下举具体的实施例对本发明提出的 SRS 发送功率配置方法作详 细介绍:
参见图 1 , 图 1为本发明实施例应用系统的结构示意图。 在图 1中, UE驻留于小区 1 , 对小区 1、 2和 3进行探测。
实施例一:
步骤 101: 网络侧设备确定 SRS发送功率参数, 根据各待探测小区 接收到 UE之前发送的信号的功率水平或者 UE需要探测的小区数目, 确定 SRS发送功率参数, 将 SRS发送功率参数发送至 UE。
在本步骤中, UE之前发送的信号可以为 SRS或者其他信号; 网络 侧设备可以对 SRS发送功率参数中的 PSRSFFSET、 或/ (0进行调整;
SRS发送功率参数包括: PSRS QFFSET、 Msrs、 Ρ。— PUSCH( )、 σ)和/ ( ) ; 其中, 所述 pQPUSCH( )、 和/ (o为网络侧设备根据各待探测小区接收到 UE 之前发送的信号的功率水平和 /或 UE 需要探测的小区信息调整的 SRS 发送功率参数; 其中, 所述小区信息可以是小区数目、 小区位置、 小区 半径、 小区拓朴结构等信息。
另夕卜,在本步骤中, 网络侧设备可以通过专用的参数配置命令向 UE 发送调整后的 SRS发送功率参数、也可以通过已有的参数配置命令进行 发送; 并且可以进一步包括指示 UE是否进行多小区信道探测或者包括 需要进行信道探测的小区集合。
在本步骤中, 所述的网络侧设备具体可以为 UE 的驻留小区的 eNodeB , 或其他待探测小区的 eNodeB , 或所述 eNodeB所属的移动 管理实体(MME) 。 在本实施例中, 待探测小区集合为小区 1 2和 3 的集合。
步骤 102: UE计算到驻留小区(即小区 1)的路径损失 PL, 利用调 整后的 SRS发送功率参数和 PL , 采用公式( 1 )计算 SRS发送功率: PSRS (0 = min{PCMAX , SRS_OFFSET +動&0 (MSRS ) +尸。 ( j) + a( j)■ PL + f (Ϊ) } 步骤 103: UE将所述 SRS发送功率反馈至小区 1的 eNodeB, 小区 1的 eNodeB将所述 SRS发送功率发送至所有待探测小区 (即小区 2和 3) 的 eNodeB; 或者, 小区 1的 eNodeB根据 UE反馈的其他信息, 如 Power Head Room计算 SRS发送功率, 将 SRS发送功率发送至小区 2 和 3的 eNodeB。或者, UE直接将 SRS发送功率反馈到所有待探测的小 区的 eNodeB
实施例二:
步骤 201: 与步骤 101相同。
步骤 202: 当 UE发送一次 SRS探测 3个小区时, UE计算到小区 1 的路径损失 PL1、 到小区 2的路径损失 PL1和到小区 3的路径损失 PL3 , 采用特定的函数计算 PL,如:取其中的最大值,即/^ = 1^^/^1,/^2,/^3); 或者, 取三者的平均值, 即/^ = (/^1 + /^2 + /^3)/3; 或者也可以采用其他 函数计算 5 L;
当 UE发送一次 SRS探测一个小区时, 如待探测小区 2, 则将 UE 到小区 2的路径损失 PL2作为 PL, 或者将 PL2与 PL1的平均值作为 PL;
UE采用公式( 1 )计算 SRS发送功率:
^RS (0 = min{PCMAX , SRS_OFFSET +動&0 (MSRS ) + 0_PUSCH (j) + (j)■ PL + f (Ϊ) } 步骤 203: 与步骤 103相同。
实施例三: 步骤 301: 网络侧设备根据各待探测小区接收到用户设备 UE之前 发送的信号的功率水平或 UE需要探测的小区数目确定 SRS发送功率参 数; 将 SRS发送功率参数和 Pd发送至 UE。 其中, SRS发送功率参数包括: PSRSQFFSET、 MSRS、 Ρ。— PUSCH( )、 α(β、 /(0和 其中, 为网络侧设备确定出的功率调整量;
在本步骤, UE之前发送的信号可以为 SRS或者其他信号。
另夕卜,在本步骤中, 网络侧设备可以通过专用的参数配置命令向 UE 发送 SRS发送功率参数、也可以通过已有的参数配置命令进行发送; 并 且可以进一步包括指示 UE是否进行多小区信道探测或者包括需要进行 信道探测的小区集合。
步骤 302: UE计算到驻留小区(即小区 1)的路径损失 PL, 利用接 收的 SRS发送功率参数和计算出的 PL , 采用下列公式计算 SRS发送功 率:
PSRS() = min{PCMAX, SRS OFFSET +
Figure imgf000008_0001
+ O_PUSCH ( ) + - PL+f(i) + Pd } 步骤 303: 与步骤 103相同。
实施例四:
步骤 401: 与步骤 301相同。
步骤 402: 当 UE发送一次 SRS探测 3个小区时, UE计算到小区 1 的路径损失 PL1、 到小区 2的路径损失 PL1和到小区 3的路径损失 PL3 , 采用特定的函数计算 PL,如:取其中的最大值,即/5^!^^/^,/5^,/^); 或者, 取三者的平均值, 即/^ = (/^1 + /^2 + /^3)/3; 或者也可以采用其他 函数计算 PL;
当 UE发送一次 SRS探测一个小区时, 如待探测小区 2, 则将 UE 到小区 2的路径损失 PL2作为 PL, 或者将 PL2与 PL1的平均值作为 PL;
UE利用接收的 SRS发送功率参数和计算出的 PL , 采用下列公式计 算 SRS发送功率:
PSRS ('·) =
Figure imgf000009_0001
RS— OFFSET + 10 log10 ( SRS ) + PO msCR( j) + ( j) · PL + f(i) + PD } 步骤 403: 与步骤 103相同。
实施例五:
步骤 501: UE接收网络侧设备发送的 SRS发送功率参数。
在本步骤中, 可以进一步包括指示 UE是否进行多小区信道探测或 者包括需要进行信道探测的小区集合。
步骤 502: UE确定路径损失 PL, 具体计算方式为:
当 UE发送一次 SRS探测 3个小区时, UE计算到小区 1的路径损 失 PL1、 到小区 2的路径损失 PL2和到小区 3的路径损失 采用特定 的函数计算 PL, 如: 取其中的最大值, PL = max(PLl, PL2, PL3); 或者, 取三者的平均值, 即/^ = (/^1 + /^2 + /^3)/3;或者也可以采用其他函数计 算^
当 UE发送一次 SRS探测一个小区时, 如待探测小区 2, 则将 UE 到小区 2的路径损失 PL2作为 PL , 或者将 PL2与 PL1的平均值作为 PL UE利用接收的 SRS发送功率参数和确定出的 PL, 采用公式( 1 ) 计算 SRS发送功率:
PSRS( ) = min{PCMAX, SRS_OFFSET + 10 log10 ( SRS ) + P0 PUSCH ( j) + a( j)■ PL + f (Ϊ) } 步骤 503: 与步骤 103相同。
实施例六:
步骤 601: 与步骤 501相同。
步骤 602: UE计算到驻留小区 (小区 1) 的路径损失, 利用接收的 SRS发送功率参数和计算出的 UE到驻留小区的路径损失, 采用下列公 式计算 SRS发送功率:
SRS ( ) = min{PCMAX , PSRS ΕΤ + 10 log10SRS ) + P0_msCR( j) + ( j) · PL + f(i) + Pf } 其中, 为预先约定的调整值, 该调整值可以根据待探测小区的数 目确定。
步骤 603: 与步骤 103相同。
实施例七:
步骤 701: 与步骤 601相同。
步骤 702: UE确定路径损失 PL , 具体计算方式为:
当 UE发送一次 SRS探测 3个小区时, UE计算到小区 1的路径损 失 PL1、 到小区 2的路径损失 PL2和到小区 3的路径损失 采用特定 的函数计算 PL, 如: 取其中的最大值, PL = max(PLl, PL2, PL3); 或者, 取三者的平均值, 即/^ = (/^1 + /^2 + /^3)/3;或者也可以采用其他函数计 算^
当 UE发送一次 SRS探测一个小区时, 如待探测小区 2, 则将 UE 到小区 2的路径损失 PL2作为 PL , 或者将 PL2与 PL1的平均值作为 PL。
UE利用接收的 SRS发送功率参数和确定出的 PL , 采用下列公式计 算 SRS发送功率:
pSRS (0 =
Figure imgf000010_0001
RS— OFFSET + 10 l。g10 (M SRS ) + Po msCR( j) + ( j) · PL + f(i) + Pf } 其中, 为预先约定的调整值, 该调整值可以根据待探测小区的数 目确定。
步骤 703: 与步骤 103相同。
实施例八:
步骤 801: 与步骤 301相同。
步骤 802: UE计算到驻留小区(即小区 1)的路径损失 PL , 利用接 收的 SRS发送功率参数和计算出的 PL , 采用下列公式计算 SRS发送功 率: PSRS( ) = min{PCMAX, SRS_OFFSET + 10 log10 ( SRS ) + P0 PUSCH ( j) + a(j) - PL + f(i) + Pd + Pf 其中, 为预先约定的调整值, 该调整值可以根据待探测小区的数 目确定。
步骤 803: 与步骤 103相同。
实施例九:
步骤 901: 与步骤 801相同。
步骤 902: UE确定路径损失 PL , 具体计算方式为:
当 UE发送一次 SRS探测 3个小区时, UE计算到小区 1的路径损 失 PL1、 到小区 2的路径损失 PL2和到小区 3的路径损失 采用特定 的函数计算 PL , 如: 取其中的最大值, PL = max(PLl, PL2, PL3); 或者, 取三者的平均值, 即/^ = (/^1 + /^2 + /^3) /3;或者也可以采用其他函数计 算^
当 UE发送一次 SRS探测一个小区时, 如待探测小区 2, 则将 UE 到小区 2的路径损失 PL2作为 PL , 或者将 PL2与 PL1的平均值作为 PL。
UE利用接收的 SRS发送功率参数和确定出的 PL , 采用下列公式计 算 SRS发送功率:
PSRS (0 = min{PCMAX , SRS_OFFSET + 101og10 (MSRS ) + 0_PUSCH U) + «(7) · PL + f (i) + PD + PF 其中, 为预先约定的调整值, 该调整值可以根据待探测小区的数 目确定。
步骤 903: 与步骤 103相同。
本发明还提出一种网络侧设备, 用于根据各待探测小区接收到 UE 之前发送的信号的功率水平和 /或 UE需要探测的小区信息确定 SRS发送 功率参数, 将所述 SRS发送功率参数发送至 UE。
本发明实施例还提出一种 UE, 用于接收网络侧设备发送的 SRS发 送功率参数, 计算各待探测小区到 UE的路径损失, 采用所述路径损失 和 SRS发送功率参数计算 SRS发送功率。
由上述实施例可见,本发明提出的 SRS发送功率配置方法和系统综 合考虑需要探测的多个小区的路径损失, 在保证路径损失最大的小区的 接收信号质量的前提下, 尽量限制路径损失较小的小区接收到的信号功 率水平; 或者在路径损失较小的小区接收的信号功率水平不超出一定值 的前提下, 尽量提高路径损失最大的小区的接收信号质量; 或者在二者 之间达到均衡。 采用本发明配置 SRS发送功率, 能够保证信道质量较差 的小区接收 SRS的功率, 从而保证信道估计的精度。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡 在本发明的精神和原则之内, 所做的任何修改、 等同替换、 改进等, 均 应包含在本发明保护的范围之内。

Claims

权利要求书
1、 一种探测参考信号 SRS发送功率配置方法, 其特征在于, 所述 方法包括:
网络侧设备根据各待探测小区接收到用户设备 UE之前发送的信号 的功率水平和 /或 UE需要探测的小区信息确定 SRS发送功率参数,将所 述 SRS发送功率参数发送至 UE。
2、 根据权利要求 1所述的方法, 其特征在于, 所述 UE之前发送的 信号为: SRS。
3、 根据权利要求 1所述的方法, 其特征在于, 所述 SRS发送功率 参数包括: PSRS_OFFSET , Msrs、 尸。— PUSCH ( 、 和/ ( ) ,其中,所述 P。— PUSCH( )、 a( j)和 /(0为网络侧设备根据各待探测小区接收到 UE之前发送的信号 的功率水平和 /或 UE需要探测的小区信息调整的 SRS发送功率参数; 所述方法进一步包括: 所述 SRS发送功率用下式计算:
) _ min{PcMAX, + 101og10 ( SRS ) + O PUSCH (7) + (j) · PL + f(i) } 其中, PSRS(0为 SRS发送功率, 为 SRS所在子帧号, /^^为1^最 大的发送功率, PL为路径损失。
4、 根据权利要求 1所述的方法, 其特征在于, 所述 SRS发送功率 参数包括: ―。 、 MSRS、 Ρ。— PUSCH ( 、 a(j) . /( )和 A ; 其中, 为网 络侧设备确定出的功率调整量;
所述方法进一步包括: 所述 SRS发送功率用下式计算:
PSRS ('·) =
Figure imgf000013_0001
, 10 log10 ( SRS ) + Po msCR (j) + · PL + f(i) + PD } 其中, PSRS(0为 SRS发送功率, 为 SRS所在子帧号, /^^为1^最 大的发送功率, PL为路径损失。
5、 根据权利要求 1所述的方法, 其特征在于, 所述 SRS发送功率 参数包括: Msrs、 尸。— PUSCH( )、 " 和 /« ;
所述方法进一步包括: 所述 SRS发送功率用下式计算:
PSRS ('·) =
Figure imgf000014_0001
, 10 log10 ( SRS ) + Po msCR (j) + · PL + f (i) + PF } 其中, PSRS(0为 SRS发送功率, 为 SRS所在子帧号, /^^为1^最 大的发送功率, PL为路径损失, 为预先约定的调整值。
6、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 网 络侧设备指示 UE是否进行多小区信道探测或者需要进行信道探测的小 区集合。
7、 根据权利要求 1 所述的方法, 其特征在于, 所述方法还包括: UE的驻留小区的演进型基站 eNodeB接收所述 UE发送的 SRS发送功 率信息, 驻留小区的 eNodeB将所述 SRS发送功率信息发送至所有待探 测小区的 eNodeB, 或者, 驻留小区的 eNodeB根据 UE反馈的信息计算 SRS发送功率信息,将所述 SRS发送功率信息反馈至所有待探测小区的 eNodeB,或者所有待探测小区的 eNodeB接收 UE发送的 SRS发送功率 信息。
8、 根据权利要求 1 所述的方法, 其特征在于, 所述网络侧设备包 括所述 UE的驻留小区的 eNodeB , 或其他待探测小区的 eNodeB , 或 所述 eNodeB所属的移动管理实体 MME。
9、 一种 SRS发送功率配置方法, 其特征在于, 所述方法包括: UE接收网络侧设备发送的 SRS发送功率参数;
UE计算各待探测小区到 UE的路径损失,采用所述路径损失和 SRS 发送功率参数计算 SRS发送功率。
10、 根据权利要求 9所述的方法, 其特征在于, 所述 UE采用下列 公式计算 SRS发送功率: PSRS ('·) =
Figure imgf000015_0001
RS— OFFSET + 10 l。g10 (M SRS ) + 0_PuscH(i) + · PL + f(i + Pf } 其中, PSRS(0为 SRS发送功率, 为 SRS所在子帧号, /^^为1^最 大的发送功率, RSQFFSET、 MSRS、 PO PUSCH(7) , 和/ ()均为 SRS发送 功率参数, PL为 UE到驻留小区的路径损失; 为预先约定的调整值。
11、根据权利要求 9所述的方法,其特征在于, 当 UE发送一次 SRS 探测多个小区时, 所述 UE采用确定出的路径损失计算 SRS发送功率; 所述确定出的路径损失为 UE到各待探测小区的路径损失的平均值或最 大值。
12、根据权利要求 9所述的方法,其特征在于, 当 UE发送一次 SRS 探测一个小区时, 所述采用确定出的路径损失计算 SRS发送功率; 所述 确定出的路径损失为: 该待探测小区到 UE的路径损失, 或者, 驻留小 区到 UE的路径损失与该待探测小区到 UE的路径损失的平均值。
13、 根据权利要求 11或 12所述的方法, 其特征在于, 所述 SRS发 送功率参数包括: PSRS―。 ET、 MSRS、 Ρ。— PUSCH ( 、 和/ ( );
所述 UE采用下列公式计算 SRS发送功率:
PSRS( ) = min{PCMAX, PSRS OFFSET + 10 log10 ( SRS ) + P0 PUSCH (j) + a(j)-PL + f (i) } 其中, PSRS(0为 SRS发送功率, 为 SRS所在子帧号, /^^为1^最 大的发送功率, PL为确定出的路径损失。
14、 根据权利要求 11或 12所述的方法, 其特征在于, 所述 SRS发 送功率参数包括: RSQFFSET、 MSRS、 PO PVSCH(j) . a(j) ^ /()和 A; 其中, 为网络侧设备确定出的功率调整量;
所述 UE采用下列公式计算 SRS发送功率:
PSRS ('·) =
Figure imgf000015_0002
RS— OFFSET + 10 log10 ( SRS ) + PO msCR( j) + ( j) · PL + f(i) + PD } 其中, PSRS(0为 SRS发送功率, 为 SRS所在子帧号, /^^为1^最 大的发送功率, PL为确定出的路径损失。
15、 根据权利要求 11或 12所述的方法, 其特征在于, 所述 SRS发 送功率参数包括: PSRSQFFSET、 MSRS、 PO PUSCH (7) , 和/ ( ) ;
所述 UE采用下列公式计算 SRS发送功率:
PSRS ( ) = min{PCMAX , PSRS OFFSET + 101og10 ( SRS ) + PO FVSCR ( j) + a( j) - PL + f (i) + Pd + P} 其中, PSRS(0为 SRS发送功率, 为 SRS所在子帧号, /^^为1^最 大的发送功率, PL为确定出的路径损失, 为预先约定的调整值。
16、 根据权利要求 9所述的方法, 其特征在于, 所述方法还包括: 网络侧设备指示 UE是否进行多小区信道探测或者需要进行信道探测的 小区集合。
17、 根据权利要求 9、 10或 11所述的方法, 其特征在于, 所述 UE 计算 SRS发送功率之后进一步包括:
UE将所述 SRS发送功率信息反馈至驻留小区的 eNodeB , 或 UE将 所述 SRS发送功率信息反馈至所有待探测小区的 eNodeB。
18、 一种网络侧设备, 其特征在于, 所述设备用于, 根据各待探测 小区接收到 UE之前发送的信号的功率水平和 /或 UE需要探测的小区信 息确定 SRS发送功率参数, 将所述 SRS发送功率参数发送至 UE。
19、 一种 UE, 其特征在于, 所述 UE用于, 接收网络侧设备发送的 SRS发送功率参数, 计算各待探测小区到 UE的路径损失, 采用所述路
PCT/CN2010/072468 2009-05-05 2010-05-05 探测参考信号发送功率配置方法、网络侧设备及ue WO2010127623A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/319,031 US9042932B2 (en) 2009-05-05 2010-05-05 Method for configuring transmit power of sounding reference signal, network device and UE
KR1020117028848A KR101348595B1 (ko) 2009-05-05 2010-05-05 사운딩 참조 신호의 전송 파워의 배치방법, 그의 네트워크측 장치 및 사용자 장비
EP10772026.0A EP2429244B1 (en) 2009-05-05 2010-05-05 Method for sounding reference signal transmission power configuration, user equipment and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910083197.9 2009-05-05
CN 200910083197 CN101883415B (zh) 2009-05-05 2009-05-05 探测参考信号发送功率配置方法、网络侧设备及ue

Publications (1)

Publication Number Publication Date
WO2010127623A1 true WO2010127623A1 (zh) 2010-11-11

Family

ID=43049986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072468 WO2010127623A1 (zh) 2009-05-05 2010-05-05 探测参考信号发送功率配置方法、网络侧设备及ue

Country Status (5)

Country Link
US (1) US9042932B2 (zh)
EP (1) EP2429244B1 (zh)
KR (1) KR101348595B1 (zh)
CN (1) CN101883415B (zh)
WO (1) WO2010127623A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024983A2 (ko) * 2011-08-12 2013-02-21 주식회사 팬택 사운딩 참조신호 전송 방법과 장치, 및 그를 위한 사운딩 참조신호 전송 지시 방법과 장치
WO2013102485A1 (en) * 2012-01-02 2013-07-11 Huawei Technologies Co., Ltd. Power control in a wireless communication system for uplink transmissions with coordinated reception
JP2014511086A (ja) * 2011-04-15 2014-05-01 アルカテル−ルーセント アップリンク電力を制御するための方法およびデバイス
EP2747495A4 (en) * 2011-08-16 2014-06-25 Huawei Tech Co Ltd COMPENSATION METHOD, BASE STATION AND USER EQUIPMENT FOR CONTROLLING UPLINK POWER IN A COMP SYSTEM

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3761534B1 (en) * 2010-10-28 2023-05-03 Vivo Mobile Communication Co., Ltd. Method and apparatus for adjusting sounding reference signal transmission power
WO2012060746A1 (en) * 2010-11-02 2012-05-10 Telefonaktiebolaget L M Ericsson (Publ) Method for uplink fractional transmit power control
CN102244923B (zh) * 2011-07-25 2018-04-27 中兴通讯股份有限公司 一种上行信号的功率控制方法、网络侧设备及用户设备
JP5927802B2 (ja) * 2011-08-02 2016-06-01 シャープ株式会社 基地局、端末および通信方法
EP2744277A4 (en) * 2011-08-12 2014-12-24 Fujitsu Ltd UPLINK POWER CONTROL METHOD AND DEVICE
CN103096449B (zh) * 2011-11-04 2018-06-19 中兴通讯股份有限公司 一种探测参考信号的功率控制方法、系统及装置
KR101867314B1 (ko) * 2011-11-15 2018-06-15 주식회사 골드피크이노베이션즈 다중 요소 반송파 시스템에서 상향링크 전송전력의 제어장치 및 방법
CN102427608B (zh) * 2011-12-06 2015-07-01 电信科学技术研究院 一种发送srs和指示srs发送的方法及设备
CN103312484B (zh) * 2012-03-16 2017-12-29 中兴通讯股份有限公司 探测参考信号发射功率的控制方法、用户设备和基站
CN103379603B (zh) * 2012-04-17 2016-08-03 电信科学技术研究院 功控信息通知及功控方法和设备
CN103428723B (zh) * 2012-05-25 2016-06-15 上海贝尔股份有限公司 多点协作中测量srs的方法与设备
CN103840930A (zh) * 2012-11-21 2014-06-04 华为技术有限公司 一种测量参考信号的配置方法、发送方法及装置
US10212670B2 (en) * 2014-09-10 2019-02-19 Telefonaktiebolaget Lm Ericsson (Publ) Method and network node for obtaining nominal power and pathloss compensation factor of a power control process
JP5993422B2 (ja) * 2014-09-25 2016-09-14 株式会社Nttドコモ ユーザ端末、無線基地局および無線通信方法
KR102246608B1 (ko) 2015-07-20 2021-04-30 삼성전자주식회사 무선 통신 시스템에서 송신 전력을 제어하기 위한 장치 및 방법
US10278088B2 (en) * 2016-07-22 2019-04-30 Qualcomm Incorporated Channel estimation enhancement
CN109792678B (zh) 2016-09-29 2021-06-22 华为技术有限公司 传输数据的方法及其终端设备
CN110138519A (zh) * 2018-02-02 2019-08-16 索尼公司 无线通信系统中的装置和方法、计算机可读存储介质
GB2581772B (en) 2019-02-15 2021-08-04 Samsung Electronics Co Ltd Positioning reference signal
CN111867034B (zh) * 2019-04-30 2021-12-17 大唐移动通信设备有限公司 一种定位探测参考信号的配置方法、装置及设备
CN110167125B (zh) * 2019-05-23 2021-02-19 北京邮电大学 农田通信方法及装置
WO2021012586A1 (en) * 2019-07-19 2021-01-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Methods and apparatuses of uplink power control for sounding reference signal transmission
CN111447611B (zh) * 2020-03-06 2021-08-10 华南理工大学 一种在无线网络中通过协作保护信息安全的传输方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2646963Y (zh) * 2001-10-09 2004-10-06 交互数字技术公司 一种时分双工/码分多路存取通信系统
US20080045260A1 (en) * 2006-08-15 2008-02-21 Tarik Muharemovic Power Settings for the Sounding Reference signal and the Scheduled Transmission in Multi-Channel Scheduled Systems

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6101179A (en) * 1997-09-19 2000-08-08 Qualcomm Incorporated Accurate open loop power control in a code division multiple access communication system
US6405046B1 (en) * 1998-10-08 2002-06-11 Lucent Technologies, Inc. Method for partitioning mobile stations of a wireless network between an overlay and an underlay
US8897828B2 (en) * 2004-08-12 2014-11-25 Intellectual Ventures Holding 81 Llc Power control in a wireless communication system
KR20070059666A (ko) * 2005-12-07 2007-06-12 삼성전자주식회사 시분할 듀플렉스 통신 시스템의 전력 제어 방법 및 장치
US8938247B2 (en) 2009-04-23 2015-01-20 Qualcomm Incorporated Sounding reference signal for coordinated multi-point operation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2646963Y (zh) * 2001-10-09 2004-10-06 交互数字技术公司 一种时分双工/码分多路存取通信系统
US20080045260A1 (en) * 2006-08-15 2008-02-21 Tarik Muharemovic Power Settings for the Sounding Reference signal and the Scheduled Transmission in Multi-Channel Scheduled Systems

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014511086A (ja) * 2011-04-15 2014-05-01 アルカテル−ルーセント アップリンク電力を制御するための方法およびデバイス
WO2013024983A2 (ko) * 2011-08-12 2013-02-21 주식회사 팬택 사운딩 참조신호 전송 방법과 장치, 및 그를 위한 사운딩 참조신호 전송 지시 방법과 장치
WO2013024983A3 (ko) * 2011-08-12 2013-04-11 주식회사 팬택 사운딩 참조신호 전송 방법과 장치, 및 그를 위한 사운딩 참조신호 전송 지시 방법과 장치
EP2747495A4 (en) * 2011-08-16 2014-06-25 Huawei Tech Co Ltd COMPENSATION METHOD, BASE STATION AND USER EQUIPMENT FOR CONTROLLING UPLINK POWER IN A COMP SYSTEM
EP2747495A1 (en) * 2011-08-16 2014-06-25 Huawei Technologies Co., Ltd Compensation method, base station, and user equipment for uplink power control in a comp system
US9924473B2 (en) 2011-08-16 2018-03-20 Huawei Technologies Co., Ltd. Compensation method, base station, and user equipment for uplink power control in a CoMP system
WO2013102485A1 (en) * 2012-01-02 2013-07-11 Huawei Technologies Co., Ltd. Power control in a wireless communication system for uplink transmissions with coordinated reception
US9661581B2 (en) 2012-01-02 2017-05-23 Huawei Technologies Co., Ltd. Power control in a wireless communication system

Also Published As

Publication number Publication date
EP2429244A1 (en) 2012-03-14
EP2429244A4 (en) 2012-10-31
KR101348595B1 (ko) 2014-01-15
US9042932B2 (en) 2015-05-26
US20120052904A1 (en) 2012-03-01
CN101883415B (zh) 2013-06-05
CN101883415A (zh) 2010-11-10
KR20120005539A (ko) 2012-01-16
EP2429244B1 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
WO2010127623A1 (zh) 探测参考信号发送功率配置方法、网络侧设备及ue
TWI644582B (zh) 無線通訊系統中波束操作的路徑損耗推導的方法和設備
CN105557055B (zh) 空闲信道评估(cca)阈值适配方法
US9648570B2 (en) Method of efficiently reporting user equipment transmission power and apparatus thereof
EP2400801B1 (en) Method, equipment and network device for controlling power
WO2015018357A1 (zh) 一种上行功率控制方法和装置
WO2012136122A1 (zh) 功率调整方法和基站
EP3711375B1 (en) Limiting accumulation of transmit power control in beam-specific power control
WO2011060741A1 (zh) 上行发送功率控制参数的获取方法、基站和用户设备
JP6202454B2 (ja) アップリンク電力制御方法及び装置
WO2013166864A1 (zh) 测量参考信号的功率控制方法、装置和系统
WO2013044889A2 (zh) 功率控制方法、基站及装置
WO2013138987A1 (zh) 上行覆盖测量项的测量结果获取和上报方法、设备
EP3695658A1 (en) Systems and methods for fast uplink power control
WO2013104275A1 (zh) 一种上行信号发送方法及装置
WO2016101608A1 (zh) 一种网络侧设备、ue及功率调整的方法
CN106879058B (zh) 发射功率控制方法、基站以及用户设备ue
WO2005011143A1 (fr) Procede et appareil de commande de puissance pour systeme d'acces multiple par code de repartition, en duplex a repartition dans le temps
WO2013086941A1 (zh) 一种多小区检测探测参考信号的方法及相关基站、系统
CN104144486B (zh) 上行功率控制方法和设备
WO2015058725A1 (zh) 控制上行发送功率的方法及装置
WO2021064698A1 (en) Variable duty cycle for power control
WO2013189449A2 (zh) 一种无线体域网的开环联合功率控制方法和装置
KR20110092604A (ko) 하향링크 전력제어 방법
WO2014000256A1 (zh) 确定服务授权值的方法及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10772026

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13319031

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 8639/CHENP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117028848

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010772026

Country of ref document: EP