WO2013104275A1 - 一种上行信号发送方法及装置 - Google Patents

一种上行信号发送方法及装置 Download PDF

Info

Publication number
WO2013104275A1
WO2013104275A1 PCT/CN2013/070070 CN2013070070W WO2013104275A1 WO 2013104275 A1 WO2013104275 A1 WO 2013104275A1 CN 2013070070 W CN2013070070 W CN 2013070070W WO 2013104275 A1 WO2013104275 A1 WO 2013104275A1
Authority
WO
WIPO (PCT)
Prior art keywords
path loss
csi
uplink
uplink path
port
Prior art date
Application number
PCT/CN2013/070070
Other languages
English (en)
French (fr)
Inventor
任璐
戴博
林志嵘
夏树强
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013104275A1 publication Critical patent/WO2013104275A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to an uplink signaling method and apparatus. Background technique
  • the uplink physical channels of the Long Term Evolution (LTE) system include a Physical Random Access Channel (PRACH), a Physical Uplink Shared Channel (PUSCH), and a Physical Uplink Shared Channel (PUCCH, Physical Uplink Control Channel ).
  • the LTE uplink uses OFDM (Orthogonal Frequency Division Multiplexing) technology, and the reference signals and data are multiplexed by Time Division Multiplex (TDM).
  • the uplink reference signal includes a demodulation reference signal (DM-RS, Demodulation Reference Signal) and a sound reference signal (SRS, Sounding Reference Signal).
  • the uplink of the LTE uses the Single Carrier-Frequency Division Multiple Access (SC-FDMA) technology
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the uplink power control is mainly used to compensate the channel loss (PL, Pathloss) and shadow of the channel, and is used to suppress inter-cell interference.
  • the uplink power control can control the transmission power of the channel such as PUSCH/PUCCH and the SRS.
  • the path loss value used to compensate the uplink path loss is obtained by the UE measuring the downlink path loss. .
  • the UE can obtain the downlink path loss value by calculating the difference between the received pilot signal power and the pilot transmit power indicated by the base station to the UE by signaling, and using the calculated path loss value as the uplink power control path. Loss compensation.
  • the downlink path loss calculated according to the above manner can accurately reflect the uplink path loss, achieve a reasonable estimation of the uplink signal transmission power, and suppress the inter-cell interference of the edge users.
  • the transmitting node and the receiving node of the uplink and downlink signals at the UE end may be inconsistent, when the UE end is up and down
  • the PL value estimated according to the reference signal sent by the downlink transmitting node is different from the actual PL value of the uplink receiving node to the UE, and the PL estimated by the downlink is used.
  • the value is used to estimate the transmit power of the UE side signal of the uplink, which causes the UE side signal transmit power estimation to be inaccurate, affects the UE's uplink signal reception, and causes interference to users of neighboring cells. Summary of the invention
  • the main object of the present invention is to provide an uplink signal transmission method and apparatus capable of accurately determining an uplink signal power.
  • An uplink signal sending method where the method includes:
  • the transmit power of the uplink signal is obtained according to the obtained uplink path loss, and the uplink signal is transmitted according to the transmit power.
  • the determining, according to the predefined information, the uplink path loss is:
  • the uplink is obtained. damage.
  • the CRS and the CSI-RS are CRS and CSI-RS on the downlink serving cell corresponding to the uplink serving cell where the uplink signal is located.
  • the determining is determined according to predefined information.
  • the path loss is:
  • the uplink path loss is obtained from the CSI-RS port or the CSI-RS port set configured by the high layer signaling.
  • the uplink path loss obtained from the CSI-RS port set is:
  • the minimum path loss value among the plurality of path loss values obtained by each CSI-RS in the CSI-RS port set is selected as the uplink path loss.
  • determining, according to the predefined information, an uplink path loss is:
  • the predefined information includes a CSI-RS and a signal type
  • the according to the predefined The information determines the uplink path loss as:
  • the uplink path loss of the aperiodic SRS triggered by the DCI and the uplink path loss of the aperiodic SRS triggered by the DCI corresponding to the PDSCH are obtained from the pre-configured different CSI-RS ports or the CSI-RS port sets.
  • determining, according to the predefined information, an uplink path loss is:
  • an uplink path loss according to the downlink reference signal as an uplink path loss of the uplink signal not configured with the power offset; and summing the amount of the uplink path as the uplink signal corresponding to the power offset; wherein the power offset
  • the shift is a different or the same value configured for different uplink signals by higher layer signaling;
  • the transmit power of the uplink signal obtained according to the obtained uplink path loss is: determining the transmit power of each uplink signal according to the obtained uplink path loss of each uplink signal.
  • determining, according to the predefined information, an uplink path loss is:
  • the transmit power of the uplink signal obtained according to the obtained uplink path loss is: according to the obtained uplink path loss, obtaining a transmit power that is not configured with the power offset uplink signal; and the unconfigured power offset
  • the transmit power of the uplink signal is summed with the power offset, and the transmit power of the uplink signal corresponding to the power offset is obtained.
  • the power offset is configured for different uplink signals by using high layer signaling. Different or the same value.
  • the method further includes: configuring a corresponding power offset for the non-periodic SRS triggered by the DCI corresponding to the PUSCH and the aperiodic SRS triggered by the DCI corresponding to the PDSCH;
  • determining the uplink path loss according to the predefined information includes: According to the triggering manner of the SRS, the uplink path loss of the SRS is determined as the sum of the uplink path loss obtained from the CSI-RS port or the CSI-RS port set and the power offset corresponding to the self-trigger mode.
  • the determining, according to the predefined information, the uplink path loss is:
  • the uplink path loss is determined according to the fixed configuration CSI-RS or CRS; or the uplink path loss is determined according to the CSI-RS or CRS according to the configuration of the high layer signaling; or
  • the downlink serving cell corresponding to the serving cell in which the uplink signal is located is a new carrier type, determining an uplink path loss according to a fixed configuration CSI-RS, or an associated service of a non-new carrier type corresponding to the serving cell according to a fixed configuration
  • the CRS of the cell determines the uplink path loss, or determines, according to the configuration of the high-layer signaling, the uplink path loss according to the CSI-RS or the CRS of the associated serving cell, where the associated serving cell is the serving cell or the primary serving cell configured by the base station. (Pcell, Primary cell).
  • An uplink signal transmitting apparatus comprising: an uplink path loss determining unit, and a transmitting power determining unit; wherein
  • the uplink path loss determining unit is configured to determine an uplink path loss according to the predefined information, where the sending power determining unit is configured to obtain, according to the obtained uplink path loss, a transmit power of the uplink signal, and perform the transmit power according to the transmit power. The transmission of the uplink signal.
  • the uplink path loss determining unit is specifically configured to obtain an uplink path loss from a preset fixed CSI-RS port or a CSI-RS port set; or a CSI-RS port or a CSI-RS port configured from a high layer signaling.
  • the set gets the uplink path loss.
  • the uplink path loss determining unit is specifically configured to select a maximum path loss value of the plurality of path loss values obtained by using the CSI-RSs in the CSI-RS port set as the uplink path loss; or select a CSI-RS port.
  • the average value of the plurality of path loss values obtained by each CSI-RS in the set is the uplink path loss; or the most of the plurality of path loss values obtained by each CSI-RS in the CSI-RS port set is selected.
  • the small path loss value is the uplink path loss.
  • the uplink path loss determining unit is specifically configured to obtain uplink path loss of the PUCCH, the PUSCH, and the SRS from the same CSI-RS port or the CSI-RS port set; or
  • the uplink path loss determining unit is configured to obtain, respectively, an uplink path loss of the aperiodic SRS triggered by the downlink control message DCI corresponding to the PUSCH and a PDSCH corresponding to the CSI-RS port or the CSI-RS port set configured in advance. Uplink loss of aperiodic SRS triggered by DCI.
  • the uplink path loss determining unit is specifically configured to obtain, according to the downlink reference signal, an uplink path loss of the uplink signal that is not configured with the power offset; and the uplink path loss obtained according to the downlink reference signal and the predefined information. And an uplink path loss of the uplink signal corresponding to the power offset; wherein the power offset is a different or the same value respectively configured for different uplink signals by using high layer signaling;
  • the transmission power determining unit is specifically configured to determine, according to the obtained uplink path loss of each uplink signal, the transmission power of each uplink signal.
  • the uplink path loss determining unit is specifically configured to obtain an uplink path loss according to the downlink reference signal
  • the sending power determining unit is specifically configured to obtain, according to the obtained uplink path loss, Transmitting a transmit power that is not configured with a power offset uplink signal; summing the transmit power that is not configured with the power offset uplink signal and the power offset to obtain an uplink signal corresponding to the power offset Transmit power; wherein the power offset is a different or the same value configured for different uplink signals by higher layer signaling.
  • the device further includes: a configuration unit, configured to configure, respectively, a corresponding power offset for the aperiodic SRS triggered by the DCI corresponding to the PUSCH and the aperiodic SRS triggered by the DCI corresponding to the PDSCH;
  • the uplink path loss determining unit is specifically configured to determine, according to the triggering manner of the SRS, that the uplink path loss of the SRS is an uplink path loss and a self-trigger mode obtained from the CSI-RS port or the CSI-RS port set. The sum of the corresponding power offsets.
  • the uplink path loss determining unit is specifically configured to determine an uplink path loss according to a fixed configuration CSI-RS or CRS in a multi-timing early application scenario, or determine according to a CSI-RS or CRS according to a configuration of a high-level signaling. Uplink loss; or,
  • the downlink serving cell corresponding to the serving cell in which the uplink signal is located is a new carrier type, determining an uplink path loss according to a fixed configuration CSI-RS, or an associated service of a non-new carrier type corresponding to the serving cell according to a fixed configuration
  • the CRS of the cell determines the uplink path loss, or determines, according to the configuration of the high layer signaling, the uplink path loss according to the CSI-RS or the CRS of the associated serving cell, where the associated serving cell is a serving cell or a Pcell configured by the base station.
  • the invention combines the predefined information to determine the uplink path loss, obtains the uplink signal power according to the determined uplink path loss, and sends the uplink signal, which fully satisfies different requirements for the uplink channel transmit power in different application scenarios, and can further utilize the CSI.
  • -RS determines the uplink path loss, enhances the ability of open loop power control, and achieves the purpose of accurately controlling the uplink channel.
  • FIG. 1 is a schematic flowchart of an implementation process of an uplink signal sending method according to the present invention
  • FIG. 2 is a schematic structural diagram of an uplink signal transmitting apparatus according to the present invention. detailed description
  • TA Timing Advance
  • different carriers are partially overlapped in the same subframe, and subframes of different carriers are not strictly aligned in time.
  • the path loss experienced by the signals of different serving cells in the same subframe may be greatly different, so it is necessary to re-determine the uplink path loss for this new scenario. measurement method.
  • the downlink serving cell corresponding to the uplink serving cell is a new carrier type, since there is no CRS, it is necessary to consider measuring the downlink path loss according to the CSI-RS and estimating the uplink path loss.
  • the CSI-RS-based uplink path loss estimation method can be considered for uplink power control.
  • the reference channel of the same downlink serving cell is no longer suitable for calculating the uplink path loss in the multi-TA scenario. Therefore, the path loss measurement method needs to be differentiated according to the application scenario to ensure that the UE can obtain an accurate uplink in different scenarios. Loss estimation, enhance the ability of open-loop power control, and achieve the purpose of accurately controlling the uplink channel power.
  • the basic idea of the present invention is: determining an uplink path loss according to the predefined information; obtaining a transmission power of the uplink signal according to the obtained uplink path loss, and transmitting the uplink signal according to the transmission power.
  • FIG. 1 shows an implementation flow of an uplink signaling method of the present invention. As shown in FIG. 1, the method includes the following steps:
  • Step 101 Determine an uplink path loss according to the predefined information.
  • the predefined information includes one or more of a CRS, a CSI-RS, a power offset, a signal type, and an application scenario, where the CRS and the CSI-RS are uplink serving cells where the uplink signal is located.
  • the power offset may be The power offsets are configured according to different triggering modes of the SRS, and the corresponding power offsets are respectively configured for the non-periodic SRS triggered by the DCI corresponding to the PUSCH and the non-periodic SRS triggered by the DCI corresponding to the PDSCH.
  • the signal type includes a PUCCH, a PUSCH, and an SRS.
  • the application scenario includes a multi-TA application scenario, an application scenario when the downlink serving cell corresponding to the serving cell where the uplink signal is located, and a new carrier type.
  • the determining the uplink path loss according to the predefined information is specifically: obtaining an uplink path loss from a preset fixed CSI-RS port or a CSI-RS port set; or, from a high-level letter Obtaining an uplink path loss for the configured CSI-RS port or the CSI-RS port set; wherein, obtaining the uplink path loss from the CSI-RS port set is: selecting multiple CSI-RS port sets obtained by each CSI-RS The maximum path loss value of the path loss value is the uplink path loss; or, the average value of the plurality of path loss values obtained by each CSI-RS in the CSI-RS port set is selected as the uplink path loss; or, the CSI is selected.
  • the minimum path loss value among the plurality of path loss values obtained by each CSI-RS in the RS port set is the uplink path loss.
  • the determining the uplink path loss according to the predefined information is specifically: obtaining an uplink of the PUCCH, the PUSCH, and the SRS from the same CSI-RS port or the CSI-RS port set. Loss; or,
  • an uplink path loss is:
  • the uplink path loss of the aperiodic SRS triggered by the DCI and the uplink path loss of the aperiodic SRS triggered by the DCI corresponding to the PDSCH are obtained from the pre-configured different CSI-RS ports or the CSI-RS port sets.
  • the determining the uplink path loss according to the predefined information is: obtaining an uplink path loss according to the downlink reference signal, as an uplink signal not configured with the power offset a path loss; a sum of an uplink path loss obtained according to the downlink reference signal and a power offset in the predefined information as an uplink path loss of the uplink signal corresponding to the power offset; wherein the power offset
  • the quantity is a different or the same value that is configured separately for the different uplink signals by using the high layer signaling.
  • the uplink path loss obtained according to the downlink reference signal may specifically obtain each uplink according to the CRS port/port set or the CSI-RS port/port set.
  • the uplink path loss of the channel, wherein each uplink signal may adopt the same or different CRS port/port set or CSI-RS port/port set.
  • determining the uplink path loss according to the predefined information may further be: obtaining an uplink path loss according to the downlink reference signal; wherein the uplink path loss obtained according to the downlink reference signal is specific
  • the uplink path loss of each uplink channel may be obtained according to the CRS port/port set or the CSI-RS port/port set, where each uplink signal may adopt the same or different CRS port/port set or CSI-RS port/port set.
  • the determining, according to the predefined information, that the uplink path loss is:
  • the uplink path loss is determined according to the fixed configuration CSI-RS or CRS; or the uplink path loss is determined according to the CSI-RS or CRS according to the configuration of the high-level signaling; or, when the uplink signal is located,
  • the uplink path loss is determined according to the fixed configuration CSI-RS, or the service according to the fixed configuration is small.
  • the CRS of the associated serving cell of the non-new carrier type corresponding to the area determines the uplink path loss, or determines, according to the configuration of the high layer signaling, the uplink path loss according to the CSI-RS or the CRS of the associated serving cell; wherein, the associated serving cell A serving cell or Pcell configured for a base station.
  • Step 102 Obtain a transmit power of the uplink signal according to the obtained uplink path loss, and send the uplink signal according to the transmit power.
  • the transmit power of the uplink signal obtained according to the acquired uplink path loss is specifically: according to the obtained uplink path loss of each uplink signal.
  • the uplink path loss of each uplink signal is determined by: the uplink path loss of each uplink signal is: the uplink path loss of the uplink signal configured with the power offset is the uplink obtained according to the downlink reference signal in step 101
  • the sum of the loss and the power offset, the uplink path loss of the uplink signal not configured with the power offset is directly the uplink path loss obtained according to the downlink reference signal; and then determining the final uplink according to the obtained new uplink path loss.
  • the transmit power of the signal or,
  • the power offset corresponds to the transmit power of the uplink signal, where the power offset is a different or the same value configured for different uplink signals by using the high layer signaling; that is, the uplink is calculated according to the uplink path loss.
  • the power is obtained, and the obtained uplink power is summed with the power offset to obtain the transmit power of the uplink signal corresponding to the power offset.
  • the embodiment 1 is described based on a multipoint cooperation system or a single antenna or multiple antenna system in which only CSI-RS is introduced;
  • the predefined information includes a CSI-RS and a signal type, and the determining the uplink path loss according to the predefined information is: a path loss value measured from the same fixed CSI-RS port as the PUCCH, PUSCH And an estimated value of the SRS uplink path loss;
  • the fixed CSI-RS port may be any one of ports 15 to 22 or fixed one, such as fixed to port 15.
  • Embodiment 1-1 only the PUSCH is taken as an example, and the calculation formula of the channel transmission power may be:
  • - pusch , e indicates the target transmit power of the UE when the channel transmission requirement is met without considering the path loss effect on the carrier;
  • "') indicates the partial path loss compensation coefficient on the carrier, and the value has " ⁇ ⁇ 0, 0_4, 0_5,0_6,0_7,0_8,0_9,1 ⁇ ;
  • MCS Modulation and Coding Scheme
  • the predefined information includes a CSI-RS and a signal type
  • the determining the uplink path loss according to the predefined information is: a path loss value measured from the same CSI-RS port as a PUCCH, a PUSCH, and An estimated value of the SRS uplink path loss, where the CSI-RS port may be the port 15 configured by the high layer signaling.
  • Embodiment 1-2 only takes the PUSCH as an example, and calculates the channel transmission power.
  • the formula can be:
  • the parameter indicates the subframe i; the parameter is configured for the upper layer, and the value is 0, 1, 2; P ; is the maximum allowed transmit power on the carrier; MpusCH , . ('') is allocated on subframe i on this carrier
  • the size of the PUSCH resource is represented by RB; ⁇ -Pus ⁇ W indicates the target transmit power of the UE when the channel transmission requirement is satisfied without considering the path loss on the carrier; "') indicates the partial path loss compensation coefficient on the carrier, which is a value There are ⁇ 0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 ⁇ ; p L ⁇ CSI-RS port 15 measured uplink loss; ⁇ ( 0 is the power adjustment based on MCS level; is this carrier Closed loop power control parameters.
  • the predefined information includes a CSI-RS and a signal type
  • the determining, according to the predefined information, the uplink path loss is: a path loss value measured from the same fixed CSI-RS port set as a PUCCH, An estimated value of PUSCH and SRS uplink path loss, and the path loss value is a maximum of a plurality of path loss values measured according to the fixed CSI-RS port set.
  • the fixed CSI-RS port set may be a set of any one of the ports 15 to 22, and may be, for example, one of the following sets, but is not limited to: ⁇ 15, 17, 19, 21 ⁇ , ⁇ 16,18,20,22 ⁇ , ⁇ 15,16 ⁇ , ⁇ 17, 18 ⁇ , ⁇ 19, 20 ⁇ , ⁇ 21, 22 ⁇ , ⁇ 15, 16, 17 ⁇ , ⁇ 18, 19, 20 ⁇ , ⁇ 15, 17, 19 ⁇ , ⁇ 16, 18, 20 ⁇ , ⁇ 17, 19, 21 ⁇ , ⁇ 18, 20, 22 ⁇ .
  • the calculation formula of the channel transmission power may be: corpse, PUSCH'c 0') + a c (j) ⁇ PL C + A TF; C (0 + f c ( 1 where the parameter indicates the subframe i; the configuration parameters for the upper layer, the values are 0, 1, 2; ⁇ ⁇ is the maximum allowed transmit power on the carrier; MpusCH , ( ) is the size of the PUSCH resource allocated on subframe i on the carrier, denoted by RB; ⁇ -Pus ⁇ W indicates that the path loss is not considered on the carrier target transmit power of the UE is satisfied channel transmission requirements; "a partial path on this carrier loss compensation factor, the value has" c ⁇ , 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, l ⁇ ; according to a fixed CSI - The maximum of the plurality of path loss values measured by the RS port set; F , (0 is the power
  • the predefined information includes a CSI-RS and a signal type
  • the determining, according to the predefined information, the uplink path loss is: a path loss value measured from the same fixed CSI-RS port set as a PUCCH, An estimated value of PUSCH and SRS uplink path loss, and the path loss value is a minimum of a plurality of path loss values measured according to the fixed CSI-RS port set.
  • the fixed CSI-RS port set may be a set of any one of the ports 15 to 22, and may be, for example, one of the following sets, but is not limited to: ⁇ 15, 17, 19, 21 ⁇ , ⁇ 16 , 18, 20, 22 ⁇ , ⁇ 15, 16 ⁇ , ⁇ 17, 18 ⁇ , ⁇ 19, 20 ⁇ , ⁇ 21, 22 ⁇ , ⁇ 15, 16, 17 ⁇ , ⁇ 18, 19, 20 ⁇ , ⁇ 15 , 17, 19 ⁇ , ⁇ 16, 18, 20 ⁇ , ⁇ 17, 19, 21 ⁇ , ⁇ 18, 20, 22 ⁇ .
  • the parameter indicates the subframe i; the parameter is configured for the upper layer, and the value is 0, 1, 2; Is the maximum allowed transmit power on this carrier; MPUSCH,. ( ) is allocated on subframe i on this carrier
  • the size of the PUSCH resource is represented by RB; ⁇ -Pus ⁇ W indicates the target transmit power of the UE when the channel transmission requirement is satisfied without considering the path loss on the carrier; "') indicates the partial path loss compensation coefficient on the carrier, which is a value There are ⁇ , 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, l ⁇ ; the minimum of the multiple path loss values measured according to the fixed CSI - RS port set; F, (0 is based on the MC s level The power adjustment amount; ') is the closed loop power control parameter on the carrier.
  • the predefined information includes a CSI-RS and a signal type
  • the determining, according to the predefined information, the uplink path loss is: a path loss value measured from the same fixed CSI-RS port set as a PUCCH, An estimated value of PUSCH and SRS uplink path loss, and the path loss value is an average of a plurality of path loss values measured according to the fixed CSI-RS port set.
  • the fixed CSI-RS port set may be a set of any one of the ports 15 to 22, and may be, for example, one of the following sets, but is not limited thereto: ⁇ 15, 17, 19, 21 ⁇ , ⁇ 16 , 18, 20, 22 ⁇ , ⁇ 15, 16 ⁇ , ⁇ 17, 18 ⁇ , ⁇ 19, 20 ⁇ , ⁇ 21, 22 ⁇ , ⁇ 15, 16, 17 ⁇ , ⁇ 18, 19, 20 ⁇ , ⁇ 15 , 17, 19 ⁇ , ⁇ 16, 18, 20 ⁇ , ⁇ 17, 19, 21 ⁇ , ⁇ 18, 20, 22 ⁇ .
  • Embodiments 1-5 only the PUSCH is taken as an example, and the calculation formula of the channel transmission power may be:
  • the number indicates the subframe i; the parameters are configured for the upper layer, and the values are 0, 1, and 2; the maximum allowed transmit power on the carrier; MPUSCH , . ( ) is allocated on subframe i on this carrier
  • the size of the PUSCH resource is represented by RB;
  • ⁇ -Pus ⁇ W indicates the target transmit power of the UE when the channel transmission requirement is satisfied without considering the path loss on the carrier;
  • the partial path loss compensation coefficient on the carrier is represented by the value ⁇ ⁇ (),()'4,( ⁇ ,( ⁇ ,( ⁇ ,( ⁇ ,()'9,1 ⁇ ;
  • the predefined information includes a CSI-RS and a signal type
  • the determining, according to the predefined information, the uplink path loss is: a path loss value measured from the same fixed CSI-RS port set as a PUCCH, An estimated value of PUSCH and SRS uplink path loss, wherein the fixed CSI-RS port set is a CSI-RS port set configured by higher layer signaling, and the path loss value is measured according to a fixed CSI-RS port set. The maximum value of the path loss value.
  • the CSI-RS port set configured by the high layer signaling may be one of the following sets but is not limited to: ⁇ 15, 17, 19, 21 ⁇ , ⁇ 16, 18, 20, 22 ⁇ , ⁇ 15, 16 ⁇ , ⁇ 17, 18 ⁇ , ⁇ 19, 20 ⁇ , ⁇ 21, 22 ⁇ , ⁇ 15, 16, 17 ⁇ , ⁇ 18, 19, 20 ⁇ , ⁇ 15, 17, 19 ⁇ , ⁇ 16, 18, 20 ⁇ , ⁇ 17, 19, 21 ⁇ , ⁇ 18, 20, 22 ⁇ .
  • Embodiment 1-6 only the PUSCH is taken as an example, and the calculation formula of the channel transmission power may be: + P o PUSCH'c where the parameter indicates subframe i; for high-level configuration parameters, the values are 0, 1, 2; ⁇ ⁇ is the maximum allowed transmit power on the carrier; MpusCH , . ( ) is the size of the PUSCH resource allocated on the subframe i on the carrier, denoted by RB; ⁇ -Pus ⁇ W indicates that the path loss is not considered on the carrier.
  • the target transmit power of the UE when the channel transmission requirement is met; ") indicates the path loss compensation coefficient of the part on the carrier, and the value is e ° ⁇ 4 ' ° ⁇ 5 ' ° ⁇ 6 ' ° ⁇ 7 ' ° ⁇ 8 ' ° ⁇ 9 ' ⁇ ;
  • PL c is the maximum value of multiple path loss values measured from a fixed CSI-RS port set configured according to higher layer signaling;
  • ⁇ ⁇ power adjustment amount based on MCS level; ') is this Closed loop power control parameters on the carrier.
  • the predefined information includes a CSI-RS and a signal type
  • the determining, according to the predefined information, the uplink path loss is: a path loss value measured from the same fixed CSI-RS port set as a PUCCH, An estimated value of PUSCH and SRS uplink path loss, wherein the fixed CSI-RS port set is a CSI-RS port set configured by a high layer signaling, and the path loss value is measured according to the fixed CSI-RS port set.
  • the minimum value of multiple path loss values is: a path loss value measured from the same fixed CSI-RS port set as a PUCCH, An estimated value of PUSCH and SRS uplink path loss, wherein the fixed CSI-RS port set is a CSI-RS port set configured by a high layer signaling, and the path loss value is measured according to the fixed CSI-RS port set. The minimum value of multiple path loss values.
  • the CSI-RS port set configured by the high layer signaling may be one of the following sets but is not limited to: ⁇ 15, 17, 19, 21 ⁇ , ⁇ 16, 18, 20, 22 ⁇ , ⁇ 15, 16 ⁇ , ⁇ 17, 18 ⁇ , ⁇ 19, 20 ⁇ , ⁇ 21, 22 ⁇ , ⁇ 15, 16, 17 ⁇ , ⁇ 18, 19, 20 ⁇ , ⁇ 15, 17, 19 ⁇ , ⁇ 16, 18, 20 ⁇ , ⁇ 17, 19, 21 ⁇ , ⁇ 18, 20, 22 ⁇ .
  • Embodiment 1-7 only the PUSCH is taken as an example, and the calculation formula of the channel transmission power may be:
  • PUSCH U a c (j) ⁇ PL C + A TF; C (0 + f c ( 1 where the parameter indicates subframe i; for high-level configuration parameters, the values are 0, 1, 2; ⁇ ⁇ is this
  • MpusCH , ( ) is the size of the PUSCH resource allocated on subframe i on the carrier, denoted by RB; ⁇ -Pus ⁇ W indicates that the channel transmission is satisfied when the path loss is not considered on the carrier.
  • the target transmit power of the UE when requested; "') indicates the part of the carrier Path loss compensation coefficient, which has e ° ⁇ 4 ' ° ⁇ 5 ' ° ⁇ 6 ' ° ⁇ 7 ' ° ⁇ 8 ' ° ⁇ 9 ' ⁇ ;
  • PL c is a fixed CSI-RS port set configured according to higher layer signaling
  • the minimum value of the measured multiple path loss values; ⁇ , . ( ) is the power adjustment amount based on the MCS level; ') is the closed-loop power control parameter on the carrier.
  • the predefined information includes a CSI-RS and a signal type
  • the determining, according to the predefined information, the uplink path loss is: a path loss value measured from the same fixed CSI-RS port set as a PUCCH, An estimated value of PUSCH and SRS uplink path loss, wherein the fixed CSI-RS port set is a CSI-RS port set configured by a high layer signaling, and the path loss value is measured according to the fixed CSI-RS port set. The average of multiple path loss values.
  • the CSI-RS port set configured by the high layer signaling may be one of the following sets but is not limited to: ⁇ 15, 17, 19, 21 ⁇ , ⁇ 16, 18, 20, 22 ⁇ , ⁇ 15, 16 ⁇ , ⁇ 17, 18 ⁇ , ⁇ 19, 20 ⁇ , ⁇ 21, 22 ⁇ , ⁇ 15, 16, 17 ⁇ , ⁇ 18, 19, 20 ⁇ , ⁇ 15, 17, 19 ⁇ , ⁇ 16, 18, 20 ⁇ , ⁇ 17, 19, 21 ⁇ , ⁇ 18, 20, 22 ⁇ .
  • Embodiment 1-8 only the PUSCH is taken as an example, and the calculation formula of the channel transmission power may be:
  • the size of the PUSCH resource is represented by RB; ⁇ -Pus ⁇ W indicates the target transmit power of the UE when the channel transmission requirement is satisfied without considering the path loss effect on the carrier; "') indicates the partial path loss compensation coefficient on the carrier, and the value E ° ⁇ 4 ' ° ⁇ 5 ' ° ⁇ 6 ' ° ⁇ 7 ' ° ⁇ 8 ' ° ⁇ 9 ' ⁇ ; PL c is based on higher layer signaling
  • the average of multiple path loss values measured by the configured fixed CSI-RS port set; ⁇ , . ( ) is the power adjustment amount based on the MCS level; ') is the closed-loop power control parameter on the carrier.
  • the predefined information includes a CSI-RS and a signal type
  • the determining the uplink path loss according to the predefined information is: obtaining the PUSCH and the PUCCH from the same fixed CSI-RS port, such as the port 15.
  • the path loss is obtained, and the uplink path loss of the SRS is obtained from the fixed CSI-RS port set, and the maximum value of the plurality of path loss values measured according to the fixed CSI-RS port set is used as the final uplink path loss estimation value of the SRS.
  • the fixed CSI-RS port set may be one of any of the following sets but is not limited to: ⁇ 15, 17, 19, 21 ⁇ , ⁇ 16, 18, 20, 22 ⁇ , ⁇ 15, 16 ⁇ , ⁇ 17 , 18 ⁇ , ⁇ 19, 20 ⁇ , ⁇ 21, 22 ⁇ , ⁇ 15, 16, 17 ⁇ , ⁇ 18, 19, 20 ⁇ , ⁇ 15, 17, 19 ⁇ , ⁇ 16, 18, 20 ⁇ , ⁇ 17 19, 21 ⁇ , ⁇ 18, 20, 22 ⁇ .
  • the parameter indicates the subframe i; the parameter is configured for the upper layer, and the value is 0, 1, 2; Is the maximum allowed transmit power on this carrier; MpusCH , . ( ) is the size of the PUSCH resource allocated on the subframe i on the carrier, denoted by RB; ⁇ -Pus ⁇ W represents the target transmit power of the UE when the channel transmission requirement is satisfied without considering the path loss effect on the carrier; Indicates the partial path loss compensation coefficient on this carrier.
  • the value is ⁇ 0,0'4,()'5,()'6,()'7,()'8,()'9,1 ⁇ ; based on The power adjustment amount of the level; is the closed loop power control parameter on the carrier; P SRS _.
  • FFSET is the SRS and PUSCH transmit power offset coefficient of the upper layer configuration; m is used to distinguish the type of triggered SRS; MsRS .
  • the bandwidth of the SRS that is currently required to be transmitted; ⁇ and ⁇ are the uplink path loss estimates of the PUSCH and SRS measured by the fixed CSI-RS port and the fixed CSI-RS port set, respectively.
  • the predefined information includes a CSI-RS and a signal type
  • the determining the uplink path loss according to the predefined information is: obtaining uplink path loss of the PUSCH and the PUCCH from the same fixed CSI-RS port set, Obtaining an uplink path loss of the SRS from another fixed CSI-RS port set different from the PUSCH and the PUCCH, and determining a maximum value of the plurality of path loss values according to the fixed CSI-RS port set as a final uplink path loss estimated value.
  • the fixed CSI-RS port set may be one of any of the following sets but is not limited to: ⁇ 15, 17, 19, 21 ⁇ , ⁇ 16, 18, 20, 22 ⁇ , ⁇ 15, 16 ⁇ , ⁇ 17 , 18 ⁇ , ⁇ 19, 20 ⁇ , ⁇ 21, 22 ⁇ , ⁇ 15, 16, 17 ⁇ , ⁇ 18, 19, 20 ⁇ , ⁇ 15, 17, 19 ⁇ , ⁇ 16, 18, 20 ⁇ , ⁇ 17 , 19, 21 ⁇ , ⁇ 18, 20, 22 ⁇ .
  • Embodiment 1-10 only the PUSCH and the SRS are taken as an example, and the calculation formulas of the channel transmission power are respectively:
  • the predefined information includes a CSI-RS, a power offset, and a signal type
  • the determining the uplink path loss according to the predefined information is: obtaining the PUSCH and the PUCCH from the same fixed CSI-RS port.
  • the uplink path loss such as the fixed port 15, determines the uplink path loss of the SRS as the sum of the uplink path loss obtained from the fixed CSI-RS port and the power offset.
  • the power offset may be obtained by calculating a power difference between the plurality of receiving nodes and the serving cell receiving the same uplink signal, and using a maximum power difference of the power differences as the power offset; The distance from the distance of the device to the upstream receiving node is estimated.
  • PUSCH resource ( ) is allocated on the subframe i on the carrier
  • the size of the PUSCH resource is represented by RB;
  • ⁇ -Pus ⁇ W indicates the target transmit power of the UE when the channel transmission requirement is satisfied without considering the path loss effect on the carrier;
  • "') indicates the partial path loss compensation coefficient on the carrier, and the value There is " ⁇ 0,0'4,()'5,()'6,()'7,()'8,()'9,1 ⁇ ; is the level-based power adjustment amount; is on this carrier Closed-loop power control parameters;
  • 3 ⁇ 4 RS FFSET ( ) is the SRS and PUSCH transmit power offset coefficients of the higher layer configuration;
  • m is used to distinguish the type of SRS triggered;
  • M ⁇ is the bandwidth of the SRS currently required to be transmitted;
  • is the power offset of the SRS.
  • the predefined information includes a CSI-RS, a power offset, and a signal type
  • the determining the uplink path loss according to the predefined information is: obtaining the PUSCH and the PUCCH from the same fixed CSI-RS port set.
  • the uplink path loss, where the port set can be one of the following sets but is not limited to this: ⁇ 15,17,19,21 ⁇ ⁇ 16,18,20,22 ⁇ , ⁇ 15,16 ⁇ , ⁇ 17 18 ⁇ ⁇ 19 20 ⁇ , ⁇ 21,22 ⁇ , ⁇ 15 16 17 ⁇ , ⁇ 18 19 20 ⁇ , ⁇ 15 17 19 ⁇ , ⁇ 16 18 20 ⁇ , ⁇ 17 19 21 ⁇ , ⁇ 18 20 22 ⁇ .
  • Determining the uplink path loss of the SRS is the sum of the uplink path loss obtained from the fixed CSI-RS port set and the power offset.
  • the power offset may be obtained by calculating a power difference between the plurality of receiving nodes and the serving cell receiving the same uplink signal, and using a maximum power difference of the power differences as the power offset; or The distance from the distance of the device to the upstream receiving node is estimated.
  • the allocated PUSCH resource size is represented by RB; ⁇ -Pus ⁇ W indicates the target transmit power of the UE when the channel transmission requirement is satisfied without considering the path loss effect on the carrier; "') indicates the partial path loss compensation coefficient on the carrier.
  • the value has " ⁇ ⁇ 0,0'4,()'5,()'6,()'7,()'8,()'9,1 ⁇ ; is the level-based power adjustment; Closed-loop power control parameters on the carrier; 3 ⁇ 4 RS FFSET ( ) is the SRS and PUSCH transmit power offset coefficients of the higher layer configuration; m is used to distinguish the type of SRS triggered; MsRS , is the bandwidth of the SRS currently required to be transmitted; The maximum value of the plurality of path loss values obtained by measuring the fixed CSI-RS port set is the power offset of the SRS.
  • the predefined information includes a CSI-RS, a power offset, and a signal type
  • the determining the uplink path loss according to the predefined information is: obtaining the PUSCH and the PUCCH from the fixed CSI-RS port.
  • the path loss such as the fixed port 15; determining the uplink path loss of the SRS is the sum of the uplink path loss obtained from the fixed CSI-RS port and the path loss offset.
  • the power offset may be a value configured by higher layer signaling.
  • Embodiments 1-13 only take PUSCH and SRS as examples, and the calculation formulas of channel transmission power are respectively:
  • the size of the PUSCH resource is represented by RB; ⁇ -Pus ⁇ W indicates the target transmit power of the UE when the channel transmission requirement is satisfied without considering the path loss effect on the carrier; "') indicates the partial path loss compensation coefficient on the carrier, and the value There is " ⁇ 0,0'4,()'5,()'6,()'7,()'8,()'9,1 ⁇ ; is the level-based power adjustment amount; is on this carrier Closed-loop power control parameters; 3 ⁇ 4 RS FFSET ( ) is the SRS and PUSCH transmit power offset coefficient of the high-level configuration; m is used to distinguish the type of SRS triggered; MsRS , is the bandwidth of the SRS currently required to be transmitted; The uplink path loss obtained by the fixed CSI-RS port 15 is described, and the APL is the power offset of the SRS.
  • the predefined information includes a CSI-RS, a power offset, and a signal type
  • the determining the uplink path loss according to the predefined information is: obtaining the PUSCH and the PUCCH from the same fixed CSI-RS port set.
  • the uplink path loss, where the port set can be one of the following sets but is not limited to this: ⁇ 15,17,19,21 ⁇ , ⁇ 16,18,20,22 ⁇ , ⁇ 15,16 ⁇ , ⁇ 17, 18 ⁇ , ⁇ 19, 20 ⁇ , ⁇ 21, 22 ⁇ , ⁇ 15, 16, 17 ⁇ , ⁇ 18, 19, 20 ⁇ , ⁇ 15, 17, 19 ⁇ , ⁇ 16, 18, 20 ⁇ , ⁇ 17, 19, 21 ⁇ , ⁇ 18, 20, 22 ⁇ .
  • Determining the uplink path loss of the SRS is the sum of the uplink path loss obtained from the fixed CSI-RS port set and the power offset.
  • the power offset may be a value configured by higher layer signaling.
  • Embodiments 1-14 only take PUSCH and SRS as examples, and the calculation formulas of channel transmission power are respectively:
  • the parameter indicates the subframe i; the parameter is configured for the upper layer, and the value is 0, 1, 2; P ; (0 is the maximum allowed transmit power on the carrier; MpusCH , . ( ) is the subframe i on the carrier.
  • the allocated PUSCH resource size is represented by RB; ⁇ -Pus ⁇ W indicates the target transmit power of the UE when the channel transmission requirement is satisfied without considering the path loss effect on the carrier; "') indicates the partial path loss compensation coefficient on the carrier.
  • the value has " ⁇ ⁇ 0,0'4,()'5,()'6,()'7,()'8,()'9,1 ⁇ ; is the level-based power adjustment; Closed-loop power control parameters on the carrier; 3 ⁇ 4 RS FFSET ( ) is the SRS and PUSCH transmit power offset coefficient of the higher layer configuration; used to distinguish the type of SRS triggered; MsRS , is the bandwidth of the SRS currently required to be transmitted; The uplink path loss obtained by the fixed CSI-RS port 15 and the APL is the power offset of the SRS.
  • different power offsets may be configured according to different SRS triggering manners; specifically, when the SRS is an aperiodic SRS triggered by DCI corresponding to the PUSCH, APL corresponds to, when the SRS is a PDSCH corresponding to The aperiodic SRS triggered by the DCI, ⁇ corresponds to ⁇ 2 .
  • the predefined information includes a CRS, a power offset, and a signal type, where the determining an uplink path loss according to the predefined information is: determining a PUSCH and a PUCCH uplink path loss according to the CRS, determining the SRS.
  • the uplink path loss is the sum of the uplink path loss of the PUSCH and the PUCCH and the power offset.
  • the power offset may be obtained by calculating a power difference between the plurality of receiving nodes and the same uplink signal received by the serving cell, and using a maximum power difference among the power differences as the power offset; or It is obtained according to the distance of the distance of the user equipment from the uplink receiving node.
  • Embodiment 2 only takes PUSCH and SRS as an example, and its channel transmission power D , ., ⁇ 'The body CMAX, c (0,
  • MpusCH , . ( ) is the size of the PUSCH resource allocated on subframe i on the carrier, denoted by RB;
  • P . - pusch , e ) indicates the target transmit power of the UE when the channel transmission requirement is met without considering the path loss effect on the carrier; indicates the partial path loss compensation coefficient on the carrier, and the value is “ ⁇ ⁇ 0,0'4,( ) '5,()'6,()'7,()'8,()'9,1 ⁇ ; is the level-based power adjustment; is the closed-loop power control parameter on this carrier; 3 ⁇ 4 RS .
  • FFSET ( ) is the upper layer configured SRS and PUSCH transmit power offset coefficients; used to distinguish the type of triggered SRS; MsRS , .
  • the bandwidth of the SRS that is currently required to be transmitted; is the uplink path loss of the PUSCH and PUCCH determined according to the CRS, and is the power offset of the SRS.
  • the embodiment 3 is a specific embodiment based on a multi-TA application scenario.
  • the predefined information includes a CRS and a signal type
  • the determining the uplink path loss according to the predefined information is: determining, according to the CRS of the downlink serving cell, the path loss of the uplink serving cell.
  • the same uplink path loss is used for PUCCH, PUSCH and SRS.
  • Embodiment 3-1 only takes the PUSCH as an example, and the calculation formula of the channel transmission power is: ⁇ CMAX,c (0,
  • 101og 10 (PUSCH, c PUSCH, c where the parameter indicates subframe i; for high-level configuration parameters, the values are 0, 1, 2; ⁇ CMAX.c (0 is the maximum allowed transmit power on the carrier; MpusCH , .
  • ( ) is the size of the PUSCH resource allocated on the subframe i on the carrier, denoted by RB; ⁇ -Pusc ⁇ W represents the target transmit power of the UE when the channel transmission requirement is satisfied without considering the path loss effect on the carrier; Partial path loss compensation coefficient on the carrier, which has e ° ⁇ 4 ' ° ⁇ 5 ' ° ⁇ 6 ' ° ⁇ 7 ' ° ⁇ 8 ' ° ⁇ 9 ' ⁇ ; ⁇ is the downlink service corresponding to the uplink serving cell The uplink path loss obtained by the CRS of the cell; ⁇ , ( ) is the power adjustment amount based on the MCS level; it is the closed-loop power control parameter on the carrier.
  • the predefined information includes a CRS and a signal type
  • the determining the uplink path loss according to the predefined information is: determining, according to the CRS of the downlink primary serving cell, the path loss of the uplink serving cell.
  • the same uplink path loss is used for PUCCH, PUSCH and SRS.
  • Embodiment 3-2 takes only the PUSCH as an example, and the calculation formula of the channel transmission power is:
  • the parameter indicates the subframe i; the configuration parameters for the upper layer have values of 0, 1, and 2; ⁇ ⁇ 0 is the maximum allowed transmit power on the carrier; MpusCH , . ( ) is the size of the PUSCH resource allocated on subframe i on the carrier, denoted by RB; P .
  • the sub-path loss compensation coefficient has the value e ° ⁇ 4 ' ° ⁇ 5 ' ° ⁇ 6 ' ° ⁇ 7 ' ° ⁇ 8 ' ° ⁇ 9 ' ⁇ ;
  • PL c is the downlink main serving cell corresponding to the uplink serving cell
  • the uplink loss of the CRS; ⁇ ,. ( ) is based on
  • the power adjustment amount of the MCS level; ') is the closed loop power control parameter on the carrier.
  • the predefined information includes a CSI-RS and a signal type
  • the determining the uplink path loss according to the predefined information is: determining, according to the CSI-RS of the downlink serving cell, the path loss of the uplink serving cell. .
  • the same uplink path loss is used for PUCCH, PUSCH and SRS.
  • Embodiment 3-3 only takes the PUSCH as an example, and the calculation formula of the channel transmission power is: PUSCH, c
  • the parameter indicates the subframe i; the configuration parameters for the upper layer have values of 0, 1, and 2; P TMAX , ') are the maximum allowed transmit power on the carrier; MPUSCH , . ( ) is the size of the PUSCH resource allocated on subframe i on the carrier, denoted by RB; P .
  • - pusch , e indicates the target transmit power of the UE when the channel transmission requirement is met without considering the path loss effect on the carrier; (representing the partial path loss compensation coefficient on the carrier, the value is e ° - 4 ' ° - 5 ' °- 6 ' ° - 7 ' ° - 8 ' ° - 9 ' ⁇ ;
  • PL c is the uplink loss obtained by measuring the CSI-RS of the downlink serving cell corresponding to the uplink serving cell;
  • ⁇ , ( ) is based on the MCS level
  • the power adjustment amount; ') is the closed loop power control parameter on the carrier.
  • the predefined information includes a CSI-RS and a signal type
  • the pre-defined information determines the uplink path loss as:
  • the path loss of the uplink serving cell is measured according to the CSI-RS of the downlink primary serving cell.
  • the embodiment 3-4 only takes the PUSCH as an example, and the formula of the channel transmission power is:
  • the size of the PUSCH resource, expressed in RB; P. - pusch , e ) indicates the target transmit power of the UE when the channel transmission requirement is met without considering the path loss effect on the carrier; indicates the partial path loss compensation coefficient on the carrier, which has the value e ° ⁇ 4 ' ° ⁇ 5 ' ° ⁇ 6 ' ° ⁇ 7 ' ° ⁇ 8 ' ° ⁇ 9 ' ⁇ ;
  • is the uplink loss obtained by measuring the CSI-RS of the downlink primary serving cell corresponding to the uplink serving cell;
  • ⁇ . ( ) is based on
  • the power adjustment amount of the MCS level; ') is the closed loop power control parameter on the carrier.
  • the embodiment 4 is a specific embodiment based on an application scenario of a downlink serving cell that introduces a new carrier type.
  • the predefined information includes a CRS and a signal type
  • the determining the uplink path loss according to the predefined information is: determining, according to the CRS of the downlink serving cell, the path loss of the uplink serving cell.
  • the same uplink path loss is used for PUCCH, PUSCH and SRS.
  • Embodiment 4-1 only the PUSCH is taken as an example, and the calculation formula of the channel transmission power is: ⁇ CMAX,c (0,
  • the size of the PUSCH resource, expressed in RB; P. - pusch , e ) indicates the target transmit power of the UE when the channel transmission requirement is met without considering the path loss effect on the carrier; (representing the partial path loss compensation coefficient on the carrier, the value is e ° ⁇ 4 ' ° ⁇ 5 ' ° ⁇ 6 ' ° ⁇ 7 ' ° ⁇ 8 ' ° ⁇ 9 ' ⁇ ; ⁇ is the uplink loss obtained by measuring the CRS of the downlink serving cell corresponding to the uplink serving cell; ⁇ , ( ) is the power adjustment based on the MCS level Quantity; is the closed loop power control parameter on this carrier.
  • the predefined information includes a CRS and a signal type
  • the determining the uplink path loss according to the predefined information is: determining, according to the CRS of the downlink primary serving cell, the path loss of the uplink serving cell.
  • the same uplink path loss is used for PUCCH, PUSCH and SRS.
  • Embodiment 4-2 takes only the PUSCH as an example, and the calculation formula of the channel transmission power is:
  • the parameter indicates the subframe i; the parameter is configured for the upper layer, and the value is 0, 1, 2; ⁇ CMAX.c (0 ⁇ the maximum allowed transmit power on the carrier; MPUSCH , . ( ) is the subframe on the carrier. Assigned on i
  • the size of the PUSCH resource, expressed in RB; P. - pusch , e ) indicates the target transmit power of the UE when the channel transmission requirement is satisfied without considering the path loss effect on the carrier; (representing the carrier on the carrier) Partial path loss compensation coefficient, which has e ° ⁇ 4 ' ° ⁇ 5 ' ° ⁇ 6 ' ° ⁇ 7 ' ° ⁇ 8 ' ° ⁇ 9 ' ⁇ ;
  • PL c is the downlink main service corresponding to the uplink serving cell
  • the uplink path loss obtained by the CRS of the cell; ⁇ ⁇ (the power adjustment amount based on the MCS level; ') is the closed-loop power control parameter on the carrier.
  • the predefined information includes a CSI-RS and a signal type
  • the determining the uplink path loss according to the predefined information is: determining, according to the CSI-RS of the downlink serving cell, the path loss of the uplink serving cell. .
  • the same uplink path loss is used for PUCCH, PUSCH and SRS.
  • Embodiment 4-3 only the PUSCH is taken as an example, and the calculation formula of the channel transmission power is:
  • the size of the PUSCH resource, expressed in RB; P. - pusch , e ) indicates the target transmit power of the UE when the channel transmission requirement is met without considering the path loss effect on the carrier; (representing the partial path loss compensation coefficient on the carrier, the value is e ° - 4 ' ° - 5 ' °- 6 ' ° - 7 ' ° - 8 ' ° - 9 ' ⁇ ;
  • PL c is the uplink loss obtained by measuring the CSI-RS of the downlink serving cell corresponding to the uplink serving cell; ⁇ , ( ) is based on the MCS level
  • the power adjustment amount; ') is the closed loop power control parameter on the carrier.
  • the predefined information includes a CSI-RS and a signal type
  • the pre-defined information determines the uplink path loss as:
  • the path loss of the uplink serving cell is measured according to the CSI-RS of the downlink primary serving cell.
  • the embodiment 4-4 only takes the PUSCH as an example, and the formula of the channel transmission power is:
  • the size of the PUSCH resource, expressed in RB; P. - pusch , e ) indicates the target transmit power of the UE when the channel transmission requirement is satisfied regardless of the path loss effect on the carrier; indicates the partial path loss compensation coefficient on the carrier, and the value is e ° ⁇ 4 ' ° ⁇ 5 ' ° ⁇ 6 ' ° ⁇ 7 ' ° ⁇ 8 ' ° ⁇ 9 ' ⁇ ;
  • is the uplink loss obtained by measuring the CSI-RS of the downlink primary serving cell corresponding to the uplink serving cell; ⁇ , . ( ) is based on
  • the power adjustment amount of the MCS level; ') is the closed loop power control parameter on the carrier.
  • the apparatus includes: an uplink path loss determining unit 21, and a transmitting power determining unit 22;
  • the uplink path loss determining unit 21 is configured to determine an uplink path loss according to the predefined information, where the sending power determining unit 22 is configured to obtain, according to the obtained uplink path loss, a transmit power of the uplink signal, and send according to the foregoing The power is sent for the uplink signal.
  • the uplink path loss determining unit 21 is specifically configured to obtain an uplink path loss from a preset fixed CSI-RS port or a CSI-RS port set; or a CSI-RS port or a CSI-RS configured from a high layer signaling.
  • the port set gets the uplink path loss.
  • the uplink path loss determining unit 21 is specifically configured to select a CSI-RS port set.
  • the maximum path loss value of the plurality of path loss values obtained by each CSI-RS is the uplink path loss; or the average value of the plurality of path loss values obtained by each CSI-RS in the CSI-RS port set is selected as Uplink path loss; or selecting the minimum path loss value of the plurality of path loss values obtained by each CSI-RS in the CSI-RS port set as the uplink path loss.
  • the uplink path loss determining unit 21 is specifically configured to obtain uplink path loss of the PUCCH, the PUSCH, and the SRS from the same CSI-RS port or the CSI-RS port set; or
  • the uplink path loss determining unit 21 is specifically configured to obtain an uplink path loss of the aperiodic SRS triggered by the downlink control message DCI corresponding to the PUSCH from different CSI-RS ports or CSI-RS port sets configured in advance.
  • the uplink path loss determining unit 21 is configured to obtain, according to the downlink reference signal, an uplink path loss of the uplink signal that is not configured with the power offset; and the uplink path loss obtained according to the downlink reference signal and the predefined information. And an uplink path loss of the uplink signal corresponding to the power offset; wherein the power offset is a different or the same value respectively configured for different uplink signals by higher layer signaling;
  • the sending power determining unit 22 is specifically configured to obtain each uplink signal according to each The uplink path loss determines the transmit power of each uplink signal.
  • the uplink path loss determining unit 21 is specifically configured to obtain an uplink path loss according to the downlink reference signal
  • the sending power determining unit 22 is specifically configured to: according to the obtained uplink path loss, obtain a transmit power that is not configured with a power offset uplink signal; and transmit the transmit power that is not configured with the power offset uplink signal. And summing the power offsets to obtain a transmit power of the uplink signal corresponding to the power offset; wherein the power offset is a different or the same value configured for different uplink signals by using high layer signaling .
  • the device further includes a configuration unit 23, configured to configure, respectively, a corresponding power offset for the aperiodic SRS triggered by the DCI corresponding to the DCSCH and the aperiodic SRS triggered by the DCI corresponding to the PDSCH;
  • the uplink path loss determining unit 21 is specifically configured to determine, according to a triggering manner of the SRS, an uplink path loss of the SRS, an uplink path loss obtained from the CSI-RS port or a CSI-RS port set, and a self-trigger mode. The sum of the corresponding power offsets.
  • the uplink path loss determining unit 21 is specifically configured to determine an uplink path loss according to a fixed configuration CSI-RS or CRS in a multi-TA application scenario, or determine according to a CSI-RS or a CRS according to a configuration of the high layer signaling. Uplink loss; or,
  • the downlink serving cell corresponding to the serving cell in which the uplink signal is located is a new carrier type, determining an uplink path loss according to a fixed configuration CSI-RS, or an associated service of a non-new carrier type corresponding to the serving cell according to a fixed configuration
  • the CRS of the cell determines the uplink path loss, or determines, according to the configuration of the high layer signaling, the uplink path loss according to the CSI-RS or the CRS of the associated serving cell, where the associated serving cell is a serving cell or a Pcell configured by the base station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种上行信号发送方法,所述方法包括:根据预定义信息确定上行路损;根据获得的上行路损得到上行信号的发射功率,并按照所述发射功率进行上行信号的发送。本发明还提供了一种上行信号发送装置,通过结合预定义信息进行上行路损的确定,根据确定的上行路损得到上行信号功率并发送上行信号,充分满足不同应用场景下对上行信道的发射功率的不同要求,而且能够进一步利用CSI-RS进行上行路损的确定,增强了开环功控的能力,达到准确控制上行信道的目的。

Description

一种上行信号发送方法及装置 技术领域
本发明涉及移动通信领域, 尤其涉及一种上行信号发送方法及装置。 背景技术
长期演进(LTE, Long Term Evolution ) 系统的上行物理信道包括物理 随机接入信道( PRACH, Physical Random Access Channel ) 、 物理上行共 享信道(PUSCH, Physical Uplink Shared Channel ) 、 以及物理上行控制信 道( PUCCH, Physical Uplink Control Channel )。 LTE的上行采用单载波正 交频分复用 ( OFDM, Orthogonal Frequency Division Multiplexing )技术, 参考信号和数据是通过时分复用 (TDM, Time Division Multiplex ) 的方式 复用在一起的。 上行参考信号包括解调参考信号 (DM-RS , Demodulation Reference Signal )和;则量参考信号 ( SRS, Sounding Reference Signal ) 。
由于 LTE 的上行采用单载波频分多址 ( SC-FDMA , Single Carrier-Frequency Division Multiple Access )技术 ,一个小区内不同用户设备 ( UE, User Equipment )的上行信号之间是相互正交的, 因此上行功控主要 用于补偿信道的路径损耗( PL, Pathloss )和阴影, 并用于抑制小区间干扰。 上行功控可以对 PUSCH/PUCCH等信道及 SRS的发射功率进行控制。在现 有 Rel 10版本 LTE协议 ( 36.213 Evolved Universal Terrestrial Radio Access ( E-UTRA ) ; Physical layer procedures ) 的功控方案中, 用于补偿上行路 损的路径损耗值是通过 UE测量下行路损得到的。 UE通过计算接收到的导 频信号功率和基站通过信令指示给 UE 的导频发射功率的差值就可以得到 下行路损值, 并将上述计算得到的路损值用作上行功控的路损补偿。
在使用单天线或者传统的多天线的系统中,由于 UE的下行链路的发射 端和上行链路的接收端是同一个小区, 因此, 根据上述方式计算得到的下 行路损可以比较准确反映上行路损, 实现上行信号发射功率的合理估计, 同时抑制边缘用户的小区间干扰。 但是, 在分布式多天线系统或者上行协 作多点传输 ( UL CoMP, Uplink Coordinate multi-point transmission )系统中 , 由于 UE端的上下行信号的发送节点和接收节点有可能不一致, 当 UE端的 上、 下行信号的发送节点和接收节点不一致时, 将导致根据下行发送节点 发送的参考信号估计出来的 PL值与实际的上行接收节点到 UE之间的 PL 值差别较大, 用下行链路估计出来的 PL值来预估上行链路的 UE侧信号的 发送功率, 就会造成 UE端信号发射功率估计不准确, 影响 UE的上行信号 的接收、 以及对相邻小区的用户带来干扰。 发明内容
有鉴于此, 本发明的主要目的在于提供一种上行信号发送方法及装置, 能够准确确定上行信号功率。
为达到上述目的, 本发明的技术方案是这样实现的:
一种上行信号发送方法, 所述方法包括:
根据预定义信息确定上行路损;
根据获得的上行路损得到上行信号的发射功率, 并按照所述发射功率 进行上行信号的发送。
其中, 所述根据预定义信息确定上行路损为:
根据公有参考信号(CRS, Cell-specific Reference Signal ), 小区状态信 息参考信号 ( CSI-RS, Channel State Information Reference Signal ), 功率偏 移量、 信号类型、 应用场景的一种或多种获得上行路损。
其中, 所述 CRS和 CSI-RS为所述上行信号所在上行服务小区对应的 下行服务小区上的 CRS和 CSI-RS。
其中, 当所述预定义信息包括 CSI-RS时, 所述根据预定义信息确定上 行路损为:
从预先配置的固定 CSI-RS端口或 CSI-RS端口集合获得上行路损; 或 者,
从高层信令配置的 CSI-RS端口或 CSI-RS端口集合获得上行路损。 其中, 所述从 CSI-RS端口集合获得上行路损为:
选择 CSI-RS端口集合中通过各 CSI-RS得到的多个路损值中最大路损 值为所述上行路损; 或者,
选择 CSI-RS端口集合中通过各 CSI-RS得到的多个路损值的平均值为 所述上行路损; 或者,
选择 CSI-RS端口集合中通过各 CSI-RS得到的多个路损值中最小路损 值为所述上行路损。
其中, 当所述预定义信息包括 CSI-RS和信号类型时, 所述根据预定义 信息确定上行路损为:
从相同的 CSI-RS端口或 CSI-RS端口集合获得 PUCCH、 PUSCH、 SRS 的上行路损; 或者,
从相同的 CSI-RS端口或 CSI-RS端口集合获得 PUCCH和 PUSCH的上 行路损,从与 PUCCH和 PUSCH的 CSI-RS端口或 CSI-RS端口集合不同的 CSI-RS端口或 CSI-RS端口集合获得 SRS的上行路损; 或者,
从相同的 CSI-RS端口或 CSI-RS端口集合获得 PUCCH和 SRS的上行 路损,从与 PUCCH和 SRS的 CSI-RS端口或 CSI-RS端口集合不同的 CSI-RS 端口或 CSI-RS端口集合获得 PUSCH的上行路损; 或者,
从相同的 CSI-RS端口或 CSI-RS端口集合获得 PUSCH和 SRS的上行 路损,从与 PUSCH和 SRS的 CSI-RS端口或 CSI-RS端口集合不同的 CSI-RS 端口或 CSI-RS端口集合获得 PUCCH的上行路损。
其中, 当所述预定义信息包括 CSI-RS和信号类型时, 所述根据预定义 信息确定上行路损为:
分别从预先配置的不同 CSI-RS 端口或 CSI-RS 端口集合获得所述 PUSCH对应的下行控制消息 DCI触发的非周期 SRS的上行路损和 PDSCH 对应的 DCI触发的非周期 SRS的上行路损。
其中, 当所述预定义信息包括功率偏移量和信号类型时, 所述根据预 定义信息确定上行路损为:
根据下行参考信号获得上行路损, 作为未配置有功率偏移量的上行信 号的上行路损; 量的和作为所述功率偏移量所对应上行信号的上行路损; 其中, 所述功率 偏移量为通过高层信令为不同上行信号分别配置的不同或相同的值;
相应地, 所述根据获得的上行路损得到上行信号的发射功率为: 根据得到的各上行信号的上行路损, 分别确定各上行信号的发射功率。 其中, 当所述预定义信息包括功率偏移量和信号类型时, 所述根据预 定义信息确定上行路损为:
根据下行参考信号获得上行路损;
相应地, 所述根据获得的上行路损得到上行信号的发射功率为: 根据获得的上行路损, 得到未配置有功率偏移量上行信号的发射功率; 将所述未配置有功率偏移量上行信号的发射功率与所述功率偏移量求 和, 得到所述功率偏移量所对应上行信号的发射功率; 其中, 所述功率偏 移量为通过高层信令为不同上行信号分别配置的不同或相同的值。
进一步地, 所述方法还包括: 为所述 PUSCH对应的 DCI触发的非周 期 SRS和 PDSCH对应的 DCI触发的非周期 SRS分别配置对应的功率偏移 量;
相应地, 所述根据预定义信息确定上行路损, 包括: 根据 SRS的触发方式,确定 SRS的上行路损为从 CSI-RS端口或 CSI-RS 端口集合获得的上行路损与自身触发方式所对应的功率偏移量的和。
其中, 当所述预定义信息包括应用场景时, 所述根据预定义信息确定 上行路损为:
在多定时提前应用场景下, 根据固定配置的 CSI-RS或 CRS确定上行 路损; 或根据高层信令的配置确定根据 CSI-RS或 CRS确定上行路损; 或 者,
当所述上行信号所在的服务小区对应的下行服务小区为新载波类型 时, 根据固定配置的 CSI-RS确定上行路损, 或根据固定配置的所述服务小 区对应的非新载波类型的关联服务小区的 CRS确定上行路损, 或根据高层 信令的配置确定根据 CSI-RS或所述关联服务小区的 CRS确定上行路损; 其中, 所述关联服务小区为基站配置的服务小区或主服务小区 (Pcell, Primary cell )。
一种上行信号发送装置, 所述装置包括: 上行路损确定单元、 发射功 率确定单元; 其中,
所述上行路损确定单元, 用于根据预定义信息确定上行路损; 所述发送功率确定单元, 用于根据所述获得的上行路损得到上行信号 的发射功率, 并按照所述发送功率进行上行信号的发送。
其中, 所述上行路损确定单元, 具体用于从预先配置的固定 CSI-RS端 口或 CSI-RS端口集合获得上行路损; 或者, 从高层信令配置的 CSI-RS端 口或 CSI-RS端口集合获得上行路损。
其中, 所述上行路损确定单元, 具体用于选择 CSI-RS端口集合中通过 各 CSI-RS 得到的多个路损值中最大路损值为所述上行路损; 或者选择 CSI-RS端口集合中通过各 CSI-RS得到的多个路损值的平均值为所述上行 路损; 或者选择 CSI-RS端口集合中通过各 CSI-RS得到的多个路损值中最 小路损值为所述上行路损。
其中, 所述上行路损确定单元, 具体用于从相同的 CSI-RS 端口或 CSI-RS端口集合获得 PUCCH、 PUSCH, SRS的上行路损; 或者,
从相同的 CSI-RS端口或 CSI-RS端口集合获得 PUCCH和 PUSCH的上 行路损,从与 PUCCH和 PUSCH的 CSI-RS端口或 CSI-RS端口集合不同的 CSI-RS端口或 CSI-RS端口集合获得 SRS的上行路损; 或者,
从相同的 CSI-RS端口或 CSI-RS端口集合获得 PUCCH和 SRS的上行 路损,从与 PUCCH和 SRS的 CSI-RS端口或 CSI-RS端口集合不同的 CSI-RS 端口或 CSI-RS端口集合获得 PUSCH的上行路损; 或者,
从相同的 CSI-RS端口或 CSI-RS端口集合获得 PUSCH和 SRS的上行 路损,从与 PUSCH和 SRS的 CSI-RS端口或 CSI-RS端口集合不同的 CSI-RS 端口或 CSI-RS端口集合获得 PUCCH的上行路损。
其中,所述上行路损确定单元,具体用于分别从预先配置的不同 CSI-RS 端口或 CSI-RS端口集合获得 PUSCH对应的下行控制消息 DCI触发的非周 期 SRS的上行路损和 PDSCH对应的 DCI触发的非周期 SRS的上行路损。
其中, 所述上行路损确定单元, 具体用于根据下行参考信号获得未配 置有功率偏移量的上行信号的上行路损; 将根据下行参考信号获得的上行 路损与所述预定义信息中的功率偏移量的和作为所述功率偏移量所对应上 行信号的上行路损; 其中, 所述功率偏移量为通过高层信令为不同上行信 号分别配置的不同或相同的值;
相应地, 所述发送功率确定单元, 具体用于根据得到的各上行信号的 上行路损, 分别确定各上行信号的发射功率。
其中, 所述上行路损确定单元, 具体用于根据下行参考信号获得上行 路损;
相应地, 所述发送功率确定单元, 具体用于根据获得的上行路损, 得 到未配置有功率偏移量上行信号的发射功率; 将所述未配置有功率偏移量 上行信号的发射功率与所述功率偏移量求和, 得到所述功率偏移量所对应 上行信号的发射功率; 其中, 所述功率偏移量为通过高层信令为不同上行 信号分别配置的不同或相同的值。
进一步地, 所述装置还包括配置单元, 用于为所述 PUSCH对应的 DCI 触发的非周期 SRS和 PDSCH对应的 DCI触发的非周期 SRS分别配置对应 的功率偏移量;
相应地, 所述上行路损确定单元, 具体用于根据 SRS的触发方式, 确 定 SRS的上行路损为从所述 CSI-RS端口或 CSI-RS端口集合获得的上行路 损与自身触发方式所对应的功率偏移量的和。
其中, 所述上行路损确定单元, 具体用于在多定时提前应用场景下, 根据固定配置的 CSI-RS或 CRS确定上行路损; 或根据高层信令的配置确 定根据 CSI-RS或 CRS确定上行路损; 或者,
当所述上行信号所在的服务小区对应的下行服务小区为新载波类型 时, 根据固定配置的 CSI-RS确定上行路损, 或根据固定配置的所述服务小 区对应的非新载波类型的关联服务小区的 CRS确定上行路损, 或根据高层 信令的配置确定根据 CSI-RS或所述关联服务小区的 CRS确定上行路损; 其中, 所述关联服务小区为基站配置的服务小区或 Pcell。
本发明通过结合预定义信息进行上行路损的确定, 根据确定的上行路 损得到上行信号功率并发送上行信号, 充分满足不同应用场景下对上行信 道的发射功率的不同要求, 而且能够进一步利用 CSI-RS进行上行路损的确 定, 增强了开环功控的能力, 达到准确控制上行信道的目的。 附图说明
图 1为本发明上行信号发送方法的实现流程示意图;
图 2为本发明上行信号发送装置的结构原理示意图。 具体实施方式
在多定时提前( TA , Timing Advance )场景下, 因为聚合载波之间采 用独立的定时提前, 导致不同载波在同一子帧内是部分重叠的, 不同载波 的子帧在时间上并不是严格对齐,与现有标准中的同一个 TA下的载波聚合 场景不同的是同一个子帧内不同服务小区的信号经历的路损可能会有较大 差别, 因此需要为这种新场景重新确定上行路损的测量方式。
当上行服务小区对应的下行服务小区为新载波类型时, 因为没有 CRS, 因此, 需要考虑根据 CSI-RS来测量下行路损并用于估计上行路损。
考虑到 CoMP场景中引入的 CSI-RS, 同时存在新载波的场景中也引入 了 CSI-RS, 所以可以考虑基于 CSI-RS的上行路损估计方式, 用于上行功 控。同时考虑到多 TA场景下已经不再适合使用同一个下行服务小区的参考 信号来计算上行路损, 所以需要根据应用场景来区分路损测量方法, 以保 证不同场景下 UE可以获得准确的上行路损估计,增强开环功控的能力,达 到准确控制上行信道功率的目的。
本发明的基本思想为: 根据预定义信息确定上行路损; 根据获得的上 行路损得到上行信号的发射功率, 并按照所述发射功率进行上行信号的发 送。
为使本发明的目的、 技术方案和优点更加清楚明白, 以下举实施例并 参照附图, 对本发明进一步详细说明。
图 1示出了本发明上行信号发送方法的实现流程, 如图 1所示, 所述 方法包括下述步驟:
步驟 101 , 根据预定义信息确定上行路损;
具体地, 所述预定义信息包括 CRS、 CSI-RS, 功率偏移量、 信号类型、 应用场景的一种或多种; 其中, 所述 CRS和 CSI-RS为所述上行信号所在 上行服务小区对应的下行服务小区上的 CRS和 CSI-RS;所述功率偏移量可 以预先进行配置, 根据 SRS的不同触发方式配置不同的功率偏移量, 具体 地, 为所述 PUSCH对应的 DCI触发的非周期 SRS和 PDSCH对应的 DCI 触发的非周期 SRS 分别配置对应的功率偏移量; 所述信号类型包括 PUCCH、 PUSCH和 SRS; 所述应用场景具体包括多 TA应用场景、 上行信 号所在的服务小区对应的下行服务小区为新载波类型时的应用场景等等。
当所述预定义信息包括 CSI-RS时,所述根据预定义信息确定上行路损 具体为:从预先配置的固定 CSI-RS端口或 CSI-RS端口集合获得上行路损; 或者, 从高层信令配置的 CSI-RS端口或 CSI-RS端口集合获得上行路损; 其中, 所述从 CSI-RS端口集合获得上行路损为: 选择 CSI-RS端口集 合中通过各 CSI-RS得到的多个路损值中最大路损值为所述上行路损;或者, 选择 CSI-RS端口集合中通过各 CSI-RS得到的多个路损值的平均值为所述 上行路损; 或者, 选择 CSI-RS端口集合中通过各 CSI-RS得到的多个路损 值中最小路损值为所述上行路损。
当所述预定义信息包括 CSI-RS和信号类型时,所述根据预定义信息确 定上行路损具体为:从相同的 CSI-RS端口或 CSI-RS端口集合获得 PUCCH、 PUSCH, SRS的上行路损; 或者,
从相同的 CSI-RS端口或 CSI-RS端口集合获得 PUCCH和 PUSCH的上 行路损,从与 PUCCH和 PUSCH的 CSI-RS端口或 CSI-RS端口集合不同的 CSI-RS端口或 CSI-RS端口集合获得 SRS的上行路损; 或者,
从相同的 CSI-RS端口或 CSI-RS端口集合获得 PUCCH和 SRS的上行 路损,从与 PUCCH和 SRS的 CSI-RS端口或 CSI-RS端口集合不同的 CSI-RS 端口或 CSI-RS端口集合获得 PUSCH的上行路损; 或者,
从相同的 CSI-RS端口或 CSI-RS端口集合获得 PUSCH和 SRS的上行 路损,从与 PUSCH和 SRS的 CSI-RS端口或 CSI-RS端口集合不同的 CSI-RS 端口或 CSI-RS端口集合获得 PUCCH的上行路损。 进一步地, 当所述预定义信息包括 CSI-RS和信号类型时, 所述根据预 定义信息确定上行路损为:
分别从预先配置的不同 CSI-RS 端口或 CSI-RS 端口集合获得所述 PUSCH对应的下行控制消息 DCI触发的非周期 SRS的上行路损和 PDSCH 对应的 DCI触发的非周期 SRS的上行路损。
当所述预定义信息包括功率偏移量和信号类型时, 所述根据预定义信 息确定上行路损为: 根据下行参考信号获得上行路损, 作为未配置有功率 偏移量的上行信号的上行路损; 将根据下行参考信号获得的上行路损与所 述预定义信息中的功率偏移量的和作为所述功率偏移量所对应上行信号的 上行路损; 其中, 所述功率偏移量为通过高层信令为不同上行信号分别配 置的不同或相同的值; 所述根据下行参考信号获得的上行路损具体可以为 根据 CRS端口 /端口集合或者 CSI-RS端口 /端口集合获得各上行信道的上行 路损, 其中, 各上行信号可以采用相同或者不同的 CRS端口 /端口集合或者 CSI-RS端口 /端口集合。
当所述预定义信息包括功率偏移量和信号类型时, 所述根据预定义信 息确定上行路损还可以为: 根据下行参考信号获得上行路损; 其中根据下 行参考信号获得的上行路损具体可以为根据 CRS 端口 /端口集合或者 CSI-RS端口 /端口集合获得各上行信道的上行路损, 其中, 各上行信号可以 采用相同或者不同的 CRS端口 /端口集合或者 CSI-RS端口 /端口集合。
当所述预定义信息包括应用场景时, 所述根据预定义信息确定上行路 损为:
在多 TA应用场景下, 根据固定配置的 CSI-RS或 CRS确定上行路损; 或根据高层信令的配置确定根据 CSI-RS或 CRS确定上行路损; 或者, 当所述上行信号所在的服务小区对应的下行服务小区为新载波类型 时, 根据固定配置的 CSI-RS确定上行路损, 或根据固定配置的所述服务小 区对应的非新载波类型的关联服务小区的 CRS确定上行路损, 或根据高层 信令的配置确定根据 CSI-RS或所述关联服务小区的 CRS确定上行路损; 其中, 所述关联服务小区为基站配置的服务小区或 Pcell。
步驟 102,根据获得的上行路损得到上行信号的发射功率, 并按照所述 发射功率进行上行信号的发送;
具体地, 本步驟中, 当所述预定义信息包括功率偏移量和信号类型时, 所述根据获取的上行路损得到上行信号的发射功率具体为: 根据得到的各 上行信号的上行路损, 分别确定各上行信号的发射功率; 其中, 所述各上 行信号的上行路损为: 配置有功率偏移量的上行信号的上行路损为所述步 驟 101 中根据下行参考信号获得的上行路损与所述功率偏移量的和, 未配 置有功率偏移量的上行信号的上行路损直接为根据下行参考信号获得的上 行路损; 然后依据得到的新的上行路损确定最终各上行信号的发射功率; 或者,
根据下行参考信号获得的上行路损, 得到未配置有功率偏移量上行信 号的发射功率; 将所述未配置有功率偏移量上行信号的发射功率与所述功 率偏移量求和, 得到所述功率偏移量所对应上行信号的发射功率; 其中, 所述功率偏移量为通过高层信令为不同上行信号分别配置的不同或相同的 值; 即根据所述上行路损计算得到上行功率, 并对得到的上行功率与所述 功率偏移量求和得到所述功率偏移量所对应的上行信号的发射功率。
为了便于理解本发明, 下面结合具体实施例对上述方法进行进一步说 明。
实施例 1
这里, 所述实施例 1是基于多点协作系统或仅引入 CSI-RS的单天线或 多天线系统进行的说明; 实施例 1-1中, 所述预定义信息包括 CSI-RS和信号类型, 所述根据预 定义信息确定上行路损为:从相同的固定 CSI-RS端口测量得到的路损值作 为 PUCCH、 PUSCH和 SRS上行路损的估计值; 其中, 固定 CSI-RS端口 可以是端口 15〜端口 22中的任何一个或者固定一个, 如固定为端口 15。
为了便于说明, 实施例 1-1仅以 PUSCH为例, 其信道发射功率的计算 公式可以为:
' [10 log10 (MPUSCH,C (0) + Po mc (j) + c (j) . PLc + ATF,C (0 + fc 其中, 参数表示子帧 i; 为高层配置参数, 取值有 0、 1、 2;
Figure imgf000013_0001
是本载波上的最大允许发射功率; MpusCH,。( )为本载波上的子帧 i 上分配的 PUSCH资源大小, 用 RB表示; P。-pusche )表示本载波上不考虑路径损耗影 响时满足信道传输要求时 UE 的目标发射功率; " ')表示本载波上的部分 路径损耗补偿系数, 取值有《^ {0,0_4,0_5,0_6,0_7,0_8,0_9,1}; 为根据固定的
CSI-RS 端口测量得到的上行路损; Δτρ,。(0为基于调制编码方案 (MCS , Modulation and Coding Scheme )等级的功率调整量; , ')是本载波上的闭环 功率控制参数。
应当理解, PUCCH和 SRS发射功率的计算方法与 PUSCH相同, 不再 赘述。
实施例 1-2
实施例 1-2中, 所述预定义信息包括 CSI-RS和信号类型, 所述根据预 定义信息确定上行路损为: 从相同的 CSI-RS 端口测量得到的路损值作为 PUCCH、 PUSCH和 SRS上行路损的估计值, 其中, 所述 CSI-RS端口可以 为通过高层信令配置的端口 15。
为了便于说明, 实施例 1-2仅以 PUSCH为例, 其信道发射功率的计算 公式可以为:
, . . PcMAX'c (0
尸 ) = mm<! ,
PUSCH'C 10 log10 (MPUSCH,C (0) +尸。— PUSCH,C (j) + c (j) . PLC + ATF,C (0 + fc (i) |
其中, 参数表示子帧 i; 为高层配置参数, 取值有 0、 1、 2; P; 是本载波上的最大允许发射功率; MpusCH,。('')是本载波上的子帧 i 上分配的
PUSCH资源大小, 用 RB表示; ^-Pus^W表示本载波上不考虑路径损耗影 响时满足信道传输要求时 UE 的目标发射功率; " ')表示本载波上的部分 路径损耗补偿系数,取值有 {0,0.4, 0.5, 0.6, 0.7, 0.8, 0.9,1}; pL^^ CSI-RS端 口 15测量得到的上行路损; Δ (0为基于 MCS等级的功率调整量; 是 本载波上的闭环功率控制参数。
应当理解, PUCCH和 SRS发射功率的计算方法与 PUSCH相同, 不再 赘述。
实施例 1-3
实施例 1-3中, 所述预定义信息包括 CSI-RS和信号类型, 所述根据预 定义信息确定上行路损为:从相同的固定 CSI-RS端口集合测量得到的路损 值作为 PUCCH、 PUSCH和 SRS上行路损的估计值, 并且该路损值是根据 所述固定 CSI-RS端口集合测量得到的多个路损值中的最大值。 其中, 所述 固定 CSI-RS端口集合可以是端口 15〜端口 22中的任意多个端口组成的集 合, 例如可以是以下任意集合之一但不仅限于此: {15,17,19,21}、 {16,18,20,22}, {15,16}, {17、 18}, {19、 20}, {21,22}, {15、 16、 17}, {18、 19、 20}, {15、 17、 19}, {16、 18、 20}, {17、 19、 21}, {18、 20、 22}。
为了便于说明, 实施例 1-3仅以 PUSCH为例, 其信道发射功率的计算 公式可以为: 尸 ,
Figure imgf000015_0001
PUSCH'c 0') + ac (j) · PLC + ATF;C (0 + fc ( 1 其中, 参数表示子帧 i; 为高层配置参数, 取值有 0、 1、 2; ρ^ 是本载波上的最大允许发射功率; MpusCH,。( )是本载波上的子帧 i 上分配的 PUSCH资源大小, 用 RB表示; ^-Pus^W表示本载波上不考虑路径损耗影 响时满足信道传输要求时 UE 的目标发射功率; " 表示本载波上的部分 路径损耗补偿系数,取值有 "c { , 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, l}; 为根据固定 CSIRS 端口集合测量得到的多个路损值中的最大值; F,。(0为基于 MCs等级的功 率调整量; ')是本载波上的闭环功率控制参数。
应当理解, PUCCH和 SRS发射功率的计算方法与 PUSCH相同, 不再 赘述。
实施例 1-4
实施例 1-4中, 所述预定义信息包括 CSI-RS和信号类型, 所述根据预 定义信息确定上行路损为:从相同的固定 CSI-RS端口集合测量得到的路损 值作为 PUCCH、 PUSCH和 SRS上行路损的估计值, 并且该路损值是根据 所述固定 CSI-RS端口集合测量得到的多个路损值中的最小值。 其中, 固定 CSI-RS端口集合可以是端口 15〜端口 22中的任意多个端口组成的集合,例 如可以是以下任意集合之一但不仅限于此: {15,17,19,21 }、 {16,18,20,22} , {15,16} , {17、 18} , {19、 20} , {21,22} , {15、 16、 17} , {18、 19、 20} , {15、 17、 19} , {16、 18、 20} , {17、 19、 21 } , {18、 20、 22}。
为了便于说明, 实施例 1-4仅以 PUSCH为例, 其信道发射功率的计算 公式可以为:
, . . PcMAX'c (0?
尸 ) = mm<! ,
PUSCH'c 其中, 参数表示子帧 i; 为高层配置参数, 取值有 0、 1、 2;
Figure imgf000016_0001
是本载波上的最大允许发射功率; MPUSCH,。( )是本载波上的子帧 i 上分配的
PUSCH资源大小, 用 RB表示; ^-Pus^W表示本载波上不考虑路径损耗影 响时满足信道传输要求时 UE 的目标发射功率; " ')表示本载波上的部分 路径损耗补偿系数,取值有 { , 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, l}; 为根据固定 CSIRS 端口集合测量得到的多个路损值中的最小值; F,。(0为基于 MCs等级的功 率调整量; ')是本载波上的闭环功率控制参数。
应当理解, PUCCH和 SRS发射功率的计算方法与 PUSCH相同, 不再 赘述。
实施例 1-5
实施例 1-5中, 所述预定义信息包括 CSI-RS和信号类型, 所述根据预 定义信息确定上行路损为:从相同的固定 CSI-RS端口集合测量得到的路损 值作为 PUCCH、 PUSCH和 SRS上行路损的估计值, 并且该路损值是根据 所述固定 CSI-RS 端口集合测量得到的多个路损值的平均值。 其中, 固定 CSI-RS端口集合可以是端口 15〜端口 22中的任意多个端口组成的集合,例 如可以是以下任意集合之一但不仅限于此: {15,17,19,21}、 {16,18,20,22} , {15,16} , {17、 18} , {19、 20} , {21,22} , {15、 16、 17} , {18、 19、 20} , {15、 17、 19} , {16、 18、 20} , {17、 19、 21} , {18、 20、 22}。
为了便于说明, 实施例 1-5仅以 PUSCH为例, 其信道发射功率的计算 公式可以为:
其中, 参 数表示子帧 i; 为高层配置参数, 取值有 0、 1、 2; 是本载波上的最大允许发射功率; MPUSCH,。( )是本载波上的子帧 i 上分配的 PUSCH资源大小, 用 RB表示; ^-Pus^W表示本载波上不考虑路径损耗影 响时满足信道传输要求时 UE 的目标发射功率; 表示、 本载波上的部 分路径损耗补偿系数, 取值有《^ {(),()'4,(^,(^,(^,(^,()'9,1}; 为根据固定
CSI-RS端口集合测量得到的多个路损值的平均值; Δτρ,。(0为基于 MCS等级 的功率调整量; ')是本载波上的闭环功率控制参数。
应当理解, PUCCH和 SRS发射功率的计算方法与 PUSCH相同, 不再 实施例 1-6
实施例 1-6中, 所述预定义信息包括 CSI-RS和信号类型, 所述根据预 定义信息确定上行路损为:从相同的固定 CSI-RS端口集合测量得到的路损 值作为 PUCCH、PUSCH和 SRS上行路损的估计值,其中,所述固定 CSI-RS 端口集合是通过高层信令配置的 CSI-RS端口集合, 并且该路损值是根据固 定 CSI-RS端口集合测量得到的多个路损值的最大值。 其中, 高层信令配置 的 CSI-RS端口集合可以是以下任意集合之一但不仅限于此: {15,17,19,21 }、 {16,18,20,22} , {15,16} , {17、 18} , {19、 20} , {21,22} , {15、 16、 17} , {18、 19、 20} , {15、 17、 19} , {16、 18、 20} , {17、 19、 21 } , {18、 20、 22}。
为了便于说明, 实施例 1-6仅以 PUSCH为例, 其信道发射功率的计算 公式可以为:
Figure imgf000017_0001
+ Po PUSCH'c 其中, 参数表示子帧 i; 为高层配置参数, 取值有 0、 1、 2; ρ^ 是本载波上的最大允许发射功率; MpusCH,。( )是本载波上的子帧 i 上分配的 PUSCH资源大小, 用 RB表示; ^-Pus^W表示本载波上不考虑路径损耗影 响时满足信道传输要求时 UE 的目标发射功率; " )表示本载波上的部^ 路径损耗补偿系数, 取值有 e °·4' °·5' °·6' °·7' °·8' °·9' ^; PLc为根据高层信令 配置的固定 CSI-RS端口集合测量得到的多个路损值的最大值; Δτ^( 为基 于 MCS等级的功率调整量; ')是本载波上的闭环功率控制参数。
应当理解, PUCCH和 SRS发射功率的计算方法与 PUSCH相同, 不再 赘述。
实施例 1-7
实施例 1-7中, 所述预定义信息包括 CSI-RS和信号类型, 所述根据预 定义信息确定上行路损为:从相同的固定 CSI-RS端口集合测量得到的路损 值作为 PUCCH、PUSCH和 SRS上行路损的估计值,其中,所述固定 CSI-RS 端口集合是高层信令配置的 CSI-RS端口集合, 并且该路损值是根据所述固 定 CSI-RS端口集合测量得到的多个路损值的最小值。 其中, 高层信令配置 的 CSI-RS端口集合可以是以下任意集合之一但不仅限于此: {15,17,19,21 }、 {16,18,20,22} , {15,16} , {17、 18} , {19、 20} , {21,22} , {15、 16、 17} , {18、 19、 20} , {15、 17、 19} , {16、 18、 20} , {17、 19、 21 } , {18、 20、 22}。
为了便于说明, 实施例 1-7仅以 PUSCH为例, 其信道发射功率的计算 公式可以为:
, . . PcMAX'c (0?
尸 ) = mm<! ,
PUSCH U) + ac (j) · PLC + ATF;C (0 + fc ( 1 其中, 参数表示子帧 i; 为高层配置参数, 取值有 0、 1、 2; ρ^ 是本载波上的最大允许发射功率; MpusCH,。( )是本载波上的子帧 i 上分配的 PUSCH资源大小, 用 RB表示; ^-Pus^W表示本载波上不考虑路径损耗影 响时满足信道传输要求时 UE 的目标发射功率; " ')表示本载波上的部分 路径损耗补偿系数, 取值有 e °·4' °·5' °·6' °·7' °·8' °·9' ^; PLc为根据高层信令 配置的固定 CSI-RS端口集合测量得到的多个路损值的最小值; Δτρ,。( )为基 于 MCS等级的功率调整量; ')是本载波上的闭环功率控制参数。
应当理解, PUCCH和 SRS发射功率的计算方法与 PUSCH相同, 不再 赘述。
实施例 1-8
实施例 1-8中, 所述预定义信息包括 CSI-RS和信号类型, 所述根据预 定义信息确定上行路损为:从相同的固定 CSI-RS端口集合测量得到的路损 值作为 PUCCH、 PUSCH和 SRS上行路损的估计值,其中,所述固定 CSI-RS 端口集合是高层信令配置的 CSI-RS端口集合, 并且该路损值是根据所述固 定 CSI-RS端口集合测量得到的多个路损值的平均值。 其中, 高层信令配置 的 CSI-RS端口集合可以是以下任意集合之一但不仅限于此: {15,17,19,21 }、 {16,18,20,22} , {15,16} , {17、 18} , {19、 20} , {21,22} , {15、 16、 17} , {18、 19、 20} , {15、 17、 19} , {16、 18、 20} , {17、 19、 21 } , {18、 20、 22}。
为了便于说明, 实施例 1-8仅以 PUSCH为例, 其信道发射功率的计算 公式可以为:
, . . PcMAX'c (0?
尸 ρτ ) = mm<! r ' [10 log10 (MPUSCH,C (0) +尸 o PUSCH,C (j) + c (j) . PLC + ATF,C (0 + fc 其中参数表示子帧 i; 为高层配置参数, 取值有 0、 1、 2; Αχ, ')是 本载波上的最大允许发射功率; MpusCH,。( )是本载波上的子帧 i 上分配的
PUSCH资源大小, 用 RB表示; ^-Pus^W表示本载波上不考虑路径损耗影 响时满足信道传输要求时 UE 的目标发射功率; " ')表示本载波上的部分 路径损耗补偿系数, 取值有 e °·4' °·5' °·6' °·7' °·8' °·9' ^; PLc为根据高层信令 配置的固定 CSI-RS端口集合测量得到的多个路损值的平均值; Δτρ,。()为基 于 MCS等级的功率调整量; ')是本载波上的闭环功率控制参数。
应当理解, PUCCH和 SRS发射功率的计算方法与 PUSCH相同, 不再 赘述。
实施例 1-9
实施例 1-9中, 所述预定义信息包括 CSI-RS和信号类型, 所述根据预 定义信息确定上行路损为: 从相同的固定 CSI-RS 端口, 如端口 15 获得 PUSCH和 PUCCH的上行路损, 从固定的 CSI-RS端口集合获得 SRS的上 行路损,并且根据固定 CSI-RS端口集合测量得到的多个路损值的最大值作 为 SRS最终的上行路损估计值。其中,所述固定 CSI-RS端口集合可以是以 下任意集合之一但不仅限于此: {15,17,19,21}、 {16,18,20,22}, {15,16}, {17、 18}, {19、 20}, {21,22}, {15、 16、 17}, {18、 19、 20}, {15、 17、 19}, {16、 18、 20}, {17、 19、 21}, {18、 20、 22}。
为了便于说明, 实施例 1-9仅以 PUSCH和 SRS为例,其信道发射功率 的计算公式分别为:
、 . ^CMAX ( 5
尸 (ι) = mm <
PUSCH U) + c(j)-PLc ,PUSCH 和 尸 SRSC ( = min{ u ),尸 SRS_ OFFSET, (m) + 101og10( SRSc) + o PUSCH
其中, 参数表示子帧 i; 为高层配置参数, 取值有 0、 1、 2;
Figure imgf000020_0001
是本载波上的最大允许发射功率; MpusCH,。()是本载波上的子帧 i 上分配的 PUSCH资源大小, 用 RB表示; ^-Pus^W表示本载波上不考虑路径损耗影 响时满足信道传输要求时 UE 的目标发射功率; " ')表示本载波上的部分 路径损耗补偿系数, 取值有《^{0,0'4,()'5,()'6,()'7,()'8,()'9,1}; 为基于 等级的功率调整量; 是本载波上的闭环功率控制参数; P SRS_。FFSET, 是 高层配置的 SRS与 PUSCH发射功率偏置系数; m用来区分触发的 SRS的 类型; MsRS,。为当前需要发射的 SRS的带宽; ^和 ρ 分别是通过固 定 CSI-RS端口和固定 CSI-RS端口集合测量得到的 PUSCH和 SRS的上行 路损估计。
应当理解, PUCCH发射功率的计算方法与 PUSCH相同, 不再赘述。 实施例 1-10
实施例 1-10中, 所述预定义信息包括 CSI-RS和信号类型, 所述根据 预定义信息确定上行路损为: 从相同的固定 CSI-RS端口集合获得 PUSCH 和 PUCCH的上行路损,从另外一个不同于 PUSCH和 PUCCH的固定 CSI-RS 端口集合的获得 SRS的上行路损,并且根据所述固定 CSI-RS端口集合测量 得到的多个路损值的最大值作为最终的上行路损估计值。 其中, 所述固定 CSI-RS 端口集合可以是以下任意集合之一但不仅限于此: {15,17,19,21}、 {16,18,20,22} , {15,16} , {17、 18} , {19、 20} , {21,22} , {15、 16、 17} , {18、 19、 20} , {15、 17、 19} , {16、 18、 20} , {17、 19、 21 } , {18、 20、 22}。
为了便于说明, 实施例 1-10仅以 PUSCH和 SRS为例, 其信道发射功 率的计算公式分别为:
Figure imgf000021_0001
Figure imgf000021_0002
PS iC(m) + 101og10(MSRS;C) + Pc 其中, 参数表示子帧 i; 为高层配置参数, 取值有 0、 1、 2; ^CMAX (0 是本载波上的最大允许发射功率; MpusCH,。( )是本载波上的子帧 i 上分配的 PUSCH资源大小, 用 RB表示; ^-Pus^W表示本载波上不考虑路径损耗影 响时满足信道传输要求时 UE 的目标发射功率; " ')表示本载波上的部分 路径损耗补偿系数, 取值有《^ {0,0'4,()'5,()'6,()'7,()'8,()'9,1} ; 为基于 等级的功率调整量; 是本载波上的闭环功率控制参数; ¾RSFFSET ( )是 高层配置的 SRS与 PUSCH发射功率偏置系数; m用来区分触发的 SRS的 类型; MsRS,。为当前需要发射的 SRS的带宽; ^和 ρ 分别是通过不 同的固定 CSI-RS端口集合的测量得到的 PUSCH和 SRS的上行路损估计。
应当理解, PUCCH发射功率的计算方法与 PUSCH相同, 不再赘述。 实施例 1-11
实施例 1-11中,所述预定义信息包括 CSI-RS、功率偏移量和信号类型, 所述根据预定义信息确定上行路损为: 从相同的固定 CSI-RS 端口获得 PUSCH和 PUCCH的上行路损,如固定端口 15,确定 SRS的上行路损为从 所述固定 CSI-RS端口获得的上行路损与所述功率偏移量的和。 其中, 所述 功率偏移量可以通过计算多个接收节点与服务小区接收相同上行信号的功 率差, 将所述功率差中的最大功率差作为所述功率偏移量; 也可以通过基 站根据用户设备距离上行接收节点的距离的远近测算得到。
为了便于说明, 实施例 1-11仅以 PUSCH和 SRS为例, 其信道发射功
Figure imgf000022_0001
(0 = min{ ,M (m) + 101og10(MSRSJ + c ^j) + cU) - PLc + APL + fc (i) } 其中, 参数表示子帧 i; 为高层配置参数, 取值有 0、 1、 2; ^CMAX (0 是本载波上的最大允许发射功率; MpusCH,。( )是本载波上的子帧 i 上分配的 PUSCH资源大小, 用 RB表示; ^-Pus^W表示本载波上不考虑路径损耗影 响时满足信道传输要求时 UE 的目标发射功率; " ')表示本载波上的部分 路径损耗补偿系数, 取值有《^{0,0'4,()'5,()'6,()'7,()'8,()'9,1}; 为基于 等级的功率调整量; 是本载波上的闭环功率控制参数; ¾RS FFSET ( )是 高层配置的 SRS与 PUSCH发射功率偏置系数; m用来区分触发的 SRS的 类型; M ^为是当前需要发射的 SRS的带宽; 是通过固定 CSI-RS端口 15测量得到的上行路损, Δ 是 SRS的功率偏移量。
应当理解, PUCCH发射功率的计算方法与 PUSCH相同, 不再赘述。 实施例 1-12
实施例 1-12中,所述预定义信息包括 CSI-RS、功率偏移量和信号类型, 所述根据预定义信息确定上行路损为: 从相同的固定 CSI-RS端口集合获得 PUSCH和 PUCCH的上行路损, 其中, 端口集合可以是以下任意集合之一 但不仅限于此: {15,17,19,21} {16,18,20,22}, {15,16}, {17 18}, {19 20}, {21,22}, {15 16 17}, {18 19 20}, {15 17 19}, {16 18 20}, {17 19 21}, {18 20 22}。 确定 SRS 的上行路损为从所述固定 CSI-RS端口集合获得的上行路损与所述功率偏移量的和。 其中, 所述功率 偏移量可以通过计算多个接收节点与服务小区接收相同上行信号的功率 差, 将所述功率差中的最大功率差作为所述功率偏移量; 也可以是基站根 据用户设备距离上行接收节点的距离的远近测算得到的。
为了便于说明, 实施例 1-12仅以 PUSCH和 SRS为例, 其信道发射功 率的计算公式分别为:
Figure imgf000023_0001
SRS,C (0 = min{尸 c c(0, Ps (m) + 101og10(MSRSJ + c j) + ac(j)-PLc + APL + fc(i 其中, 参数表示子帧 i; 为高层配置参数, 取值有 0、 1、 2; ^CMAX (0 是本载波上的最大允许发射功率; MpusCH,。( )是本载波上的子帧 i 上分配的 PUSCH资源大小, 用 RB表示; ^-Pus^W表示本载波上不考虑路径损耗影 响时满足信道传输要求时 UE 的目标发射功率; " ')表示本载波上的部分 路径损耗补偿系数, 取值有《^ {0,0'4,()'5,()'6,()'7,()'8,()'9,1} ; 为基于 等级的功率调整量; 是本载波上的闭环功率控制参数; ¾RSFFSET ( )是 高层配置的 SRS与 PUSCH发射功率偏置系数; m用来区分触发的 SRS的 类型; MsRS,。为当前需要发射的 SRS的带宽; 为测量所述固定 CSI-RS端 口集合得到的多个路损值的最大值, 是 SRS的功率偏移量。
应当理解, PUCCH发射功率的计算方法与 PUSCH相同, 不再赘述。 实施例 1-13
实施例 1-13中,所述预定义信息包括 CSI-RS、功率偏移量和信号类型, 所述根据预定义信息确定上行路损为: 从固定 CSI-RS端口的获得 PUSCH 和 PUCCH的上行路损, 如固定端口 15; 确定 SRS的上行路损为从所述固 定 CSI-RS端口获得的上行路损与所述路损偏移量的和。 其中, 所述功率偏 移量可以为通过高层信令配置的值。
为了便于说明, 实施例 1-13仅以 PUSCH和 SRS为例, 其信道发射功 率的计算公式分别为:
Figure imgf000024_0001
SRS,C (0 = min{ CMAX>C( , ^RS_OFFSET, (m) + \0 log10 (MSRS c ) + 0 PUSC¾C (j) + ac (j) - (PLC + APL) + fc (i 是本载波上的最大允许发射功率; MpusCH,。()是本载波上的子帧 i 上分配的
PUSCH资源大小, 用 RB表示; ^-Pus^W表示本载波上不考虑路径损耗影 响时满足信道传输要求时 UE 的目标发射功率; " ')表示本载波上的部分 路径损耗补偿系数, 取值有《^{0,0'4,()'5,()'6,()'7,()'8,()'9,1}; 为基于 等级的功率调整量; 是本载波上的闭环功率控制参数; ¾RSFFSET ( )是 高层配置的 SRS与 PUSCH发射功率偏置系数; m用来区分触发的 SRS的 类型; MsRS,。为当前需要发射的 SRS的带宽; 是测量所述固定 CSI-RS端 口 15得到的上行路损, APL是 SRS的功率偏移量。
应当理解, PUCCH发射功率的计算方法与 PUSCH相同, 不再赘述。 实施例 1-14
实施例 1-14中,所述预定义信息包括 CSI-RS、功率偏移量和信号类型, 所述根据预定义信息确定上行路损为: 从相同的固定 CSI-RS端口集合获得 PUSCH和 PUCCH的上行路损, 其中, 端口集合可以是以下任意集合之一 但不仅限于此: {15,17,19,21}、 {16,18,20,22}, {15,16}, {17、 18}, {19、 20}, {21,22}, {15、 16、 17}, {18、 19、 20}, {15、 17、 19}, {16、 18、 20}, {17、 19、 21}, {18、 20、 22}。 确定 SRS 的上行路损为从所述固定 CSI-RS端口集合获得的上行路损与所述功率偏移量的和。 其中, 所述功率 偏移量可以为通过高层信令配置的值。
为了便于说明, 实施例 1-14仅以 PUSCH和 SRS为例, 其信道发射功 率的计算公式分别为:
Figure imgf000025_0001
(0 = min{ ( , PS (m) + 101og10(MSRS>c) + c 其中, 参数表示子帧 i; 为高层配置参数, 取值有 0、 1、 2; P; (0 是本载波上的最大允许发射功率; MpusCH,。( )是本载波上的子帧 i 上分配的 PUSCH资源大小, 用 RB表示; ^-Pus^W表示本载波上不考虑路径损耗影 响时满足信道传输要求时 UE 的目标发射功率; " ')表示本载波上的部分 路径损耗补偿系数, 取值有《^ {0,0'4,()'5,()'6,()'7,()'8,()'9,1} ; 为基于 等级的功率调整量; 是本载波上的闭环功率控制参数; ¾RSFFSET ( )是 高层配置的 SRS与 PUSCH发射功率偏置系数; 用来区分触发的 SRS的 类型; MsRS,。为当前需要发射的 SRS的带宽; 是测量所述固定 CSI-RS端 口 15得到的上行路损, APL是 SRS的功率偏移量。
应当理解, PUCCH发射功率的计算方法与 PUSCH相同, 不再赘述。 另外, 实施例 1中, 还可以根据 SRS触发方式不同, 配置不同的功率 偏移量;具体地,当 SRS是通过 PUSCH对应的 DCI触发的非周期 SRS, APL 对应于 , 当 SRS是 PDSCH对应的 DCI触发的非周期 SRS, Δ 对应 于 ΔΡ 2。
实施例 2 实施例 2中, 所述预定义信息包括 CRS、 功率偏移量和信号类型, 所 述根据预定义信息确定上行路损为: 根据 CRS来确定 PUSCH和 PUCCH 上行路损,确定 SRS的上行路损为所述的 PUSCH和 PUCCH的上行路损与 所述功率偏移量的和。 其中, 所述功率偏移量可以通过计算多个接收节点 与服务小区接收到的相同上行信号的功率差, 将所述功率差中的最大功率 差作为所述功率偏移量; 也可以是基站根据用户设备距离上行接收节点的 距离的远近测算得到的。
为了便于说明, 实施例 2仅以 PUSCH和 SRS为例, 其信道发射功率 D , .、 · '尸 CMAX,c(0,
尸匿 ) = nH
R (m) + 101og10(MSRS c) + o (j) + ac(j) - PLc + APL + fc {i) \ 其中, 参数表示子帧 i; 为高层配置参数, 取值有 0、 1、 2;
是本载波上的最大允许发射功率; MpusCH,。( )是本载波上的子帧 i 上分配的 PUSCH资源大小, 用 RB表示; P。-pusche )表示本载波上不考虑路径损耗影 响时满足信道传输要求时 UE 的目标发射功率; 表示本载波上的部分 路径损耗补偿系数, 取值有《^ {0,0'4,()'5,()'6,()'7,()'8,()'9,1} ; 为基于 等级的功率调整量; 是本载波上的闭环功率控制参数; ¾RSFFSET ( )是 高层配置的 SRS与 PUSCH发射功率偏置系数; 用来区分触发的 SRS的 类型; MsRS,。为当前需要发射的 SRS的带宽; 是根据 CRS确定的 PUSCH 和 PUCCH的上行路损, 是 SRS的功率偏移量。
应当理解, PUCCH发射功率的计算方法与 PUSCH相同, 不再赘述。 实施例 3
这里, 所述实施例 3为基于多 TA应用场景的具体实施例。
实施例 3-1
实施例 3-1中, 所述预定义信息包括 CRS和信号类型, 所述根据预定 义信息确定上行路损为: 固定根据下行服务小区的 CRS来测量得到上行服 务小区的路损。 对于 PUCCH、 PUSCH和 SRS采用相同的上行路损。
为了便于说明, 实施例 3-1仅以 PUSCH为例, 其信道发射功率的计算 公式为: ^ CMAX,c (0,
尸匿 c(0 = min'
101og10( PUSCH, c PUSCH, c 其中, 参数表示子帧 i; 为高层配置参数, 取值有 0、 1、 2; ^CMAX.c (0 是本载波上的最大允许发射功率; MpusCH,。( )是本载波上的子帧 i 上分配的 PUSCH资源大小, 用 RB表示; ^-Pusc^W表示本载波上不考虑路径损耗影 响时满足信道传输要求时 UE 的目标发射功率; ( 表示本载波上的部分 路径损耗补偿系数, 取值有 e °·4' °·5' °·6' °·7' °·8' °·9' ^; ρ 为测量该上行服 务小区对应的下行服务小区的 CRS得到的上行路损; Δτρ,。( )为基于 MCS等 级的功率调整量; 是本载波上的闭环功率控制参数。
应当理解, PUCCH和 SRS的发射功率的计算方法与 PUSCH相同, 不 再赘述。
实施例 3-2
实施例 3-2中, 所述预定义信息包括 CRS和信号类型, 所述根据预定 义信息确定上行路损为: 固定根据下行主服务小区的 CRS来测量得到上行 服务小区的路损。 对于 PUCCH、 PUSCH和 SRS采用相同的上行路损。
为了便于说明, 实施例 3-2仅以 PUSCH为例, 其信道发射功率的计算 公式为:
Figure imgf000028_0001
其中, 参数表示子帧 i; 为高层配置参数, 取值有 0、 1、 2; Ρ^ 0 是本载波上的最大允许发射功率; MpusCH,。( )是本载波上的子帧 i 上分配的 PUSCH资源大小, 用 RB表示; P。-pusche )表示本载波上的不考虑路径损耗 影响时满足信道传输要求时 UE 的目标发射功率; ( 表示本载波上的部 分路径损耗补偿系数, 取值有 e °·4' °·5' °·6' °·7' °·8' °·9' ^; PLc为测量该上行 服务小区对应的下行主服务小区的 CRS 得到的上行路损; Δτρ,。( )为基于
MCS等级的功率调整量; ')是本载波上的闭环功率控制参数。
应当理解, PUCCH和 SRS的发射功率的计算方法与 PUSCH相同, 不 再赘述
实施例 3-3
实施例 3-3中, 所述预定义信息包括 CSI-RS和信号类型, 所述根据预 定义信息确定上行路损为: 固定根据下行服务小区的 CSI-RS来测量得到上 行服务小区的路损。 对于 PUCCH、 PUSCH和 SRS采用相同的上行路损。
为了便于说明, 实施例 3-3仅以 PUSCH为例, 其信道发射功率的计算 公式为:
Figure imgf000029_0001
PUSCH, c
其中, 参数表示子帧 i; 为高层配置参数, 取值有 0、 1、 2; P™AX, ') 是本载波上的最大允许发射功率; MPUSCH,。( )是本载波上的子帧 i 上分配的 PUSCH资源大小, 用 RB表示; P。-pusche )表示本载波上不考虑路径损耗影 响时满足信道传输要求时 UE 的目标发射功率; ( 表示本载波上的部分 路径损耗补偿系数, 取值有 e °-4' °-5' °-6' °-7' °-8' °-9' ^; PLc为测量该上行服 务小区对应的下行服务小区的 CSI-RS得到的上行路损; Δτρ,。( )为基于 MCS 等级的功率调整量; ')是本载波上的闭环功率控制参数。
应当理解, PUCCH和 SRS的发射功率的计算方法与 PUSCH相同, 不 再赘述。
实施例 3-4
实施例 3-4中, 所述预定义信息包括 CSI-RS和信号类型, 所述根据预 定义信息确定上行路损为: 固定根据下行主服务小区的 CSI-RS来测量得 ί 上行服务小区的路损。对于 PUCCH、 PUSCH和 SRS采用相同的上行路损 为了便于说明, 实施例 3-4仅以 PUSCH为例, 其信道发射功率的计^ 公式为:
、 . ^ CMAX,c ( ?
尸 ( i ) = min
'… 101og10 ( PUSCH, c PUSCH, c 其中, 参数表示子帧 i; 为高层配置参数, 取值有 0、 1、 2; P™AX, ') 是本载波上的最大允许发射功率; MPUSCH,。( )是本载波上的子帧 i 上分配的
PUSCH资源大小, 用 RB表示; P。-pusche )表示本载波上不考虑路径损耗影 响时满足信道传输要求时 UE 的目标发射功率; 表示本载波上的部分 路径损耗补偿系数, 取值有 e °·4' °·5' °·6' °·7' °·8' °·9' ^; ρ 为测量该上行服 务小区对应的下行主服务小区的 CSI-RS 得到的上行路损; Δτρ,。( )为基于
MCS等级的功率调整量; ')是本载波上的闭环功率控制参数。
应当理解, PUCCH和 SRS的发射功率的计算方法与 PUSCH相同, 不 再赘述。
实施例 4
这里, 所述实施例 4是基于引入新载波类型的下行服务小区的应用场 景的具体实施例。
实施例 4-1
实施例 4-1中, 所述预定义信息包括 CRS和信号类型, 所述根据预定 义信息确定上行路损为: 固定根据下行服务小区的 CRS来测量得到上行服 务小区的路损。 对于 PUCCH、 PUSCH和 SRS采用相同的上行路损。
为了便于说明, 实施例 4-1仅以 PUSCH为例, 其信道发射功率的计算 公式为: ^ CMAX,c (0,
尸匿 c(0 = min'
101og10( PUSCH, c PUSCH, c 其中, 参数表示子帧 i; 为高层配置参数, 取值有 0、 1、 2; ^CMAX.c (0 是本载波上的最大允许发射功率; MpusCH,。( )是本载波上的子帧 i 上分配的
PUSCH资源大小, 用 RB表示; P。-pusche )表示本载波上不考虑路径损耗影 响时满足信道传输要求时 UE 的目标发射功率; ( 表示本载波上的部分 路径损耗补偿系数, 取值有 e °·4' °·5' °·6' °·7' °·8' °·9' ^; ρ 为测量该上行服 务小区对应的下行服务小区的 CRS得到的上行路损; Δτρ,。( )为基于 MCS等 级的功率调整量; 是本载波上的闭环功率控制参数。
应当理解, PUCCH和 SRS的发射功率的计算方法与 PUSCH相同, 不 再赘述。
实施例 4-2
实施例 4-2中, 所述预定义信息包括 CRS和信号类型, 所述根据预定 义信息确定上行路损为: 固定根据下行主服务小区的 CRS来测量得到上行 服务小区的路损。 对于 PUCCH、 PUSCH和 SRS采用相同的上行路损。
为了便于说明, 实施例 4-2仅以 PUSCH为例, 其信道发射功率的计算 公式为:
Figure imgf000031_0001
其中, 参数表示子帧 i; 为高层配置参数, 取值有 0,1,2; ^CMAX.c (0疋 本载波上的最大允许发射功率; MPUSCH,。( )是本载波上的子帧 i 上分配的
PUSCH资源大小, 用 RB表示; P。-pusche )表示本载波上不考虑路径损耗影 响时满足信道传输要求时 UE 的目标发射功率; ( 表示的是本载波上的 部分路径损耗补偿系数, 其取值有 e °·4' °·5' °·6' °·7' °·8' °·9' ^; PLc是测量该 上行服务小区对应的下行主服务小区的 CRS得到的上行路损; Δτ^( 为基 于 MCS等级的功率调整量; ')是本载波上的闭环功率控制参数。
应当理解, PUCCH和 SRS的发射功率的计算方法与 PUSCH相同, 不 再赘述。
实施例 4-3
实施例 4-3中, 所述预定义信息包括 CSI-RS和信号类型, 所述根据预 定义信息确定上行路损为: 固定根据下行服务小区的 CSI-RS来测量得到上 行服务小区的路损。 对于 PUCCH、 PUSCH和 SRS采用相同的上行路损。
为了便于说明, 实施例 4-3仅以 PUSCH为例, 其信道发射功率的计算 公式为: 、
尸 ( i t—
'
Figure imgf000032_0001
PUSCH, c 其中, 参数表示子帧 i; 为高层配置参数, 取值有 0、 1、 2; P™AX, ') 是本载波上的最大允许发射功率; MPUSCH,。( )是本载波上的子帧 i 上分配的
PUSCH资源大小, 用 RB表示; P。-pusche )表示本载波上不考虑路径损耗影 响时满足信道传输要求时 UE 的目标发射功率; ( 表示本载波上的部分 路径损耗补偿系数, 取值有 e °-4' °-5' °-6' °-7' °-8' °-9' ^; PLc为测量该上行服 务小区对应的下行服务小区的 CSI-RS得到的上行路损; Δτρ,。( )为基于 MCS 等级的功率调整量; ')是本载波上的闭环功率控制参数。
应当理解, PUCCH和 SRS的发射功率的计算方法与 PUSCH相同, 不 再赘述。
实施例 4-4
实施例 4-4中, 所述预定义信息包括 CSI-RS和信号类型, 所述根据预 定义信息确定上行路损为: 固定根据下行主服务小区的 CSI-RS来测量得 ί 上行服务小区的路损。对于 PUCCH、 PUSCH和 SRS采用相同的上行路损 为了便于说明, 实施例 4-4仅以 PUSCH为例, 其信道发射功率的计^ 公式为:
、 . ^ CMAX,c ( ?
尸 (i ) = min
'… 101og10 ( PUSCH, c PUSCH, c 其中, 参数表示子帧 i; 为高层配置参数, 取值有 0、 1、 2; P™AX, ') 是本载波上的最大允许发射功率; MpusCH,。( )是本载波上的子帧 i 上分配的
PUSCH资源大小, 用 RB表示; P。-pusche )表示本载波上的不考虑路径损耗 影响时满足信道传输要求时 UE 的目标发射功率; 表示本载波上的部 分路径损耗补偿系数, 取值有 e °·4' °·5' °·6' °·7' °·8' °·9' ^; ρ 为测量该上行 服务小区对应的下行主服务小区的 CSI-RS得到的上行路损; Δτρ,。( )为基于
MCS等级的功率调整量; ')是本载波上的闭环功率控制参数。
应当理解, PUCCH和 SRS的发射功率的计算方法与 PUSCH相同, 不 再赘述。
图 1示出了本发明上行信号发送装置的结构原理示意, 如图 2所示, 所述装置包括: 上行路损确定单元 21、 发射功率确定单元 22; 其中,
所述上行路损确定单元 21 , 用于根据预定义信息确定上行路损; 所述发送功率确定单元 22, 用于根据所述获得的上行路损得到上行信 号的发射功率, 并按照所述发送功率进行上行信号的发送。
其中, 所述上行路损确定单元 21 , 具体用于从预先配置的固定 CSI-RS 端口或 CSI-RS端口集合获得上行路损; 或者, 从高层信令配置的 CSI-RS 端口或 CSI-RS端口集合获得上行路损。
其中, 所述上行路损确定单元 21 , 具体用于选择 CSI-RS端口集合中 通过各 CSI-RS得到的多个路损值中最大路损值为所述上行路损; 或者选择 CSI-RS端口集合中通过各 CSI-RS得到的多个路损值的平均值为所述上行 路损; 或者选择 CSI-RS端口集合中通过各 CSI-RS得到的多个路损值中最 小路损值为所述上行路损。
其中, 所述上行路损确定单元 21 , 具体用于从相同的 CSI-RS端口或 CSI-RS端口集合获得 PUCCH、 PUSCH、 SRS的上行路损; 或者,
从相同的 CSI-RS端口或 CSI-RS端口集合获得 PUCCH和 PUSCH的上 行路损,从与 PUCCH和 PUSCH的 CSI-RS端口或 CSI-RS端口集合不同的 CSI-RS端口或 CSI-RS端口集合获得 SRS的上行路损; 或者,
从相同的 CSI-RS端口或 CSI-RS端口集合获得 PUCCH和 SRS的上行 路损,从与 PUCCH和 SRS的 CSI-RS端口或 CSI-RS端口集合不同的 CSI-RS 端口或 CSI-RS端口集合获得 PUSCH的上行路损; 或者,
从相同的 CSI-RS端口或 CSI-RS端口集合获得 PUSCH和 SRS的上行 路损,从与 PUSCH和 SRS的 CSI-RS端口或 CSI-RS端口集合不同的 CSI-RS 端口或 CSI-RS端口集合获得 PUCCH的上行路损。
其中, 所述上行路损确定单元 21 , 具体用于分别从预先配置的不同 CSI-RS端口或 CSI-RS端口集合获得所述 PUSCH对应的下行控制消息 DCI 触发的非周期 SRS的上行路损和 PDSCH对应的 DCI触发的非周期 SRS的 上行路损。
其中, 所述上行路损确定单元 21 , 具体用于根据下行参考信号获得未 配置有功率偏移量的上行信号的上行路损; 将根据下行参考信号获得的上 行路损与所述预定义信息中的功率偏移量的和作为所述功率偏移量所对应 上行信号的上行路损; 其中, 所述功率偏移量为通过高层信令为不同上行 信号分别配置的不同或相同的值;
相应地, 所述发送功率确定单元 22, 具体用于根据得到的各上行信号 的上行路损, 分别确定各上行信号的发射功率。
其中, 所述上行路损确定单元 21 , 具体用于根据下行参考信号获得上 行路损;
相应地, 所述发送功率确定单元 22, 具体用于根据获得的上行路损, 得到未配置有功率偏移量上行信号的发射功率; 将所述未配置有功率偏移 量上行信号的发射功率与所述功率偏移量求和, 得到所述功率偏移量所对 应上行信号的发射功率; 其中, 所述功率偏移量为通过高层信令为不同上 行信号分别配置的不同或相同的值。
进一步地, 所述装置还包括配置单元 23 , 用于为所述 PUSCH对应的 DCI触发的非周期 SRS和 PDSCH对应的 DCI触发的非周期 SRS分别配置 对应的功率偏移量;
相应地, 所述上行路损确定单元 21 , 具体用于根据 SRS的触发方式, 确定 SRS的上行路损为从所述 CSI-RS端口或 CSI-RS端口集合获得的上行 路损与自身触发方式所对应的功率偏移量的和。
其中, 所述上行路损确定单元 21 , 具体用于在多 TA应用场景下, 根 据固定配置的 CSI-RS或 CRS确定上行路损; 或根据高层信令的配置确定 根据 CSI-RS或 CRS确定上行路损; 或者,
当所述上行信号所在的服务小区对应的下行服务小区为新载波类型 时, 根据固定配置的 CSI-RS确定上行路损, 或根据固定配置的所述服务小 区对应的非新载波类型的关联服务小区的 CRS确定上行路损, 或根据高层 信令的配置确定根据 CSI-RS或所述关联服务小区的 CRS确定上行路损; 其中, 所述关联服务小区为基站配置的服务小区或 Pcell。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种上行信号发送方法, 其特征在于, 所述方法包括:
根据预定义信息确定上行路损;
根据获得的上行路损得到上行信号的发射功率, 并按照所述发射功率 进行上行信号的发送。
2、 根据权利要求 1所述的方法, 其特征在于, 所述根据预定义信息确 定上行路损为:
根据公有参考信号 CRS、小区状态信息参考信号 CSI-RS、功率偏移量、 信号类型、 应用场景的一种或多种获得上行路损。
3、 根据权利要求 2所述的方法, 其特征在于, 所述 CRS和 CSI-RS为 所述上行信号所在上行服务小区对应的下行服务小区上的 CRS和 CSI-RS。
4、 根据权利要求 1所述的方法, 其特征在于, 当所述预定义信息包括 CSI-RS时, 所述根据预定义信息确定上行路损为:
从预先配置的固定 CSI-RS端口或 CSI-RS端口集合获得上行路损; 或 者,
从高层信令配置的 CSI-RS端口或 CSI-RS端口集合获得上行路损。
5、 根据权利要求 4所述的方法, 其特征在于, 所述从 CSI-RS端口集 合获得上行路损为:
选择 CSI-RS端口集合中通过各 CSI-RS得到的多个路损值中最大路损 值为所述上行路损; 或者,
选择 CSI-RS端口集合中通过各 CSI-RS得到的多个路损值的平均值为 所述上行路损; 或者,
选择 CSI-RS端口集合中通过各 CSI-RS得到的多个路损值中最小路损 值为所述上行路损。
6、 根据权利要求 1所述的方法, 其特征在于, 当所述预定义信息包括 CSI-RS和信号类型时, 所述根据预定义信息确定上行路损为: 从相同的 CSI-RS 端口或 CSI-RS 端口集合获得物理上行控制信道 PUCCH、 物理上行共享信道 PUSCH、 测量参考信号 SRS的上行路损; 或 者,
从相同的 CSI-RS端口或 CSI-RS端口集合获得 PUCCH和 PUSCH的上 行路损,从与 PUCCH和 PUSCH的 CSI-RS端口或 CSI-RS端口集合不同的 CSI-RS端口或 CSI-RS端口集合获得 SRS的上行路损; 或者,
从相同的 CSI-RS端口或 CSI-RS端口集合获得 PUCCH和 SRS的上行 路损,从与 PUCCH和 SRS的 CSI-RS端口或 CSI-RS端口集合不同的 CSI-RS 端口或 CSI-RS端口集合获得 PUSCH的上行路损; 或者,
从相同的 CSI-RS端口或 CSI-RS端口集合获得 PUSCH和 SRS的上行 路损,从与 PUSCH和 SRS的 CSI-RS端口或 CSI-RS端口集合不同的 CSI-RS 端口或 CSI-RS端口集合获得 PUCCH的上行路损。
7、 根据权利要求 1或 6所述的方法, 其特征在于, 当所述预定义信息 包括 CSI-RS和信号类型时, 所述根据预定义信息确定上行路损为:
分别从预先配置的不同 CSI-RS 端口或 CSI-RS 端口集合获得所述 PUSCH对应的下行控制消息 DCI触发的非周期 SRS的上行路损和 PDSCH 对应的 DCI触发的非周期 SRS的上行路损。
8、 根据权利要求 1所述的方法, 其特征在于, 当所述预定义信息包括 功率偏移量和信号类型时 , 所述根据预定义信息确定上行路损为:
根据下行参考信号获得上行路损, 作为未配置有功率偏移量的上行信 号的上行路损; 量的和作为所述功率偏移量所对应上行信号的上行路损; 其中, 所述功率 偏移量为通过高层信令为不同上行信号分别配置的不同或相同的值; 相应地, 所述根据获得的上行路损得到上行信号的发射功率为: 根据得到的各上行信号的上行路损, 分别确定各上行信号的发射功率。
9、 根据权利要求 1所述的方法, 其特征在于, 当所述预定义信息包括 功率偏移量和信号类型时 , 所述根据预定义信息确定上行路损为:
根据下行参考信号获得上行路损;
相应地, 所述根据获得的上行路损得到上行信号的发射功率为: 根据获得的上行路损, 得到未配置有功率偏移量上行信号的发射功率; 将所述未配置有功率偏移量上行信号的发射功率与所述功率偏移量求 和, 得到所述功率偏移量所对应上行信号的发射功率; 其中, 所述功率偏 移量为通过高层信令为不同上行信号分别配置的不同或相同的值。
10、 根据权利要求 8或 9所述的方法, 其特征在于, 所述方法还包括: 为所述 PUSCH对应的 DCI触发的非周期 SRS和 PDSCH对应的 DCI触发 的非周期 SRS分别配置对应的功率偏移量;
相应地, 所述根据预定义信息确定上行路损, 包括:
根据 SRS的触发方式,确定 SRS的上行路损为从 CSI-RS端口或 CSI-RS 端口集合获得的上行路损与自身触发方式所对应的功率偏移量的和。
11、 根据权利要求 1 所述的方法, 其特征在于, 当所述预定义信息包 括应用场景时, 所述根据预定义信息确定上行路损为:
在多定时提前应用场景下, 根据固定配置的 CSI-RS或 CRS确定上行 路损; 或根据高层信令的配置确定根据 CSI-RS或 CRS确定上行路损; 或 者,
当所述上行信号所在的服务小区对应的下行服务小区为新载波类型 时, 根据固定配置的 CSI-RS确定上行路损, 或根据固定配置的所述服务小 区对应的非新载波类型的关联服务小区的 CRS确定上行路损, 或根据高层 信令的配置确定根据 CSI-RS或所述关联服务小区的 CRS确定上行路损; 其中, 所述关联服务小区为基站配置的服务小区或主服务小区 Pcell。
12、 一种上行信号发送装置, 其特征在于, 所述装置包括: 上行路损 确定单元、 发射功率确定单元; 其中,
所述上行路损确定单元, 用于根据预定义信息确定上行路损; 所述发送功率确定单元, 用于根据所述获得的上行路损得到上行信号 的发射功率, 并按照所述发送功率进行上行信号的发送。
13、 根据权利要求 12所述的装置, 其特征在于, 所述上行路损确定单 元, 具体用于从预先配置的固定 CSI-RS端口或 CSI-RS端口集合获得上行 路损; 或者, 从高层信令配置的 CSI-RS端口或 CSI-RS端口集合获得上行 路损。
14、 根据权利要求 13所述的装置, 其特征在于, 所述上行路损确定单 元, 具体用于选择 CSI-RS端口集合中通过各 CSI-RS得到的多个 ί¾员值中 最大路损值为所述上行路损; 或者选择 CSI-RS端口集合中通过各 CSI-RS 得到的多个路损值的平均值为所述上行路损; 或者选择 CSI-RS端口集合中 通过各 CSI-RS得到的多个路损值中最小路损值为所述上行路损。
15、 根据权利要求 12所述的装置, 其特征在于, 所述上行路损确定单 元, 具体用于从相同的 CSI-RS 端口或 CSI-RS 端口集合获得 PUCCH、 PUSCH、 SRS的上行路损; 或者,
从相同的 CSI-RS端口或 CSI-RS端口集合获得 PUCCH和 PUSCH的上 行路损,从与 PUCCH和 PUSCH的 CSI-RS端口或 CSI-RS端口集合不同的 CSI-RS端口或 CSI-RS端口集合获得 SRS的上行路损; 或者,
从相同的 CSI-RS端口或 CSI-RS端口集合获得 PUCCH和 SRS的上行 路损,从与 PUCCH和 SRS的 CSI-RS端口或 CSI-RS端口集合不同的 CSI-RS 端口或 CSI-RS端口集合获得 PUSCH的上行路损; 或者,
从相同的 CSI-RS端口或 CSI-RS端口集合获得 PUSCH和 SRS的上行 路损,从与 PUSCH和 SRS的 CSI-RS端口或 CSI-RS端口集合不同的 CSI-RS 端口或 CSI-RS端口集合获得 PUCCH的上行路损。
16、 根据权利要求 12或 15所述的装置, 其特征在于, 所述上行路损 确定单元, 具体用于分别从预先配置的不同 CSI-RS端口或 CSI-RS端口集 合获得 PUSCH对应的下行控制消息 DCI触发的非周期 SRS的上行路损和 PDSCH对应的 DCI触发的非周期 SRS的上行路损。
17、 根据权利要求 12所述的装置, 其特征在于, 所述上行路损确定单 元, 具体用于根据下行参考信号获得未配置有功率偏移量的上行信号的上 行路损; 将根据下行参考信号获得的上行路损与所述预定义信息中的功率 偏移量的和作为所述功率偏移量所对应上行信号的上行路损; 其中, 所述 功率偏移量为通过高层信令为不同上行信号分别配置的不同或相同的值; 相应地, 所述发送功率确定单元, 具体用于根据得到的各上行信号的 上行路损, 分别确定各上行信号的发射功率。
18、 根据权利要求 12所述的装置, 其特征在于, 所述上行路损确定单 元, 具体用于根据下行参考信号获得上行路损;
相应地, 所述发送功率确定单元, 具体用于根据获得的上行路损, 得 到未配置有功率偏移量上行信号的发射功率; 将所述未配置有功率偏移量 上行信号的发射功率与所述功率偏移量求和, 得到所述功率偏移量所对应 上行信号的发射功率; 其中, 所述功率偏移量为通过高层信令为不同上行 信号分别配置的不同或相同的值。
19、 根据权利要求 17或 18所述的装置, 其特征在于, 所述装置还包 括配置单元,用于为所述 PUSCH对应的 DCI触发的非周期 SRS和 PDSCH 对应的 DCI触发的非周期 SRS分别配置对应的功率偏移量;
相应地, 所述上行路损确定单元, 具体用于根据 SRS的触发方式, 确 定 SRS的上行路损为从所述 CSI-RS端口或 CSI-RS端口集合获得的上行路 损与自身触发方式所对应的功率偏移量的和。
20、 根据权利要求 12所述的装置, 其特征在于, 所述上行路损确定单 元, 具体用于在多定时提前应用场景下, 根据固定配置的 CSI-RS或 CRS 确定上行路损; 或根据高层信令的配置确定根据 CSI-RS或 CRS确定上行 路损; 或者,
当所述上行信号所在的服务小区对应的下行服务 ' j、区为新载波类型 时, 根据固定配置的 CSI-RS确定上行路损, 或根据固定配置的所述服务 小区对应的非新载波类型的关联服务小区的 CRS确定上行路损, 或根据 高层信令的配置确定根据 CSI-RS或所述关联服务小区的 CRS确定上行 路损; 其中, 所述关联服务小区为基站配置的服务小区或 Pcell。
PCT/CN2013/070070 2012-01-13 2013-01-05 一种上行信号发送方法及装置 WO2013104275A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210010858.7A CN103209470B (zh) 2012-01-13 2012-01-13 一种上行信号发送方法及装置
CN201210010858.7 2012-01-13

Publications (1)

Publication Number Publication Date
WO2013104275A1 true WO2013104275A1 (zh) 2013-07-18

Family

ID=48756520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070070 WO2013104275A1 (zh) 2012-01-13 2013-01-05 一种上行信号发送方法及装置

Country Status (2)

Country Link
CN (1) CN103209470B (zh)
WO (1) WO2013104275A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107148075B (zh) * 2016-03-01 2020-08-25 华为技术有限公司 功率调整方法及装置
CN108633042B (zh) * 2017-03-24 2021-03-30 华为技术有限公司 一种通信方法、终端及网络设备
WO2018187977A1 (zh) * 2017-04-12 2018-10-18 Oppo广东移动通信有限公司 上行功率控制方法、设备及系统
CA3064628C (en) 2017-05-27 2022-05-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and device
CN109802733B (zh) * 2017-11-17 2022-06-10 华为技术有限公司 信号测量的方法和设备
CN111510935B (zh) * 2019-01-31 2022-03-08 华为技术有限公司 一种上行信号发送方法、接收方法、装置及系统
CN110213831B (zh) * 2019-05-29 2022-05-24 成都中科微信息技术研究院有限公司 一种结合srs周期的调度方法及系统
WO2021087845A1 (en) * 2019-11-07 2021-05-14 Apple Inc. Default PUCCH and SRS Beam Determination

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527958A (zh) * 2009-04-09 2009-09-09 中兴通讯股份有限公司 发射功率的确定方法、基站及终端
CN101621813A (zh) * 2009-07-23 2010-01-06 北京航空航天大学 一种面向下行相干协作多点传输的上行信道估计方法
CN101662824A (zh) * 2009-09-11 2010-03-03 北京邮电大学 协作多点系统、用户设备和上行功率控制方法
WO2011087252A2 (en) * 2010-01-12 2011-07-21 Samsung Electronics Co., Ltd. Method for processing csi-rs in wireless communication system
CN102244923A (zh) * 2011-07-25 2011-11-16 中兴通讯股份有限公司 一种上行信号的功率控制方法、网络侧设备及用户设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527958A (zh) * 2009-04-09 2009-09-09 中兴通讯股份有限公司 发射功率的确定方法、基站及终端
CN101621813A (zh) * 2009-07-23 2010-01-06 北京航空航天大学 一种面向下行相干协作多点传输的上行信道估计方法
CN101662824A (zh) * 2009-09-11 2010-03-03 北京邮电大学 协作多点系统、用户设备和上行功率控制方法
WO2011087252A2 (en) * 2010-01-12 2011-07-21 Samsung Electronics Co., Ltd. Method for processing csi-rs in wireless communication system
CN102244923A (zh) * 2011-07-25 2011-11-16 中兴通讯股份有限公司 一种上行信号的功率控制方法、网络侧设备及用户设备

Also Published As

Publication number Publication date
CN103209470A (zh) 2013-07-17
CN103209470B (zh) 2018-02-06

Similar Documents

Publication Publication Date Title
KR101938346B1 (ko) 상향링크 사운딩 참조신호 전송전력 제어방법 및 그 단말, 송수신포인트
JP6968914B2 (ja) 無線通信システムにおける端末のサウンディング方法及びこのための装置
CN110612751B (zh) 用于在新型无线电(nr)系统中执行功率控制的方法
TWI644582B (zh) 無線通訊系統中波束操作的路徑損耗推導的方法和設備
WO2013104275A1 (zh) 一种上行信号发送方法及装置
WO2018228226A1 (zh) 发送功率的确定方法、装置、终端及存储介质
CN103312484B (zh) 探测参考信号发射功率的控制方法、用户设备和基站
EP2429244B1 (en) Method for sounding reference signal transmission power configuration, user equipment and system
KR101131669B1 (ko) 이동국의 업링크 전력을 제어하기 위한 결합형 개방 루프/폐쇄 루프 방법
CN103621157B (zh) 用于控制移动站的发射功率的方法
CN102244923B (zh) 一种上行信号的功率控制方法、网络侧设备及用户设备
WO2018010589A1 (zh) 上行传输功率控制的方法、装置、设备及存储媒介
WO2018128409A1 (ko) 무선 통신 시스템에서의 상향링크 전력 제어 방법 및 이를 위한 장치
CN111316709A (zh) 用于上行链路功率控制的波束指示
WO2013060306A1 (zh) 上行功率控制的方法、用户设备和接入点
WO2013155914A1 (zh) 功控信息通知及功控方法和设备
WO2015016575A1 (ko) 전송포인트 선택에 기반하여 다중 전송포인트 협력을 수행하는 방법 및 이를 수행하는 장치
CN115989700A (zh) 用于对朝向多个trp的上行链路传送的功率控制
WO2018202083A1 (zh) 功率余量的上报方法和装置
TWI463896B (zh) Method and corresponding device for power control of uplink control channel
US9480027B2 (en) Uplink power control for wireless communications
KR101835026B1 (ko) 상향링크 전력 제어 방법 및 이를 이용한 상향링크 신호 방법
JP2023539535A (ja) 柔軟なビーム管理のためのシグナリング・フレームワークの方法および装置
US20150072720A1 (en) Method and apparatus for efficiently controlling uplink control signal of user equipment in wireless communication system
TW201249238A (en) Method and device for controlling uplink power

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13736369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13736369

Country of ref document: EP

Kind code of ref document: A1