WO2012034399A1 - Tpc命令获取方法及装置 - Google Patents

Tpc命令获取方法及装置 Download PDF

Info

Publication number
WO2012034399A1
WO2012034399A1 PCT/CN2011/072959 CN2011072959W WO2012034399A1 WO 2012034399 A1 WO2012034399 A1 WO 2012034399A1 CN 2011072959 W CN2011072959 W CN 2011072959W WO 2012034399 A1 WO2012034399 A1 WO 2012034399A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
tpc command
sinr
asinr
target value
Prior art date
Application number
PCT/CN2011/072959
Other languages
English (en)
French (fr)
Inventor
王钰仁
赵青萍
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP11824470.6A priority Critical patent/EP2618498B1/en
Priority to US13/823,303 priority patent/US9084213B2/en
Publication of WO2012034399A1 publication Critical patent/WO2012034399A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/20TPC being performed according to specific parameters using error rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/362Aspects of the step size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a power control (TPC, Transmission Power Control) command acquisition method and apparatus.
  • TPC Transmission Power Control
  • the main network nodes include a base station, a user equipment (UE, User Equipment), and a core network. Sending data from the base station to the UE is called downlink, and transmitting data from the UE to the base station is called uplink.
  • PRACH Physical Random Access Channel
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • power calculation methods corresponding to the above three channels, which requires separate power control for the three channels.
  • Power control means that in the mobile communication system, according to the change of the channel and the received signal level, the level of the transmitted signal is adjusted according to a certain control criterion through the feedback channel, thereby reducing the overall interference level of the system.
  • the level of the transmitted signal is adjusted according to a certain control criterion through the feedback channel, thereby reducing the overall interference level of the system.
  • path loss and shadow fading can be compensated, interference between multi-cell base stations can be effectively reduced, and the transmit power of the mobile station can be adjusted, so that the base station receives all mobile station transmissions in the cell.
  • the signal power to the base station is substantially equal, thereby overcoming the near-far effect, making the transmission power of each mobile station the most reasonable. Therefore, power control can save equipment energy, extend battery life, and balance the performance of cell edge users with the overall frequency efficiency of the system.
  • the open loop power control is the power control (TPC, Transmission Power Control) sent by the base station side through the Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the command does not change.
  • the UE side of the user equipment obtains a fixed power correction value through the TPC to determine the initial transmit power of the UE, which is used as the basis for the closed-loop power control adjustment.
  • the closed-loop power control further adjusts the power, and dynamically adjusts the power correction value by the TPC command as a power compensation factor to control the interference and the channel-compliant conditions, and is applicable to the PUSCH traffic channel and the PUCCH control channel.
  • Open loop power control does not require feedback information, can respond quickly to channel changes, and has a large dynamic adjustment range; closed loop power control can improve the accuracy of power adjustment, and is an effective method to overcome asymmetric multipath fading.
  • the closed-loop power control is based on the base station periodically transmitting the TPC command to the UE feedback information. Therefore, obtaining an accurate TPC command is a prerequisite for performing closed-loop power control, and the TPC command can be obtained by detecting the signal-to-noise ratio at the base station. (SINR, Signal to Interference plus Noise Ratio) derived.
  • SINR Signal to Interference plus Noise Ratio
  • the main object of the present invention is to provide a TPC command acquisition method and apparatus, which aim to improve the accuracy of TPC acquisition instructions.
  • the present invention provides a power control TPC command acquisition method, including the following steps: preset a SINR threshold, where the SINR threshold includes a maximum value HSINR, an intermediate value MSINR, and a minimum value LSINR;
  • the ASINR is compared with the threshold of the SINR value, and the TPC command is obtained according to the comparison result.
  • the following steps are taken to obtain the current SINR value:
  • the FER target value is added based on the SINR target value; If the measured FER value is less than the FER target value, comparing the separated current power reporting margin PHR value with the preset PHR target value;
  • the FER target value is added based on the SINR target value; otherwise, the FER target value is subtracted from the SINR target value.
  • the FER target value is subtracted from the SINR target value
  • the FER target value is added based on the SINR target value.
  • the obtaining the TPC command according to the comparison result includes:
  • the TPC command is 1; otherwise, the ASINR and SINR value thresholds are compared, and if the ASINR > LSINR, the TPC command is negative 1; otherwise, it is negative 4;
  • the UE power and the SINR value threshold are compared when the UE power reporting margin PHR value ⁇ 0. If the ASINR > LSINR, the TPC command is negative 1 , otherwise it is negative 4.
  • the obtaining the TPC command according to the comparison result includes:
  • the TPC command is 1, and if not, the TPC command is 3; If the HSINR > ASINR > MSINR, the TPC command is 1;
  • the TPC command is 0, otherwise it is negative 1.
  • the obtaining the TPC command according to the comparison result includes:
  • the TPC command is 3;
  • the present invention provides a TPC command acquisition device, including:
  • a threshold setting module configured to preset a threshold of a SINR value, where the SINR threshold includes a maximum value HSINR, an intermediate value MSINR, and a minimum value LSINR;
  • a difference obtaining module configured to compare a current value of the SINR with a target value of the SINR to obtain a difference ASINR;
  • the TPC command selection module is configured to compare the ASINR with the SINR threshold, and obtain a TPC command according to the comparison result.
  • the apparatus further includes an adder, a subtractor, a PHR splitter, and a PHR comparator, wherein
  • An adder configured to increase a FER target value based on the SINR target value if the measured FER value is greater than the FER target value when the current service is a traffic service;
  • a PHR comparator configured to compare the PHR value with a preset PHR target value
  • the adder is further configured to: when the current PHR value is greater than the PHR target value, increase the FER target value based on the SINR target value; the subtractor is configured to use the current PHR value less than the PHR target value At the time, the FER target value is subtracted from the SINR target value.
  • the device further includes:
  • the adder is configured to: when the current service is a voice service, if the measured FER value is less than the FER target value, subtract the FER target value from the SINR target value;
  • the subtractor is configured to increase the FER target value based on the SINR target value if the measured FER value is greater than the FER target value when the current service is a voice service.
  • the TPC command selection module is used to:
  • the TPC command is 1; otherwise, the ASINR and SINR value thresholds are compared, and if the ASINR > LSINR, the TPC command is negative 1; otherwise, it is negative 4;
  • the UE power and the SINR value threshold are compared when the UE power reporting margin PHR value ⁇ 0. If the ASINR > LSINR, the TPC command is negative 1 , otherwise it is negative 4.
  • the TPC command selection module is used to:
  • the TPC command is 1; if not, the TPC command is 3;
  • the TPC command is 0, otherwise, Is negative 1.
  • the TPC command selection module is used to:
  • the TPC command is 3;
  • the method or device for acquiring TPC commands provided by the present invention compares the current value of the SINR with the target value to obtain the SINR difference, and then compares the SINR difference with the maximum, intermediate, and minimum thresholds of the SINR in the channel.
  • the TPC command is flexibly adjusted according to the actual situation, and the direction of adjusting the TPC command according to the SINR value is clarified, which greatly reduces the calculation amount and improves the accuracy and real-time performance of the TPC command.
  • FIG. 1 is a flowchart of a method for acquiring a power control TPC command according to an embodiment of the present invention
  • FIG. 2 is a flowchart of acquiring a current value of a SINR according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a method for acquiring a power control TPC command in a PUSCH channel according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a method for acquiring a power control TPC command in a PUCCH channel according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a power control TPC command acquiring apparatus according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a power control TPC command acquiring apparatus according to an embodiment of the present invention
  • FIG. 7 is a current SINR value according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of an SINR current value acquiring apparatus according to an embodiment of the present invention.
  • the present invention provides a method for acquiring a TPC command. Referring to FIG. 1, the method specifically includes the following steps:
  • Step S100 Presetting a threshold of the SINR value, where the threshold of the SINR value includes a maximum value HSINR, an intermediate value MSINR, and a minimum value LSINR; the setting of the SINR threshold may be obtained by using an analog manner, for example, multiple SINR values may be selected, and each SINR is selected. The values are respectively loaded into the uplinks of different operating environments, from which the maximum, intermediate and minimum values suitable for the uplink operation are selected.
  • Step S200 Compare the current SINR value with the SINR target value to obtain a difference ASINR; the ASINR can be obtained and output through the SINR comparator.
  • Step S300 comparing the ASINR with the threshold of the SINR value, and obtaining a TPC command according to the comparison result.
  • the comparison between the difference between the ASINR and the threshold of the SINR value may reflect the signal quality in the current uplink. For example, when the ASINR is greater than the HSINR value, the channel signal is poor.
  • the TPC command for transmitting the transmit power may be sent to the UE.
  • a TPC multiplexer may be provided at the output of the SINR comparator, and a TPC command is obtained from the TPC multiplexer based on the comparison result.
  • the method for obtaining a power control TPC command compares a current value of a SINR with a target value to obtain a SINR difference, and then compares the SINR difference with a maximum, intermediate, and minimum threshold of SINR in the channel,
  • the TPC command can be flexibly adjusted according to the actual situation.
  • the direction of the TPC command adjustment based on the SINR value is clarified, which greatly reduces the calculation amount and improves the accuracy and real-time performance of the TPC command.
  • the current value of the SINR may be obtained by the following steps:
  • Step S400 preset a target value of a frame error rate (FER, Frame Error Rate); the frame error rate FER may reflect the quality of the signal transmitted by the UE, and thus serve as an important parameter for the base station to adjust the channel power.
  • the base station may decide whether to increase the forward traffic channel power to the user according to the FER, or decide whether to let the UE increase the transmission power.
  • the FER target value has various schemes, and can be flexibly selected.
  • the FER target value may be set to 0.1, that is, there is 1 frame data error in 10 frames of data.
  • Step S500 Acquire a current FER value, and compare with the FER target value to output a FER value comparison result.
  • the FER value fed back by the UE may be compared with the FER target value by using a FER comparator.
  • Step S600 Adjust a preset SINR target value according to the FER value comparison result to obtain a current SINR value;
  • the SINR target value is a basis for normal communication between the UE and the base station, and can be set in the base station controller.
  • the SINR target value can be set to be modified once every certain time. For example, 20 transmission time intervals ( ⁇ , Transmission Time Interval) can be set to be changed once.
  • the difference between the current FER value and the FER target value indicates the quality of the communication between the UE and the base station.
  • the SINR can be obtained based on the difference.
  • the current value may include:
  • the FER target value is added based on the SINR target value
  • the separated current power headroom report (PHR, Power Headroom Report) value and the preset PHR target value are compared;
  • the FER target value is added based on the SINR target value; otherwise, the FER target value is subtracted from the SINR target value;
  • Traffic service refers to the data traffic service that occurs on the uplink of the UE.
  • the power headroom PHR can be obtained by subtracting the power used by the current uplink channel from the maximum transmit power of the UE, which can reflect the current UE power adjustable amplitude.
  • the PHR value needs to be considered to ensure that the power required for power adjustment or resource allocation of the UE does not exceed the maximum transmit power of the UE. Otherwise, the base station will be used to adjust the power of the UE. Or the accuracy of resource allocation. Therefore, it is necessary to compare the PHR value with the PHR target value to determine whether the power adjustment range is exceeded.
  • the FER target value is added based on the SINR target value; otherwise, the target value of the FER is subtracted from the currently saved SINR target value. If the current PHR value is greater than the PHR target value, the adjustment range is larger, and the current SINR value greater than the SINR target value can be obtained accordingly.
  • An arithmetic module including an adder and a subtractor may be set in the uplink to receive the FER value comparison result, and the operation is performed according to the above operation manner to obtain a SINR target value.
  • the FER target value is subtracted from the SINR target value
  • the FER target value is added based on the SINR target value.
  • the UE's transmission power can be lowered, and thus the FER target value can be subtracted from the SINR target value.
  • the current value of the SINR smaller than the SINR target value is obtained, so as to lower the UE transmit power and save power.
  • the current value of the SINR is obtained through the above steps, which is simple and reliable.
  • FIG. 3 shows a detailed flow of acquiring a TPC command in a PUSCH channel according to an embodiment of the present invention. Since the PUSCH channel needs to distinguish the processing mode of the TPC command, it is divided into an absolute value mode and an accumulation mode, wherein the absolute value mode is for the current transmit power, and the accumulated value mode is for the historical transmit power to fine tune the transmit power. In both modes, the adjustment of the TPC command is closely related to the PHR value reported by the user terminal. If the PHR value reported by the UE is > 0, the UE's transmit power is too small, and the power cannot be reduced at this time. If i ⁇ 0, the current UE's transmit power has reached the maximum value, and the power cannot be increased any more. As shown in Figure 3, in In the absolute value mode, the above process further includes:
  • the TPC command is 4; when ASINR > HSINR, it indicates that the absolute value of the difference between the signal-to-noise ratio and the target SNR in the current channel is greater than or equal to the maximum SINR threshold, in the channel. The signal quality is poor, and a TPC command with a bit value of 4 can be sent to the UE for the UE to greatly increase the transmit power according to the TPC command.
  • the TPC command is 1; when HSINR > ASINR > MSINR, it indicates that the absolute value of the difference between the signal-to-noise ratio and the target SNR in the current channel is at the maximum threshold and the middle. Between the thresholds, the signal quality is general, so a TPC command with a bit value of 1 can be sent to the UE for the UE to slightly increase the transmit power according to the TPC command.
  • the TPC command is negative 1; when MSINR > ASINR > LSINR, it indicates that the absolute value of the difference between the signal-to-noise ratio and the target SNR in the current channel is at the minimum threshold and The communication between the intermediate thresholds is good, so that a TPC command with a bit value of minus 1 can be sent to the UE for the UE to down-transmit the transmit power according to the TPC command.
  • ASINR ⁇ LSINR means that the absolute value of the difference between the signal-to-noise ratio and the target SNR in the current channel is less than the minimum threshold, and the signal is strong. Therefore, a TPC command with a bit value of minus 4 can be sent to the UE for The UE lowers the transmit power according to the TPC command.
  • the above absolute value mode may further include:
  • the TPC command is 1; otherwise, the ASINR and SINR thresholds are compared. If the ASINR > LSINR, the TPC command is negative 1 and otherwise negative 4.
  • the PHR value ranges from minus 23 to positive 40. When the PHR value is close to or equal to 40, the UE's transmit power is already very small, close to 0. At this time, the transmit power cannot be lowered; otherwise, the transmit power can be lowered.
  • the above absolute value mode may further include: The ASINR and SINR value thresholds are compared when the UE power reporting margin PHR value ⁇ 0. If the ASINR > LSINR, the TPC command is negative 1 and otherwise negative 4.
  • the above process further includes:
  • the uplink power control information transmission status can be represented by DCI3A.
  • the TPC command is negative one.
  • the acquisition of the TPC command is similar to the absolute value mode and will not be described in detail here. Further, the accumulated value mode further includes:
  • the TPC command is 0, otherwise it is negative 1.
  • FIG. 4 is a detailed flowchart of acquiring a TPC command in a PUCCH channel according to an embodiment of the present invention, where the process includes:
  • the TPC command is 3;
  • the PUCCH channel only involves the transmission of UCI information, so there is no PHR judgment process.
  • FIG. 5 is a schematic structural diagram of a TPC command acquiring apparatus according to an embodiment of the present invention.
  • the device includes:
  • the threshold setting module 10 is configured to preset a threshold of the SINR value, where the SINR threshold includes a maximum value HSINR, an intermediate value MSINR, and a minimum value LSINR; for example, multiple SINR values may be selected.
  • the SINR values are respectively loaded into the uplinks of different operating environments, and the threshold setting module 10 selects the maximum value, the intermediate value, and the minimum value suitable for the uplink operation.
  • the difference obtaining module 20 is configured to compare the SINR current value with the SINR target value to obtain a difference ASINR.
  • the difference obtaining module 20 may be an SINR comparator.
  • the TPC command selection module 30 is configured to compare the ASINR with the SINR threshold, and obtain a TPC command according to the comparison result.
  • the difference ASINR can reflect the signal quality in the current uplink. For example, when the current value of the SINR is greater than the SINR target value, the channel signal is poor.
  • the TPC command selection module 30 can send a TPC command for adjusting the transmission power to the UE.
  • the TPC command selection module 30 may be a TPC multiplexer that can be set at the output of the SINR comparator to obtain a TPC command based on the comparison result.
  • the following module may be set in the TPC command acquiring device to obtain the current SINR value:
  • the frame error rate FER setting module 40 is used to preset the frame error rate FER target value; the frame error rate FER is an important parameter for the base station to adjust the channel power, and the base station determines whether to increase the forward traffic channel power to the user according to the frame error rate FER. Or decide whether to let the UE increase the transmit power.
  • the frame error rate FER target value has various schemes, and can be flexibly selected.
  • the FER target value can be set to 0.1, that is, 1 frame data error in 10 frames of data.
  • the FER comparison module 50 is configured to obtain a current FER value and compare it with the FER target value to output a FER value comparison result.
  • the FER comparison module 50 may be a FER comparator disposed in the uplink. The FER value fed back by the UE is compared with the FER target value.
  • the operation module 60 is configured to adjust a preset SINR target value according to the FER value comparison result to obtain a current SINR value.
  • the SINR target value is a basis for normal communication between the UE and the base station, and can be set in the base station controller. In an embodiment, the SINR target value may be set to be modified at regular intervals, for example, 20 TTI modifications may be set.
  • the arithmetic unit 60 is provided with an adder 61 and a subtractor 62, and the SINR current value is obtained by adding and subtracting the SINR target value. Referring to FIG.
  • the TPC command obtaining apparatus may further include a power reporting margin PHR splitter 70 and a PHR comparator 80, wherein the PHR splitter 70 is operable to measure traffic in the current service.
  • the PHR splitter 70 is operable to measure traffic in the current service.
  • the PHR comparator 80 is used to compare the PHR value with the PHR target value.
  • the power headroom PHR may be obtained by subtracting the power used by the current uplink channel from the maximum transmit power of the UE, which may reflect the current UE power adjustable amplitude.
  • the PHR value needs to be considered to ensure that the power required for power adjustment or resource allocation of the UE does not exceed the maximum transmit power of the UE, otherwise the base station will be affected to perform power adjustment on the UE. Or the accuracy of resource allocation. Therefore, it is necessary to set the PHR splitter 70 to separate the power headroom, and set the power report margin PHR comparator 80 to compare the PHR value with the PHR target value to determine whether the power adjustment range is exceeded.
  • the adder 61 is further configured to: when the current PHR value is greater than the PHR target value, increase the FER target value based on the SINR target value to obtain the current SINR value;
  • the subtracter 62 is further configured to subtract the target value of the FER based on the currently saved SINR target value to obtain the current SINR value if the current PHR value is less than the PHR target value.
  • the adder 61 is further configured to increase the FER target value based on the SINR target value when the current service is traffic traffic and the measured FER value is greater than the FER target value.
  • the SINR value obtaining apparatus in this embodiment may be directed to traffic services.
  • the foregoing operation module 60 may only include:
  • a subtracter 61 configured to subtract the FER target value from the SINR target value when the current service is a voice service and the measured FER value is less than the FER target value
  • the adder 62 is configured to increase the FER target value based on the SINR target value when the current service is a voice service and the measured FER value is greater than the FER target value.
  • the difference between the current FER value and the FER target value indicates the quality of the communication between the UE and the base station, and the UE's transmit power needs to be adjusted.
  • the above SINR is adopted.
  • the value obtaining device obtains the current value of the SINR, which is simple and reliable, and the acquired current value of the SINR can be used to adjust the transmit power of the UE.
  • the SINR current value may be compared with the SINR target value that the service needs to meet, and the TPC command of the different bit value is sent to the UE according to the comparison result, so that the UE determines whether to increase the transmit power or reduce the transmit power according to the received TPC command.
  • the SINR value obtaining apparatus in this embodiment may be directed to a voice service.
  • the TPC command selection module 30 described above can be used to:
  • the TPC command is 4; when ASINR > HSINR, it indicates that the absolute value of the difference between the signal-to-noise ratio and the target SNR in the current channel is greater than or equal to the maximum SINR threshold, in the channel. The signal quality is poor, and a TPC command with a bit value of 4 can be sent to the UE for the UE to greatly increase the transmit power according to the TPC command.
  • the TPC command is 1; when HSINR > ASINR > MSINR, it indicates that the absolute value of the difference between the signal-to-noise ratio and the target SNR in the current channel is at the maximum threshold and the middle. Between the thresholds, the signal quality is general, so a TPC command with a bit value of 1 can be sent to the UE for the UE to slightly increase the transmit power according to the TPC command.
  • the TPC command is negative 1; when MSINR > ASINR > LSINR, it indicates that the absolute value of the difference between the signal-to-noise ratio and the target SNR in the current channel is at the minimum threshold and The communication between the intermediate thresholds is good, so that a TPC command with a bit value of minus 1 can be sent to the UE for the UE to down-transmit the transmit power according to the TPC command.
  • ASINR ⁇ LSINR means that the absolute value of the difference between the signal-to-noise ratio and the target SNR in the current channel is less than the minimum threshold, and the signal is strong. Therefore, a TPC command with a bit value of minus 4 can be sent to the UE for The UE lowers the transmit power according to the TPC command.
  • TPC command selection module 30 can also be used to:
  • the TPC command is 1; otherwise, Comparing the ASINR and SINR thresholds, if the ASINR > LSINR, the TPC command is negative 1, otherwise it is negative 4.
  • the PHR value is 40, indicating that the UE's transmit power is already small, close to 0. At this time, the transmit power cannot be lowered; otherwise, the transmit power can be lowered.
  • TPC command selection module 30 can also be used to:
  • the UE power and the SINR value threshold are compared when the UE power reporting margin PHR value ⁇ 0. If the ASINR > LSINR, the TPC command is negative 1 , otherwise it is negative 4.
  • the TPC command selection module 30 described above can also be used to:
  • the TPC command is 1; if not, the TPC command is 3;
  • the TPC command is negative one.
  • TPC command selection module 30 can also be used to:
  • the TPC command is 0, otherwise it is negative 1.
  • the TPC command selection module 30 is used to:
  • the TPC command is 3;

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

TPC命令获取方法及装置 技术领域
本发明涉及无线通信技术领域, 尤其涉及一种功率控制 (TPC , Transmission Power Control )命令获取方法及装置。 背景技术
现有的长期演进( LTE , Long Term Evolution ) 系统中, 主要网络节点 有基站、 用户设备 ( UE, User Equipment )和核心网。 将数据从基站发送到 UE称为下行, 将数据从 UE发送到基站称为上行。 上行存在物理随机接入 信道 ( PRACH , Physical Random Access Channel )、 物理上行共享信道 ( PUSCH, Physical Uplink Shared Channel )及物理上行控制信道 ( PUCCH, Physical Uplink Control Channel )这三种信道。 相应地, 存在上述三种信道 对应的功率计算方法, 这就需要对三个信道分别进行功率控制。 功率控制 是指在移动通信系统中, 根据信道的变化情况及接收到的信号电平, 通过 反馈信道, 按照一定的控制准则, 调节发射信号的电平, 从而降低系统整 体的干扰水平。 在长期演进系统的上行链路中, 通过功率控制, 可以补偿 路径损耗和阴影衰落, 有效降低多小区基站之间的干扰, 以及调整移动台 的发射功率, 使基站接收到小区内所有移动台发射至基站的信号功率基本 相等, 从而克服远近效应, 使每个移动台的发射功率最合理。 因此通过功 率控制可以节省设备能量, 延长电池寿命, 还可以使小区边缘用户性能与 系统整体频语效率的均衡。
目前的 LTE系统中使用两种功率控制策略, 分别是开环功率控制和闭 环功率控制。 开环功率控制是基站侧通过下行控制信息 (DCI, Downlink Control Information ) 下发的功率控制 ( TPC, Transmission Power Control ) 命令不改变, 用户设备 UE侧通过 TPC得到固定的功率修正值, 确定 UE 起始发射功率, 作为闭环功率控制调整的基础。 闭环功率控制进一步调节 功率, 通过 TPC命令动态地调整功率修正值, 作为功率的补偿因子, 以控 制干扰和符合信道的条件,可适用于 PUSCH业务信道及 PUCCH控制信道。 开环功率控制不需要反馈信息, 可以对信道变化作出快速响应, 并且有较 大的动态调整范围; 闭环功率控制可以提高功率调整的精度, 是克服非对 称多径衰落的有效方法。
闭环功率控制是以基站周期性发送 TPC命令至 UE反馈信息为基础的 , 因此, 获得准确的 TPC命令是做好闭环功率控制的前提, TPC命令的获取 可通过在基站处检测得到的信噪比( SINR, Signal to Interference plus Noise Ratio )推导得出。 现有技术中, 存在将 SINR 当前值与预设的目标值进行 比较, 然后根据比较结果选择 TPC命令的方法, 但所获得的 TPC命令准确 性不高。 发明内容
本发明的主要目的在于提供一种 TPC命令获取方法及装置, 旨在提高 TPC获取指令的准确性。
本发明提供一种功率控制 TPC命令获取方法, 包括以下步骤: 预设 SINR值门限, 所述 SINR值门限包括最大值 HSINR、 中间值 MSINR和最小值 LSINR;
将 SINR当前值与 SINR目标值进行比较, 得到差值 ASINR;
将 ASINR与所述 SINR值门限进行比较,根据比较结果获取 TPC命令。 优选地, 按以下步骤获取 SINR当前值:
在当前的业务是流量业务时:
若测得的 FER值大于 FER目标值, 则 SINR目标值的基础上增加 FER 目标值; 若测得的 FER值小于 FER目标值,则比较分离出的当前功率上报余量 PHR值与预设的 PHR目标值;
在当前 PHR值大于 PHR 目标值时, 在 SINR 目标值基础上增加 FER 目标值; 否则, 在 SINR目标值的基础上减去 FER目标值。
优选地, 按以下步骤获取 SINR当前值:
在当前的业务是语音业务时:
若测得的 FER值小于 FER目标值时, 则在 SINR目标值的基础上减去 FER目标值;
若测得的 FER值大于 FER目标值时, 则在 SINR目标值的基础上增加 FER目标值。
优选地, 所述根据比较结果获取 TPC命令中包括:
在用户设备 UE功率上报余量 PHR值 > 0时:
若所述 ASINR > HSINR, 则 TPC命令为 4;
若所述 HSINR > ASINR > MSINR, 则 TPC命令为 1;
若所述 MSINR > ASINR > LSINR, 则 TPC命令为负 1;
若所述 ASINR < LSINR, 则 TPC命令为负 4;
若 UE功率上报余量 PHR值接近最大极限值,则 TPC命令为 1 ; 否则, 比较所述 ASINR与 SINR值门限, 若所述 ASINR > LSINR, 则 TPC命令为 负 1 , 否则为负 4;
在 UE功率上报余量 PHR值 <于 0时比较所述 ASINR与 SINR值门限, 若所述 ASINR > LSINR, 则 TPC命令为负 1 , 否则为负 4。
优选地, 所述根据比较结果获取 TPC命令中包括:
在 UE功率上报余量 PHR值 > 0 时:
若所述 ASINR > HSINR,则判断是否处于上行功控信息发送状态,若是, 则 TPC命令为 1 , 若否, 则 TPC命令为 3; 若所述 HSINR > ASINR > MSINR, 则 TPC命令为 1;
若所述 MSINR > ASINR > LSINR, 则 TPC命令为 0;
若所述 ASINR < LSINR, 则 TPC命令为负 1 ;
若 UE功率上报余量 PHR值接近最大极限值,则 TPC命令为 0, 否则, 为负 1。
优选地, 所述根据比较结果获取 TPC命令中包括:
若所述 ASINR > HSINR, 则 TPC命令为 3;
若所述 HSINR > ASINR > MSINR, 则 TPC命令为 1;
若所述 MSINR > ASINR > LSINR, 则 TPC命令为 0。
本发明提供一种 TPC命令获取装置 , 包括:
门限设定模块, 用于预设 SINR值门限, 所述 SINR值门限包括最大值 HSINR, 中间值 MSINR和最小值 LSINR;
差值获取模块, 用于将 SINR当前值与 SINR目标值进行比较, 得到差 值 ASINR;
TPC命令选择模块, 用于将 ASINR与所述 SINR值门限进行比较, 根 据比较结果获取 TPC命令。
优选地,所述装置还包括加法器、减法器、 PHR分离器和 PHR比较器, 其中,
加法器, 用于在当前的业务是流量业务时, 若测得的 FER值大于 FER 目标值, 则 SINR目标值的基础上增加 FER目标值;
PHR分离器, 用于在当前的业务是流量业务时, 若测得的 FER值小于 FER目标值,
PHR比较器, 用于比较所述 PHR值与预设的 PHR目标值;
所述加法器还用于在当前 PHR值大于 PHR目标值时,在 SINR目标值 基础上增加 FER目标值; 所述减法器用于在当前 PHR值小于 PHR目标值 时, 在 SINR目标值的基础上减去 FER目标值。
优选地, 所述装置还包括:
加法器, 用于在当前的业务是语音业务时, 若测得的 FER值小于 FER 目标值时, 则在 SINR目标值的基础上减去 FER目标值;
减法器, 用于在当前的业务是语音业务时, 若测得的 FER值大于 FER 目标值时, 则在 SINR目标值的基础上增加 FER目标值。
优选地, 所述 TPC命令选择模块用于:
在 UE功率上报余量 PHR值 > 0时:
若所述 ASINR > HSINR, 则 TPC命令为 4;
若所述 HSINR > ASINR > MSINR, 则 TPC命令为 1;
若所述 MSINR > ASINR > LSINR, 则 TPC命令为负 1;
若所述 ASINR < LSINR, 则 TPC命令为负 4;
若 UE功率上报余量 PHR值接近最大极限值,则 TPC命令为 1 ; 否则, 比较所述 ASINR与 SINR值门限, 若所述 ASINR > LSINR, 则 TPC命令为 负 1 , 否则为负 4;
在 UE功率上报余量 PHR值 <于 0时比较所述 ASINR与 SINR值门限, 若所述 ASINR > LSINR, 则 TPC命令为负 1 , 否则为负 4。
优选地, 所述 TPC命令选择模块用于:
在 UE功率上报余量 PHR值 > 0 时:
若所述 ASINR > HSINR,则判断是否处于上行功控信息发送状态,若是, 则 TPC命令为 1 , 若否, 则 TPC命令为 3;
若所述 HSINR > ASINR > MSINR, 则 TPC命令为 1;
若所述 MSINR > ASINR > LSINR, 则 TPC命令为 0;
若所述 ASINR < LSINR, 则 TPC命令为负 1 ;
若 UE功率上报余量 PHR值接近最大极限值,则 TPC命令为 0, 否则, 为负 1。
优选地, 所述 TPC命令选择模块用于:
若所述 ASINR > HSINR, 则 TPC命令为 3;
若所述 HSINR > ASINR > MSINR, 则 TPC命令为 1;
若所述 MSINR > ASINR > LSINR, 则 TPC命令为 0。
本发明所提供的 TPC命令获取方法或装置, 通过将 SINR当前值与目 标值进行比较,得到 SINR差值, 然后将 SINR差值与信道中的 SINR最大、 中间和最小门限值进行比较, 可以根据实际情况灵活调整 TPC命令, 明确 了根据 SINR值进行 TPC命令调整的方向, 大大降低了计算量, 提高了获 取 TPC命令的准确性和实时性。 附图说明
图 1为本发明一实施方式中功率控制 TPC命令获取方法的流程图; 图 2为本发明一实施例中 SINR当前值的获取流程图;
图 3为本发明一实施例中 PUSCH信道中功率控制 TPC命令获取方法 的流程图;
图 4为本发明一实施例中 PUCCH信道中功率控制 TPC命令获取方法 的流程图;
图 5为本发明一实施方式中功率控制 TPC命令获取装置的结构示意图; 图 6为本发明一实施例中功率控制 TPC命令获取装置的结构示意图; 图 7为本发明一实施例中 SINR当前值获取装置的结构示意图; 图 8为本发明一实施例中 SINR当前值获取装置的结构示意图。 具体实施方式
应当理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不用于 限定本发明。 本发明提供一种 TPC命令获取方法, 参照图 1 , 该方法具体包括以下 步骤:
步骤 S100, 预设 SINR值门限, 所述 SINR值门限包括最大值 HSINR、 中间值 MSINR和最小值 LSINR; SINR值门限的设置可通过仿真方式获取, 例如, 可选取多个 SINR值, 将各 SINR值分别载入不同运行环境的上行链 路, 从中选择适合上行链路运行的最大值、 中间值和最小值。
步骤 S200,将 SINR当前值与 SINR目标值进行比较,得到差值 ASINR; ASINR可通过 SINR比较器获取并输出。
步骤 S300, 将 ASINR与所述 SINR值门限进行比较, 根据比较结果获 取 TPC命令。 差值 ASINR与所述 SINR值门限的比较结果可反映当前上行 链路中的信号质量, 例如当 ASINR大于 HSINR值时, 说明信道信号较差, 此时可发送上调发射功率的 TPC命令至 UE。在一实施例中,可在上述 SINR 比较器的输出端设置 TPC多路选择器,通过该 TPC多路选择器中根据比较 结果获取 TPC命令。
本发明所提供的功率控制 TPC命令获取方法, 通过将 SINR当前值与 目标值进行比较, 得到 SINR差值, 然后将 SINR差值与信道中的 SINR最 大、 中间和最小门限值分别进行比较, 可以根据实际情况灵活调整 TPC命 令, 明确了根据 SINR值进行 TPC命令调整的方向, 大大降低了计算量, 提高了获取 TPC命令的准确性和实时性。
SINR当前值的获取方法有多种, 参照图 2, 本发明一实施例中, 可按 以下步骤获取 SINR当前值:
步骤 S400,预设误帧率( FER, Frame Error Rate )目标值; 误帧率 FER 可反映 UE发送信号质量的好坏, 因而作为基站调整信道功率的重要参数。 基站可根据 FER决定是否给用户增加前向业务信道功率,或决定是否让 UE 增加发射功率。 本发明实施方式中, FER目标值有多种方案, 可灵活选择, 例如在一实施例中, 可设置 FER目标值为 0.1 , 即 10帧数据中有 1帧数据 错误。
步骤 S500, 获取当前 FER值, 并与 FER目标值进行比较, 输出 FER 值比较结果;在一实施例中,可通过 FER比较器将 UE反馈的 FER值与 FER 目标值进行比较。
步骤 S600, 根据所述 FER值比较结果对预设的 SINR目标值调整, 得 到 SINR当前值; SINR目标值是 UE与基站进行正常通信的基础, 可在基 站控制器中设定。 在一实施例中, SINR目标值可设定每隔一定时间修改一 次, 例如可设定 20个传输时间间隔 (ΤΉ, Transmission Time Interval ) i 改一次。
移动通信存在多种业务类型, 例如数据流量业务、 语音业务等, 当前 的 FER值与 FER目标值之间的差值说明 UE与基站之间通信质量的好和坏, 可根据该差值获取 SINR当前值。 例如, 上述步骤 S600中可包括:
在当前的业务是流量业务时:
若测得的 FER值大于 FER目标值, 则 SINR目标值的基础上增加 FER 目标值;
若测得的 FER值小于 FER目标值,则比较分离出的当前功率余量上报 ( PHR, Power Headroom Report )值与预设的 PHR目标值;
并在当前 PHR值大于 PHR目标值时,在 SINR目标值基础上增加 FER 目标值; 否则, 在 SINR目标值的基础上减去 FER目标值;
流量业务是指 UE上行链路发生的是数据流量业务。 功率余量 PHR可 由 UE的最大发射功率减去当前上行信道所使用的功率得到,其可反映当前 UE功率可调幅度。 基站侧对 UE进行功率调整或资源分配时, 需考虑 PHR 值的大小,以确保对 UE进行功率调整或资源分配所需的功率不超出 UE的 最大发射功率, 否则将影响基站对 UE进行功率调整或资源分配的准确度。 因而有必要对 PHR值和 PHR目标值进行比较,以判断是否超出功率调整范 围。
若当前 PHR值大于 PHR目标值, 在 SINR目标值基础上增加 FER目 标值; 否则, 在当前保存的 SINR目标值的基础上减去 FER的目标值。 若 当前的 PHR值大于 PHR 目标值时, 则调整的范围较大, 可据此获得大于 SINR目标值的 SINR当前值。
可在上行链路中设置包含加法器和减法器的运算模块, 以接收 FER值 比较结果, 并按上述运算方式进行运算, 得到 SINR目标值。
在当前的业务是语音业务时:
若测得的 FER值小于 FER目标值时, 则在 SINR目标值的基础上减去 FER目标值;
若测得的 FER值大于 FER目标值时, 则在 SINR目标值的基础上增加 FER目标值。
在进行电话业务时, 若当前测得的 FER值小于 FER目标值, 说明信号 质量好于正常通信信号质量, 可下调 UE的发射功率, 因而可在 SINR目标 值的基础上减去 FER目标值, 从而获得小于 SINR目标值的 SINR当前值, 以便下调 UE发射功率, 节省用电。
本发明实施方式中, 通过上述步骤获取 SINR当前值, 简单可靠。
图 3示出了本发明一实施例中, PUSCH信道中获取 TPC命令的详细流 程。 由于 PUSCH信道需要区分 TPC命令的处理方式, 因此在此处分为绝 对值模式和累加模式, 其中绝对值模式针对当前发射功率, 而累加值模式 则针对历史发射功率, 用以微调发射功率。 此两种模式下, TPC命令的调 整都跟用户终端上报的 PHR值密切相关, 若 UE上报的 PHR值〉 0, 说明 UE的发射功率偏小, 此时不能再降低功率, 若 UE上报的 PHl i < 0, 则 当前 UE的发射功率已经达到了最大值, 不能再增大功率。 如图 3所示, 在 绝对值模式下, 上述流程进一步包括:
在 UE功率上报余量 PHR值 > 0时:
若所述 ASINR > HSINR, 则 TPC命令为 4; 当 ASINR > HSINR时, 表 明当前信道中的信噪比与目标信噪比之间的差值绝对值大于或等于最大 SINR门限值, 信道中的信号质量较差, 可发送比特值为 4的 TPC命令至 UE, 以供 UE根据该 TPC命令大幅上调发射功率。
若所述 HSINR > ASINR > MSINR,则 TPC命令为 1;当 HSINR > ASINR > MSINR时, 表明当前信道中的信噪比与目标信噪比之间的差值绝对值在 最大门限值与中间门限值之间, 信号质量一般, 因而可发送比特值为 1 的 TPC命令至 UE, 以供 UE根据该 TPC命令小幅上调发射功率。
若所述 MSINR > ASINR > LSINR, 则 TPC命令为负 1; 当 MSINR > ASINR > LSINR 时, 表明当前信道中的信噪比与目标信噪比之间的差值绝 对值在最小门限值和中间门限值之间, 通信较好, 因而可发送比特值为负 1 的 TPC命令至 UE, 以供 UE根据该 TPC命令下调发射功率。
若所述 ASINR < LSINR,则 TPC命令为负 4。 ASINR < LSINR意味着当 前信道中的信噪比与目标信噪比之间的差值绝对值小于最小门限值, 信号 较强, 因而可发送比特值为负 4的 TPC命令至 UE, 以供 UE根据该 TPC 命令下调发射功率。
进一步地, 上述绝对值模式中还可包括:
若 UE功率上报余量 PHR值接近最大极限值,则 TPC命令为 1 ; 否则, 比较所述 ASINR与 SINR值门限, 若所述 ASINR > LSINR, 则 TPC命令为 负 1 , 否则为负 4。 PHR值的范围在负 23至正 40, 当 PHR值接近或等于 40时, 说明 UE的发射功率已经很小, 接近 0值, 此时不能下调发射功率; 否则, 可下调发射功率。
进一步地, 上述绝对值模式中还可包括: 在 UE功率上报余量 PHR值 <于 0时比较所述 ASINR与 SINR值门限, 若所述 ASINR > LSINR, 则 TPC命令为负 1 , 否则为负 4。
在累加值模式中, 上述流程进一步包括:
在 UE功率上报余量 PHR值 > 0 时:
若所述 ASINR > HSINR,则判断是否处于上行功控信息发送状态,若是, 则 TPC命令为 1 ,若否,则 TPC命令为 3;上行功控信息发送状态可用 DCI3A 表示。
若所述 HSINR > ASINR > MSINR, 则 TPC命令为 1;
若所述 MSINR > ASINR > LSINR, 则 TPC命令为 0;
若所述 ASINR < LSINR, 则 TPC命令为负 1。
累加值模式中, TPC命令的获取与绝对值模式相似, 在此不作详述。 进一步地, 累加值模式中还包括:
若 UE功率上报余量 PHR值接近最大极限值,则 TPC命令为 0, 否则, 为负 1。
图 4为本发明一实施例中 PUCCH信道中获取 TPC命令的详细流程, 该流程包括:
若所述 ASINR > HSINR, 则 TPC命令为 3;
若所述 HSINR > ASINR > MSINR, 则 TPC命令为 1;
若所述 MSINR > ASINR > LSINR, 则 TPC命令为 0。
PUCCH信道只涉及了 UCI信息的传输, 因此没有 PHR的判断流程,
ASINR的计算流程是一致的, 只是根据此差值取得的 TPC命令是不同的。
参照图 5 , 为本发明一实施方式中 TPC命令获取装置的结构示意图。 该装置包括:
门限设定模块 10, 用于预设 SINR值门限, 所述 SINR值门限包括最大 值 HSINR、 中间值 MSINR和最小值 LSINR; 例如, 可选取多个 SINR值, 将各 SINR值分别载入不同运行环境的上行链路, 通过门限设定模块 10从 中选择适合上行链路运行的最大值、 中间值和最小值。
差值获取模块 20, 用于将 SINR当前值与 SINR目标值进行比较,得到 差值 ASINR; 在一实施例中, 差值获取模块 20可以是 SINR比较器。
TPC命令选择模块 30, 用于将 ASINR与所述 SINR值门限进行比较, 根据比较结果获取 TPC命令。 差值 ASINR可反映当前上行链路中的信号质 量, 例如当 SINR当前值大于 SINR目标值时, 说明信道信号较差, 此时可 通过 TPC命令选择模块 30发送上调发射功率的 TPC命令至 UE。在一实施 例中, TPC命令选择模块 30可以是 TPC多路选择器, 可设置在上述 SINR 比较器的输出端, 用以根据比较结果获取 TPC命令。
上述 SINR当前值的获取装置有多种, 参照图 6, 本发明一实施例中, 可在上述 TPC命令获取装置中设置以下模块以获取 SINR当前值:
误帧率 FER设置模块 40, 用于预设误帧率 FER目标值; 误帧率 FER 是基站调整信道功率的重要参数, 基站会根据误帧率 FER决定是否给用户 增加前向业务信道功率。或决定是否让 UE增加发射功率。本发明实施方式 中, 误帧率 FER目标值有多种方案, 可灵活选择, 例如在一实施例中, 可 设置 FER目标值为 0.1 , 即 10帧数据中有 1帧数据错误。
FER比较模块 50, 用于获取当前 FER值, 并与 FER目标值进行比较, 输出 FER值比较结果; 在一实施例中, FER比较模块 50可以是设置在上 行链路中的 FER比较器,用于将 UE反馈的 FER值与 FER目标值进行比较。
运算模块 60, 用于根据所述 FER值比较结果对预设的 SINR目标值调 整, 得到 SINR当前值; SINR目标值是 UE与基站进行正常通信的基础, 可在基站控制器中设定。 在一实施例中, SINR目标值可设定每隔一定时间 修改一次, 例如可设定 20个 TTI修改一次。 运算模块 60中设置加法器 61 和减法器 62, 通过对 SINR目标值进行加减运算, 得到 SINR当前值。 参照图 7, 在一实施例中, 上述 TPC命令获取装置还可包括功率上报 余量 PHR分离器 70和 PHR比较器 80, 其中 PHR分离器 70可用于在当前 的业务是流量业务且测得的 FER值小于目标值时,在当前信道中分离出 UE 上报的功率上报余量 PHR值。 PHR比较器 80用于比较所述 PHR值与 PHR 目标值。 功率余量 PHR可由 UE的最大发射功率减去当前上行信道所使用 的功率得到, 其可反映当前 UE功率可调幅度。 基站侧对 UE进行功率调整 或资源分配时, 需考虑 PHR值的大小, 以确保对 UE进行功率调整或资源 分配所需的功率不超出 UE的最大发射功率,否则将影响基站对 UE进行功 率调整或资源分配的准确度。 因而有必要设置 PHR分离器 70分离功率余 量,并设置功率上报余量 PHR比较器 80对 PHR值和 PHR目标值进行比较, 以判断是否超出功率调整范围。
加法器 61还用于若当前 PHR值大于 PHR目标值时, 在 SINR目标值 的基础上增加 FER目标值, 以获得 SINR当前值;
减法器 62还用于若当前 PHR值小于 PHR 目标值时, 在当前保存的 SINR目标值的基础上减去 FER的目标值, 以获得 SINR当前值。
在一实施例中, 加法器 61 还用于在当前的业务是流量业务且测得的 FER值大于 FER目标值时, 在 SINR目标值的基础上增加 FER目标值。
本实施例中的 SINR值获取装置可针对流量业务。
参照图 8, 在一实施例中, 上述运算模块 60可仅包括:
减法器 61 , 用于在当前的业务是语音业务且测得的 FER值小于 FER 目标值时, 在 SINR目标值的基础上减去 FER目标值; 和
加法器 62, 用于在当前的业务是语音业务且测得的 FER值大于 FER 目标值时, 在 SINR目标值的基础上增加 FER目标值。
当前的 FER值与 FER目标值之间的差值说明 UE与基站之间通信质量 的好和坏, 需要调整 UE的发射功率。 本发明实施方式中, 通过上述 SINR 值获取装置获取 SINR当前值, 简单可靠, 且获取的 SINR当前值可用于调 整 UE的发射功率。 例如可将 SINR当前值与业务所需满足的 SINR目标值 比较,根据比较结果发送不同比特值的 TPC命令给 UE, 以供 UE根据接收 到的 TPC命令判断是增加发射功率还是减小发射功率。
本实施例中的 SINR值获取装置可针对语音业务。
在 PUSCH信道中, 上述 TPC命令选择模块 30可用于:
在 UE功率上报余量 PHR值 > 0时:
若所述 ASINR > HSINR, 则 TPC命令为 4; 当 ASINR > HSINR时, 表 明当前信道中的信噪比与目标信噪比之间的差值绝对值大于或等于最大 SINR门限值, 信道中的信号质量较差, 可发送比特值为 4的 TPC命令至 UE, 以供 UE根据该 TPC命令大幅上调发射功率。
若所述 HSINR > ASINR > MSINR,则 TPC命令为 1;当 HSINR > ASINR > MSINR时, 表明当前信道中的信噪比与目标信噪比之间的差值绝对值在 最大门限值与中间门限值之间, 信号质量一般, 因而可发送比特值为 1 的 TPC命令至 UE, 以供 UE根据该 TPC命令小幅上调发射功率。
若所述 MSINR > ASINR > LSINR, 则 TPC命令为负 1; 当 MSINR > ASINR > LSINR 时, 表明当前信道中的信噪比与目标信噪比之间的差值绝 对值在最小门限值和中间门限值之间, 通信较好, 因而可发送比特值为负 1 的 TPC命令至 UE, 以供 UE根据该 TPC命令下调发射功率。
若所述 ASINR < LSINR,则 TPC命令为负 4。 ASINR < LSINR意味着当 前信道中的信噪比与目标信噪比之间的差值绝对值小于最小门限值, 信号 较强, 因而可发送比特值为负 4的 TPC命令至 UE, 以供 UE根据该 TPC 命令下调发射功率。
进一步地, TPC命令选择模块 30还可用于:
若 UE功率上报余量 PHR值接近最大极限值,则 TPC命令为 1 ; 否则, 比较所述 ASINR与 SINR值门限, 若所述 ASINR > LSINR, 则 TPC命令为 负 1 , 否则为负 4。 PHR值为 40, 说明 UE的发射功率已经很小, 接近 0 值, 此时不能下调发射功率; 否则, 可下调发射功率。
进一步地, TPC命令选择模块 30还可用于:
在 UE功率上报余量 PHR值 <于 0时比较所述 ASINR与 SINR值门限, 若所述 ASINR > LSINR, 则 TPC命令为负 1 , 否则为负 4。
在 PUSCH信道中, 上述 TPC命令选择模块 30还可用于:
在 UE功率上报余量 PHR值 > 0 时:
若所述 ASINR > HSINR,则判断是否处于上行功控信息发送状态,若是, 则 TPC命令为 1 , 若否, 则 TPC命令为 3;
若所述 HSINR > ASINR > MSINR, 则 TPC命令为 1;
若所述 MSINR > ASINR > LSINR, 则 TPC命令为 0;
若所述 ASINR < LSINR, 则 TPC命令为负 1。
进一步地, 上述 TPC命令选择模块 30还可用于:
若 UE功率上报余量 PHR值接近最大极限值,则 TPC命令为 0, 否则, 为负 1。
在 PUCCH信道中, TPC命令选择模块 30用于:
若所述 ASINR > HSINR, 则 TPC命令为 3;
若所述 HSINR > ASINR > MSINR, 则 TPC命令为 1;
若所述 MSINR > ASINR > LSINR, 则 TPC命令为 0。
以上仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡 是利用本发明说明书及附图内容所作的等效结构或等效流程变换, 或直接 或间接运用在其他相关的技术领域, 均同理包括在本发明的专利保护范围

Claims

权利要求书
1、 一种功率控制 TPC命令获取方法, 其特征在于, 所述方法包括以下 步骤:
预设 SINR值门限;
将 SINR当前值与 SINR目标值进行比较, 得到差值 ASINR;
将 ASINR与所述 SINR值门限进行比较,根据比较结果获取 TPC命令。
2、 根据权利要求 1所述的方法, 其特征在于, 按以下步骤获取 SINR 当前值:
在当前的业务是流量业务时:
若测得的误帧率 FER值大于 FER目标值, 则 SINR目标值的基础上增 加 FER目标值;
若测得的 FER值小于 FER目标值, 则分离出用户设备 UE的功率上才艮 余量 PHR值;
比较分离出所述 PHR值与预设的 PHR目标值;
在当前 PHR值大于 PHR 目标值时, 在 SINR 目标值基础上增加 FER 目标值; 否则, 在 SINR目标值的基础上减去 FER目标值。
3、 根据权利要求 1所述的方法, 其特征在于, 按以下步骤获取 SINR 当前值:
在当前的业务是语音业务时:
若测得的 FER值小于 FER目标值时, 则在 SINR目标值的基础上减去
FER目标值;
若测得的 FER值大于 FER目标值时, 则在 SINR目标值的基础上增加 FER目标值。
4、 根据权利要求 1或 2所述的方法, 其特征在于, 所述 SINR值门限 包括最大值 HSINR、 中间值 MSINR和最小值 LSINR; 所述根据比较结果 获取 TPC命令, 包括:
在用户设备 UE功率上报余量 PHR值 > 0时:
若所述 ASINR > HSINR, 则 TPC命令为 4;
若所述 HSINR > ASINR > MSINR, 则 TPC命令为 1;
若所述 MSINR > ASINR > LSINR, 则 TPC命令为负 1;
若所述 ASINR < LSINR, 则 TPC命令为负 4;
若 UE功率上报余量 PHR值接近最大极限值,则 TPC命令为 1 ; 否则, 比较所述 ASINR与 SINR值门限, 若所述 ASINR > LSINR, 则 TPC命令为 负 1 , 否则为负 4;
在 UE功率上报余量 PHR值 <于 0时比较所述 ASINR与 SINR值门限, 若所述 ASINR > LSINR, 则 TPC命令为负 1 , 否则为负 4。
5、 根据权利要求 1或 2所述的方法, 其特征在于, 所述根据比较结果 获取 TPC命令, 包括:
在 UE功率余量上报 PHR值 > 0 时:
若所述 ASINR > HSINR,则判断是否处于上行功控信息发送状态,若是, 则 TPC命令为 1 , 若否, 则 TPC命令为 3;
若所述 HSINR > ASINR > MSINR, 则 TPC命令为 1;
若所述 MSINR > ASINR > LSINR, 则 TPC命令为 0;
若所述 ASINR < LSINR, 则 TPC命令为负 1 ;
若 UE功率上报余量 PHR值接近最大极限值,则 TPC命令为 0, 否则, 为负 1。
6、 根据权利要求 1所述的方法, 其特征在于, 所述根据比较结果获取 TPC命令, 包括:
若所述 ASINR > HSINR, 则 TPC命令为 3;
若所述 HSINR > ASINR > MSINR, 则 TPC命令为 1; 若所述 MSINR > ASINR > LSINR, 则 TPC命令为 0。
7、 一种功率控制 TPC命令获取装置, 其特征在于, 包括:
门限设定模块, 用于预设 SINR值门限;
差值获取模块, 用于将 SINR当前值与 SINR目标值进行比较, 得到差 值 ASINR;
TPC命令选择模块, 用于将 ASINR与所述 SINR值门限进行比较, 根 据比较结果获取 TPC命令。
8、根据权利要求 7所述的 TPC命令获取装置, 其特征在于, 还包括加 法器、 减法器、 PHR分离器和 PHR比较器, 其中,
加法器, 用于在当前的业务是流量业务时, 若测得的 FER值大于 FER 目标值, 则 SINR目标值的基础上增加 FER目标值;
PHR分离器, 用于在当前的业务是流量业务时, 若测得的 FER值小于 FER目标值,
PHR比较器, 用于比较所述 PHR值与预设的 PHR目标值;
所述加法器还用于在当前 PHR值大于 PHR目标值时,在 SINR目标值 基础上增加 FER目标值; 所述减法器用于在当前 PHR值小于 PHR目标值 时, 在 SINR目标值的基础上减去 FER目标值。
9、 根据权利要求 7所述的 TPC命令获取装置, 其特征在于, 还包括: 加法器, 用于在当前的业务是语音业务时, 若测得的 FER值小于 FER 目标值时, 则在 SINR目标值的基础上减去 FER目标值;
减法器, 用于在当前的业务是语音业务时, 若测得的 FER值大于 FER 目标值时, 则在 SINR目标值的基础上增加 FER目标值。
10、 根据权利要求 7或 8所述的 TPC命令获取装置, 其特征在于, 所 述 TPC命令选择模块用于:
在 UE功率上报余量 PHR值 > 0时: 若所述 ASINR > HSINR, 则 TPC命令为 4;
若所述 HSINR > ASINR > MSINR, 则 TPC命令为 1;
若所述 MSINR > ASINR > LSINR, 则 TPC命令为负 1;
若所述 ASINR < LSINR, 则 TPC命令为负 4;
若 UE功率上报余量 PHR值接近最大极限值,则 TPC命令为 1 ; 否则, 比较所述 ASINR与 SINR值门限, 若所述 ASINR > LSINR, 则 TPC命令为 负 1 , 否则为负 4;
在 UE功率上报余量 PHR值 <于 0时比较所述 ASINR与 SINR值门限, 若所述 ASINR > LSINR, 则 TPC命令为负 1 , 否则为负 4。
11、 根据权利要求 7或 8所述的 TPC命令获取装置, 其特征在于, 所 述 SINR值门限包括最大值 HSINR、 中间值 MSINR和最小值 LSINR; 所述 TPC命令选择模块用于:
在 UE功率上报余量 PHR值 > 0 时:
若所述 ASINR > HSINR,则判断是否处于上行功控信息发送状态,若是, 则 TPC命令为 1 , 若否, 则 TPC命令为 3;
若所述 HSINR > ASINR > MSINR, 则 TPC命令为 1;
若所述 MSINR > ASINR > LSINR, 则 TPC命令为 0;
若所述 ASINR < LSINR, 则 TPC命令为负 1 ;
若 UE功率上报余量 PHR值接近最大极限值,则 TPC命令为 0, 否则, 为负 1。
12、根据权利要求 7所述的 TPC命令获取装置,其特征在于,所述 TPC 命令选择模块用于:
若所述 ASINR > HSINR, 则 TPC命令为 3;
若所述 HSINR > ASINR > MSINR, 则 TPC命令为 1;
若所述 MSINR > ASINR > LSINR, 则 TPC命令为 0。
PCT/CN2011/072959 2010-09-16 2011-04-18 Tpc命令获取方法及装置 WO2012034399A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11824470.6A EP2618498B1 (en) 2010-09-16 2011-04-18 Method and device for obtaining transmission power control command
US13/823,303 US9084213B2 (en) 2010-09-16 2011-04-18 Method and device for obtaining transmission power control (TPC) command

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010284203.X 2010-09-16
CN201010284203.XA CN102404836B (zh) 2010-09-16 2010-09-16 Tpc命令获取方法及装置

Publications (1)

Publication Number Publication Date
WO2012034399A1 true WO2012034399A1 (zh) 2012-03-22

Family

ID=45830971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072959 WO2012034399A1 (zh) 2010-09-16 2011-04-18 Tpc命令获取方法及装置

Country Status (4)

Country Link
US (1) US9084213B2 (zh)
EP (1) EP2618498B1 (zh)
CN (1) CN102404836B (zh)
WO (1) WO2012034399A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104902552B (zh) * 2014-03-06 2019-08-16 深圳市中兴微电子技术有限公司 控制上行功率的方法及装置
CN104540207B (zh) * 2014-12-24 2018-08-07 大唐移动通信设备有限公司 一种控制终端发射功率的方法及装置
US9974027B2 (en) * 2016-02-23 2018-05-15 Spidercloud Wireless, Inc. System and method for closed loop uplink power control
KR102491936B1 (ko) * 2016-04-01 2023-01-27 한국전자통신연구원 상향링크 송신 전력을 제어하는 방법 및 장치
JP6952653B2 (ja) * 2018-07-11 2021-10-20 Kddi株式会社 端末装置の送信電力を制御する基地局装置、その制御方法、及びプログラム
CN110035487B (zh) * 2019-04-17 2021-01-15 北京智芯微电子科技有限公司 电力无线通信系统中的分层功率控制方法
US11166231B1 (en) * 2020-12-10 2021-11-02 Comcast Cable Communications, Llc Systems and methods for management of network congestion

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1841958A (zh) * 2005-03-28 2006-10-04 华为技术有限公司 一种移动通讯系统中实现上行外环功率控制的方法和装置
CN101141157A (zh) * 2006-09-08 2008-03-12 华为技术有限公司 上行功率控制方法及网络侧设备
CN101207415A (zh) * 2006-12-18 2008-06-25 北京三星通信技术研究有限公司 功率控制方法和设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001007763A (ja) * 1999-06-23 2001-01-12 Matsushita Electric Ind Co Ltd 送信電力制御装置
JP4113840B2 (ja) * 2001-07-24 2008-07-09 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムにおける送信電力制御装置及び方法並びに移動局及び通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1841958A (zh) * 2005-03-28 2006-10-04 华为技术有限公司 一种移动通讯系统中实现上行外环功率控制的方法和装置
CN101141157A (zh) * 2006-09-08 2008-03-12 华为技术有限公司 上行功率控制方法及网络侧设备
CN101207415A (zh) * 2006-12-18 2008-06-25 北京三星通信技术研究有限公司 功率控制方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2618498A4 *

Also Published As

Publication number Publication date
EP2618498A1 (en) 2013-07-24
US20130190035A1 (en) 2013-07-25
CN102404836A (zh) 2012-04-04
CN102404836B (zh) 2015-05-20
EP2618498B1 (en) 2018-07-18
US9084213B2 (en) 2015-07-14
EP2618498A4 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
KR101395582B1 (ko) 역방향 링크 전력 제어의 방법들
JP6219916B2 (ja) 移動局のアップリンク電力を制御するためのオープンループ/クローズドループを組み合わせた方法
US8126403B2 (en) Estimating and limiting inter-cell interference
RU2420881C2 (ru) Объединенное регулирование мощности передачи обратной линии связи с незамкнутым/замкнутым циклом (основанное на cqi) с подавлением помех для e-utra
KR101674238B1 (ko) 무선 통신 네트워크에서의 업링크 전력 제어를 위한 방법 및 장치
WO2012034399A1 (zh) Tpc命令获取方法及装置
US8929227B2 (en) Method and apparatus for controlling uplink transmission power in wireless communication system
US20120052904A1 (en) Method for configuring transmit power of sounding reference signal, network device and ue
US8238957B2 (en) Communication control method, communication control system and its control program
US9961644B2 (en) Fast fading power restriction
JP2016538764A (ja) アップリンク電力制御方法及び装置
KR20110085521A (ko) 무선 통신 시스템에서 송신 전력 제어 장치 및 방법
WO2006122489A1 (fr) Méthode de contrôle de puissance pour station de base
US20080212548A1 (en) Terminal Power Control Method
WO2005011143A1 (fr) Procede et appareil de commande de puissance pour systeme d&#39;acces multiple par code de repartition, en duplex a repartition dans le temps
WO2011100912A2 (zh) 外环功率控制处理方法、装置和无线网络控制器
KR20080065212A (ko) 개선된 부분 전력 제어 방법 및 참조 신호 채널 전력 제어방법
WO2017063483A1 (zh) 一种上行发送功率控制方法和装置
US20230156610A1 (en) Method and apparatus for controlling uplink transmission power
WO2004086650A1 (fr) Procede de determination de la puissance de reference dans la technologie d&#39;equilibre des puissances de liaisons descendantes en cas de transfert en douceur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824470

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13823303

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011824470

Country of ref document: EP