WO2010127471A1 - 一种蒸汽发生器 - Google Patents

一种蒸汽发生器 Download PDF

Info

Publication number
WO2010127471A1
WO2010127471A1 PCT/CN2009/000666 CN2009000666W WO2010127471A1 WO 2010127471 A1 WO2010127471 A1 WO 2010127471A1 CN 2009000666 W CN2009000666 W CN 2009000666W WO 2010127471 A1 WO2010127471 A1 WO 2010127471A1
Authority
WO
WIPO (PCT)
Prior art keywords
spiral
heat transfer
steam generator
steam
transfer tube
Prior art date
Application number
PCT/CN2009/000666
Other languages
English (en)
French (fr)
Inventor
何树延
居怀明
吴莘馨
雒晓卫
张征明
吴宗鑫
张作义
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41122608&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010127471(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to BRPI0924231-7A priority Critical patent/BRPI0924231B1/pt
Priority to JP2012508874A priority patent/JP5450797B2/ja
Priority to US13/318,729 priority patent/US9062918B2/en
Priority to CA2761179A priority patent/CA2761179C/en
Priority to EP09844223.9A priority patent/EP2428728B1/en
Application filed by 清华大学 filed Critical 清华大学
Priority to PL09844223T priority patent/PL2428728T3/pl
Priority to RU2011144650/06A priority patent/RU2515579C2/ru
Priority to KR1020117028971A priority patent/KR101367484B1/ko
Publication of WO2010127471A1 publication Critical patent/WO2010127471A1/zh
Priority to ZA2011/08092A priority patent/ZA201108092B/en
Priority to US14/690,740 priority patent/US20150226419A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/061Construction of tube walls
    • F22B29/064Construction of tube walls involving horizontally- or helically-disposed water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1823Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines for gas-cooled nuclear reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/22Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes of form other than straight or substantially straight
    • F22B21/26Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes of form other than straight or substantially straight bent helically, i.e. coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/22Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes of form other than straight or substantially straight
    • F22B21/28Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes of form other than straight or substantially straight bent spirally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/067Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes operating at critical or supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/62Component parts or details of steam boilers specially adapted for steam boilers of forced-flow type
    • F22B37/64Mounting of, or supporting arrangements for, tube units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/028Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using inserts for modifying the pattern of flow inside the header box, e.g. by using flow restrictors or permeable bodies or blocks with channels

Definitions

  • the invention belongs to the technical field of steam power circulation, and particularly relates to a steam generator. Background technique
  • the steam power cycle based on the Rankine cycle is widely used in nuclear power, gas-steam combined cycle and coal-fired power stations. In these areas, the generation of high temperature and high hot steam is the first step in the conversion of heat into power.
  • the equipment for generating steam mainly includes two types of natural circulation steam generators and direct current steam generators. Compared to natural circulation steam generators, DC steam generators directly generate superheated steam and ultra-high pressure and supercritical parameters of steam, which not only leads to higher power generation efficiency, but also has a compact structure.
  • the hot water pipe in the direct current steam generator it can be divided into two types: straight pipe type and spiral pipe type.
  • the straight tube type DC steam generator has a simpler structure, but because of the difference between the heat exchange tube and the simplified material, the linear expansion has a difference, causing the stress concentration at the heat transfer tube and the tube sheet to affect the overall equipment operation safety.
  • the spiral tube type DC steam generator has a large total heat exchange area, its structural characteristics can well solve the stress concentration phenomenon and is more flexible in terms of space expansion.
  • spiral tube type DC steam generators are widely used in nuclear reactor power generation and power generation.
  • the main design is divided into two types: integrated large spiral tube design and split modular design.
  • the steam generator has the advantages of compact structure and volume inspection and surface inspection due to the large radius of curvature of the spiral.
  • the main problems of the device include: 1) Since the hot state experiment cannot be performed to verify the design, the water flow side cannot be redistributed during operation, which easily leads to uneven steam temperature; 2) - Large spiral tube DC with bulk arrangement Steam generator, because each layer of spiral tube has different bending diameters, each layer of spiral tube needs independent tooling, which is expensive to process and has a long cycle.
  • the problem to be solved by the present invention is to provide a steam generator to overcome the respective defects of the integrated large spiral tube design and the split modular design in the prior art, and the volume and surface of the heat transfer tube can be realized. Service inspection, timely detection of safety hazards, can be used before the use of thermal verification test to verify the reliability of the design.
  • the present invention provides a steam generator, the steam generator comprising: a heat exchanger assembled from a plurality of structurally identical heat exchange assemblies including a spiral heat transfer tube bundle, a center Simplified and simplified, the spiral heat transfer tubes are arranged in a concentric spiral with different radii in the annular space between the central cylinder and the sleeve to form one or more concentric heat exchange cylinders; the liquid header, one end thereof It is connected to the main water supply pipe, and the other end is connected to the spiral heat transfer tube bundle; the steam header box has one end connected to the main steam pipe and the other end connected to the spiral heat transfer tube bundle.
  • the heat exchange cylinder surface is composed of one or more spiral heat transfer tubes.
  • the radius of curvature of the spiral heat transfer tube satisfies the volume of the tube and the arrival and passage of the surface detecting probe.
  • the spiral heat transfer tube bundle on the adjacent heat exchange surface comprises: a clockwise and a counterclockwise arrangement, or a clockwise arrangement, or a counterclockwise alignment.
  • the cross section of the spiral heat transfer tube bundle, the center simple and the sleeve is a rectangle with a circular or circular corner.
  • the liquid header in the direction of heat carrier flow, is arranged upstream of the heat exchanger, the steam header is arranged downstream of the heat exchanger, or the steam header is arranged upstream of the heat exchanger, and the liquid header is arranged Downstream of the heat exchanger.
  • the steam generator is placed in a manner of: vertical placement, horizontal placement, or placement at any angle.
  • each of the spiral heat transfer tubes is mounted with a fixed orifice plate and a detachable orifice plate inside the portion connected to the liquid header;
  • the fixed orifice plate is used to ensure two phases in the spiral heat transfer tube Fluid flow stability and flattening the resistance of each spiral heat transfer tube;
  • the detachable orifice plate is used to remove the spiral cylinder of the failed spiral heat transfer tube after a spiral heat transfer tube fails
  • the detachable orifice plate of the other spiral heat transfer tube realizes the redistribution of the flow in the spiral tube.
  • Each component consists of a plurality of spiral cylinders, each of which is composed of a multi-headed spiral tube, which improves the disadvantage that the split arrangement is not compact. Because the radius of curvature of the spiral tube is small, the structure is stable, and flow is not easy to occur. Vibration, and make the support structure simple and reliable;
  • the minimum radius of curvature of the spiral tube is selected according to the accessibility of the current in-service inspection tool.
  • the heat transfer tubes of each component are not connected to the junction box, and are connected to the same liquid header and steam header, which can be used for volume. Check with the surface in service. Moreover, when a pipe plugging occurs, it is only necessary to block a pipe, and it is not necessary to block a module to maintain the maximum availability of the heat transfer pipe;
  • FIG. 1 is a longitudinal cross-sectional view of a steam generator in a horizontal high temperature fluid passage according to a first embodiment of the present invention
  • FIG. 2 is a longitudinal cross-sectional view showing a steam generator in a horizontal high temperature fluid passage according to a second embodiment of the present invention
  • Figure 3 is a longitudinal cross-sectional view showing a steam generator in a vertical high temperature fluid passage according to a third embodiment of the present invention.
  • FIG. 4 is a longitudinal cross-sectional view of a steam generator in a vertical high temperature fluid passage according to a fourth embodiment of the present invention
  • 5 is a schematic view showing the internal structure of a heat exchange assembly according to an embodiment of the present invention
  • FIG. 6 is a schematic structural view of an orifice plate at the inlet of a spiral pipe according to an embodiment of the present invention. Detailed ways
  • each component is composed of a plurality of spiral cylinders, each of which is composed of a multi-headed spiral tube, which improves the disadvantage that the distributed structure is not compact.
  • the minimum radius of curvature of the spiral tube is selected according to the accessibility of the current in-service inspection tool.
  • the heat transfer tubes of each component are directly connected to the same liquid header and steam header, and the volume and surface in-service inspection can be performed. Moreover, when a blockage f occurs, it is only necessary to block a pipe, and it is not necessary to block a module, and the maximum availability of the heat transfer pipe is maintained.
  • An orifice plate is provided at the feed water inlet of each heat transfer tube, and the orifice plate is divided into a fixed orifice plate and a detachable orifice plate.
  • the fixed orifice plate meets the initial flow distribution and stability requirements, and the detachable orifice plate is used to meet the flow redistribution requirements after plugging.
  • the spiral tube of the same spiral cylinder is in the same airflow channel. When one of the tubes fails and is blocked, the helium flow rate is not adjustable. In order to ensure uniform temperature of the steam outlet, the same spiral must be increased.
  • the flow of fluid in other tubes in the cylinder can be removed by removing the detachable orifice plate of the other tubes of the spiral cylinder to meet the requirement of uniform steam outlet temperature.
  • the exact value of the orifice plate can be determined by a thermal verification test of a single component.
  • the distribution of the high temperature side flow within each component can be verified by a wind tunnel test of the high temperature profile model.
  • FIG. 1 A longitudinal section of a steam generator in a horizontal high temperature fluid passage is shown in Fig. 1.
  • the steam generator 1 is arranged in a heat transfer medium flow direction X, by a liquid header 11, a steam header 12 and a heat exchanger 13. composition.
  • the steam generator 1 in this embodiment is placed horizontally.
  • the liquid header 11 and the steam header 12 are respectively arranged on both sides of the heat exchanger 13, and in this embodiment, a reverse flow arrangement is adopted, that is, the steam header 12 is arranged upstream of the heat exchanger 13, and the liquid header 11 is arranged Downstream.
  • the heat exchanger 13 is assembled from a plurality of heat exchange assemblies 2 of identical construction.
  • the internal structure of the heat exchange assembly of this embodiment is as shown in FIG. 5.
  • the heat exchange assembly 2 is mainly composed of a spiral heat transfer tube 3, a center simple 4 and a sleeve 5.
  • the spiral heat transfer tubes 3 are spirally arranged in a concentric shape with different radii in the annular space between the central cylinder 4 and the sleeve 5 to form one or more concentric heat exchange cylinders 6, each of which has a heat exchange cylinder surface 6 It consists of one or more spiral heat transfer tubes 3.
  • the cross section of the center simple 4 and the sleeve 5 and the spiral heat transfer tube 3 may be circular and approximately circular (e.g., a rectangle of a circular corner).
  • each spiral heat transfer tube 3 should meet the requirements for the volume of the tube and the reach and passage of the surface inspection probe.
  • the spiral heat transfer tube 3 in the heat exchange cylinder 6 is wound in the axial direction of the center cylinder 4, and the spiral heat transfer tubes 3 on the adjacent heat exchange cylinders 6 are wound in a clockwise and counterclockwise manner. , you can also arrange them clockwise or completely counterclockwise.
  • Each of the spiral heat transfer tubes 3 is provided with an orifice plate inside the portion connected to the liquid header 11, and the structure of the orifice plate at the inlet of the spiral tube of the embodiment of the present invention is as shown in Fig. 6.
  • the orifice plate is divided into a fixed orifice plate 7 and a detachable orifice plate 8.
  • a spiral heat transfer tube 3 fails, the flow in the spiral tube 3 is achieved by removing the detachable orifice plate 8 of the other spiral heat transfer tube 3 of the spiral cylinder 6 where the failed spiral heat transfer tube 3 is located. Redistribution.
  • FIG. 2 A longitudinal sectional view of a steam generator in a horizontal high temperature fluid passage is shown in FIG. 2.
  • This embodiment is similar to the steam generator of the first embodiment, and is different from the first embodiment in the following:
  • the header 11 and the steam header 12 are arranged in a downstream arrangement, i.e., the steam header 12 is disposed downstream of the heat exchanger 13 and the liquid header 11 is disposed upstream.
  • FIG. 3 A longitudinal section of a steam generator in a vertical high temperature fluid passage is shown in FIG. 3.
  • the steam generator 1 includes a heat exchanger 13, a liquid header 11 and a steam header 12.
  • the steam generator 1 in this embodiment is placed vertically.
  • the liquid header 11 and the steam header 12 are respectively disposed on both sides of the heat exchanger 13.
  • the counterflow arrangement is adopted, that is, the steam header 12 is disposed upstream of the heat exchanger 13, and the liquid
  • the body box 11 is arranged downstream.
  • the heat exchanger 13 is assembled from a plurality of structurally identical heat exchange assemblies 2.
  • the internal structure of the heat exchange assembly of this embodiment is shown in FIG. 5.
  • the heat exchange assembly 2 includes a spiral heat transfer tube bundle 3, a center simple 4 and a sleeve 5, and the spiral heat transfer tubes 3 are arranged in a concentric spiral with different radii.
  • the heat transfer cylinder 6 consists of one or more spiral heat transfer tubes.
  • the radius of curvature of the spiral heat transfer tube 3 satisfies the tube volume and the surface detecting probe reaching and passing through the whole process, and along the central cylinder axis direction, the winding manner of the spiral heat transfer tube bundle 3 on the adjacent heat exchange surface includes: clockwise and counterclockwise Arrange at intervals, either completely clockwise or completely counterclockwise.
  • the cross section of the spiral heat transfer tube bundle 3, the center simple 4 and the sleeve 5 is a circular or circular corner rectangle.
  • One end of the liquid header 11 is connected to the main water supply pipe 14, and the other end is connected to the spiral heat transfer tube bundle 3.
  • One end of the steam header 12 is connected to the main steam pipe 15, and the other end is connected to the spiral heat transfer tube bundle 3.
  • each of the spiral heat transfer tubes is provided with a fixed orifice plate 7 and a detachable orifice plate 8 inside the portion connected to the liquid header.
  • the fixed orifice plate 7 is used to ensure the stability of the two-phase fluid flow in the spiral heat transfer tube and to flatten the resistance of each spiral heat transfer tube.
  • the detachable orifice plate 8 is used to pass a spiral heat transfer tube after failure.
  • the detachable orifice plate of the other spiral heat transfer tube of the spiral cylinder surface where the failed spiral heat transfer tube is located is removed, and the flow distribution in the spiral tube is redistributed.
  • FIG. 4 A longitudinal cross-sectional view of a steam generator in a vertical high-temperature fluid passage is shown in FIG. 4.
  • This embodiment is similar to the steam generator of the third embodiment, and is different from the third embodiment in the following embodiment:
  • the liquid header 11 and the steam header 12 employ a downstream arrangement in which the steam header 12 is disposed downstream of the heat exchanger 13 and the liquid header 11 is disposed upstream.
  • the performance of the heat exchange assembly 2, the fixed orifice plate 7 and the detachable orifice plate 8 of the present invention must be verified by thermal test before use.
  • the steam generator of the present invention includes a heat exchanger, a liquid header, and a steam header.
  • the individual components of the present invention can be tested for thermal verification outside the stack; at the same time, the components are structurally stable and can be produced in batches, reducing the cost.
  • the steam generator of the invention can realize the in-service inspection of the volume and surface of the heat transfer tube, find the safety hazard in time, and perform the hot state verification test before use to verify the reliability of the design. Therefore, the present invention has industrial applicability.

Description

一种蒸汽发生器 技术领域
本发明属于蒸汽动力循环技术领域, 特别是涉及一种蒸汽发生器。 背景技术
以朗肯(Rankine )循环为基础的水蒸汽动力循环在核电、燃气-蒸汽联合 循环以及燃煤电站等领域得到广泛应用。 在这些领域中, 产生高温高热水蒸 汽是热能转化为动力的第一步。 目前, 产生水蒸汽的设备主要有自然循环蒸 汽发生器和直流蒸汽发生器两种。 相比于自然循环蒸汽发生器, 直流型蒸汽 发生器可直接产生过热蒸汽以及超高压和超临界参数的蒸汽, 不仅带来更高 的发电效率, 而且结构紧凑。
根据受热水管在直流型蒸汽发生器的布置方式, 可分为直管型和螺旋管 型两种。 相比于螺旋管布置, 直管型直流蒸汽发生器结构更简单, 但由于其 换热管与简体材料不同, 线膨胀存在差异, 引起传热管与管板处应力集中影 响到整体设备运行安全。 螺旋管型直流蒸汽发生器虽然总换热面积较大, 其 结构特点却能很好地解决应力集中现象,并且在空间的伸缩度方面更加灵活。
螺旋管式直流蒸汽发生器由于上述优点, 在核反应堆发电及动力领域得 到广泛应用。 主要的设计分为两种: 一体化的大螺旋管式设计和分置的模块 化设计。
德国的 THTR-300钍高温气冷堆、 美国圣佛伦堡高温气冷堆、 英国 AGR 型反应堆, 甚至最新的钠冷快堆都采用多头绕制一体化布置的大螺旋管式直 流蒸汽发生器。 该蒸汽发生器的优点是结构紧凑, 并且由于螺旋的曲率半径 大, 可以进行体积检查和表面检査。 该装置的主要问题包括: 1 ) 由于不能 进行堆外的热态实验来验证设计, 在运行中水流侧无法重新分配, 容易导致 蒸汽温度不均匀; 2 )—体化布置的大螺旋管式直流蒸汽发生器, 由于每层螺 旋管的弯曲直径都不同, 每层螺旋管都需要独立的工装件, 加工费用昂贵而 且周期很长; 3 )为了防止流致振动需要加更多的支撑板, 换热管和支撑板的 局部应力过大问题更加突出。 俄罗斯在 VG-400、 A B TY- U 50, Β Γ Ρ-300堆和清华大学 10MW高温 气冷实验堆都采用分置的模块化直流蒸汽发生器。 这种蒸汽发生器的主要优 点是模块可以成批生产, 造价低, 每个模块可以在堆外做热态验证试验。 该 装置的主要问题包括: 1 ) 结构不够紧凑; 2 ) 螺旋管的小曲率半径不能进行 体积与表面的在役检查; 3 ) 当发生堵管时, 不仅要堵水流侧, 而且要堵上高 温载热体一侧。 发明内容
本发明要解决的问题是提供一种蒸汽发生器, 以克服现有技术中的一体 化的大螺旋管式设计和分置的模块化设计的各自缺陷, 可以实现传热管体积 与表面的在役检査, 及时发现安全隐患, 能进行使用前热态验证试验, 对设 计的可靠性进行验证。
为达到上述目的, 本发明提供一种蒸汽发生器, 所述蒸汽发生器包括: 换热器, 由多个结构相同的换热组件组装而成, 所述换热组件包括螺旋传热 管束、 中心简和套简, 螺旋传热管以不同半径呈同轴心螺旋状布置在中心筒 和套简之间的环形空间内, 形成一个或多个同心的换热柱面; 液体联箱, 其 一端与主给水管连接, 另一端与螺旋传热管束连接; 蒸汽联箱, 其一端与主 蒸汽管连接, 另一端与螺旋传热管束连接。 '
其中, 所述换热柱面由一根或多根螺旋传热管组成。
其中, 所述螺旋传热管的曲率半径满足管材体积和表面检测探头全程到 达和通过。
其中, 沿中心筒轴线方向, 所述相邻换热面上的螺旋传热管束的缠绕方 式包括: 按顺时针和逆时针间隔排列, 或完全按顺时针排列, 或完全按逆时 针排列。
其中, 所述螺旋传热管束、 中心简和套简的横截面为圆形或圆弧转角的 矩形。
其中, 在载热质流动方向上, 所述液体联箱布置在换热器的上游、 蒸汽 联箱布置在换热器的下游, 或蒸汽联箱布置在换热器的上游、 液体联箱布置 在换热器的下游。 其中, 所述蒸汽发生器的放置方式包括: 立式放置、 卧式放置、 或任意 角度放置。
其中, 每一根螺旋传热管在与液体联箱连接的部位内部, 安装有固定节 流孔板和可拆卸节流孔板; 所述固定节流孔板用于保障螺旋传热管内两相流 体流动稳定性和展平各螺旋传热管的阻力; 所述可拆卸节流孔板用于当一根 螺旋传热管失效后, 通过卸去失效的螺旋传热管所在的螺旋柱面的其他螺旋 传热管的可拆卸节流孔板, 实现螺旋管内的流量再分配。
与现有技术相比, 本发明的技术方案具有如下优点:
1 )组件可以成批生产, 降低造价;
2 )单个组件可以在堆外做热态验证试验;
3 )每个组件由多个螺旋柱面组成, 每个螺旋柱面又由多头螺旋管组成, 改善了分置式布置结构不紧凑的缺点, 由于螺旋管曲率半径小, 结构稳定, 不易发生流致振动, 并且使支撑结构简单可靠;
4 )螺旋管的最小曲率半径根据目前在役检测工具的可达性来选取, 每个 组件的传热管不设联箱, 都连接在同一个液体联箱和蒸汽联箱上, 可以进行 体积与表面在役检查。 而且当发生堵管时只需堵一根管, 不需堵一个模块, 保持传热管最大可用率;
5 )固定节流孔板和可拆卸节流孔板的设计, 可以使堵管后流量再分配简 单可行。 附图说明
图 1为本发明实施例一的一种蒸汽发生器在水平高温流体通道内的纵剖 面图;
图 2为本发明实施例二的一种蒸汽发生器在水平高温流体通道内的纵剖 面图;
图 3为本发明实施例三的一种蒸汽发生器在竖直高温流体通道内的纵剖 面图;
图 4为本发明实施例四的一种蒸汽发生器在竖直高温流体通道内的纵剖 面图; 图 5为本发明实施例的换热组件的内部结构示意图;
图 6为本发明实施例的螺旋管入口处的节流孔板的结构示意图。 具体实施方式
本发明仍然保持模块式的特点, 但每个组件由多个螺旋柱面组成, 每个 螺旋柱面又由多头螺旋管组成, 改善了分布式结构不紧凑的缺点。 螺旋管的 最小曲率半径根据目前在役检测工具的可达性来选取, 每个组件的传热管直 接连接在同一个液体联箱和蒸汽联箱上, 可以进行体积与表面的在役检查, 而且当发生堵 f时只需堵一根管, 不需堵一个模块, 保持传热管最大可利用 率。
在每根传热管的给水入口装有节流孔板, 节流孔板分固定节流孔板和可 拆节流孔板。 固定节流孔板满足初始流量分配和稳定性要求, 可拆卸节流孔 板用来满足堵管后流量再分配要求。 一个组件内, 同一螺旋柱面的螺旋管处 在同一个氦气流道内, 当其中一根管发生故障被堵后, 氦气流量是不可调节 的, 为了保证蒸汽出口温度均匀, 必须加大同一螺旋柱面其它管内流体的流 量, 去掉该螺旋柱面其他管的可拆卸节流孔板, 就可以完成堵管后流量的再 分配, 满足蒸汽出口温度均匀的要求。 不需调节未受损组件的节流阻力, 也 无需调节受损组件内其它未受损各层螺旋管节流阻力。 节流孔板的准确值可 经过单个组件的热态验证试验来确定, 高温侧流量在每个组件内的分布可由 高温侧缩比模型的风洞试验来验证。
下面结合附图和实施例, 对本发明的具体实施方式作进一步详细描述。 以下实施例用于说明本发明, 但不用来限制本发明的范围。
实施例一
一种蒸汽发生器在水平高温流体通道内的纵剖面图如图 1所示, 蒸汽发 生器 1布置在载热质流动方向 X上, 由液体联箱 11、 蒸汽联箱 12和换热器 13组成。 本实施例中蒸汽发生器 1为卧式放置。 液体联箱 11和蒸汽联箱 12 分别布置在换热器 13 的两侧, 本实施例中采用逆流布置方案, 即蒸汽联箱 12布置在换热器 13的上游, 而液体联箱 1 1布置在下游。
液体联箱 1 1一端与螺旋传热管束 3连接,另一端与主给水管 14相连接。 蒸汽联箱 12—端与螺旋传热管束 3连接, 另一端与主蒸汽管 15相连接。 换热器 13由多个结构相同的换热组件 2组装而成。本实施例的换热组件 的内部结构如图 5所示, 换热组件 2主要由螺旋传热管 3、 中心简 4和套筒 5 组成。 螺旋传热管 3以不同半径呈同轴心螺旋状布置在中心筒 4和套简 5之 间的环形空间内, 形成一个或多个同心的换热柱面 6, 每一个换热柱面 6由 1 根或多根螺旋传热管 3组成。
中心简 4和套简 5和螺旋传热管 3的横截面可以为圆形和近似圆形 (如 圆弧转角的矩形)。
每根螺旋传热管 3的曲率半径应满足管材体积和表面检测探头能全程到 达和通过的要求。
换热柱面 6内的螺旋传热管 3的缠绕方式为,沿中心筒 4轴线方向看去, 相邻换热柱面 6上的螺旋传热管 3缠绕方式为顺时针和逆时针间隔排列, 也 可以完全按顺时针或完全按逆时针排列。
每一根螺旋传热管 3在与液体联箱 11连接的部位内部,安装有节流孔板, 本发明实施例的螺旋管入口处的节流孔板的结构如图 6所示。 节流孔板分为 固定节流孔板 7和可拆卸节流孔板 8。 当一根螺旋传热管 3失效后, 通过卸 去失效的螺旋传热管 3所在的螺旋柱面 6的其他螺旋传热管 3的可拆卸节流 孔板 8, 实现螺旋管 3内的流量再分配。
实施例二
一种蒸汽发生器在水平高温流体通道内的纵剖面图如图 2所示, 本实施 例与实施例一的蒸汽发生器类似, 其与实施例一的不同之处在于: 本实施例 中液体联箱 11和蒸汽联箱 12釆用顺流布置方案, 即蒸汽联箱 12布置在换热 器 13的下游, 而液体联箱 11布置在上游。
实施例三
一种蒸汽发生器在竖直高温流体通道内的纵剖面图如图 3所示, 蒸汽发 生器 1包括换热器 13、 液体联箱 11和蒸汽联箱 12。 本实施例中蒸汽发生器 1为立式放置。 液体联箱 11和蒸汽联箱 12分别布置在换热器 13的两侧, 本 实施例中釆用逆流布置方案, 即蒸汽联箱 12布置在换热器 13的上游, 而液 体联箱 11布置在下游。
换热器 13由多个结构相同的换热组件 2组装而成。本实施例的换热组件 的内部结构如图 5所示,换热组件 2包括螺旋传热管束 3、中心简 4和套简 5, 螺旋传热管 3以不同半径呈同轴心螺旋状布置在中心简 4和套简 5之间的环 形空间内, 形成一个或多个同心的换热柱面 6。 换热柱面 6 由一根或多根螺 旋传热管组成。 螺旋传热管 3的曲率半径满足管材体积和表面检测探头全程 到达和通过, 且沿中心筒轴线方向, 相邻换热面上的螺旋传热管束 3的缠绕 方式包括: 按顺时针和逆时针间隔排列, 或完全按顺时针排列, 或完全按逆 时针排列。 螺旋传热管束 3、 中心简 4和套简 5的横截面为圆形或圆弧转角 的矩形。 液体联箱 11 的一端与主给水管 14连接, 另一端与螺旋传热管束 3 连接。 蒸汽联箱 12的一端与主蒸汽管 15连接, 另一端与螺旋传热管束 3连 接。
如图 6所示, 每一根螺旋传热管在与液体联箱连接的部位内部, 安装有 固定节流孔板 7和可拆卸节流孔板 8。 固定节流孔板 7用于保障螺旋传热管 内两相流体流动稳定性和展平各螺旋传热管的阻力, 可拆卸节流孔板 8用于 当一根螺旋传热管失效后, 通过卸去失效的螺旋传热管所在的螺旋柱面的其 他螺旋传热管的可拆卸节流孔板, 实现螺旋管内的流量再分配。
实施例四
一种蒸汽发生器在竖直高温流体通道内的纵剖面图如图 4所示, 本实施 例与实施例三的蒸汽发生器类似, 其与实施例三的不同之处在于: 本实施例 中液体联箱 11和蒸汽联箱 12采用顺流布置方案, 即蒸汽联箱 12布置在换热 器 13的下游, 而液体联箱 11布置在上游。
本发明所述的换热组件 2, 固定节流孔板 7和可拆卸节流孔板 8的性能 使用前必需能进行热态试验验证。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的普 通技术人员来说, 在不脱离本发明技术原理的前提下, 还可以做出若干改进 和润饰, 这些改进和润饰也应视为本发明的保护范围。 工业实用性
本发明的蒸汽发生器包括换热器、 液体联箱和蒸汽联箱。 本发明的单个 组件可以在堆外做热态验证试验; 同时各组件结构稳定, 并可成批生产, 降 低了造价。 本发明的蒸汽发生器可实现传热管体积与表面的在役检查, 及时 发现安全隐患, 能进行使用前热态验证试验, 对设计的可靠性进行验证。 因 此, 本发明具有产业上的可利用性。

Claims

权 利 要 求 书
1、 一种蒸汽发生器, 其特征在于, 所述蒸汽发生器包括:
换热器, 由多个结构相同的换热组件组装而成, 所述换热组件包括螺旋 传热管束、 中心简和套简, 螺旋传热管以不同半径呈同轴心螺旋状布置在中 心简和套筒之间的环形空间内, 形成一个或多个同心的换热柱面;
液体联箱, 其一端与主给水管连接, 另一端与螺旋传热管束连接; 蒸汽联箱, 其一端与主蒸汽管连接, 另一端与螺旋传热管束连接。
2、 如权利要求 1所述的蒸汽发生器, 其特征在于, 所述换热柱面由一根 或多根螺旋传热管组成。
3、 如权利要求 1所述的蒸汽发生器, 其特征在于, 所述螺旋传热管的曲 率半径满足管材体积和表面检测探头全程到达和通过。
4、 如权利要求 1所述的蒸汽发生器, 其特征在于, 沿中心简轴线方向, 所述相邻换热面上的螺旋传热管束的缠绕方式包括: 按顺时针和逆时针间隔 排列, 或完全按顺时针排列, 或完全按逆时针排列。
5、 如权利要求 1所述的蒸汽发生器, 其特征在于, 所述螺旋传热管束、 中心简和套简的横截面为圆形或圆弧转角的矩形。
6、如权利要求 1所述的蒸汽发生器,其特征在于,在载热质流动方向上, 所述液体联箱布置在换热器的上游、 蒸汽联箱布置在换热器的下游, 或蒸汽 联箱布置在换热器的上游、 液体联箱布置在换热器的下游。
7、 如权利要求 1所述的蒸汽发生器, 其特征在于, 所述蒸汽发生器的放 置方式包括: 立式放置、 卧式放置、 或任意角度放置。
8、 如权利要求 1至 7任一项所述的蒸汽发生器, 其特征在于, 每一根螺 旋传热管在与液体联箱连接的部位内部, 安装有固定节流孔板和可拆卸节流 孔板; 所述固定节流孔板用于保障螺旋传热管内两相流体流动稳定性和展平 各螺旋传热管的阻力; 所述可拆卸节流孔板用于当一根螺旋传热管失效后, 通过卸去失效的螺旋传热管所在的螺旋柱面的其他螺旋传热管的可拆卸节流 孔板, 实现螺旋管内的流量再分配。
PCT/CN2009/000666 2009-05-06 2009-06-18 一种蒸汽发生器 WO2010127471A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020117028971A KR101367484B1 (ko) 2009-05-06 2009-06-18 증기발생기
JP2012508874A JP5450797B2 (ja) 2009-05-06 2009-06-18 蒸気発生器
US13/318,729 US9062918B2 (en) 2009-05-06 2009-06-18 Steam generator
CA2761179A CA2761179C (en) 2009-05-06 2009-06-18 Steam generator
EP09844223.9A EP2428728B1 (en) 2009-05-06 2009-06-18 Steam generator
BRPI0924231-7A BRPI0924231B1 (pt) 2009-05-06 2009-06-18 "gerador de vapor"
PL09844223T PL2428728T3 (pl) 2009-05-06 2009-06-18 Generator pary
RU2011144650/06A RU2515579C2 (ru) 2009-05-06 2009-06-18 Парогенератор
ZA2011/08092A ZA201108092B (en) 2009-05-06 2011-11-03 Steam generator
US14/690,740 US20150226419A1 (en) 2009-05-06 2015-04-20 Steam generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910083490.5 2009-05-06
CN2009100834905A CN101539287B (zh) 2009-05-06 2009-05-06 一种蒸汽发生器

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/318,729 A-371-Of-International US9062918B2 (en) 2009-05-06 2009-06-18 Steam generator
US14/690,740 Continuation US20150226419A1 (en) 2009-05-06 2015-04-20 Steam generator

Publications (1)

Publication Number Publication Date
WO2010127471A1 true WO2010127471A1 (zh) 2010-11-11

Family

ID=41122608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000666 WO2010127471A1 (zh) 2009-05-06 2009-06-18 一种蒸汽发生器

Country Status (13)

Country Link
US (2) US9062918B2 (zh)
EP (1) EP2428728B1 (zh)
JP (1) JP5450797B2 (zh)
KR (1) KR101367484B1 (zh)
CN (1) CN101539287B (zh)
BR (1) BRPI0924231B1 (zh)
CA (1) CA2761179C (zh)
DE (1) DE09844223T8 (zh)
MY (1) MY163550A (zh)
PL (1) PL2428728T3 (zh)
RU (1) RU2515579C2 (zh)
WO (1) WO2010127471A1 (zh)
ZA (1) ZA201108092B (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102691223A (zh) * 2012-05-31 2012-09-26 华南理工大学 一种纸浆用管道加热器
EP2770171A1 (en) 2013-02-22 2014-08-27 Alstom Technology Ltd Method for providing a frequency response for a combined cycle power plant
PL2789909T3 (pl) 2013-04-12 2018-02-28 RETECH Spółka z o.o. Wytwornica pary
CN104344758B (zh) * 2013-07-29 2016-04-06 华北电力大学 一种螺旋流式防沉积倒u型管
CN103398614A (zh) * 2013-08-20 2013-11-20 郭明祥 一种管束
CN103438737B (zh) * 2013-09-08 2015-04-08 张伟 壳体储水暖气管分流导热换热器
CN103851604B (zh) * 2014-02-28 2016-01-13 清华大学 一种用于直流蒸汽发生器的节流组件
RU2595639C2 (ru) * 2014-12-04 2016-08-27 Акционерное общество "Научно-исследовательский и проектно-конструкторский институт энергетических технологий "АТОМПРОЕКТ" ("АО "АТОМПРОЕКТ") Система пассивного отвода тепла из внутреннего объема защитной оболочки
CN105823034A (zh) * 2016-06-02 2016-08-03 哈电集团(秦皇岛)重型装备有限公司 高温气冷堆蒸汽发生器给水连接管单根穿管连接结构
CN105841132B (zh) * 2016-06-02 2018-09-11 哈电集团(秦皇岛)重型装备有限公司 高温气冷堆蒸汽发生器蒸汽出口连接管单根穿管连接结构
CN105928399A (zh) * 2016-06-20 2016-09-07 江苏迈能高科技有限公司 一种吹胀式板式换热器及其制造方法
CN107631280A (zh) * 2017-11-08 2018-01-26 上海核工程研究设计院有限公司 一种核电站的直流式蒸汽发生器
CN108278586A (zh) * 2018-03-14 2018-07-13 西安热工研究院有限公司 一种高温气冷堆核电站一回路加热除湿的系统及方法
CN108844393A (zh) * 2018-05-10 2018-11-20 哈尔滨理工大学 一种具有分流装置的微通道换热器、微通道换热器组件
CN109830313B (zh) * 2019-01-15 2022-04-05 东华理工大学 一种无焊接便拆卸的蒸汽发生器螺旋换热管支撑结构
DE102019207799A1 (de) * 2019-05-28 2020-12-03 Mahle International Gmbh Tauchrohr zur Kältemittelverteilung in einem Chiller
EP3855107A1 (en) * 2020-01-24 2021-07-28 Hamilton Sundstrand Corporation Fractal heat exchanger
CN111365905B (zh) * 2020-04-09 2021-11-26 上海泰达冷暖科技有限公司 一种换热器、气液分离器、制冷系统、换热器的制造方法及用途
CN112652414B (zh) * 2020-12-16 2022-11-01 中国人民解放军海军工程大学 反应堆蒸汽发生器c型管束
CN113432454B (zh) * 2021-07-14 2022-12-06 哈尔滨锅炉厂有限责任公司 一种非圆形截面双管程螺旋式换热器管束结构
CN115466625A (zh) * 2022-08-16 2022-12-13 杭州市特种设备检测研究院(杭州市特种设备应急处置中心) 用于生物质炭制氢装置的加热炉装置及生物质炭制氢装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB969319A (en) * 1959-09-17 1964-09-09 Clarke Chapman Ltd Improvements in heat exchangers
GB974662A (en) * 1960-03-29 1964-11-11 Legrand Pierre Improvements in or relating to steam producing apparatus
US4488513A (en) * 1983-08-29 1984-12-18 Texaco Development Corp. Gas cooler for production of superheated steam
CN1239540A (zh) * 1996-12-12 1999-12-22 西门子公司 蒸汽发生器
CN1266267A (zh) * 2000-04-24 2000-09-13 清华大学 高温气冷堆换热装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1874527A (en) * 1926-03-06 1932-08-30 La Mont Corp Steam generator
US1819785A (en) * 1930-08-28 1931-08-18 Schutte & Koerting Co Feed water heater
US2035908A (en) * 1932-02-27 1936-03-31 Siemens Ag Steam generator
US1973100A (en) * 1933-08-24 1934-09-11 Superheater Co Ltd Bracing for coiled tubular units
US2143287A (en) * 1936-02-29 1939-01-10 Earl B Smith Heat exchange coil
US2602644A (en) * 1949-09-19 1952-07-08 Charles O Sandstrom Evaporator
US2693346A (en) * 1951-06-22 1954-11-02 Petersen Lars Kristian Holger Liquid heater
US2990162A (en) * 1957-01-28 1961-06-27 Griscom Russell Co Heat exchanger construction
US3116790A (en) * 1958-03-28 1964-01-07 Kohlenscheidungs Gmbh Tube heat exchanger
FR1194319A (zh) * 1958-04-09 1959-11-09
US3130779A (en) * 1958-05-05 1964-04-28 Huet Andre Light boiler for nuclear energy installation
DE1247880B (de) 1960-10-12 1967-08-17 Fichtel & Sachs Ag Hydraulischer Teleskopstossdaempfer mit kontinuierlich veraenderbarem Drosselquerschnitt fuer Fahrzeuge
US3219017A (en) * 1962-08-27 1965-11-23 Neil H Thybault Water heater having multiple heating coils arranged in parallel flow paths
US3398720A (en) * 1966-09-26 1968-08-27 Combustion Eng Once-through steam generator having a central manifold and tube bundles of spiral tube construction
AT278863B (de) * 1968-01-15 1970-02-10 Waagner Biro Ag Verfahren und Einrichtung zur Vergleichmäßigung des Wärmeüberganges
US3688837A (en) * 1970-07-09 1972-09-05 Werner & Pfleiderer Screw-type heat exchanger
SU327857A1 (ru) * 1970-10-22 1974-06-25 В.Г.СУПРУНОВ, Б.Ф.ТИТОВ И Г.А.ТАРАНКОВ изобретени
US3871444A (en) * 1971-08-02 1975-03-18 Beckman Instruments Inc Water quality analysis system with multicircuit single shell heat exchanger
DE2448832C2 (de) * 1974-10-14 1985-03-07 Interatom Internationale Atomreaktorbau Gmbh, 5060 Bergisch Gladbach Flüssigmetall/Wasser-Wärmetauscher mit auswechselbaren Rohrbündeln
US3983903A (en) * 1974-12-23 1976-10-05 Combustion Engineering, Inc. Multiple orifice assembly
FR2300963A1 (fr) * 1975-02-12 1976-09-10 Commissariat Energie Atomique Generateur de vapeur
FR2363772A1 (fr) * 1976-09-03 1978-03-31 Commissariat Energie Atomique Echangeur de chaleur, notamment generateur de vapeur chauffe au sodium liquide
CA1309907C (en) * 1986-08-26 1992-11-10 Herman Johannes Lameris Process and apparatus for heating steam formed from cooling water
RU2076268C1 (ru) * 1991-07-01 1997-03-27 Опытное конструкторское бюро машиностроения Парогенератор
FR2694071B1 (fr) * 1992-07-22 1994-10-14 Framatome Sa Procédé et dispositif de réglage d'un débit d'eau d'alimentation dans un tube d'un générateur de vapeur.
NL1008124C2 (nl) * 1998-01-26 1999-07-27 Lentjes Standard Fasel Bv Inrichting en werkwijze voor het koelen van gas.
US7322404B2 (en) * 2004-02-18 2008-01-29 Renewability Energy Inc. Helical coil-on-tube heat exchanger
RU2279604C1 (ru) * 2004-12-27 2006-07-10 Федеральное государственное унитарное предприятие "Опытное конструкторское бюро машиностроения им. И.И. Африкантова" (ФГУП "ОКБМ") Парогенератор для реактора с жидкометаллическим теплоносителем
US20100096115A1 (en) * 2008-10-07 2010-04-22 Donald Charles Erickson Multiple concentric cylindrical co-coiled heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB969319A (en) * 1959-09-17 1964-09-09 Clarke Chapman Ltd Improvements in heat exchangers
GB974662A (en) * 1960-03-29 1964-11-11 Legrand Pierre Improvements in or relating to steam producing apparatus
US4488513A (en) * 1983-08-29 1984-12-18 Texaco Development Corp. Gas cooler for production of superheated steam
CN1239540A (zh) * 1996-12-12 1999-12-22 西门子公司 蒸汽发生器
CN1266267A (zh) * 2000-04-24 2000-09-13 清华大学 高温气冷堆换热装置

Also Published As

Publication number Publication date
US20120048527A1 (en) 2012-03-01
MY163550A (en) 2017-09-29
CN101539287A (zh) 2009-09-23
BRPI0924231B1 (pt) 2020-03-31
DE09844223T1 (de) 2012-09-06
PL2428728T3 (pl) 2020-05-18
KR101367484B1 (ko) 2014-02-25
ZA201108092B (en) 2012-07-25
RU2011144650A (ru) 2013-06-20
CA2761179A1 (en) 2010-11-11
EP2428728B1 (en) 2019-10-02
BRPI0924231A2 (pt) 2018-03-27
EP2428728A4 (en) 2016-10-26
KR20120024703A (ko) 2012-03-14
CA2761179C (en) 2014-07-29
CN101539287B (zh) 2011-01-05
JP2012526256A (ja) 2012-10-25
EP2428728A1 (en) 2012-03-14
JP5450797B2 (ja) 2014-03-26
RU2515579C2 (ru) 2014-05-10
US20150226419A1 (en) 2015-08-13
DE09844223T8 (de) 2013-04-25
US9062918B2 (en) 2015-06-23

Similar Documents

Publication Publication Date Title
WO2010127471A1 (zh) 一种蒸汽发生器
BR112014016949B1 (pt) trocador de calor, e, método para reparar, inspecionar, limpar ou melhorar um trocador de calor
US9739475B2 (en) Collar supported pressure parts for heat recovery steam generators
CN112071453A (zh) 一种直流逆流孔道式换热器/蒸发器设计方案
RU143541U1 (ru) Петля циркуляции теплоносителя первого контура реакторной установки типа ввэр-1000
JP4962956B2 (ja) 核熱利用装置
JP2008089223A (ja) 熱交換器のヘッダ構造
TWI507648B (zh) 地溫熱交換系統及其地溫熱能發電與地溫熱泵系統
CN202442617U (zh) 卧式固定管板式换热器
KR101188545B1 (ko) 나선형 전열관을 사용하는 증기발생기의 y 형상 급수 및 증기 헤더
CN205079651U (zh) 一种新型集成管壳式换热器
CN104457335B (zh) 一种盘管式换热器
CN102564206A (zh) 一种管壳式换热器的网格栅式支撑折流装置
CN209326415U (zh) D型管螺旋缠绕同程换热器
JP2004060975A (ja) 熱交換用ダクト
CN204478880U (zh) 一种换热器管束
CN204478877U (zh) 一种盘管式换热器
CN205679099U (zh) 一种串联高效浮头式换热器
CN102636051A (zh) 一种针翅套管型强化传热元件
CN214276552U (zh) 一种应用于间接空冷轻型钢架结构的换热装置
CN202614040U (zh) 一种针翅套管型强化传热元件
CN107543428B (zh) 一种用于核电工业的紧凑式换热器
CN115371465A (zh) 一种易维修的高效相间式螺旋管紧凑换热器
JP2004093075A (ja) プレートチューブ型熱交換器
CN201653241U (zh) 一种点线复合支撑式的闭式水冷却器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844223

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2293/MUMNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13318729

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012508874

Country of ref document: JP

Ref document number: 2761179

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009844223

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117028971

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011144650

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0924231

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0924231

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111104