CN101539287B - 一种蒸汽发生器 - Google Patents

一种蒸汽发生器 Download PDF

Info

Publication number
CN101539287B
CN101539287B CN2009100834905A CN200910083490A CN101539287B CN 101539287 B CN101539287 B CN 101539287B CN 2009100834905 A CN2009100834905 A CN 2009100834905A CN 200910083490 A CN200910083490 A CN 200910083490A CN 101539287 B CN101539287 B CN 101539287B
Authority
CN
China
Prior art keywords
heat
spiral
steam generator
transfer pipe
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009100834905A
Other languages
English (en)
Other versions
CN101539287A (zh
Inventor
何树延
居怀明
吴莘馨
雒晓卫
张征名
吴宗鑫
张作义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41122608&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN101539287(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN2009100834905A priority Critical patent/CN101539287B/zh
Priority to EP09844223.9A priority patent/EP2428728B1/en
Priority to PCT/CN2009/000666 priority patent/WO2010127471A1/zh
Priority to BRPI0924231-7A priority patent/BRPI0924231B1/pt
Priority to JP2012508874A priority patent/JP5450797B2/ja
Priority to DE2009844223 priority patent/DE09844223T8/de
Priority to CA2761179A priority patent/CA2761179C/en
Priority to RU2011144650/06A priority patent/RU2515579C2/ru
Priority to US13/318,729 priority patent/US9062918B2/en
Priority to KR1020117028971A priority patent/KR101367484B1/ko
Priority to MYPI2011005340A priority patent/MY163550A/en
Priority to PL09844223T priority patent/PL2428728T3/pl
Publication of CN101539287A publication Critical patent/CN101539287A/zh
Publication of CN101539287B publication Critical patent/CN101539287B/zh
Application granted granted Critical
Priority to ZA2011/08092A priority patent/ZA201108092B/en
Priority to US14/690,740 priority patent/US20150226419A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/061Construction of tube walls
    • F22B29/064Construction of tube walls involving horizontally- or helically-disposed water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1823Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines for gas-cooled nuclear reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/22Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes of form other than straight or substantially straight
    • F22B21/26Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes of form other than straight or substantially straight bent helically, i.e. coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/22Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes of form other than straight or substantially straight
    • F22B21/28Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes of form other than straight or substantially straight bent spirally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/067Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes operating at critical or supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/62Component parts or details of steam boilers specially adapted for steam boilers of forced-flow type
    • F22B37/64Mounting of, or supporting arrangements for, tube units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/028Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using inserts for modifying the pattern of flow inside the header box, e.g. by using flow restrictors or permeable bodies or blocks with channels

Abstract

本发明公开了一种蒸汽发生器,所述蒸汽发生器包括:换热器,由多个结构相同的换热组件组装而成,所述换热组件包括螺旋传热管束、中心筒和套筒,螺旋传热管以不同半径呈同轴心螺旋状布置在中心筒和套筒之间的环形空间内,形成一个或多个同心的换热柱面;液体联箱,其一端与主给水管连接,另一端与螺旋传热管束连接;蒸汽联箱,其一端与主蒸汽管连接,另一端与螺旋传热管束连接。本发明可以实现传热管体积与表面的在役检查,及时发现安全隐患,能进行使用前热态验证试验,对设计的可靠性进行验证。

Description

一种蒸汽发生器 
技术领域
本发明涉及蒸汽动力循环技术领域,特别是涉及一种蒸汽发生器。 
背景技术
以朗肯(Rankine)循环为基础的水蒸汽动力循环在核电、燃气-蒸汽联合循环以及燃煤电站等领域得到广泛应用。在这些领域中,产生高温高热水蒸汽是热能转化为动力的第一步。相比于汽包式锅炉,直流型蒸汽发生器可直接产生过热蒸汽以及超高压和超临界参数的蒸汽,不仅带来更高的发电效率,而且结构紧凑。 
根据受热水管在直流型蒸汽发生器的布置方式,可分为直管型和螺旋管型两种。相比于螺旋管布置,直管型直流蒸汽发生器结构更简单,但由于其换热管与筒体材料不同,线膨胀存在差异,引起传热管与管板处应力集中影响到整体设备运行安全。螺旋管型直流蒸汽发生器虽然总换热面积较大,其结构特点却能很好地解决应力集中现象,并且在空间的伸缩度方面更加灵活。 
螺旋管式直流蒸汽发生器由于上述优点,在核反应堆发电及动力领域得到广泛应用。主要的设计分为两种:一体化的大螺旋管式设计和分置的模块化设计。 
德国的THTR-300钍高温气冷堆、美国圣佛伦堡高温气冷堆、英国AGR型反应堆,甚至最新的钠冷快堆都采用多头绕制一体化布置的大螺旋管式直流蒸汽发生器。该蒸汽发生器的优点是结构紧凑,并且由于螺旋的曲率半径大,可以进行体积检查和表面检查。该装置的主要问题包括:1)由于不能进行堆外的热态实验来验证设计,在运行中水流侧无法重新分配,容易导致蒸汽温度不均匀;2)一体化布 置的大螺旋管式直流蒸汽发生器,由于每层螺旋管的弯曲直径都不同,每层螺旋管都需要独立的工装件,加工费用昂贵而且周期很长;3)为了防止流致振动需要加更多的支撑板,换热管和支撑板的局部应力过大问题更加突出。 
俄罗斯在VG-400、AБTY-ц50、БΓP-300堆和清华大学10MW高温气冷实验堆都采用分置的模块化直流蒸汽发生器。这种蒸汽发生器的主要优点是模块可以成批生产,造价低,每个模块可以在堆外做热态验证试验。该装置的主要问题包括:1)结构不够紧凑;2)螺旋管的小曲率半径不能进行体积与表面的在役检查;3)当发生堵管时,不仅要堵水流侧,而且要堵上高温载热体一侧。 
发明内容
本发明实施例要解决的问题是提供一种蒸汽发生器,以克服现有技术中的一体化的大螺旋管式设计和分置的模块化设计的各自缺陷,可以实现传热管体积与表面的在役检查,及时发现安全隐患,能进行使用前热态验证试验,对设计的可靠性进行验证。 
为达到上述目的,本发明实施例的技术方案提供一种蒸汽发生器,所述蒸汽发生器包括:换热器,由多个结构相同的换热组件组装而成,所述换热组件包括螺旋传热管束、中心筒和套筒,螺旋传热管以不同半径呈同轴心螺旋状布置在中心筒和套筒之间的环形空间内,形成一个或多个同心的换热柱面;液体联箱,其一端与主给水管连接,另一端与螺旋传热管束连接;每一根螺旋传热管在与液体联箱连接的部位内部,安装有固定节流孔板和可拆卸节流孔板;所述固定节流孔板用于保障螺旋传热管内两相流体流动稳定性和展平各螺旋传热管的阻力;所述可拆卸节流孔板用于当一根螺旋传热管失效后,通过卸去失效的螺旋传热管所在的螺旋柱面的其他螺旋传热管的可拆卸节流孔板,实现螺旋管内的流量再分配;蒸汽联箱,其一端与主蒸汽管连接,另一端与螺旋传热管束连接。 
其中,所述换热柱面由一根或多根螺旋传热管组成。 
其中,所述螺旋传热管的曲率半径满足管材体积和表面检测探头全程到达和通过。 
其中,沿中心筒轴线方向,相邻的所述换热柱面上的螺旋传热管束的缠绕方式包括:按顺时针和逆时针间隔排列,或完全按顺时针排列,或完全按逆时针排列。 
其中,所述螺旋传热管束、中心筒和套筒的横截面为圆形或圆弧转角的矩形。 
其中,在载热质流动方向上,所述液体联箱布置在换热器的上游、蒸汽联箱布置在换热器的下游,或蒸汽联箱布置在换热器的上游、液体联箱布置在换热器的下游。 
其中,所述蒸汽发生器的放置方式包括:立式放置、卧式放置、或任意角度放置。 
与现有技术相比,本发明的技术方案具有如下优点: 
1)组件可以成批生产,降低造价; 
2)单个组件可以在堆外做热态验证试验; 
3)每个组件由多个螺旋柱面组成,每个螺旋柱面又由多头螺旋管组成,改善了分置式布置结构不紧凑的缺点,由于螺旋管曲率半径小,结构稳定,不易发生流致振动,并且使支撑结构简单可靠; 
4)螺旋管的最小曲率半径根据目前在役检测工具的可达性来选取,每个组件的传热管不设联箱,都连接在同一个液体联箱和蒸汽联箱上,可以进行体积与表面在役检查。而且当发生堵管时只需堵一根管,不需堵一个模块,保持传热管最大可用率; 
5)固定节流孔板和可拆卸节流孔板的设计,可以使堵管后流量再分配简单可行。 
附图说明
图1为本发明实施例一的一种蒸汽发生器在水平高温流体通道内的纵剖面图; 
图2为本发明实施例二的一种蒸汽发生器在水平高温流体通道内的纵剖面图; 
图3为本发明实施例三的一种蒸汽发生器在竖直高温流体通道内的纵剖面图; 
图4为本发明实施例四的一种蒸汽发生器在竖直高温流体通道内的纵剖面图; 
图5为本发明实施例的换热组件的内部结构示意图; 
图6为本发明实施例的螺旋管入口处的节流孔板的结构示意图。 
具体实施方式
本发明仍然保持模块式的特点,但每个组件由多个螺旋柱面组成,每个螺旋柱面又由多头螺旋管组成,改善了分布式结构不紧凑的缺点。螺旋管的最小曲率半径根据目前在役检测工具的可达性来选取,每个组件的传热管直接连接在同一个液体联箱和蒸汽联箱上,可以进行体积与表面的在役检查,而且当发生堵管时只需堵一根管,不需堵一个模块,保持传热管最大可利用率。 
在每根传热管的给水入口装有节流孔板,节流孔板分固定节流孔板和可拆节流孔板。固定节流孔板满足初始流量分配和稳定性要求,可拆卸节流孔板用来满足堵管后流量再分配要求。一个组件内,同一螺旋柱面的螺旋管处在同一个氦气流道内,当其中一根管发生故障被堵后,氦气流量是不可调节的,为了保证蒸汽出口温度均匀,必须加大同一螺旋柱面其它管内流体的流量,去掉该螺旋柱面其他管的可拆卸节流孔板,就可以完成堵管后流量的再分配,满足蒸汽出口温度均匀的要求。不需调节未受损组件的节流阻力,也无需调节受损组件内其它未受损各层螺旋管节流阻力。节流孔板的准确值可经过单个组件的热态验证试验来确定,高温侧流量在每个组件内的分布由可高温侧缩比模型的风洞试验来验证。 
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。 
实施例一 
一种蒸汽发生器在水平高温流体通道内的纵剖面图如图1所示,蒸汽发生器1布置在载热质流动方向x上,由液体联箱11、蒸汽联箱12和换热器13组成。本实施例中蒸汽发生器1为卧式放置。液体联箱11和蒸汽联箱12分别布置在换热器13的两侧,本实施例中采用逆流布置方案,即蒸汽联箱12布置在换热器13的上游,而液体联箱11布置在下游。 
液体联箱11一端与螺旋传热管束3连接,另一端与主给水管14相连接。蒸汽联箱12一端与螺旋传热管束3连接,另一端与主蒸汽管15相连接。 
换热器13由多个结构相同的换热组件2组装而成。本实施例的换热组件的内部结构如图5所示,换热组件2主要由螺旋传热管3、中心筒4和套筒5组成。螺旋传热管3以不同半径呈同轴心螺旋状布置在中心筒4和套筒5之间的环形空间内,形成一个或多个同心的换热柱面6,每一个换热柱面6由1根或多根螺旋传热管3组成。 
中心筒4和套筒5和螺旋传热管3的横截面可以为圆形和近似圆形(如圆弧转角的矩形)。 
每根螺旋传热管3的曲率半径应满足管材体积和表面检测探头能全程到达和通过的要求。 
换热柱面6内的螺旋传热管3的缠绕方式为,沿中心筒4轴线方向看去,相邻换热柱面6上的螺旋传热管3缠绕方式为顺时针和逆时针间隔排列,也可以完全按顺时针或完全按逆时针排列。 
每一根螺旋传热管3在与液体联箱11连接的部位内部,安装有节流孔板,本发明实施例的螺旋管入口处的节流孔板的结构如图6所示。节流孔板分为固定节流孔板7和可拆卸节流孔板8。当一根螺旋传热管3失效后,通过卸去失效的螺旋传热管3所在的螺旋柱面6的其他螺旋传热管3的可拆卸节流孔板8,实现螺旋管3内的流量再分配。 
实施例二 
一种蒸汽发生器在水平高温流体通道内的纵剖面图如图2所示,本实施例与实施例一的蒸汽发生器类似,其与实施例一的不同之处在于:本实施例中液体联箱11和蒸汽联箱12采用顺流布置方案,即蒸汽联箱12布置在换热器13的下游,而液体联箱11布置在上游。 
实施例三 
一种蒸汽发生器在竖直高温流体通道内的纵剖面图如图3所示,蒸汽发生器1包括换热器13、液体联箱11和蒸汽联箱12。本实施例中蒸汽发生器1为立式放置。液体联箱11和蒸汽联箱12分别布置在换热器13的两侧,本实施例中采用逆流布置方案,即蒸汽联箱12布置在换热器13的上游,而液体联箱11布置在下游。 
换热器13由多个结构相同的换热组件2组装而成。本实施例的换热组件的内部结构如图5所示,换热组件2包括螺旋传热管束3、中心筒4和套筒5,螺旋传热管3以不同半径呈同轴心螺旋状布置在中心筒4和套筒5之间的环形空间内,形成一个或多个同心的换热柱面6。换热柱面6由一根或多根螺旋传热管组成。螺旋传热管3的曲率半径满足管材体积和表面检测探头全程到达和通过,且沿中心筒轴线方向,相邻换热柱面上的螺旋传热管束3的缠绕方式包括:按顺时针和逆时针间隔排列,或完全按顺时针排列,或完全按逆时针排列。螺旋传热管束3、中心筒4和套筒5的横截面为圆形或圆弧转角的矩形。液体联箱11的一端与主给水管14连接,另一端与螺旋传热管束3连接。蒸汽联箱12的一端与主蒸汽管15连接,另一端与螺旋传热管束3连接。 
如图6所示,每一根螺旋传热管在与液体联箱连接的部位内部, 安装有固定节流孔板7和可拆卸节流孔板8。固定节流孔板7用于保障螺旋传热管内两相流体流动稳定性和展平各螺旋传热管的阻力,可拆卸节流孔板8用于当一根螺旋传热管失效后,通过卸去失效的螺旋传热管所在的螺旋柱面的其他螺旋传热管的可拆卸节流孔板,实现螺旋管内的流量再分配。 
实施例四 
一种蒸汽发生器在竖直高温流体通道内的纵剖面图如图4所示,本实施例与实施例三的蒸汽发生器类似,其与实施例三的不同之处在于:本实施例中液体联箱11和蒸汽联箱12采用顺流布置方案,即蒸汽联箱12布置在换热器13的下游,而液体联箱11布置在上游。 
本发明所述的换热组件2,固定节流孔板7和可拆卸节流孔板8的性能使用前必需能进行热态试验验证。 
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。 

Claims (7)

1.一种蒸汽发生器,其特征在于,所述蒸汽发生器包括:
换热器,由多个结构相同的换热组件组装而成,所述换热组件包括螺旋传热管束、中心筒和套筒,螺旋传热管以不同半径呈同轴心螺旋状布置在中心筒和套筒之间的环形空间内,形成一个或多个同心的换热柱面;
液体联箱,其一端与主给水管连接,另一端与螺旋传热管束连接;每一根螺旋传热管在与液体联箱连接的部位内部,安装有固定节流孔板和可拆卸节流孔板;所述固定节流孔板用于保障螺旋传热管内两相流体流动稳定性和展平各螺旋传热管的阻力;所述可拆卸节流孔板用于当一根螺旋传热管失效后,通过卸去失效的螺旋传热管所在的螺旋柱面的其他螺旋传热管的可拆卸节流孔板,实现螺旋管内的流量再分配;
蒸汽联箱,其一端与主蒸汽管连接,另一端与螺旋传热管束连接。
2.如权利要求1所述的蒸汽发生器,其特征在于,所述换热柱面由一根或多根螺旋传热管组成。
3.如权利要求1所述的蒸汽发生器,其特征在于,所述螺旋传热管的曲率半径满足管材体积和表面检测探头全程到达和通过。
4.如权利要求1所述的蒸汽发生器,其特征在于,沿中心筒轴线方向,相邻的所述换热柱面上的螺旋传热管束的缠绕方式包括:按顺时针和逆时针间隔排列,或完全按顺时针排列,或完全按逆时针排列。
5.如权利要求1所述的蒸汽发生器,其特征在于,所述螺旋传热管束、中心筒和套筒的横截面为圆形或圆弧转角的矩形。
6.如权利要求1所述的蒸汽发生器,其特征在于,在载热质流动方向上,所述液体联箱布置在换热器的上游、蒸汽联箱布置在换热器的下游,或蒸汽联箱布置在换热器的上游、液体联箱布置在换热器的下游。 
7.如权利要求1所述的蒸汽发生器,其特征在于,所述蒸汽发生器的放置方式包括:立式放置、卧式放置、或任意角度放置。 
CN2009100834905A 2009-05-06 2009-05-06 一种蒸汽发生器 Active CN101539287B (zh)

Priority Applications (14)

Application Number Priority Date Filing Date Title
CN2009100834905A CN101539287B (zh) 2009-05-06 2009-05-06 一种蒸汽发生器
US13/318,729 US9062918B2 (en) 2009-05-06 2009-06-18 Steam generator
MYPI2011005340A MY163550A (en) 2009-05-06 2009-06-18 Steam generator
BRPI0924231-7A BRPI0924231B1 (pt) 2009-05-06 2009-06-18 "gerador de vapor"
JP2012508874A JP5450797B2 (ja) 2009-05-06 2009-06-18 蒸気発生器
DE2009844223 DE09844223T8 (de) 2009-05-06 2009-06-18 Dampferzeuger
CA2761179A CA2761179C (en) 2009-05-06 2009-06-18 Steam generator
RU2011144650/06A RU2515579C2 (ru) 2009-05-06 2009-06-18 Парогенератор
EP09844223.9A EP2428728B1 (en) 2009-05-06 2009-06-18 Steam generator
KR1020117028971A KR101367484B1 (ko) 2009-05-06 2009-06-18 증기발생기
PCT/CN2009/000666 WO2010127471A1 (zh) 2009-05-06 2009-06-18 一种蒸汽发生器
PL09844223T PL2428728T3 (pl) 2009-05-06 2009-06-18 Generator pary
ZA2011/08092A ZA201108092B (en) 2009-05-06 2011-11-03 Steam generator
US14/690,740 US20150226419A1 (en) 2009-05-06 2015-04-20 Steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100834905A CN101539287B (zh) 2009-05-06 2009-05-06 一种蒸汽发生器

Publications (2)

Publication Number Publication Date
CN101539287A CN101539287A (zh) 2009-09-23
CN101539287B true CN101539287B (zh) 2011-01-05

Family

ID=41122608

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100834905A Active CN101539287B (zh) 2009-05-06 2009-05-06 一种蒸汽发生器

Country Status (13)

Country Link
US (2) US9062918B2 (zh)
EP (1) EP2428728B1 (zh)
JP (1) JP5450797B2 (zh)
KR (1) KR101367484B1 (zh)
CN (1) CN101539287B (zh)
BR (1) BRPI0924231B1 (zh)
CA (1) CA2761179C (zh)
DE (1) DE09844223T8 (zh)
MY (1) MY163550A (zh)
PL (1) PL2428728T3 (zh)
RU (1) RU2515579C2 (zh)
WO (1) WO2010127471A1 (zh)
ZA (1) ZA201108092B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9882453B2 (en) 2013-02-22 2018-01-30 General Electric Technology Gmbh Method for providing a frequency response for a combined cycle power plant

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102691223A (zh) * 2012-05-31 2012-09-26 华南理工大学 一种纸浆用管道加热器
PL2789909T3 (pl) 2013-04-12 2018-02-28 RETECH Spółka z o.o. Wytwornica pary
CN104344758B (zh) * 2013-07-29 2016-04-06 华北电力大学 一种螺旋流式防沉积倒u型管
CN103398614A (zh) * 2013-08-20 2013-11-20 郭明祥 一种管束
CN103438737B (zh) * 2013-09-08 2015-04-08 张伟 壳体储水暖气管分流导热换热器
CN103851604B (zh) * 2014-02-28 2016-01-13 清华大学 一种用于直流蒸汽发生器的节流组件
RU2595639C2 (ru) * 2014-12-04 2016-08-27 Акционерное общество "Научно-исследовательский и проектно-конструкторский институт энергетических технологий "АТОМПРОЕКТ" ("АО "АТОМПРОЕКТ") Система пассивного отвода тепла из внутреннего объема защитной оболочки
CN105841132B (zh) * 2016-06-02 2018-09-11 哈电集团(秦皇岛)重型装备有限公司 高温气冷堆蒸汽发生器蒸汽出口连接管单根穿管连接结构
CN105823034A (zh) * 2016-06-02 2016-08-03 哈电集团(秦皇岛)重型装备有限公司 高温气冷堆蒸汽发生器给水连接管单根穿管连接结构
CN105928399A (zh) * 2016-06-20 2016-09-07 江苏迈能高科技有限公司 一种吹胀式板式换热器及其制造方法
CN107631280A (zh) * 2017-11-08 2018-01-26 上海核工程研究设计院有限公司 一种核电站的直流式蒸汽发生器
CN108278586A (zh) * 2018-03-14 2018-07-13 西安热工研究院有限公司 一种高温气冷堆核电站一回路加热除湿的系统及方法
CN108844393A (zh) * 2018-05-10 2018-11-20 哈尔滨理工大学 一种具有分流装置的微通道换热器、微通道换热器组件
CN109830313B (zh) * 2019-01-15 2022-04-05 东华理工大学 一种无焊接便拆卸的蒸汽发生器螺旋换热管支撑结构
DE102019207799A1 (de) * 2019-05-28 2020-12-03 Mahle International Gmbh Tauchrohr zur Kältemittelverteilung in einem Chiller
EP3855107A1 (en) * 2020-01-24 2021-07-28 Hamilton Sundstrand Corporation Fractal heat exchanger
CN111365905B (zh) * 2020-04-09 2021-11-26 上海泰达冷暖科技有限公司 一种换热器、气液分离器、制冷系统、换热器的制造方法及用途
CN112652414B (zh) * 2020-12-16 2022-11-01 中国人民解放军海军工程大学 反应堆蒸汽发生器c型管束
CN113432454B (zh) * 2021-07-14 2022-12-06 哈尔滨锅炉厂有限责任公司 一种非圆形截面双管程螺旋式换热器管束结构
CN115466625A (zh) * 2022-08-16 2022-12-13 杭州市特种设备检测研究院(杭州市特种设备应急处置中心) 用于生物质炭制氢装置的加热炉装置及生物质炭制氢装置

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1874527A (en) * 1926-03-06 1932-08-30 La Mont Corp Steam generator
US1819785A (en) * 1930-08-28 1931-08-18 Schutte & Koerting Co Feed water heater
US2035908A (en) * 1932-02-27 1936-03-31 Siemens Ag Steam generator
US1973100A (en) * 1933-08-24 1934-09-11 Superheater Co Ltd Bracing for coiled tubular units
US2143287A (en) * 1936-02-29 1939-01-10 Earl B Smith Heat exchange coil
US2602644A (en) * 1949-09-19 1952-07-08 Charles O Sandstrom Evaporator
US2693346A (en) * 1951-06-22 1954-11-02 Petersen Lars Kristian Holger Liquid heater
US2990162A (en) * 1957-01-28 1961-06-27 Griscom Russell Co Heat exchanger construction
US3116790A (en) * 1958-03-28 1964-01-07 Kohlenscheidungs Gmbh Tube heat exchanger
FR1194319A (zh) * 1958-04-09 1959-11-09
US3130779A (en) * 1958-05-05 1964-04-28 Huet Andre Light boiler for nuclear energy installation
GB969319A (en) * 1959-09-17 1964-09-09 Clarke Chapman Ltd Improvements in heat exchangers
FR1359054A (fr) * 1960-03-29 1964-04-24 Procédé d'aménagement d'installation de production de vapeur, installation ainsi obtenue et applications diverses de ce procédé
DE1247880B (de) 1960-10-12 1967-08-17 Fichtel & Sachs Ag Hydraulischer Teleskopstossdaempfer mit kontinuierlich veraenderbarem Drosselquerschnitt fuer Fahrzeuge
US3219017A (en) * 1962-08-27 1965-11-23 Neil H Thybault Water heater having multiple heating coils arranged in parallel flow paths
US3398720A (en) * 1966-09-26 1968-08-27 Combustion Eng Once-through steam generator having a central manifold and tube bundles of spiral tube construction
AT278863B (de) * 1968-01-15 1970-02-10 Waagner Biro Ag Verfahren und Einrichtung zur Vergleichmäßigung des Wärmeüberganges
US3688837A (en) * 1970-07-09 1972-09-05 Werner & Pfleiderer Screw-type heat exchanger
SU327857A1 (ru) * 1970-10-22 1974-06-25 В.Г.СУПРУНОВ, Б.Ф.ТИТОВ И Г.А.ТАРАНКОВ изобретени
US3871444A (en) * 1971-08-02 1975-03-18 Beckman Instruments Inc Water quality analysis system with multicircuit single shell heat exchanger
DE2448832C2 (de) * 1974-10-14 1985-03-07 Interatom Internationale Atomreaktorbau Gmbh, 5060 Bergisch Gladbach Flüssigmetall/Wasser-Wärmetauscher mit auswechselbaren Rohrbündeln
US3983903A (en) * 1974-12-23 1976-10-05 Combustion Engineering, Inc. Multiple orifice assembly
FR2300963A1 (fr) * 1975-02-12 1976-09-10 Commissariat Energie Atomique Generateur de vapeur
FR2363772A1 (fr) * 1976-09-03 1978-03-31 Commissariat Energie Atomique Echangeur de chaleur, notamment generateur de vapeur chauffe au sodium liquide
US4488513A (en) * 1983-08-29 1984-12-18 Texaco Development Corp. Gas cooler for production of superheated steam
IN170062B (zh) * 1986-08-26 1992-02-01 Shell Int Research
RU2076268C1 (ru) * 1991-07-01 1997-03-27 Опытное конструкторское бюро машиностроения Парогенератор
FR2694071B1 (fr) * 1992-07-22 1994-10-14 Framatome Sa Procédé et dispositif de réglage d'un débit d'eau d'alimentation dans un tube d'un générateur de vapeur.
DE19651678A1 (de) * 1996-12-12 1998-06-25 Siemens Ag Dampferzeuger
NL1008124C2 (nl) * 1998-01-26 1999-07-27 Lentjes Standard Fasel Bv Inrichting en werkwijze voor het koelen van gas.
CN1123893C (zh) 2000-04-24 2003-10-08 清华大学 高温气冷堆换热装置
US7322404B2 (en) * 2004-02-18 2008-01-29 Renewability Energy Inc. Helical coil-on-tube heat exchanger
RU2279604C1 (ru) * 2004-12-27 2006-07-10 Федеральное государственное унитарное предприятие "Опытное конструкторское бюро машиностроения им. И.И. Африкантова" (ФГУП "ОКБМ") Парогенератор для реактора с жидкометаллическим теплоносителем
US20100096115A1 (en) * 2008-10-07 2010-04-22 Donald Charles Erickson Multiple concentric cylindrical co-coiled heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9882453B2 (en) 2013-02-22 2018-01-30 General Electric Technology Gmbh Method for providing a frequency response for a combined cycle power plant

Also Published As

Publication number Publication date
EP2428728B1 (en) 2019-10-02
EP2428728A1 (en) 2012-03-14
CA2761179C (en) 2014-07-29
DE09844223T8 (de) 2013-04-25
US20150226419A1 (en) 2015-08-13
BRPI0924231B1 (pt) 2020-03-31
WO2010127471A1 (zh) 2010-11-11
ZA201108092B (en) 2012-07-25
US20120048527A1 (en) 2012-03-01
RU2011144650A (ru) 2013-06-20
CA2761179A1 (en) 2010-11-11
RU2515579C2 (ru) 2014-05-10
DE09844223T1 (de) 2012-09-06
CN101539287A (zh) 2009-09-23
JP5450797B2 (ja) 2014-03-26
MY163550A (en) 2017-09-29
KR20120024703A (ko) 2012-03-14
BRPI0924231A2 (pt) 2018-03-27
JP2012526256A (ja) 2012-10-25
EP2428728A4 (en) 2016-10-26
KR101367484B1 (ko) 2014-02-25
PL2428728T3 (pl) 2020-05-18
US9062918B2 (en) 2015-06-23

Similar Documents

Publication Publication Date Title
CN101539287B (zh) 一种蒸汽发生器
JP4636906B2 (ja) 原子力発電システム
US9291344B2 (en) Forced-flow steam generator
CN111306525A (zh) 一种带螺旋形翅片的热管式蒸汽发生器
CN209445845U (zh) 一种用于高温熔盐对流传热的换热器装置
CN210180217U (zh) 一种换热器
Bailey Understand spiral heat exchangers
CN102759199A (zh) 用于槽式太阳能光热发电的蛇管换热蒸发系统
CN106642697A (zh) 核电站用高压加热器
CN211781210U (zh) 微旋流烟气余热利用装置
CN106564981B (zh) 核电站用除氧器
JP2009133820A (ja) 高速増殖炉型原子力発電システム
RU2383814C1 (ru) Парогенератор
CN201121882Y (zh) 一种利用余热蒸汽生产热水的热水生产机组
Skiles Improve the performance of your boiler system
CN202018132U (zh) 一种真空热水锅炉换热管束
RU176246U1 (ru) Устройство теплообмена с элементами на основе полимерных полых волокон
JP2023116255A (ja) 熱交換器
RU2384808C1 (ru) Интенсификатор
Gabaraev et al. The use of supercritical parameters of a coolant—A promising path to development of nuclear power plant water-cooled reactors in the 21st century
CN201050775Y (zh) 具有四回程循环管路的注汽锅炉
CN201897205U (zh) 管式锅炉
RU2380610C1 (ru) Способ передачи тепла
CN110822470A (zh) 微旋流烟气余热利用装置
Santini et al. Experimental Investigation on Two Phase Flow Pressure Drops in Helical Coil Steam Generator Tube

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant