WO2010126185A1 - Preparation method for olivine type cathode active material for lithium secondary battery, and lithium secondary battery using the same - Google Patents

Preparation method for olivine type cathode active material for lithium secondary battery, and lithium secondary battery using the same Download PDF

Info

Publication number
WO2010126185A1
WO2010126185A1 PCT/KR2009/002297 KR2009002297W WO2010126185A1 WO 2010126185 A1 WO2010126185 A1 WO 2010126185A1 KR 2009002297 W KR2009002297 W KR 2009002297W WO 2010126185 A1 WO2010126185 A1 WO 2010126185A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
secondary battery
electrode active
lithium secondary
Prior art date
Application number
PCT/KR2009/002297
Other languages
French (fr)
Korean (ko)
Other versions
WO2010126185A9 (en
Inventor
김성배
김창하
김우성
송기섭
Original Assignee
대정이엠 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대정이엠 주식회사 filed Critical 대정이엠 주식회사
Publication of WO2010126185A1 publication Critical patent/WO2010126185A1/en
Publication of WO2010126185A9 publication Critical patent/WO2010126185A9/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing an olivine-type positive electrode active material for a lithium secondary battery capable of producing a high capacity olivine-type positive electrode active material with excellent reproducibility, and a lithium secondary battery using the same.
  • Lithium cobalt oxide (LiCoO 2 ) is mainly used as a positive electrode active material of a lithium secondary battery.
  • lithium nickel oxide (Li (Ni-Co-Al) O 2 ) and lithium composite metal oxide (Li (Ni) are used as other layered positive electrode active materials.
  • -Co-Mn) O 2 and the like, in addition to the low-cost high-stable spinel lithium manganese oxide (LiMn 2 O 4 ) and olivine-type iron phosphate compound (LiFePO 4 ) has been developed and commercialized.
  • lithium cobalt oxide and lithium nickel oxide have high energy density, but are mainly used as power sources for small household appliances such as mobile phones and notebook PCs due to problems of transition metal raw materials and safety issues. It is not suitable for large lithium secondary batteries such as electric vehicles.
  • Lithium iron phosphate compound LiFePO 4
  • LiFePO 4 a typical olivine-type positive electrode active material
  • Lithium iron phosphate compound LiFePO 4
  • LiFePO 4 a typical olivine-type positive electrode active material
  • LiFePO 4 is a positive electrode active material having an electric capacity of about 150 to 160 mAh / g, but has an average operating voltage of 3.4 V, which is lower than other oxide-based positive electrode active materials, requiring high energy density.
  • As a positive electrode active material for large lithium secondary batteries it is not sufficient.
  • lithium manganese phosphate compound which is the same olivine compound, has a discharge voltage of 4.0 V similar to that of an oxide-based material, and thus, active research and development has recently been conducted to improve its characteristics.
  • LiMnPO 4 is about 1000 times smaller in conductivity than LiFePO 4 , it is known that LiMnPO 4 is almost inert electrically when produced by a general method of manufacturing a positive electrode active material, so that discharge alone is almost impossible.
  • LiMnPO 4 By the production process of LiMnPO 4 it may include a solid phase method and a wet method, for the production of LiMnPO 4 by the conventional method, only the high electric capacity of about 70 mAh / g even at a low current density of about 0.05C to FIG carbon composite material is It is obtained, and in general, the capacitance before and after 30 mAh / g is obtained.
  • the wet method when manufacturing LiMnPO 4 by the wet method, there are various reports, but it is reported that even up to 140 mAh / g depending on the manufacturing method.
  • Japanese Laid-Open Patent Publication No. 2008-184346 discloses a method for producing LiMnPO 4 powder having a size of 200 to 500 nm using an excess of Li 3 PO 4 .
  • Japanese Patent Application Laid-Open No. 2007-119304 discloses a method for producing LiMnPO 4 at low temperature under pressurized conditions through precipitation and reduction of Mn (OH) 2 .
  • the obtained electrolytic capacity of the LiMnPO 4 positive electrode active material is about 40 mAh / g, which is insufficient in industrial use.
  • Japanese Laid-Open Patent Publication No. 2007-48612 discloses a method for producing LiMnPO 4 by firing a raw material mixture recovered by spray drying after preparing a raw material mixture.
  • the obtained capacitance of the LiMnPO 4 positive electrode active material was 92mAh / g at 0.25C current density, while LiMnPO 4 composited with 15% carbon had 130mAh / g at 0.12C current density, but the proportion of the positive electrode active material occupying at the positive electrode It is difficult to say that the proportion of the positive electrode active material is so low that the electrochemical property of the positive electrode active material itself is sufficiently improved to about 63%.
  • Japanese Patent Application Laid-Open No. 2007-35358 proposes an olivine-type positive electrode active material and a manufacturing method of several nm in order to improve the problem of using a nanometer-sized fine active material.
  • the electrochemical characteristics of the obtained positive electrode active materials of LiFePO 4 and LiFe 0.5 Mn 0.5 PO 4 are not sufficient, such as 123 mAh / g and 80 mAh / g, respectively, at 0.1C current density.
  • Korean Patent Laid-Open Publication No. 10-2003-0006177 proposes a method for producing a positive electrode active material of LiFePO 4 by producing iron phosphate hydrate by the precipitation method.
  • it does not suggest raw materials other than iron phosphate hydrate.
  • Korean Patent No. 10-0805910 proposes a method for synthesizing an olivine-type positive active material having a specific surface area and suppressing a high volumetric energy density.
  • a process of continuously obtaining the iron phosphate hydrate slurry by supplying the aqueous solution of the raw material and the ammonia water at a constant speed is proposed.
  • ammonia water is used in the case of manganese phosphate hydrate or manganese phosphate-iron hydrate other than iron, there is a problem in that excellent electrochemical properties are not obtained due to plate crystal growth.
  • the problem to be solved by the present invention is a method for preparing a positive electrode active material and a olivine-type positive electrode active material for a lithium secondary battery having excellent reproducibility and productivity, a simple manufacturing process, and a positive electrode active material prepared therefrom and a lithium secondary using the same It is to provide a battery positive electrode and a lithium secondary battery.
  • the manufacturing method of the olivine-type positive electrode active material for a lithium secondary battery of the present invention (S1) step of preparing a manganese phosphate or manganese phosphate-iron hydrate represented by the formula (1) by the coprecipitation method; (S2) pressure-molding the mixture containing the manganese phosphate or manganese phosphate-iron hydrate, a lithium compound, and a carbon material to prepare a calcination precursor; And (S3) calcining the calcining precursor:
  • the inventors of the present invention when the manganese phosphate or manganese phosphate-iron hydrate represented by the formula (1) is prepared in the exact equivalent ratio by using the coprecipitation method and used in the production of a positive electrode active material, it is superior to LiMnPO 4 or LiMnFePO 4 prepared by the same It was found that chemical properties are expressed. In addition, it was found that by going through the pressure forming step, the possibility of direct contact with each reactant can be increased to induce a smooth solid state reaction and increase productivity.
  • olivine-type positive electrode active material for a lithium secondary battery manufactured by the manufacturing method of the present invention may be represented by the following Chemical Formula 2:
  • the positive electrode active material prepared according to the manufacturing method of the present invention has better electrochemical properties than the positive electrode active material prepared by the conventional method.
  • the above-described positive electrode active material for a lithium secondary battery can be used in the production of a lithium secondary battery positive electrode and a lithium secondary battery including such a positive electrode.
  • the olivine-type positive electrode active material prepared according to the present invention has better electrochemical properties than the positive electrode active material prepared by the conventional method.
  • Example 1 is a SEM photograph of a sintered precursor prepared according to Examples and Comparative Examples of the present invention.
  • A Example 1, b: Example 2, c: Example 3, d: Comparative Example 1
  • Example 2 is a SEM photograph of the positive electrode active material prepared according to Examples and Comparative Examples of the present invention. (a: Example 1, b: Example 2, c: Example 3, d: Comparative Example 1)
  • FIG. 3 is an X-ray diffraction pattern of the positive electrode active material prepared according to Examples 1-3 and Comparative Examples 1-2 of the present invention.
  • Example 4 is an X-ray diffraction pattern of the positive electrode active material prepared according to Example 3 and Comparative Examples 3 to 4 of the present invention.
  • Example 5 is a graph showing an initial charge and discharge curve of the positive electrode active material prepared according to Example 1, Comparative Example 2 and Comparative Example 4.
  • Example 6 is a graph showing the initial charge and discharge curves of the positive electrode active material prepared according to Example 2, Example 3, Comparative Example 1 and Comparative Example 3.
  • FIG. 7 is a graph showing an initial charge and discharge curve of the cathode active material of the present invention prepared according to Examples 4 to 8.
  • step S1 manganese phosphate or manganese phosphate-iron hydrate represented by Chemical Formula 1 is prepared by coprecipitation (step S1).
  • the influx of impurities contained in each metal salt is limited, composition control at the molecular level This becomes possible, and the olivine type positive electrode active material of uniform crystal structure can be manufactured.
  • Formula 1 if x is out of the range, there is a problem that the operating voltage rise of the lithium manganese phosphate-iron cathode active material is limited.
  • Chemical Formula 1 more preferably 0 ⁇ x ⁇ 0.2.
  • the manganese phosphate or manganese phosphate-iron hydrate according to the present invention needs to be prepared in the correct equivalent ratio. Therefore, manganese phosphate or manganese phosphate-iron hydrate is prepared by coprecipitation which allows precise control of the equivalence ratio of the reactants. Coprecipitation can use any method used in the art without limitation.
  • manganese metal salts, iron metal salts, and phosphate compounds are continuously added as a raw material reactant in a coprecipitation environment, and a slurry containing metal phosphate is continuously taken in the form of a reactant, followed by washing with water, filtration, and drying.
  • a slurry containing metal phosphate is continuously taken in the form of a reactant, followed by washing with water, filtration, and drying.
  • manganese phosphate or manganese phosphate-iron hydrate represented by.
  • the metal salt sulfate, nitrate, acetate, and the like may be used, and phosphoric acid may be used as the phosphorus compound, but is not limited thereto.
  • step S2 pressure-molding the mixture containing the manganese phosphate or manganese phosphate-iron hydrate, a lithium compound and a carbon material to prepare a firing precursor (step S2).
  • the lithium compound is a raw material for producing an olivine-type positive electrode active material by reacting with the manganese phosphate or manganese phosphate-iron hydrate.
  • Examples of the lithium compound usable in the present invention include LiOH.H 2 O, Li 2 CO 3 , Li 3 PO 4 , and the like.
  • Li 3 PO 4 can be used.
  • the carbon material is fired together in the production of the positive electrode active material in order to increase the conductivity of the olivine-type positive electrode active material.
  • a carbon material for example, carbon materials such as acetylene black and Ketjen black, carbon materials such as graphite, graphite and graphite are added directly, or an organic compound serving as a carbon source is dissolved in a solvent and then the solvent is removed to remove the carbon source.
  • an organic compound serving as a carbon source is dissolved in a solvent and then the solvent is removed to remove the carbon source.
  • organic compound that is dissolved at a specific temperature range and is pyrolyzed in a subsequent calcination step.
  • organic acids such as adipic acid, ascorbic acid, stearic acid, citric acid, and mixtures thereof are preferable.
  • the content of additional carbon added to the positive electrode active material according to the present invention can be controlled by the amount of carbon source added, and preferably 2 parts by weight to 30 parts by weight with respect to 100 parts by weight of the positive electrode active material. If the carbon content is less than 2 parts by weight, the capacity improvement effect due to the conductivity is not sufficient, and if it is more than 30 parts by weight, the amount of the positive electrode active material is reduced, which is not preferable because of the reduction of the electric capacity when the positive electrode is configured.
  • plastic precursor means a molded article having a predetermined shape by continuously tableting a mixture containing manganese phosphate or manganese phosphate-iron hydrate, a lithium compound, and a carbon material using a high pressure molding machine.
  • the high pressure molding machine is not limited so long as it is a molding machine capable of molding a mixture of the raw material compound in powder form at a constant pressure into a high density and constant shape.
  • the fired precursor produced by the high pressure molding machine preferably has a density of 1 to 5 g / cc. If the density is less than 1 g / cc, it is difficult to mold to a certain shape or take a long time, so that the productivity is not greatly improved. As the density of the firing precursor is low, the productivity improvement effect due to the densification is not large, and the contact of raw materials is limited. It is not preferable because uniform firing does not proceed efficiently. Density of more than 5 g / cc is undesirable because the molding time for high density is long and additional equipment or energy is required to apply high pressure.
  • the reason why the raw material mixture precursor molded at such a high density is used is as follows. Lithium compounds (LiOH ⁇ H 2 O, Li 2 CO 3 ), which are used to fire general layered positive electrode active materials, are melted before and after 450 to 600 ° C., so that they may be uniformly mixed by a conventional solid phase mixing method. Firing is possible, but in the case of a lithium compound having a melting point higher than the firing temperature of the firing step described below (for example, Li 3 PO 4 usable in the present invention has a melting point of 837 ° C.), the solid phase reaction does not proceed smoothly. do.
  • a smooth solid state reaction may be performed through direct contact between manganese phosphate or manganese phosphate-iron hydrate and a lithium compound.
  • the density of the mixture is remarkably low, and thus the amount of the raw material compounds to be injected into the ceramic firing vessel used for firing is small. Because it can be put a lot, the yield can be improved.
  • thermoplastic polymer in the process of forming at a high density, a thermoplastic polymer may be used as the binder.
  • the thermoplastic polymer acts as a releasing agent for smoothly desorbing the precursor formed in the mold or jig and is thermally decomposed in the sintering step described later to serve as an additional carbon source.
  • the amount of the thermoplastic polymer added is added to maintain the above-described content range of the carbon material, and is 0.1 parts by weight to 10 parts by weight based on 100 parts by weight of the positive electrode active material. If it is less than 0.1 part by weight, the release effect and carbon coating amount of the addition is small, it is not preferable. If it is more than 10 parts by weight, the release effect is sufficient, but in the sintering step to be described later inadequate gas generation and carbon contained more than necessary If configured as, there is a risk that leads to a reduction in capacitance is not preferable.
  • step S3 the firing precursor is fired.
  • baking temperature into the temperature range of 500-700 degreeC, for example. If the calcination temperature is less than 500 ° C., the olivine-type lithium composite metal compound is less likely to be produced. If the calcination temperature is more than 700 ° C., crystals grow more than necessary or some decomposition occurs, which is not preferable. Moreover, it is preferable to advance baking environment under inert atmosphere, such as nitrogen gas and argon gas. In particular, since iron contained in the firing precursor is divalent, it is not necessary to use a reducing gas such as hydrogen gas. In addition, it is preferable to make baking time into 5 to 24 hours, for example. If the firing time is less than 5 hours, there is a fear that it may not be obtained in a uniform olivine phase, and if it is more than 24 hours, productivity may be reduced industrially.
  • the olivine-type positive electrode active material of the present invention may be manufactured through the above manufacturing steps, and the prepared olivine-type positive electrode active material for lithium secondary battery of the present invention is represented by Chemical Formula 2.
  • Chemical Formula 2 When x is outside the above range in Chemical Formula 2, the operation voltage rise is limited because it is similar to the lithium iron phosphate compound as described above. In Chemical Formula 2, more preferably 0 ⁇ x ⁇ 0.2.
  • the olivine-type positive electrode active material thus prepared is a form in which nanometer-level fine primary particles are aggregated, and the size and shape of the primary particles vary depending on the composition ratio of the metal phosphate and the coprecipitation environment.
  • the olivine-type positive electrode active material for a lithium secondary battery of the present invention which may be manufactured by the above method, may be bonded to at least one surface of a positive electrode current collector using a binder to form a positive electrode of a lithium secondary battery.
  • the binder resin and the positive electrode current collector may be used without limitation those conventionally used in the art.
  • the positive electrode for a lithium secondary battery of the present invention may be manufactured as a lithium secondary battery together with a negative electrode, a separator and an electrolyte interposed between the positive electrode and the negative electrode.
  • a negative electrode As the negative electrode, the separator and the electrolyte, those conventionally used in the art may be used without limitation.
  • Ion exchange water purified from manganese sulfate (MnSO 4 ⁇ H 2 O), iron sulfate (FeSO 4 ⁇ 7H 2 O), and phosphoric acid (H 3 PO 4 ) so that the molar ratio of manganese, iron, and phosphorus is 1.0: 0.0: 1.0 It was dissolved in to prepare a metal aqueous solution and sodium hydroxide (NaOH) aqueous solution.
  • MnSO 4 ⁇ H 2 O manganese sulfate
  • FeSO 4 ⁇ 7H 2 O iron sulfate
  • H 3 PO 4 phosphoric acid
  • the sodium hydroxide aqueous solution was added at a rate of 200 ml / min, and when the pH of the reaction solution reached the range of 5.9, manganese phosphate (Mn 3 (PO 4 ) 2 ⁇ 6H 2 O) precipitation of hydrates occurs.
  • a slurry containing manganese phosphate hydrate was continuously prepared by supplying an aqueous metal solution and an aqueous sodium solution at a constant rate. The slurry was washed with water using a centrifugal filter and filtered, and the obtained manganese phosphate hydrate powder was dried at 80 DEG C for at least 24 hours to prepare manganese phosphate hydrate.
  • SA Stearic acid
  • PEG polyethylene glycol
  • the calcined precursor obtained was calcined at 550 ° C. for 10 hours using a calcining furnace capable of temperature control. Thereafter, a LiMnPO 4 positive electrode active material having an average particle diameter adjusted by pulverization and classification was prepared.
  • An aqueous metal solution prepared by adjusting manganese sulfate (MnSO 4 H 2 O), iron sulfate (FeSO 4 ⁇ 7H 2 O), and phosphoric acid (H 3 PO 4 ) so that the molar ratio of manganese, iron, and phosphorus is 0.8: 0.2: 1.0
  • a manganese phosphate-iron hydrate ((Mn 0.8 Fe 0.2 ) 3 (PO 4 ) 2 .6.4H 2 O) was prepared in the same manner as in Example 1 to prepare a LiMn 0.8 Fe 0.2 PO 4 cathode active material.
  • a manganese phosphate-iron hydrate ((Mn 0.6 Fe 0.4 ) 3 (PO 4 ) 2 .6.8H 2 O) was prepared in the same manner as in Example 1 to prepare a LiMn 0.6 Fe 0.4 PO 4 positive electrode active material.
  • the molar ratios of manganese, iron and phosphorus in manganese sulfate (MnSO 4 H 2 O), iron sulfate (FeSO 4 ⁇ 7H 2 O) and phosphoric acid (H 3 PO 4 ) are 0.81: 0.19: 1.0 and 0.82: 0.18: 1.0, respectively.
  • Manganese phosphate-iron hydrate ((Mn 0.4 Fe 0.6 ) 3 (PO 4 ) 2 .7.2H 2 O) was prepared in the same manner as in Example 1, except that the firing temperature was 600 ° C. In the same manner as the LiMn 0.4 Fe 0.6 PO 4 positive electrode active material was prepared.
  • Example 2 The manganese phosphate compound (Mn 3 (PO 4 ) 2 .6H 2 O) obtained in Example 1 and the iron phosphate hydrate (Fe 3 (PO 4 ) 2 .8H 2 O) obtained in Comparative Example 2 were used except for using a raw material compound. In the same manner as in Example 3, a LiMn 0.6 Fe 0.4 PO 4 positive electrode active material was prepared.
  • Example 2 It produced and evaluated similarly to Example 1 except having baked in the powder state without shape
  • the average particle diameter and bulk density (molding density) of the fired precursors prepared according to the Examples and Comparative Examples were measured, and the results are shown in Table 1, and the average particle diameter and the tap density of the positive electrode active materials prepared from the fired precursors were measured. The results are shown in Table 2.
  • the average particle size was measured using a particle size distribution analyzer (Malvern, Mastersizer 2000E) and dispersed using ultrasonic waves to obtain an average particle diameter D 50 by laser scattering.
  • the bulk density was measured from the volume after 5 strokes using a 100 ml measuring cylinder, and the tap density was measured from the volume change before and after 500 strokes.
  • the molding density was measured from the volume change after molding.
  • Example 1 Mn 3 (PO 4 ) 2 ⁇ 6H 2 O Molded body 0.34 2.83
  • Example 2 (Mn 0.8 Fe 0.2) 3 ( PO 4) 2 ⁇ 6.4H 2 O Molded body 0.67 3.21
  • Example 3 (Mn 0.6 Fe 0.4) 3 ( PO 4) 2 ⁇ 6.8H 2 O Molded body 0.58 2.94 Comparative Example 1 (Mn 0.4 Fe 0.6) 3 ( PO 4) 2 ⁇ 7.2H 2 O Molded body 0.65 3.05
  • Comparative Example 3 0.6Mn 3 (PO 4 ) 2 ⁇ 6H 2 O + 0.4 Fe 3 (PO 4 ) 2 ⁇ 8H 2 O Molded body 0.38 2.94 Comparative Example 4 Mn 3 (PO 4 ) 2 ⁇ 6H 2 O powder 0.34 1.42
  • Example 1 LiMnPO 4 5.52 1.65
  • Example 2 LiMn 0.8 Fe 0.2 PO 4 2.78 2.00
  • Example 3 LiMn 0.6 Fe 0.4 PO 4 1.86 1.69 Comparative Example 1 LiMn 0.4 Fe 0.6 PO 4 3.21 2.02 Comparative Example 2 LiFePO 4 1.86 1.68 Comparative Example 3 LiMn 0.6 Fe 0.4 PO 4 4.30 1.05 Comparative Example 4 LiMnPO 4 3.91 1.07
  • the olivine-type positive electrode active materials prepared in Examples and Comparative Examples are regarded as secondary particles in which fine particles are aggregated, not nanometer-sized fine particles.
  • the tap densities of Example 1, Comparative Example 4, and Example 3 and Comparative Example 3 having the same composition of the positive electrode active material are larger than the comparative examples, It can be seen that the positive electrode active material of the example prepared from the single calcined precursor has excellent powder characteristics compared to the positive electrode active material of the comparative example.
  • the positive electrode active material was prepared according to the embodiment and the comparative example.
  • the substitution amount of Fe increases, the diffraction angle 2 ⁇ shifted to the right side according to the difference in the ion radius of Mn and Fe ions.
  • Comparative Example 3 which has the same positive electrode active material composition as Comparative Example 4, which has undergone a direct firing step in powder form without introducing a firing precursor, compared to Example 3.
  • impurities that is, unreacted Li
  • 3 PO 4 remained significantly, it was confirmed that the crystallinity is insufficient.
  • the crystallinity was more excellent in the case of using a composite phosphate of Mn and Fe than when the raw material compounds of Mn and Fe were mixed and calcined.
  • the olivine positive electrode active material obtained in Examples 1 to 8 and Comparative Examples 1 to 4 it was mixed with NMP solution in which teflonized acetylene black and binder PVDF were dissolved as a positive electrode active material and a conductive material. To prepare a slurry. The mass ratio of the positive electrode active material, the conductive material and the binder in the slurry was 80:10:10. The slurry was applied onto a 30 ⁇ m Al current collector, dried, compressed to a constant thickness, and punched out to a diameter of 13 mm to prepare a positive electrode.
  • the coin type battery of the 2032 standard was manufactured through the 20-micrometer-thick separator.
  • a 1.2 mol LiPF 6 solution of a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio 1: 3) was used as the electrolyte.
  • the battery was charged with a current density of 0.2 C in a voltage range of 25 ° C., 2.0 to 4.5 V (2.0 to 4.0 V in Comparative Example 2) using a charge / discharge cycle device, and charging was performed under constant current-constant voltage conditions (end of charge 0.02 C). ), The discharge was measured in the charge and discharge capacity under constant current conditions and the results are shown in Table 3.
  • the positive electrode active material prepared by using the press-molded body as the firing precursor according to Example 1 of the present invention has excellent electrochemical properties compared to the positive electrode active material prepared by using the powder precursor according to Comparative Example 4 I could see that.
  • the positive electrode active material of Example 3 has excellent electrochemical properties compared to the positive electrode active material of Comparative Example 3 prepared by simply mixing phosphate of Mn and Fe.
  • the capacity ratio of 3.6 V or more of discharge area was determined according to the Mn content.
  • Mn 100%
  • the discharge capacity ratio of 66.1% was obtained
  • the Fe substitution amount was 20%, 40%, 60
  • the percentage increased to 59.2%, 55.7% and 36.4%, respectively.
  • the 3.6V discharge capacity ratio was 0%.
  • the 3.6V discharge capacity ratio according to the substitution amount of Fe is shown in Fig. 8, preferably when the molar ratio of Fe is 0.2 or less, more preferably 0.14 to 0.15, more excellent electrochemical properties are obtained You can see that.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a method for preparing an olivine type cathode active material for a lithium secondary battery, and a lithium secondary battery using the same. The method for preparing an olivine type cathode active material for a lithium secondary battery of the present invention comprises: (S1) a step of preparing a specific manganese phosphate or phosphate iron manganese hydrate by coprecipitation; (S2) a step of press-molding a mixture comprising the manganese phosphate or manganese iron phosphate hydrate, lithium compound, and a carbon material to prepare a plasticizing precursor; and (S3) a step of plasticizing the plasticizing precursor. The preparation method of the present invention has an excellent reproducibility, and the cathode active material prepared has an improved capacity.

Description

리튬 이차전지용 올리빈형 양극 활물질의 제조방법 및 이를 이용한 리튬이차전지Manufacturing method of olivine-type positive electrode active material for lithium secondary battery and lithium secondary battery using same
본 발명은 우수한 재현성으로 고용량의 올리빈형 양극 활물질의 제조가 가능한 리튬 이차전지용 올리빈형 양극 활물질의 제조방법 및 이를 이용한 리튬이차전지에 관한 것이다.The present invention relates to a method for producing an olivine-type positive electrode active material for a lithium secondary battery capable of producing a high capacity olivine-type positive electrode active material with excellent reproducibility, and a lithium secondary battery using the same.
전자, 통신, 컴퓨터 산업의 급속한 발전에 따라, 캠코더, 휴대폰, 노트북 PC 등이 눈부신 발전을 거듭함에 따라, 이들 휴대용 전자통신 기기들을 구동할 수 있는 동력원으로서 리튬 이차전지의 수요가 나날이 증가하고 있다. 특히 친환경 동력원으로서 전기자동차, 무정전 전원장치, 전동공구 및 인공위성 등의 응용과 관련하여 국내는 물론 일본, 유럽 및 미국 등지에서 연구개발이 활발히 진행되고 있다. With the rapid development of the electronics, telecommunications, and computer industries, the rapid development of camcorders, mobile phones, notebook PCs, and the like, the demand for lithium secondary batteries as a power source capable of driving these portable electronic communication devices is increasing day by day. In particular, R & D is actively being conducted in Japan, Europe, and the United States as well as in Korea in relation to the application of electric vehicles, uninterruptible power supplies, power tools, and satellites as eco-friendly power sources.
리튬 이차전지의 양극 활물질로서는 리튬 코발트 산화물(LiCoO2)이 주로 사용되었지만, 현재는 다른 층상 양극 활물질로서 리튬 니켈 산화물(Li(Ni-Co-Al)O2), 리튬 복합금속 산화물(Li(Ni-Co-Mn)O2) 등도 사용되고 있으며, 그 외에도 저가격 고안정성의 스피넬형 리튬 망간 산화물(LiMn2O4) 및 올리빈형 인산철 리튬 화합물(LiFePO4)이 개발되어 상용화 되어 있다. Lithium cobalt oxide (LiCoO 2 ) is mainly used as a positive electrode active material of a lithium secondary battery. Currently, lithium nickel oxide (Li (Ni-Co-Al) O 2 ) and lithium composite metal oxide (Li (Ni) are used as other layered positive electrode active materials. -Co-Mn) O 2 ) and the like, in addition to the low-cost high-stable spinel lithium manganese oxide (LiMn 2 O 4 ) and olivine-type iron phosphate compound (LiFePO 4 ) has been developed and commercialized.
이러한 양극 활물질 중에서 리튬 코발트 산화물과 리튬 니켈 산화물은 에너지 밀도는 높지만, 전이금속 원료의 문제점과 안전성의 문제로 인해 휴대전화, 노트북 PC 등의 소형 가전용 전원으로 주로 사용되며, 보다 우수한 안전성을 요구하는 전기자동차 등의 대형 리튬 이차전지에는 적합하지 않다. Among these cathode active materials, lithium cobalt oxide and lithium nickel oxide have high energy density, but are mainly used as power sources for small household appliances such as mobile phones and notebook PCs due to problems of transition metal raw materials and safety issues. It is not suitable for large lithium secondary batteries such as electric vehicles.
대형 리튬 이차전지용 양극 활물질로 현재 활발하게 검토되고 있는 스피넬형 리튬 망간 산화물은 충전 말기 전압이 급상승하기 때문에 과충전의 우려가 적고, 충전 상태의 양극 활물질 자체의 열 안정성도 우수하여 높은 안전성을 갖지만, 고온 환경에서의 구조상의 불안정성으로 인해 사이클 진행에 따른 노화가 심해져, 10년 이상의 수명 특성을 요하는 전기자동차의 전원으로서 적용하기 위해서는 특성 개선이 요구된다. Spinel-type lithium manganese oxide, which is currently being actively studied as a positive electrode active material for large lithium secondary batteries, has a low safety risk due to a rapid increase in terminal charge voltage and high thermal stability of the positive electrode active material itself in a charged state. Due to structural instability in the environment, aging due to the cycle progresses severely, and characteristics improvement is required to be applied as a power source of an electric vehicle requiring a lifespan characteristic of 10 years or more.
현재, 대형 리튬 이차전지는 안전성이 우수하고 수명이 길면서 높은 에너지 밀도와 낮은 가격이 요구되고 있는 상황으로, 철을 포함한 올리빈형 양극 활물질이 주목을 받고 있다. 대표적인 올리빈형 양극 활물질인 리튬 인산철 화합물(LiFePO4)은 전기 용량이 150~160mAh/g 정도로 우수한 양극 활물질 이지만, 평균 작동 전압이 3.4V로 다른 산화물계 양극 활물질에 비해 낮아 높은 에너지 밀도를 요구하는 대형 리튬 이차전지용 양극 활물질로는 충분하지 않은 실정이다. 이에 반해 동일한 올리빈형 화합물인 리튬 인산망간 화합물(LiMnPO4)는 산화물계 재료와 유사한 4.0V의 방전전압을 가지기 때문에 최근에 그 특성을 개선하기 위해 활발한 연구개발이 진행 중이다. 그러나, LiMnPO4는 LiFePO4에 비해서 전도성이 약 1000배 정도 더 작기 때문에 일반적인 양극 활물질의 제조 방법으로 제조하면 전기적으로 거의 불활성이어서 단독으로는 방전이 거의 불가능한 것으로 알려져 있다. Currently, large-size lithium secondary batteries require high energy density and low price with excellent safety, long life, and olivine-type positive electrode active materials including iron attract attention. Lithium iron phosphate compound (LiFePO 4 ), a typical olivine-type positive electrode active material, is a positive electrode active material having an electric capacity of about 150 to 160 mAh / g, but has an average operating voltage of 3.4 V, which is lower than other oxide-based positive electrode active materials, requiring high energy density. As a positive electrode active material for large lithium secondary batteries, it is not sufficient. On the other hand, lithium manganese phosphate compound (LiMnPO 4 ), which is the same olivine compound, has a discharge voltage of 4.0 V similar to that of an oxide-based material, and thus, active research and development has recently been conducted to improve its characteristics. However, since LiMnPO 4 is about 1000 times smaller in conductivity than LiFePO 4 , it is known that LiMnPO 4 is almost inert electrically when produced by a general method of manufacturing a positive electrode active material, so that discharge alone is almost impossible.
LiMnPO4의 제조 방법으로는 고상법과 습식법을 들 수 있으며, 고상법으로 LiMnPO4를 제조할 경우에는 탄소재료를 복합화하여도 0.05C 정도의 낮은 전류밀도에서 조차 70 mAh/g 정도의 전기용량만이 얻어지며, 일반적으로 30 mAh/g 전, 후의 전기용량이 얻어진다. 이에 반해 습식법으로 LiMnPO4를 제조할 경우에는 다양한 보고가 있지만, 그 제조 방법에 따라 140 mAh/g까지도 가능한 것으로 보고되고 있다. By the production process of LiMnPO 4 it may include a solid phase method and a wet method, for the production of LiMnPO 4 by the conventional method, only the high electric capacity of about 70 mAh / g even at a low current density of about 0.05C to FIG carbon composite material is It is obtained, and in general, the capacitance before and after 30 mAh / g is obtained. On the other hand, when manufacturing LiMnPO 4 by the wet method, there are various reports, but it is reported that even up to 140 mAh / g depending on the manufacturing method.
그러나 습식법에 비해 고상법이 제조 공정이 간단하여 제조 비용을 줄일 수 있어 일반적인 양극 활물질의 제조 공정으로 채택되어 사용되고 있는 실정이므로, 보다 개선된 습식법에 관한 연구가 계속 되고 있다.However, compared to the wet method, since the solid state method is simple and the manufacturing process can be reduced and the production cost is generally adopted and used as a manufacturing process of the positive electrode active material, further research on the improved wet method continues.
예를 들면, 일본공개특허 2008-184346호에는 과량의 Li3PO4를 사용하여 200~500 nm 크기의 LiMnPO4 분말을 제조하는 방법이 제시되어 있다. 그러나, 약 40배의 Li3PO4를 사용하는 형태로 공업적으로 이용하는 것은 거의 불가능하다. For example, Japanese Laid-Open Patent Publication No. 2008-184346 discloses a method for producing LiMnPO 4 powder having a size of 200 to 500 nm using an excess of Li 3 PO 4 . However, it is almost impossible to use industrially in the form of using about 40 times Li 3 PO 4 .
또한, 일본공개특허 2007-119304호에는 Mn(OH)2의 침전 및 환원반응을 거쳐 가압조건 하에서 저온으로 LiMnPO4를 제조하는 방법이 제시되어 있다. 그러나, 얻어진 LiMnPO4 양극 활물질의 전기용량이 약 40 mAh/g 정도로 전기화학적 특성이 부족하여 공업적으로 이용하는 것은 불가능하다. In addition, Japanese Patent Application Laid-Open No. 2007-119304 discloses a method for producing LiMnPO 4 at low temperature under pressurized conditions through precipitation and reduction of Mn (OH) 2 . However, the obtained electrolytic capacity of the LiMnPO 4 positive electrode active material is about 40 mAh / g, which is insufficient in industrial use.
또한, 일본공개특허 2007-48612호에는 원료 혼합물을 제조한 후 스프레이 건조법으로 회수한 원료 혼합물을 소성하여 LiMnPO4를 제조하는 방법이 제시되어 있다. 얻어진 LiMnPO4 양극 활물질의 전기용량은 0.25C 전류밀도에서 92mAh/g가 얻어졌으며, 15% 탄소로 복합화한 LiMnPO4는 0.12C 전류밀도에서 130mAh/g이 얻어졌지만, 양극에서 차지하는 양극 활물질의 비율이 63% 정도로 양극 활물질의 비율이 너무 낮아 양극 활물질 자체의 전기화학적 특성이 충분히 개선되었다고 하기는 어렵다. In addition, Japanese Laid-Open Patent Publication No. 2007-48612 discloses a method for producing LiMnPO 4 by firing a raw material mixture recovered by spray drying after preparing a raw material mixture. The obtained capacitance of the LiMnPO 4 positive electrode active material was 92mAh / g at 0.25C current density, while LiMnPO 4 composited with 15% carbon had 130mAh / g at 0.12C current density, but the proportion of the positive electrode active material occupying at the positive electrode It is difficult to say that the proportion of the positive electrode active material is so low that the electrochemical property of the positive electrode active material itself is sufficiently improved to about 63%.
또한, 일본공개특허 2007-35358호에는 나노미터 크기의 미세한 활물질을 사용하는 경우의 문제점을 개선하고자 수 nm 크기의 올리빈형 양극 활물질과 제조 방법을 제시하고 있다. 그러나 얻어진 LiFePO4와 LiFe0.5Mn0.5PO4의 양극 활물질의 전기용량이 0.1C 전류 밀도에서 각각 123 mAh/g, 80 mAh/g 정도로 전기화학적 특성이 충분하지 않다. In addition, Japanese Patent Application Laid-Open No. 2007-35358 proposes an olivine-type positive electrode active material and a manufacturing method of several nm in order to improve the problem of using a nanometer-sized fine active material. However, the electrochemical characteristics of the obtained positive electrode active materials of LiFePO 4 and LiFe 0.5 Mn 0.5 PO 4 are not sufficient, such as 123 mAh / g and 80 mAh / g, respectively, at 0.1C current density.
한편, 대한민국 공개특허 10-2003-0006177호에는 침전법으로 인산 철 수화물을 제조하여 LiFePO4의 양극 활물질을 제조하는 방법을 제시하고 있다. 그러나, 인산 철 수화물 이외의 원료에 대해서는 제시하지 못하고 있다. On the other hand, Korean Patent Laid-Open Publication No. 10-2003-0006177 proposes a method for producing a positive electrode active material of LiFePO 4 by producing iron phosphate hydrate by the precipitation method. However, it does not suggest raw materials other than iron phosphate hydrate.
또한, 대한민국 특허 10-0805910에는 비표면적을 억제하며, 높은 부피에너지 밀도를 갖는 올리빈형 양극 활물질의 합성법을 제시하고 있다. 여기에서 인산 철 수화물을 제조할 때, 원료 수용액과 암모니아 수를 일정속도 공급하여 인산 철 수화물 슬러리를 연속적으로 얻는 공정을 제시하고 있다. 그러나, 철 이외의 인산 망간 수화물이나 인산 망간-철 수화물의 경우에 암모니아수를 사용하는 경우에는 판상의 결정 성장으로 인해 우수한 전기화학적 특성이 얻어지지 않는 문제가 있다. 또한, 이차입자의 크기를 증대시켜 탭밀도 상승에 따른 양극의 부피에너지 밀도를 증가시키는 것을 제시하고 있으나, 이차입자 크기 증대에 따른 고율 충방전 특성변화를 제시하지 않고 있다. In addition, Korean Patent No. 10-0805910 proposes a method for synthesizing an olivine-type positive active material having a specific surface area and suppressing a high volumetric energy density. Here, when preparing the iron phosphate hydrate, a process of continuously obtaining the iron phosphate hydrate slurry by supplying the aqueous solution of the raw material and the ammonia water at a constant speed is proposed. However, when ammonia water is used in the case of manganese phosphate hydrate or manganese phosphate-iron hydrate other than iron, there is a problem in that excellent electrochemical properties are not obtained due to plate crystal growth. In addition, it is proposed to increase the size of the secondary particles to increase the volume energy density of the positive electrode according to the increase in the tap density, but does not suggest a high rate charge-discharge characteristic change according to the increase in the secondary particle size.
이상과 같이 LiMnPO4를 제조할 때 고상법으로 제조할 경우, 제조 공정은 간단하지만 우수한 전기화학적 특성을 얻기가 어렵고 습식법으로 제조할 경우에는 양호한 전기화학적 특성이 얻어지지만 제조 공정이 복잡하다. 따라서, 우수한 전지 특성을 갖는 올리빈형 양극 활물질을 우수한 재현성으로 공업적으로 제조할 수 있는 새로운 제조 방법의 제안이 시급하다.As described above, when the LiMnPO 4 is manufactured by the solid phase method, the manufacturing process is simple, but it is difficult to obtain excellent electrochemical properties, and when the wet method is used, good electrochemical properties are obtained, but the manufacturing process is complicated. Therefore, there is an urgent need for a new production method capable of industrially producing an olivine-type positive electrode active material having excellent battery characteristics with excellent reproducibility.
따라서 본 발명이 해결하고자 하는 과제는, 제조 공정이 간단하면서 전기화학적 특성이 우수한 양극 활물질 및 우수한 재현성과 생산성을 갖는 리튬 이차전지용 올리빈형 양극 활물질의 제조 방법 및 그로부터 제조되는 양극 활물질과 이를 이용한 리튬이차전지용 양극 및 리튬 이차전지를 제공하는 것이다.Therefore, the problem to be solved by the present invention is a method for preparing a positive electrode active material and a olivine-type positive electrode active material for a lithium secondary battery having excellent reproducibility and productivity, a simple manufacturing process, and a positive electrode active material prepared therefrom and a lithium secondary using the same It is to provide a battery positive electrode and a lithium secondary battery.
상기 과제를 해결하기 위하여, 본 발명의 리튬 이차전지용 올리빈형 양극 활물질의 제조방법은, (S1) 공침법으로 하기 화학식 1로 표시되는 인산 망간 또는 인산 망간-철 수화물을 제조하는 단계; (S2) 상기 인산 망간 또는 인산 망간-철 수화물, 리튬 화합물 및 탄소재를 포함하는 혼합물을 가압 성형하여 소성 전구체를 제조하는 단계; 및 (S3) 상기 소성 전구체를 소성하는 단계를 포함한다:In order to solve the above problems, the manufacturing method of the olivine-type positive electrode active material for a lithium secondary battery of the present invention, (S1) step of preparing a manganese phosphate or manganese phosphate-iron hydrate represented by the formula (1) by the coprecipitation method; (S2) pressure-molding the mixture containing the manganese phosphate or manganese phosphate-iron hydrate, a lithium compound, and a carbon material to prepare a calcination precursor; And (S3) calcining the calcining precursor:
화학식 1
Figure PCTKR2009002297-appb-C000001
Formula 1
Figure PCTKR2009002297-appb-C000001
상기 화학식 1에서, 0 ≤ x ≤ 0.4이며, 6 ≤ a < 8 이다.In Formula 1, 0 ≦ x ≦ 0.4, and 6 ≦ a <8.
본 발명의 발명자들은 상기 화학식 1로 표시되는 인산 망간 또는 인산 망간-철 수화물을 공침법을 사용하여 정확한 당량비로 제조하고 양극 활물질 제조에 사용하면, 동일한 방법으로 제조된 LiMnPO4 또는 LiMnFePO4보다 우수한 전기화학적 특성이 발현되는 것을 알아냈다. 또한, 가압 성형 단계를 거침으로써 각 반응물의 직접적인 접촉 가능성을 높여 원활한 고상반응을 유도하고 생산성을 높일 수 있다는 것도 알아냈다.The inventors of the present invention, when the manganese phosphate or manganese phosphate-iron hydrate represented by the formula (1) is prepared in the exact equivalent ratio by using the coprecipitation method and used in the production of a positive electrode active material, it is superior to LiMnPO 4 or LiMnFePO 4 prepared by the same It was found that chemical properties are expressed. In addition, it was found that by going through the pressure forming step, the possibility of direct contact with each reactant can be increased to induce a smooth solid state reaction and increase productivity.
또한, 상기 본 발명의 제조방법에 의해 제조되는 리튬 이차전지용 올리빈형 양극 활물질은 하기 화학식 2로 표시될 수 있다:In addition, the olivine-type positive electrode active material for a lithium secondary battery manufactured by the manufacturing method of the present invention may be represented by the following Chemical Formula 2:
화학식 2
Figure PCTKR2009002297-appb-C000002
Formula 2
Figure PCTKR2009002297-appb-C000002
상기 화학식 2에서, 0 ≤ x ≤ 0.4 이다.In Chemical Formula 2, 0 ≦ x ≦ 0.4.
본 발명의 제조방법에 따라 제조된 상기 양극 활물질은 종래의 방법으로 제조된 양극 활물질보다 전기화학적 특성이 우수하다.The positive electrode active material prepared according to the manufacturing method of the present invention has better electrochemical properties than the positive electrode active material prepared by the conventional method.
전술한 리튬 이차전지용 양극 활물질은 리튬 이차전지용 양극 및 그러한 양극을 포함하는 리튬 이차전지의 제조에 사용될 수 있다.The above-described positive electrode active material for a lithium secondary battery can be used in the production of a lithium secondary battery positive electrode and a lithium secondary battery including such a positive electrode.
본 발명의 리튬 이차전지용 올리빈형 양극 활물질의 제조방법은 종래보다 간소한 제조 방법에 의해 전기화학적 특성이 우수한 양극 활물질을 우수한 재현성과 생산성으로 제조하는 것이 가능하다.In the method for producing an olivine-type positive electrode active material for a lithium secondary battery of the present invention, it is possible to manufacture a positive electrode active material having excellent electrochemical properties with a superior reproducibility and productivity by a simpler manufacturing method than before.
또한, 본 발명에 따라 제조되는 올리빈형 양극 활물질은 종래의 방법으로 제조된 양극 활물질보다 전기화학적 특성이 우수하다.In addition, the olivine-type positive electrode active material prepared according to the present invention has better electrochemical properties than the positive electrode active material prepared by the conventional method.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.The following drawings, which are attached to this specification, illustrate preferred embodiments of the present invention, and together with the contents of the present invention serve to further understand the technical spirit of the present invention, the present invention is limited to the matters described in such drawings. It should not be construed as limited.
도 1은 본 발명의 실시예 및 비교예에 따라 제조된 소성 전구체의 SEM 사진이다.(a: 실시예 1, b: 실시예 2, c: 실시예 3, d: 비교예 1)1 is a SEM photograph of a sintered precursor prepared according to Examples and Comparative Examples of the present invention. (A: Example 1, b: Example 2, c: Example 3, d: Comparative Example 1)
도 2는 본 발명의 실시예 및 비교예에 따라 제조된 양극 활물질의 SEM 사진이다. (a: 실시예 1, b: 실시예 2, c: 실시예 3, d: 비교예 1)2 is a SEM photograph of the positive electrode active material prepared according to Examples and Comparative Examples of the present invention. (a: Example 1, b: Example 2, c: Example 3, d: Comparative Example 1)
도 3은 본 발명의 실시예1~3 및 비교예1~2에 따라 제조된 양극 활물질의 X-선 회절 패턴이다.3 is an X-ray diffraction pattern of the positive electrode active material prepared according to Examples 1-3 and Comparative Examples 1-2 of the present invention.
도 4는 본 발명의 실시예3 및 비교예3~4에 따라 제조된 양극 활물질의 X-선 회절 패턴이다.4 is an X-ray diffraction pattern of the positive electrode active material prepared according to Example 3 and Comparative Examples 3 to 4 of the present invention.
도 5는 실시예 1, 비교예 2 및 비교예 4에 따라 제조된 양극 활물질의 최초 충방전 곡선을 나타낸 그래프이다.5 is a graph showing an initial charge and discharge curve of the positive electrode active material prepared according to Example 1, Comparative Example 2 and Comparative Example 4.
도 6은 실시예 2, 실시예 3, 비교예 1 및 비교예 3에 따라 제조된 양극 활물질의 최초 충방전 곡선을 나타낸 그래프이다. 6 is a graph showing the initial charge and discharge curves of the positive electrode active material prepared according to Example 2, Example 3, Comparative Example 1 and Comparative Example 3.
도 7은 실시예 4 내지 실시예 8에 따라 제조된 본 발명의 양극 활물질의 최초 충방전 곡선을 나타낸 그래프이다.7 is a graph showing an initial charge and discharge curve of the cathode active material of the present invention prepared according to Examples 4 to 8.
도 8은 실시예 및 비교예에 따라 제조된 본 발명의 양극 활물질의 최초 방전 용량 중 3.6V 지점까지의 방전 용량 비율을 나타내는 그래프이다.8 is a graph showing the discharge capacity ratio up to the 3.6 V point of the initial discharge capacity of the positive electrode active material of the present invention prepared according to Examples and Comparative Examples.
이하, 본 발명의 제조방법을 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the manufacturing method of the present invention will be described in detail. The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
먼저, 공침법으로 상기 화학식 1로 표시되는 인산 망간 또는 인산 망간-철 수화물을 제조한다(S1 단계).First, manganese phosphate or manganese phosphate-iron hydrate represented by Chemical Formula 1 is prepared by coprecipitation (step S1).
본 발명에 따른 올리빈형 양극 활물질을 제조하는데 있어서, 상기 화학식 1로 표시되는 인산 망간 또는 인산 망간-철 수화물을 사용하면, 각각의 금속염에 포함되어 있는 불순물의 유입이 제한되고, 분자 수준에서 조성 조절이 가능하게 되어 균일한 결정구조의 올리빈형 양극 활물질을 제조할 수 있다. 상기 화학식 1에서, x가 상기 범위를 벗어나면, 제조되는 리튬 인산 망간-철 양극 활물질의 작동 전압 상승이 제한되는 문제가 있다. 상기 화학식 1에서, 보다 바람직하게는 0 ≤ x ≤ 0.2 이다.In preparing the olivine-type positive electrode active material according to the present invention, when using manganese phosphate or manganese phosphate-iron hydrate represented by the formula (1), the influx of impurities contained in each metal salt is limited, composition control at the molecular level This becomes possible, and the olivine type positive electrode active material of uniform crystal structure can be manufactured. In Formula 1, if x is out of the range, there is a problem that the operating voltage rise of the lithium manganese phosphate-iron cathode active material is limited. In Chemical Formula 1, more preferably 0 ≦ x ≦ 0.2.
본 발명에 따른 상기 인산 망간 또는 인산 망간-철 수화물은 정확한 당량비로 제조될 필요가 있다. 따라서, 반응물의 정확한 당량비 조절이 가능한 공침법을 사용하여 인산 망간 또는 인산 망간-철 수화물을 제조한다. 공침법은 당분야에서 사용되는 방법을 제한없이 사용할 수 있다. The manganese phosphate or manganese phosphate-iron hydrate according to the present invention needs to be prepared in the correct equivalent ratio. Therefore, manganese phosphate or manganese phosphate-iron hydrate is prepared by coprecipitation which allows precise control of the equivalence ratio of the reactants. Coprecipitation can use any method used in the art without limitation.
보다 상세하게는, 원료 반응물로서 망간 금속염, 철 금속염, 인산 화합물을 공침 환경 중에서 연속적으로 투입하여, 금속 인산염을 포함하는 슬러리를 반응물 형태로 연속적으로 취한 후, 수세, 여과, 건조에 의해 상기 화학식 1로 표현되는 인산 망간 또는 인산 망간-철 수화물을 제조한다. 상기 금속염으로는 황산염, 질산염, 초산염 등을 사용할 수 있으며, 인 화합물로는 인산 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.More specifically, manganese metal salts, iron metal salts, and phosphate compounds are continuously added as a raw material reactant in a coprecipitation environment, and a slurry containing metal phosphate is continuously taken in the form of a reactant, followed by washing with water, filtration, and drying. To prepare manganese phosphate or manganese phosphate-iron hydrate represented by. As the metal salt, sulfate, nitrate, acetate, and the like may be used, and phosphoric acid may be used as the phosphorus compound, but is not limited thereto.
다음으로, 상기 인산 망간 또는 인산 망간-철 수화물, 리튬 화합물 및 탄소재를 포함하는 혼합물을 가압 성형하여 소성 전구체를 제조한다(S2 단계).Next, pressure-molding the mixture containing the manganese phosphate or manganese phosphate-iron hydrate, a lithium compound and a carbon material to prepare a firing precursor (step S2).
리튬 화합물은 상기 인산 망간 또는 인산 망간-철 수화물과 반응하여 올리빈형의 양극 활물질을 생산하는 원료이다. 본 발명에서 사용가능한 리튬 화합물로는, LiOH·H2O, Li2CO3, Li3PO4 등을 예로 들 수 있다. 바람직하게는 Li3PO4를 사용할 수 있다.The lithium compound is a raw material for producing an olivine-type positive electrode active material by reacting with the manganese phosphate or manganese phosphate-iron hydrate. Examples of the lithium compound usable in the present invention include LiOH.H 2 O, Li 2 CO 3 , Li 3 PO 4 , and the like. Preferably Li 3 PO 4 can be used.
한편, 탄소재는 올리빈형 양극 활물질의 도전성을 높이기 위해 양극 활물질 제조시 함께 소성된다. 탄소재를 첨가하는 방법으로는, 예를 들면, 아세틸렌 블랙, 케첸 블랙 등의 카본 블랙, 흑연, 그래파이트 등의 탄소재료를 직접 첨가하거나, 탄소원이 되는 유기 화합물을 용매에 용해한 후 용매를 제거하여 탄소원이 되는 유기 화합물이 균일하게 분산된 형태를 사용하는 방법 등이 있다. On the other hand, the carbon material is fired together in the production of the positive electrode active material in order to increase the conductivity of the olivine-type positive electrode active material. As a method of adding a carbon material, for example, carbon materials such as acetylene black and Ketjen black, carbon materials such as graphite, graphite and graphite are added directly, or an organic compound serving as a carbon source is dissolved in a solvent and then the solvent is removed to remove the carbon source. There exists a method of using the form which the organic compound to become uniformly disperse | distributed.
본 발명에서는 특정 온도 범위에서 용해되고, 이후에 진행되는 소성 단계에서 열분해되는 유기 화합물을 사용하는 것이 바람직하다. 예를 들면, 아디프산(Adipic acid), 아스코르브산(Ascorbic acid), 스테아르산(Stearic acid), 시트르산(Citric acid) 등의 유기산 및 이들의 혼합물이 바람직하다. In the present invention, it is preferable to use an organic compound that is dissolved at a specific temperature range and is pyrolyzed in a subsequent calcination step. For example, organic acids such as adipic acid, ascorbic acid, stearic acid, citric acid, and mixtures thereof are preferable.
본 발명에 따른 양극 활물질에 첨가되는 추가적인 탄소의 함유량은, 탄소원의 첨가량에 의해서 조절할 수 있으며, 양극 활물질 100 중량부 대비 2 중량부 내지 30 중량부인 것이 바람직하다. 탄소 함량이 2 중량부 미만이면, 도전성 개선에 의한 용량 개선 효과가 충분하지 않으며, 30 중량부 초과이면, 양극 활물질의 양이 감소하기 때문에 양극으로 구성할 경우의 전기 용량 감소로 바람직하지 않다. The content of additional carbon added to the positive electrode active material according to the present invention can be controlled by the amount of carbon source added, and preferably 2 parts by weight to 30 parts by weight with respect to 100 parts by weight of the positive electrode active material. If the carbon content is less than 2 parts by weight, the capacity improvement effect due to the conductivity is not sufficient, and if it is more than 30 parts by weight, the amount of the positive electrode active material is reduced, which is not preferable because of the reduction of the electric capacity when the positive electrode is configured.
한편, 본 발명에서, "소성 전구체"는 인산 망간 또는 인산 망간-철 수화물, 리튬 화합물 및 탄소재를 포함한 혼합물을 고압 성형기를 사용하여 연속적으로 타정하여 일정 형상을 갖는 성형체를 의미한다.On the other hand, in the present invention, "plastic precursor" means a molded article having a predetermined shape by continuously tableting a mixture containing manganese phosphate or manganese phosphate-iron hydrate, a lithium compound, and a carbon material using a high pressure molding machine.
고압 성형기는 일정한 압력으로 분말 형태의 원료 화합물의 혼합물을 고밀도의 일정한 형상으로 성형할 수 있는 성형기라면 그 제한은 없다. 고압 성형기에 의해 제조되는 소성 전구체는 1 ~ 5 g/cc의 밀도를 갖는 것이 바람직하다. 밀도가 1 g/cc 미만이면 일정 형상으로 성형하기 어렵거나 시간이 오래 걸려 생산성이 크게 향상되지 않게 되며, 소성 전구체의 밀도가 낮아서 고밀도화에 따른 생산성 향상 효과가 크지 않으며, 원료 물질들의 접촉이 제한되어 균일한 소성을 효율적으로 진행되지 않기 때문에 바람직하지 않다. 밀도가 5g/cc 초과이면 고밀도를 위한 성형 시간이 길어지고 높은 압력을 가하기 위해서 추가적인 설비나 에너지가 요구되기 때문에 바람직하지 않다.The high pressure molding machine is not limited so long as it is a molding machine capable of molding a mixture of the raw material compound in powder form at a constant pressure into a high density and constant shape. The fired precursor produced by the high pressure molding machine preferably has a density of 1 to 5 g / cc. If the density is less than 1 g / cc, it is difficult to mold to a certain shape or take a long time, so that the productivity is not greatly improved. As the density of the firing precursor is low, the productivity improvement effect due to the densification is not large, and the contact of raw materials is limited. It is not preferable because uniform firing does not proceed efficiently. Density of more than 5 g / cc is undesirable because the molding time for high density is long and additional equipment or energy is required to apply high pressure.
이와 같이 고밀도로 성형한 원료 혼합물 전구체를 사용하는 것은 다음과 같은 이유 때문이다. 일반적인 층상계 양극 활물질을 소성할 때 사용하는 리튬 화합물(LiOH·H2O, Li2CO3)은 450 ~ 600 ℃ 전, 후에서 용융되기 때문에 통상의 고상 혼합법으로 단순히 혼합만 하여도 균일한 소성이 가능하지만, 후술하는 소성 단계의 소성 온도보다 높은 용융점을 갖는 리튬 화합물의 경우(예를 들면 본 발명에서 사용 가능한 Li3PO4는 용융점이 837 ℃임)에는 고상반응이 원활하게 진행되지 않게 된다. The reason why the raw material mixture precursor molded at such a high density is used is as follows. Lithium compounds (LiOH · H 2 O, Li 2 CO 3 ), which are used to fire general layered positive electrode active materials, are melted before and after 450 to 600 ° C., so that they may be uniformly mixed by a conventional solid phase mixing method. Firing is possible, but in the case of a lithium compound having a melting point higher than the firing temperature of the firing step described below (for example, Li 3 PO 4 usable in the present invention has a melting point of 837 ° C.), the solid phase reaction does not proceed smoothly. do.
따라서, 상기와 같은 고밀도화 된 전구체 상태에서 소성을 진행하면 인산 망간 또는 인산 망간-철 수화물과 리튬 화합물의 직접적인 접촉을 통해서 원활한 고상반응이 진행될 수 있다. 그리고, 상기 원료 화합물들은 대부분이 나노미터 크기의 고운 분말로서 혼합물의 밀도가 현저하게 낮아 소성에 사용되는 세라믹 소성 용기에 투입되는 양이 작지만, 본 발명에서처럼 압력을 가하여 고밀도화 하면 동일한 세라믹 소성 용기에 더 많이 투입할 수 있기 때문에 생산량을 향상시킬 수 있다. Therefore, when the firing proceeds in the densified precursor state as described above, a smooth solid state reaction may be performed through direct contact between manganese phosphate or manganese phosphate-iron hydrate and a lithium compound. In addition, although most of the raw material compounds are nanometer-sized fine powders, the density of the mixture is remarkably low, and thus the amount of the raw material compounds to be injected into the ceramic firing vessel used for firing is small. Because it can be put a lot, the yield can be improved.
선택적으로, 고밀도로 성형하는 과정에서, 열가소성 고분자를 바인더로 사용할 수 있다. 상기 열가소성 고분자는 금형 또는 지그에서 성형된 전구체를 원활하게 탈착시키기 위한 이형제 역할과 후술하는 소성단계에서 열분해 되어 추가적인 탄소 원으로도 작용한다. 상기 열가소성 고분자의 첨가량은 전술한 탄소재의 함량 범위를 유지하도록 첨가되며, 양극 활물질 100 중량부 대비 0.1 중량부 내지 10 중량부이다. 0.1 중량부 미만이면, 첨가에 따른 이형 효과와 탄소 코팅양이 적어 바람직하지 않으며, 10 중량부 초과이면, 이형효과는 충분하지만, 후술하는 소성단계에서 부적절한 가스 발생과 필요이상으로 탄소가 함유되어 양극으로 구성할 경우, 전기용량 감소로 이어질 우려가 있어 바람직하지 않다.Optionally, in the process of forming at a high density, a thermoplastic polymer may be used as the binder. The thermoplastic polymer acts as a releasing agent for smoothly desorbing the precursor formed in the mold or jig and is thermally decomposed in the sintering step described later to serve as an additional carbon source. The amount of the thermoplastic polymer added is added to maintain the above-described content range of the carbon material, and is 0.1 parts by weight to 10 parts by weight based on 100 parts by weight of the positive electrode active material. If it is less than 0.1 part by weight, the release effect and carbon coating amount of the addition is small, it is not preferable. If it is more than 10 parts by weight, the release effect is sufficient, but in the sintering step to be described later inadequate gas generation and carbon contained more than necessary If configured as, there is a risk that leads to a reduction in capacitance is not preferable.
다음으로, 상기 소성 전구체를 소성한다(S3 단계).Next, the firing precursor is fired (step S3).
소성온도는, 예를 들면 500 ~ 700 ℃의 온도 범위로 하는 것이 바람직하다. 소성 온도가 500 ℃ 미만이면 올리빈형 리튬 복합금속 화합물이 생성되기 어렵게 되고, 700 ℃ 초과이면 결정이 필요 이상으로 성장하거나 일부 분해가 일어나서 바람직하지 않다. 또한 소성 분위기는, 질소 가스나 아르곤 가스 등의 불활성 분위기 하에서 진행하는 것이 바람직하다. 특히, 소성 전구체에 포함되는 철이 2가로 존재하기 때문에 수소 가스 등의 환원성 가스를 사용하지 않아도 된다. 또한, 소성 시간은, 예를 들면 5 ~ 24 시간으로 하는 것이 바람직하다. 소성 시간이 5 시간 미만이면 균일한 올리빈 상으로 얻어지지 않을 우려가 있으며, 24 시간 초과이면 공업적으로 생산성이 떨어질 수 있다.It is preferable to make baking temperature into the temperature range of 500-700 degreeC, for example. If the calcination temperature is less than 500 ° C., the olivine-type lithium composite metal compound is less likely to be produced. If the calcination temperature is more than 700 ° C., crystals grow more than necessary or some decomposition occurs, which is not preferable. Moreover, it is preferable to advance baking environment under inert atmosphere, such as nitrogen gas and argon gas. In particular, since iron contained in the firing precursor is divalent, it is not necessary to use a reducing gas such as hydrogen gas. In addition, it is preferable to make baking time into 5 to 24 hours, for example. If the firing time is less than 5 hours, there is a fear that it may not be obtained in a uniform olivine phase, and if it is more than 24 hours, productivity may be reduced industrially.
상기와 같은 제조단계를 거쳐 본 발명의 올리빈형 양극 활물질을 제조할 수 있으며, 제조된 본 발명의 리튬 이차전지용 올리빈형 양극 활물질은 상기 화학식 2로 표시된다. 상기 화학식 2에서 x가 상기 범위를 벗어나면, 전술한 바와 같이 리튬 인산철 화합물과 유사하여 작동 전압 상승이 제한된다. 상기 화학식 2에서, 보다 바람직하게는 0 ≤ x ≤ 0.2 이다. The olivine-type positive electrode active material of the present invention may be manufactured through the above manufacturing steps, and the prepared olivine-type positive electrode active material for lithium secondary battery of the present invention is represented by Chemical Formula 2. When x is outside the above range in Chemical Formula 2, the operation voltage rise is limited because it is similar to the lithium iron phosphate compound as described above. In Chemical Formula 2, more preferably 0 ≦ x ≦ 0.2.
이렇게 제조된 올리빈형 양극 활물질은 나노미터 수준의 미세한 일차입자들이 뭉친 형태로서, 일차입자의 크기와 형상은 금속 인산염의 조성 비율과 공침 환경에 따라 달라진다.The olivine-type positive electrode active material thus prepared is a form in which nanometer-level fine primary particles are aggregated, and the size and shape of the primary particles vary depending on the composition ratio of the metal phosphate and the coprecipitation environment.
전술한 방법으로 제조될 수 있는 본 발명의 리튬 이차전지용 올리빈형 양극 활물질은 바인더를 이용하여 양극 집전체의 적어도 일면에 접착되어 리튬 이차전지의 양극을 형성할 수 있다. 바인더 수지 및 양극 집전체는 당 분야에서 통상적으로 사용되는 것들이 제한 없이 사용될 수 있다.The olivine-type positive electrode active material for a lithium secondary battery of the present invention, which may be manufactured by the above method, may be bonded to at least one surface of a positive electrode current collector using a binder to form a positive electrode of a lithium secondary battery. The binder resin and the positive electrode current collector may be used without limitation those conventionally used in the art.
또한, 본 발명의 리튬 이차전지용 양극은 음극, 상기 양극과 음극 사이에 개재된 격리막 및 전해질과 함께 리튬 이차전지로 제조될 수 있다. 음극, 격리막 및 전해질은 당 분야에서 통상적으로 사용되는 것들이 제한 없이 사용될 수 있다.In addition, the positive electrode for a lithium secondary battery of the present invention may be manufactured as a lithium secondary battery together with a negative electrode, a separator and an electrolyte interposed between the positive electrode and the negative electrode. As the negative electrode, the separator and the electrolyte, those conventionally used in the art may be used without limitation.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, the present invention will be described in detail with reference to Examples. However, embodiments according to the present invention can be modified in many different forms, the scope of the present invention should not be construed as limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
실시예 1Example 1
<인산 망간의 제조><Manufacture of Manganese Phosphate>
황산망간(MnSO4·H2O)과 황산철(FeSO4·7H2O) 및 인산(H3PO4)을 망간, 철 및 인의 몰 비율이 1.0:0.0:1.0이 되도록 정제된 이온교환수에 녹여 금속 수용액과 수산화나트륨(NaOH) 수용액을 제조하였다.Ion exchange water purified from manganese sulfate (MnSO 4 · H 2 O), iron sulfate (FeSO 4 · 7H 2 O), and phosphoric acid (H 3 PO 4 ) so that the molar ratio of manganese, iron, and phosphorus is 1.0: 0.0: 1.0 It was dissolved in to prepare a metal aqueous solution and sodium hydroxide (NaOH) aqueous solution.
상온에서 상기 제조된 금속 수용액을 투입한 이후에 수산화나트륨 수용액을 200 ml/분의 속도로 투입하여 반응용액의 pH가 5.9의 범위에 도달하면, 인산 망간(Mn3(PO4)2·6H2O) 수화물의 침전이 일어난다. 이후부터 반응기 내의 pH를 정상상태로 일정하게 유지하면서, 금속 수용액과 나트륨 수용액을 일정 속도로 공급하여 연속적으로 인산 망간 수화물을 포함한 슬러리를 제조하였다. 이 슬러리를 원심분리형 여과기를 사용하여 수세, 여과한 후, 얻어진 인산 망간 수화물 분말을 80 ℃, 24 시간 이상 건조하여 인산 망간 수화물을 제조하였다. After adding the prepared aqueous metal solution at room temperature, the sodium hydroxide aqueous solution was added at a rate of 200 ml / min, and when the pH of the reaction solution reached the range of 5.9, manganese phosphate (Mn 3 (PO 4 ) 2 · 6H 2 O) precipitation of hydrates occurs. From then on, while maintaining the pH in the reactor at a steady state, a slurry containing manganese phosphate hydrate was continuously prepared by supplying an aqueous metal solution and an aqueous sodium solution at a constant rate. The slurry was washed with water using a centrifugal filter and filtered, and the obtained manganese phosphate hydrate powder was dried at 80 DEG C for at least 24 hours to prepare manganese phosphate hydrate.
<소성 전구체의 제조><Production of Plastic Precursor>
상기 얻어진 인산 망간 수화물과 인산 리튬(Li3PO4) 및 탄소원으로 스테아르산(SA, C18H36O2) 및 폴리에틸렌글리콜(PEG)을 균일하게 분쇄, 혼합한 후 직경 30 mm, 길이 120 mm의 금형에 30 g을 투입한 후, 10 기압의 압력으로 가압 성형하여 원통형의 소성 전구체를 제조하였다. 원료 혼합물의 벌크 밀도는 1.42g/cc였다. 탄소 원인 SA와 PEG는 최종 양극 활물질에 대해서 3 중량부가 되도록 투입하였다. 얻어진 소성 전구체는 2.83 g/cc의 밀도를 갖는 직경 30 mm, 길이 20 mm의 원통형으로 성형 되었다.Stearic acid (SA, C 18 H 36 O 2 ) and polyethylene glycol (PEG) were uniformly ground and mixed with the obtained manganese phosphate hydrate, lithium phosphate (Li 3 PO 4 ) and a carbon source, and then 30 mm in diameter and 120 mm in length. 30 g was put into the mold of, and pressure-molded by the pressure of 10 atmospheres to produce a cylindrical plastic precursor. The bulk density of the raw mixture was 1.42 g / cc. Carbon source SA and PEG were added in an amount of 3 parts by weight based on the final positive electrode active material. The resulting fired precursor was molded into a cylindrical shape of 30 mm diameter and 20 mm length with a density of 2.83 g / cc.
<양극 활물질의 제조><Production of Anode Active Material>
상기 얻어진 소성 전구체를 온도 조절이 가능한 소성로를 사용하여 550 ℃에서 10 시간 소성하였다. 이후, 분쇄, 분급에 의하여 평균입경이 조절된 LiMnPO4 양극 활물질을 제조하였다.The calcined precursor obtained was calcined at 550 ° C. for 10 hours using a calcining furnace capable of temperature control. Thereafter, a LiMnPO 4 positive electrode active material having an average particle diameter adjusted by pulverization and classification was prepared.
이후에 얻어진 양극 활물질의 특성 평가를 행하여 표 1및 표 2에 요약하여 나타내었다.After that, characteristics of the obtained positive electrode active material were evaluated, and the results are summarized in Tables 1 and 2.
실시예 2Example 2
황산망간(MnSO4·H2O)과 황산철(FeSO4·7H2O) 및 인산(H3PO4)을 망간, 철 및 인의 몰 비율이 0.8:0.2:1.0가 되도록 조정한 금속 수용액을 사용한 것 이외에는 실시예 1과 동일한 방법으로 인산 망간-철 수화물((Mn0.8Fe0.2)3(PO4)2·6.4H2O)을 제조하여 LiMn0.8Fe0.2PO4 양극 활물질을 제조하였다.An aqueous metal solution prepared by adjusting manganese sulfate (MnSO 4 H 2 O), iron sulfate (FeSO 4 · 7H 2 O), and phosphoric acid (H 3 PO 4 ) so that the molar ratio of manganese, iron, and phosphorus is 0.8: 0.2: 1.0 A manganese phosphate-iron hydrate ((Mn 0.8 Fe 0.2 ) 3 (PO 4 ) 2 .6.4H 2 O) was prepared in the same manner as in Example 1 to prepare a LiMn 0.8 Fe 0.2 PO 4 cathode active material.
실시예 3Example 3
황산망간(MnSO4·H2O)과 황산철(FeSO4·7H2O) 및 인산(H3PO4)을 망간, 철 및 인의 몰 비율이 0.6:0.4:1.0가 되도록 조정한 금속 수용액을 사용한 것 이외에는 실시예 1과 동일한 방법으로 인산 망간-철 수화물((Mn0.6Fe0.4)3(PO4)2·6.8H2O)을 제조하여 LiMn0.6Fe0.4PO4 양극 활물질을 제조하였다.A metal solution prepared by adjusting manganese sulfate (MnSO 4 H 2 O), iron sulfate (FeSO 4 · 7H 2 O), and phosphoric acid (H 3 PO 4 ) so that the molar ratio of manganese, iron, and phosphorus is 0.6: 0.4: 1.0 A manganese phosphate-iron hydrate ((Mn 0.6 Fe 0.4 ) 3 (PO 4 ) 2 .6.8H 2 O) was prepared in the same manner as in Example 1 to prepare a LiMn 0.6 Fe 0.4 PO 4 positive electrode active material.
실시예 4 ~ 8Examples 4-8
황산망간(MnSO4·H2O)과 황산철(FeSO4·7H2O) 및 인산(H3PO4)을 망간, 철 및 인의 몰 비율이 각각 0.81:0.19:1.0, 0.82:0.18:1.0, 0.83:0.17:1.0, 0.84:0.16:1.0, 0.85:0.15:1.0가 되도록 조정한 금속 수용액을 사용한 것 이외에는 실시예 1과 동일한 방법으로 인산 망간-철 수화물을 제조하여 각각 LiMn0.81Fe0.19PO4, LiMn0.82Fe0.18PO4, LiMn0.83Fe0.17PO4, LiMn0.84Fe0.16PO4, LiMn0.85Fe0.15PO4 양극 활물질을 제조하였다.The molar ratios of manganese, iron and phosphorus in manganese sulfate (MnSO 4 H 2 O), iron sulfate (FeSO 4 · 7H 2 O) and phosphoric acid (H 3 PO 4 ) are 0.81: 0.19: 1.0 and 0.82: 0.18: 1.0, respectively. , Except that the aqueous metal solution adjusted to 0.83: 0.17: 1.0, 0.84: 0.16: 1.0, 0.85: 0.15: 1.0 was prepared in the same manner as in Example 1 to prepare manganese phosphate-iron hydrate, respectively, LiMn 0.81 Fe 0.19 PO 4 , LiMn 0.82 Fe 0.18 PO 4 , LiMn 0.83 Fe 0.17 PO 4 , LiMn 0.84 Fe 0.16 PO 4 , LiMn 0.85 Fe 0.15 PO 4 positive electrode active material was prepared.
비교예 1Comparative Example 1
황산망간(MnSO4·H2O)과 황산철(FeSO4·7H2O) 및 인산(H3PO4)을 망간, 철 및 인의 몰 비율이 0.4:0.6:1.0가 되도록 조정한 금속 수용액을 사용한 것 이외에는 실시예 1과 동일한 방법으로 인산 망간-철 수화물((Mn0.4Fe0.6)3(PO4)2·7.2H2O)을 제조하고, 소성 온도를 600 ℃로 한 것 이외에는 실시예 1과 동일한 방법으로 LiMn0.4Fe0.6PO4 양극 활물질을 제조하였다.An aqueous metal solution prepared by adjusting manganese sulfate (MnSO 4 H 2 O), iron sulfate (FeSO 4 · 7H 2 O), and phosphoric acid (H 3 PO 4 ) so that the molar ratio of manganese, iron, and phosphorus is 0.4: 0.6: 1.0 Manganese phosphate-iron hydrate ((Mn 0.4 Fe 0.6 ) 3 (PO 4 ) 2 .7.2H 2 O) was prepared in the same manner as in Example 1, except that the firing temperature was 600 ° C. In the same manner as the LiMn 0.4 Fe 0.6 PO 4 positive electrode active material was prepared.
비교예 2Comparative Example 2
황산망간(MnSO4·H2O)과 황산철(FeSO4·7H2O) 및 인산(H3PO4)을 망간, 철 및 인의 몰 비율이 0.0:1.0:1.0가 되도록 조정한 금속 수용액을 사용한 것 이외에는 실시예 1과 동일한 방법으로 인산 철 수화물(Fe3(PO4)2·8H2O)을 제조하고, 소성 온도를 650 ℃로 한 것 이외에는 실시예 1과 동일한 방법으로 LiFePO4 양극 활물질을 제조하였다.An aqueous metal solution in which manganese sulfate (MnSO 4 · H 2 O), iron sulfate (FeSO 4 · 7H 2 O), and phosphoric acid (H 3 PO 4 ) is adjusted so that the molar ratio of manganese, iron, and phosphorus is 0.0: 1.0: 1.0 LiFePO 4 positive electrode active material was prepared in the same manner as in Example 1, except that iron phosphate hydrate (Fe 3 (PO 4 ) 2 .8H 2 O) was prepared in the same manner as in Example 1, and the firing temperature was set to 650 ° C. Was prepared.
비교예 3Comparative Example 3
실시예 1에서 얻어진 인산망간 화합물(Mn3(PO4)2·6H2O)과 비교예 2에서 얻어진 인산 철 수화물(Fe3(PO4)2·8H2O)을 원료화합물을 사용한 것 이외에는 실시예 3과 동일한 방법으로 LiMn0.6Fe0.4PO4 양극 활물질을 제조하였다.The manganese phosphate compound (Mn 3 (PO 4 ) 2 .6H 2 O) obtained in Example 1 and the iron phosphate hydrate (Fe 3 (PO 4 ) 2 .8H 2 O) obtained in Comparative Example 2 were used except for using a raw material compound. In the same manner as in Example 3, a LiMn 0.6 Fe 0.4 PO 4 positive electrode active material was prepared.
비교예 4Comparative Example 4
가압 성형기로 성형하지 않고 분말 상태로 소성한 것 이외에는 실시예 1과 동일하게 제조하여 평가하였다.It produced and evaluated similarly to Example 1 except having baked in the powder state without shape | molding with a press molding machine.
특성평가Characteristic evaluation
1. 분체 특성1. Powder Characteristics
(1) 평균입경 및 밀도(1) Average particle diameter and density
실시예와 비교예에 따라 제조된 소성 전구체의 평균 입경, 벌크 밀도(성형 밀도)를 측정하여 그 결과를 표 1에, 상기 각 소성 전구체로 제조된 양극 활물질의 평균 입경 및 탭 밀도를 측정하여 그 결과를 표 2에 나타내었다. The average particle diameter and bulk density (molding density) of the fired precursors prepared according to the Examples and Comparative Examples were measured, and the results are shown in Table 1, and the average particle diameter and the tap density of the positive electrode active materials prepared from the fired precursors were measured. The results are shown in Table 2.
평균입경의 측정은 입도분포 측정기 (Malvern 사, Mastersizer 2000E)를 이용하여 초음파를 이용하여 분산시키면서 Laser 산란법에 의하여 평균입경 D50을 구하였다. 벌크 밀도의 측정은 100ml 메스실린더를 사용하여 5회 스트로크를 행한 후의 부피로부터 측정하였으며, 탭 밀도는 500회 스트로크를 행한 전후의 부피 변화로부터 측정하였다. 또한, 성형 밀도는 성형 후의 부피 변화로부터 측정하였다. The average particle size was measured using a particle size distribution analyzer (Malvern, Mastersizer 2000E) and dispersed using ultrasonic waves to obtain an average particle diameter D 50 by laser scattering. The bulk density was measured from the volume after 5 strokes using a 100 ml measuring cylinder, and the tap density was measured from the volume change before and after 500 strokes. In addition, the molding density was measured from the volume change after molding.
표 1
구 분 조 성 성형여부 평균입경(d50-㎛) 밀도(g/cc)
실시예1 Mn3(PO4)2·6H2O 성형체 0.34 2.83
실시예2 (Mn0.8Fe0.2)3(PO4)2·6.4H2O 성형체 0.67 3.21
실시예3 (Mn0.6Fe0.4)3(PO4)2·6.8H2O 성형체 0.58 2.94
비교예1 (Mn0.4Fe0.6)3(PO4)2·7.2H2O 성형체 0.65 3.05
비교예2 Fe3(PO4)2·8H2O 성형체 0.45 3.45
비교예3 0.6Mn3(PO4)2·6H2O + 0.4 Fe3(PO4)2·8H2O 성형체 0.38 2.94
비교예4 Mn3(PO4)2·6H2O 분말 0.34 1.42
Table 1
division Furtherance Molding Average particle size (d 50 -㎛) Density (g / cc)
Example 1 Mn 3 (PO 4 ) 2 · 6H 2 O Molded body 0.34 2.83
Example 2 (Mn 0.8 Fe 0.2) 3 ( PO 4) 2 · 6.4H 2 O Molded body 0.67 3.21
Example 3 (Mn 0.6 Fe 0.4) 3 ( PO 4) 2 · 6.8H 2 O Molded body 0.58 2.94
Comparative Example 1 (Mn 0.4 Fe 0.6) 3 ( PO 4) 2 · 7.2H 2 O Molded body 0.65 3.05
Comparative Example 2 Fe 3 (PO 4 ) 2 · 8H 2 O Molded body 0.45 3.45
Comparative Example 3 0.6Mn 3 (PO 4 ) 2 · 6H 2 O + 0.4 Fe 3 (PO 4 ) 2 · 8H 2 O Molded body 0.38 2.94
Comparative Example 4 Mn 3 (PO 4 ) 2 · 6H 2 O powder 0.34 1.42
표 2
구 분 조 성 평균입경(d50-㎛) 탭 밀도(g/cc)
실시예1 LiMnPO4 5.52 1.65
실시예2 LiMn0.8Fe0.2PO4 2.78 2.00
실시예3 LiMn0.6Fe0.4PO4 1.86 1.69
비교예1 LiMn0.4Fe0.6PO4 3.21 2.02
비교예2 LiFePO4 1.86 1.68
비교예3 LiMn0.6Fe0.4PO4 4.30 1.05
비교예4 LiMnPO4 3.91 1.07
TABLE 2
division Furtherance Average particle size (d 50 -㎛) Tap density (g / cc)
Example 1 LiMnPO 4 5.52 1.65
Example 2 LiMn 0.8 Fe 0.2 PO 4 2.78 2.00
Example 3 LiMn 0.6 Fe 0.4 PO 4 1.86 1.69
Comparative Example 1 LiMn 0.4 Fe 0.6 PO 4 3.21 2.02
Comparative Example 2 LiFePO 4 1.86 1.68
Comparative Example 3 LiMn 0.6 Fe 0.4 PO 4 4.30 1.05
Comparative Example 4 LiMnPO 4 3.91 1.07
상기 표 2에 나타난 바와 같이, 양극 활물질 입자의 평균입경을 보면 실시예 및 비교예에서 제조된 올리빈형 양극 활물질은 나노미터 크기의 미세입자가 아니라 미세입자가 응집된 이차입자로 여겨진다.As shown in Table 2, when the average particle diameter of the positive electrode active material particles is viewed, the olivine-type positive electrode active materials prepared in Examples and Comparative Examples are regarded as secondary particles in which fine particles are aggregated, not nanometer-sized fine particles.
한편, 양극 활물질의 조성이 동일한 실시예1과 비교예4, 및 실시예3과 비교예3의 탭밀도를 비교하면, 실시예1 및 실시예3의 탭밀도가 상기 비교예들보다 크므로, 단일 소성 전구체로 제조된 실시예의 양극 활물질이 비교예의 양극 활물질에 비해 우수한 분체 특성을 갖는 것을 알 수 있다.On the other hand, when the tap densities of Example 1, Comparative Example 4, and Example 3 and Comparative Example 3 having the same composition of the positive electrode active material, the tap densities of Examples 1 and 3 are larger than the comparative examples, It can be seen that the positive electrode active material of the example prepared from the single calcined precursor has excellent powder characteristics compared to the positive electrode active material of the comparative example.
(2) SEM 사진 평가(2) SEM photo evaluation
실시예 및 비교예에서 얻어진 Mn과 Fe의 인산염 화합물과 양극 활물질의 평균 입경을 확인하기 위해 SEM (HP사, 8564E) 사진을 도 1(a:실시예 1의 소성 전구체, b: 실시예 2의 소성 전구체, c: 실시예 3의 소성 전구체, d: 비교예 1의 소성 전구체) 및 도 2(a: 실시예 1의 양극 활물질, b: 실시예 2의 양극 활물질, c: 실시예 3의 양극 활물질, d: 비교예 1의 양극 활물질)에 나타내었다.SEM (HP, 8564E) photographs were taken to confirm average particle diameters of the phosphate compounds of Mn and Fe and the positive electrode active materials obtained in Examples and Comparative Examples. Calcined precursor, c: calcined precursor of Example 3, d: calcined precursor of Comparative Example 1) and FIG. 2 (a: positive electrode active material of Example 1, b: positive electrode active material of Example 2, c: positive electrode of Example 3 Active material, d: positive electrode active material of Comparative Example 1).
도 1에 나타난 바와 같이, 철의 함량이 늘어날수록 일차입자(미세입자)가 성장하면서, 침상으로 형성되는 것을 알 수 있다. 또한, 도 2에 나타난 바와 같이, 원료인 금속 인산염의 형상과 일차입자(미세입자)의 크기가 그대로 유지되는 것을 알 수 있다.As shown in FIG. 1, it can be seen that as the iron content increases, primary particles (fine particles) grow and form as needles. In addition, as shown in Figure 2, it can be seen that the shape of the metal phosphate as a raw material and the size of the primary particles (fine particles) are maintained as it is.
(3) X-선 회절분석(3) X-ray diffraction analysis
실시예 및 비교예에 따라 얻어진 양극 활물질의 결정 구조를 확인하기 위해 X-선 회절분석을 행하여 도 3에 나타내었다. 또한, 동일한 조성을 갖지만 제조방법이 전혀 다른 실시예 3과 비교예 3, 및 비교예 4로부터 얻어진 양극 활물질의 X-선 회절 패턴을 도 4에 나타내었다.In order to confirm the crystal structure of the positive electrode active material obtained according to the Examples and Comparative Examples, X-ray diffraction analysis was performed, and the results are shown in FIG. 3. In addition, X-ray diffraction patterns of the positive electrode active material obtained from Example 3, Comparative Example 3, and Comparative Example 4 having the same composition but completely different manufacturing methods are shown in FIG. 4.
도 3을 살펴보면, 실시예와 비교예에 따라 양극 활물질이 제조되었음을 확인할 수 있다. 또한, Fe의 치환양이 증가함에 Mn과 Fe 이온의 이온 반경 차이에 따라 회절각도 2θ가 오른쪽으로 이동하는 것을 확인할 수 있었다. Looking at Figure 3, it can be confirmed that the positive electrode active material was prepared according to the embodiment and the comparative example. In addition, as the substitution amount of Fe increases, the diffraction angle 2θ shifted to the right side according to the difference in the ion radius of Mn and Fe ions.
하지만 도 4를 살펴보면, 실시예 3에 비하여 소성 전구체를 도입하지 않고 분말상에서 직접 소성 단계를 거친 비교예 4 및 동일한 양극 활물질 조성을 갖지만 제조방법이 다른 비교예 3의 소성 완성도의 차이를 알 수 있다. 구체적으로는, 가압 성형체를 소성 전구체로 사용한 경우에 비하여 단순히 원료 화합물의 혼합 분말을 사용하여 소성하는 경우(비교예 3) 및 분말 소성의 경우(비교예 4)는 불순물, 즉, 미반응된 Li3PO4가 상당히 잔존하는 것을 확인할 수 있었으며, 결정성이 부족한 것을 확인할 수 있었다. 또한, Mn과 Fe 각각의 원료 화합물을 혼합, 사용하여 소성하는 것보다 Mn과 Fe의 복합 인산염을 사용한 경우가 결정성이 보다 더 우수한 것으로 확인되었다. However, referring to FIG. 4, it can be seen that there is a difference in firing completeness of Comparative Example 3, which has the same positive electrode active material composition as Comparative Example 4, which has undergone a direct firing step in powder form without introducing a firing precursor, compared to Example 3. Specifically, in the case of firing using a mixed powder of a raw material compound (Comparative Example 3) and in the case of powder firing (Comparative Example 4) as compared with the case of using the press-formed product as a firing precursor, impurities, that is, unreacted Li It was confirmed that 3 PO 4 remained significantly, it was confirmed that the crystallinity is insufficient. In addition, it was confirmed that the crystallinity was more excellent in the case of using a composite phosphate of Mn and Fe than when the raw material compounds of Mn and Fe were mixed and calcined.
2. 전기화학적 특성2. Electrochemical Properties
실시예 1~8 및 비교예 1~4에서 얻어진 올리빈형 양극 활물질의 초기 비용량 및 초기 효율을 평가하기 위해, 양극 활물질과 도전재로서 테프론화된 아세틸렌 블랙과 결착제인 PVDF를 녹인 NMP 용액과 혼합하여 슬러리를 제작하였다. 슬러리에서 양극 활물질, 도전재 및 결착제의 질량비는 80:10:10으로 하였다. 이 슬러리를 30㎛ Al 집전체 위에 도포한 후 건조하고 일정한 두께로 압착한 후 직경 13㎜로 타발하여 양극을 제작하였다.In order to evaluate the initial specific capacity and initial efficiency of the olivine positive electrode active material obtained in Examples 1 to 8 and Comparative Examples 1 to 4, it was mixed with NMP solution in which teflonized acetylene black and binder PVDF were dissolved as a positive electrode active material and a conductive material. To prepare a slurry. The mass ratio of the positive electrode active material, the conductive material and the binder in the slurry was 80:10:10. The slurry was applied onto a 30 μm Al current collector, dried, compressed to a constant thickness, and punched out to a diameter of 13 mm to prepare a positive electrode.
얻어진 양극과 리튬 호일을 음극으로 하여 두께 20㎛ 격리막을 매개로 2032 규격의 코인형 전지를 제조하였다. 이 때, 전해액은 에틸렌 카보네이트와 디에틸 카보네이트 혼합용매(부피비 1:3)의 1.2몰 LiPF6 용액을 사용하였다. 상기 전지를 충방전 사이클 장치를 사용하여 25℃, 2.0~4.5V (비교예 2의 경우는 2.0~4.0V) 전압범위에서 0.2C의 전류밀도로, 충전은 정전류-정전압 조건(충전 말기 0.02C), 방전은 정전류 조건으로 충방전 용량을 측정하여 그 결과를 표 3에 나타내었다.Using the obtained positive electrode and lithium foil as a negative electrode, the coin type battery of the 2032 standard was manufactured through the 20-micrometer-thick separator. At this time, a 1.2 mol LiPF 6 solution of a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio 1: 3) was used as the electrolyte. The battery was charged with a current density of 0.2 C in a voltage range of 25 ° C., 2.0 to 4.5 V (2.0 to 4.0 V in Comparative Example 2) using a charge / discharge cycle device, and charging was performed under constant current-constant voltage conditions (end of charge 0.02 C). ), The discharge was measured in the charge and discharge capacity under constant current conditions and the results are shown in Table 3.
실시예 1, 비교예 2 및 비교예 4에 따라 제조된 양극 활물질의 최초 충방전 곡선과 실시예 2, 실시예 3, 비교예 1 및 비교예 3에 따라 제조된 양극 활물질의 최초 충방전 곡선을 각각 도 5 및 도 6에 나타내었다. The initial charge and discharge curves of the positive electrode active material prepared according to Example 1, Comparative Example 2 and Comparative Example 4 and the initial charge and discharge curves of the positive electrode active material prepared according to Example 2, Example 3, Comparative Example 1 and Comparative Example 3 5 and 6, respectively.
또한, 실시예 4~8에 따라 제조된 양극 활물질의 최초 충방전 용량을 상기와 동일한 방법으로 평가하여 그 결과를 표 4에 나타내었으며, 최초 충방전 곡선을 도 7에 나타내었다.In addition, the initial charge and discharge capacity of the positive electrode active material prepared according to Examples 4 to 8 were evaluated in the same manner as above, and the results are shown in Table 4, and the initial charge and discharge curves are shown in FIG. 7.
표 3
구 분 1st 충전용량(mAh/g) 1st 방전용량(mAh/g) 1st 효율(%) 정전압충전비율(%) 3.6V 방전용량비율(%)
실시예1 117.7 109.1 92.7 14.7 66.1
실시예2 122.4 118.2 96.6 6.9 59.2
실시예3 136.8 133.9 97.9 6.7 55.7
비교예1 139.0 134.7 96.9 5.4 36.4
비교예2 150.0 146.6 97.7 3.8 0.0
비교예3 127.0 113.3 89.2 28.0 49.2
비교예4 57.2 47.0 82.2 62.9 54.7
TABLE 3
division 1 st charging capacity (mAh / g) 1 st discharge capacity (mAh / g) 1 st efficiency (%) Constant voltage charge rate (%) 3.6V discharge capacity ratio (%)
Example 1 117.7 109.1 92.7 14.7 66.1
Example 2 122.4 118.2 96.6 6.9 59.2
Example 3 136.8 133.9 97.9 6.7 55.7
Comparative Example 1 139.0 134.7 96.9 5.4 36.4
Comparative Example 2 150.0 146.6 97.7 3.8 0.0
Comparative Example 3 127.0 113.3 89.2 28.0 49.2
Comparative Example 4 57.2 47.0 82.2 62.9 54.7
표 4
구 분 조 성 1st 충전용량(mAh/g) 1st 방전용량(mAh/g) 1st 효율(%) 정전압충전비율(%) 3.6V 방전용량비율(%)
실시예4 LiMn0.81Fe0.19PO4 122.7 118.1 96.2 9.1 66.9
실시예5 LiMn0.82Fe0.18PO4 123.3 118.4 96.0 9.5 70.5
실시예6 LiMn0.83Fe0.17PO4 124.6 120.4 96.6 10.2 71.8
실시예7 LiMn0.84Fe0.16PO4 136.2 131.3 96.4 13.2 72.4
실시예8 LiMn0.85Fe0.15PO4 137.9 132.8 96.3 13.1 72.7
Table 4
division Furtherance 1 st charging capacity (mAh / g) 1 st discharge capacity (mAh / g) 1 st efficiency (%) Constant voltage charge rate (%) 3.6V discharge capacity ratio (%)
Example 4 LiMn 0.81 Fe 0.19 PO 4 122.7 118.1 96.2 9.1 66.9
Example 5 LiMn 0.82 Fe 0.18 PO 4 123.3 118.4 96.0 9.5 70.5
Example 6 LiMn 0.83 Fe 0.17 PO 4 124.6 120.4 96.6 10.2 71.8
Example 7 LiMn 0.84 Fe 0.16 PO 4 136.2 131.3 96.4 13.2 72.4
Example 8 LiMn 0.85 Fe 0.15 PO 4 137.9 132.8 96.3 13.1 72.7
표 3로부터 알 수 있듯이, 본 발명의 실시예 1에 따라 가압 성형체를 소성 전구체로 사용하여 제조된 양극 활물질은 비교예 4에 따라 분말 전구체를 사용하여 제조된 양극 활물질 에 비하여 우수한 전기화학적 특성을 갖는 것을 알 수 있었다. 또한, 실시예 3의 양극 활물질은 Mn과 Fe의 인산염을 단순 혼합하여 제조된 비교예 3의 양극 활물질에 비하여 우수한 전기화학적 특성을 갖는 것을 알 수 있었다. As can be seen from Table 3, the positive electrode active material prepared by using the press-molded body as the firing precursor according to Example 1 of the present invention has excellent electrochemical properties compared to the positive electrode active material prepared by using the powder precursor according to Comparative Example 4 I could see that. In addition, it was found that the positive electrode active material of Example 3 has excellent electrochemical properties compared to the positive electrode active material of Comparative Example 3 prepared by simply mixing phosphate of Mn and Fe.
표 3로부터 알 수 있듯이 Mn 함유량에 따라 3.6V 이상의 방전 영역의 용량 비율이 결정되며, Mn이 100%인 경우에는 66.1%의 방전용량 비율이 얻어졌으며, Fe의 치환량이 20%, 40%, 60%로 증가함에 따라 각각 59.2%, 55.7%, 36.4%가 얻어졌다. Fe으로 100% 치환된 경우(비교예 2)는 3.6V 방전용량 비율이 0%이었다.As can be seen from Table 3, the capacity ratio of 3.6 V or more of discharge area was determined according to the Mn content. When Mn was 100%, the discharge capacity ratio of 66.1% was obtained, and the Fe substitution amount was 20%, 40%, 60 The percentage increased to 59.2%, 55.7% and 36.4%, respectively. In the case of 100% substitution with Fe (Comparative Example 2), the 3.6V discharge capacity ratio was 0%.
더욱이, 실시예 4~8와 도 7로부터 알 수 있듯이 본 발명의 Mn과 Fe의 복합 인산염을 원료 화합물로 사용할 경우에는 0.1 몰 단위로 Fe의 함량 조절이 가능하여 정확한 당량비를 갖는 양극 활물질의 제조가 가능하므로, 본 발명의 제조방법은 재현성이 우수하다.Furthermore, as can be seen from Examples 4 to 8 and FIG. 7, when the composite phosphate of Mn and Fe of the present invention is used as a raw material, it is possible to control the content of Fe in 0.1 mol units, thereby preparing a cathode active material having an accurate equivalent ratio. Since it is possible, the manufacturing method of this invention is excellent in reproducibility.
또한, Fe의 치환양에 따른 3.6V 방전 용량 비율을 도 8에 나타내었는데, 바람직하게는 Fe의 몰비가 0.2 이하인 경우에, 더욱 바람직하게는 0.14 내지 0.15인 경우에, 보다 우수한 전기화학적 특성이 얻어지는 것을 확인할 수 있다.In addition, the 3.6V discharge capacity ratio according to the substitution amount of Fe is shown in Fig. 8, preferably when the molar ratio of Fe is 0.2 or less, more preferably 0.14 to 0.15, more excellent electrochemical properties are obtained You can see that.

Claims (9)

  1. (S1) 공침법으로 하기 화학식 1로 표시되는 인산 망간 또는 인산 망간-철 수화물을 제조하는 단계; (S1) preparing manganese phosphate or manganese phosphate-iron hydrate represented by Formula 1 by coprecipitation;
    (S2) 상기 인산 망간 또는 인산 망간-철 수화물, 리튬 화합물 및 탄소재를 포함하는 혼합물을 가압 성형하여 소성 전구체를 제조하는 단계; 및 (S2) pressure-molding the mixture containing the manganese phosphate or manganese phosphate-iron hydrate, a lithium compound, and a carbon material to prepare a calcination precursor; And
    (S3) 상기 소성 전구체를 소성하는 단계(S3) calcining the calcined precursor
    를 포함하는 리튬 이차전지용 올리빈형 양극 활물질의 제조방법:Method for producing an olivine-type positive electrode active material for a lithium secondary battery comprising:
    [화학식 1][Formula 1]
    Figure PCTKR2009002297-appb-I000001
    Figure PCTKR2009002297-appb-I000001
    상기 화학식 1에서, 0 ≤ x ≤ 0.4이며, 6 ≤ a < 8 이다.In Formula 1, 0 ≦ x ≦ 0.4, and 6 ≦ a <8.
  2. 제1항에 있어서,The method of claim 1,
    상기 (S2) 단계에서 리튬 화합물은 수산화 리튬, 탄산 리튬 및 인산 리튬으로 이루어진 군에서 선택되는 어느 하나 또는 이들의 2종 이상의 혼합물인 것을 특징으로 하는 리튬 이차전지용 올리빈형 양극 활물질의 제조방법.In the step (S2), the lithium compound is any one selected from the group consisting of lithium hydroxide, lithium carbonate and lithium phosphate or a mixture of two or more thereof.
  3. 제1항에 있어서,The method of claim 1,
    상기 탄소재는 아디프산, 아스코르브산, 스테아르산 및 시트르산으로 이루어진 군에서 선택되는 어느 하나 또는 이들의 2종 이상의 혼합물인 것을 특징으로 하는 리튬 이차전지용 올리빈형 양극 활물질의 제조방법.The carbon material is any one selected from the group consisting of adipic acid, ascorbic acid, stearic acid and citric acid or a mixture of two or more thereof.
  4. 제1항에 있어서,The method of claim 1,
    상기 (S2) 단계에서 가압 전에 상기 혼합물은 열가소성 고분자 바인더를 더 포함하는 것을 특징으로 하는 리튬 이차전지용 올리빈형 양극 활물질의 제조방법.Before the pressing in the step (S2), the mixture is a method for producing an olivine-type positive active material for a lithium secondary battery, characterized in that it further comprises a thermoplastic polymer binder.
  5. 제1항에 있어서,The method of claim 1,
    상기 (S2) 단계에서 소성 전구체는 1 ~ 5 g/cc의 밀도를 갖는 것을 특징으로 하는 리튬 이차전지용 올리빈형 양극 활물질의 제조방법.The firing precursor in the step (S2) has a density of 1 ~ 5 g / cc olivine-type positive electrode active material for a lithium secondary battery characterized in that it has a density.
  6. 제1항에 있어서,The method of claim 1,
    상기 (S3) 단계에서 소성은 500 ~ 700 ℃의 온도로 수행되는 것을 특징으로 하는 리튬 이차전지용 올리빈형 양극 활물질의 제조방법.Firing in the step (S3) is a manufacturing method of an olivine-type positive electrode active material for a lithium secondary battery, characterized in that carried out at a temperature of 500 ~ 700 ℃.
  7. 제1항의 제조방법으로 제조되며, 하기 화학식 2로 표시되는 리튬 이차전지용 올리빈형 양극 활물질:An olivine-type positive electrode active material for a lithium secondary battery prepared by the method of claim 1 and represented by the following Chemical Formula 2:
    [화학식 2][Formula 2]
    Figure PCTKR2009002297-appb-I000002
    Figure PCTKR2009002297-appb-I000002
    상기 화학식 2에서, 0 ≤ x ≤ 0.4 이다.In Chemical Formula 2, 0 ≦ x ≦ 0.4.
  8. 양극 집전체; 및 상기 양극 집전체의 적어도 일면에 형성되며, 양극 활물질 및 바인더를 포함하는 양극 활물질 층을 구비한 리튬 이차전지의 양극에 있어서,A positive electrode current collector; And a positive electrode active material layer formed on at least one surface of the positive electrode current collector and including a positive electrode active material and a binder.
    상기 양극 활물질이 제1항 내지 제6항 중 어느 한 항의 제조방법으로 제조된 양극 활물질인 것을 특징으로 하는 리튬 이차전지의 양극.The cathode of a lithium secondary battery, wherein the cathode active material is a cathode active material manufactured by the method of any one of claims 1 to 6.
  9. 양극, 음극 및 상기 양극과 음극 사이에 개재된 격리막을 포함하는 리튬 이차전지에 있어서,In a lithium secondary battery comprising a positive electrode, a negative electrode and a separator interposed between the positive electrode and the negative electrode,
    상기 양극이 제8항에 따른 양극인 것을 특징으로 하는 리튬 이차전지.Lithium secondary battery, characterized in that the positive electrode is a positive electrode according to claim 8.
PCT/KR2009/002297 2009-04-27 2009-04-30 Preparation method for olivine type cathode active material for lithium secondary battery, and lithium secondary battery using the same WO2010126185A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0036604 2009-04-27
KR1020090036604A KR20100117895A (en) 2009-04-27 2009-04-27 Method of preparing olivine type cathode active material for lithium secondary batteries and lithium secondary batteries using the same

Publications (2)

Publication Number Publication Date
WO2010126185A1 true WO2010126185A1 (en) 2010-11-04
WO2010126185A9 WO2010126185A9 (en) 2010-12-16

Family

ID=43032317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/002297 WO2010126185A1 (en) 2009-04-27 2009-04-30 Preparation method for olivine type cathode active material for lithium secondary battery, and lithium secondary battery using the same

Country Status (2)

Country Link
KR (1) KR20100117895A (en)
WO (1) WO2010126185A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024099149A1 (en) * 2022-11-11 2024-05-16 中科致良新能源材料(浙江)有限公司 Phosphate materials having nano porous structure, preparation method therefor and use thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101893955B1 (en) * 2011-12-16 2018-09-03 삼성에스디아이 주식회사 Metal doped crystalline iron phosphate, method for preparation thereof and lithium composite metal phosphorus oxide prepared using the same
KR101973052B1 (en) 2012-08-10 2019-04-26 삼성에스디아이 주식회사 Method for Preparation of Lithium Metal Phosphate
KR101624317B1 (en) * 2014-09-01 2016-06-07 한국생산기술연구원 Fabricating Method of Positive Electrode Material for Secondary Battery
KR101661896B1 (en) * 2014-11-20 2016-10-04 주식회사 포스코 Positive active material for lithium secondary battery, method of preparing same and a lithium secondary battery comprising the same
KR20230020671A (en) * 2021-08-04 2023-02-13 전남대학교산학협력단 A method for manufacturing a cathode material for a lithium-sulfur battery and a cathode material for a lithium-sulfur battery manufactured thereby

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076727A (en) * 1999-09-08 2001-03-23 Sony Corp Positive electrode active material for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2005047751A (en) * 2003-07-29 2005-02-24 Nippon Chem Ind Co Ltd Method of manufacturing lithium iron phosphorus-based multiple oxide carbon composite body containing manganese atom
US20080003504A1 (en) * 2006-06-16 2008-01-03 L & F Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076727A (en) * 1999-09-08 2001-03-23 Sony Corp Positive electrode active material for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2005047751A (en) * 2003-07-29 2005-02-24 Nippon Chem Ind Co Ltd Method of manufacturing lithium iron phosphorus-based multiple oxide carbon composite body containing manganese atom
US20080003504A1 (en) * 2006-06-16 2008-01-03 L & F Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024099149A1 (en) * 2022-11-11 2024-05-16 中科致良新能源材料(浙江)有限公司 Phosphate materials having nano porous structure, preparation method therefor and use thereof

Also Published As

Publication number Publication date
WO2010126185A9 (en) 2010-12-16
KR20100117895A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
EP2142473B1 (en) Method for preparing lithium iron phosphate as positive electrode active material for lithium ion secondary battery
WO2014178625A1 (en) Anode active material for lithium secondary battery
WO2012093798A2 (en) Anode active material with whole particle concentration gradient for lithium secondary battery, method for preparing same, and lithium secondary battery having same
WO2013002457A1 (en) Positive electrode active material, electrode including the positive electrode active material, and lithium electrochemical battery
WO2013147537A1 (en) Method for preparing cathode active material precursor for lithium secondary battery, cathode active material precursor for lithium secondary battery prepared thereby, and cathode active material for lithium secondary battery containing same
WO2010047524A2 (en) Lithium iron phosphate having an olivine structure, and preparation method thereof
WO2010047525A2 (en) Lithium iron phosphate having an olivine structure and analysis method thereof
WO2014010970A1 (en) High density anode active material and preparation method thereof
WO2010126185A1 (en) Preparation method for olivine type cathode active material for lithium secondary battery, and lithium secondary battery using the same
WO2011126182A1 (en) Method for manufacturing a cathode active material for a secondary battery including a metal composite oxide, and cathode active material for a second battery including a metal composite oxide manufactured by said method
KR20140119621A (en) Precusor for lithium rich active material and lithium rich active material made by the same
WO2011129636A2 (en) Method for synthesizing nanoelectrode materials using an ultra-fast combustion method, and nanoelectrode materials synthesized by the method
WO2014077663A1 (en) Anode active material for sodium secondary battery and method for producing same
WO2014077662A1 (en) Method for producing anode active material precursor for sodium secondary battery by using coprecipitation technique and anode active material precursor for sodium secondary battery produced thereby
WO2014168286A1 (en) Method of manufacturing cathode active material precursor for lithium secondary battery, method of manufacturing cathode active material for lithium secondary battery, cathode including cathode active material and lithium secondary battery
KR100805910B1 (en) Olivine type positive active material for lithium battery, method for preparing the same, and lithium battery comprising the same
WO2019112325A1 (en) Negative electrode active material for non-aqueous electrolyte secondary battery and method for producing same
WO2020149724A1 (en) Anode active material for lithium secondary battery, and lithium secondary battery comprising same
KR20190078720A (en) Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
KR101190226B1 (en) Cathode active material for a lithium secondary battery, preparation thereof, and a lithium secondary battery containing the same
WO2012124970A2 (en) Manufacturing method for anode material for lithium secondary battery and anode material for lithium secondary battery made thereby
KR20190044445A (en) Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
KR20210090567A (en) Method for preparing positive electrode active material for lithium secondary battery, positive electrode comprising the positive electrode active material prepared by the same and lithium secondary battery
WO2014178624A1 (en) Anode active material for lithium rechargeable battery
CN116936767A (en) Preparation method of high-capacity water system processed lithium iron phosphate anode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13-01-2012).

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 09844067

Country of ref document: EP

Kind code of ref document: A1