WO2012124970A2 - Manufacturing method for anode material for lithium secondary battery and anode material for lithium secondary battery made thereby - Google Patents

Manufacturing method for anode material for lithium secondary battery and anode material for lithium secondary battery made thereby Download PDF

Info

Publication number
WO2012124970A2
WO2012124970A2 PCT/KR2012/001824 KR2012001824W WO2012124970A2 WO 2012124970 A2 WO2012124970 A2 WO 2012124970A2 KR 2012001824 W KR2012001824 W KR 2012001824W WO 2012124970 A2 WO2012124970 A2 WO 2012124970A2
Authority
WO
WIPO (PCT)
Prior art keywords
active material
secondary battery
lithium secondary
salt
lithium
Prior art date
Application number
PCT/KR2012/001824
Other languages
French (fr)
Korean (ko)
Other versions
WO2012124970A3 (en
Inventor
최문호
김직수
신종승
Original Assignee
주식회사 에코프로
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코프로 filed Critical 주식회사 에코프로
Publication of WO2012124970A2 publication Critical patent/WO2012124970A2/en
Publication of WO2012124970A3 publication Critical patent/WO2012124970A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Chemical reaction formula of the reaction occurring in the conventional manufacturing process of the positive electrode active material is as follows. For convenience, the coefficients of chemical reactions are omitted.
  • step (b) a mixed solution of nickel salt, cobalt salt, and manganese salt containing the X ⁇ as an anion as nickel salt, cobalt salt, and manganese salt in the solution prepared in step (a), pH adjusting agent a hydroxide solution (C + OH -) containing the C + mixing and complexing agent to prepare a composite metal hydroxide as a co-precipitation.
  • lithium carbonate was mixed so as to be 1.10 times the concentration standard of the metal complex hydroxide, and heated at a temperature of 1 ° C./min, and then calcined to heat treatment at 950 ° C. for 10 hours to obtain a cathode active material powder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The present invention relates to a method of manufacturing anode materials for lithium secondary batteries and the anode materials for lithium secondary batteries prepared thereby, and more specifically, relates to a method of manufacturing anode materials for lithium secondary batteries in which an additional salt is added by mixture to adjust the reactivity and the speed of reaction of the reacting solvent, and the anode materials for lithium secondary batteries thus prepared.

Description

리튬 이차전지용 양극 활물질의 제조방법 및 그에 의하여 제조된 리튬 이차전지용 양극 활물질Method for manufacturing positive electrode active material for lithium secondary battery and positive electrode active material for lithium secondary battery manufactured thereby
본 발명은 리튬 이차전지용 양극 활물질의 제조방법 및 그에 의하여 제조된 리튬 이차전지용 양극 활물질에 관한 것으로, 보다 구체적으로 반응 용매에 반응 속도 및 반응성을 조절할 수 있는 염을 추가 혼합하는 것을 특징으로 하는 리튬 이차전지용 양극 활물질의 제조방법 및 그에 의하여 제조된 리튬 이차전지용 양극 활물질에 관한 것이다.The present invention relates to a method for preparing a cathode active material for a lithium secondary battery and a cathode active material for a lithium secondary battery manufactured by the same, and more specifically, to a lithium secondary battery, further comprising mixing a salt capable of controlling reaction rate and reactivity to a reaction solvent. It relates to a method for producing a battery positive electrode active material and a cathode active material for a lithium secondary battery produced thereby.
근래 들어 비디오 카메라, 휴대형 CD, 휴대전화, PDA, 노트북 등의 휴대용 전자기기의 소형화, 경량화, 고성능화가 진행되고 있다. 휴대용 전자기기의 전원에는 고용량이고 또한 중부하 특성이 우수한 안정성이 높은 이차전지가 필요하게 되고 있다. 이러한 목적에 합치한 이차전지로서는, 니켈카드뮴 축전지가 사용되어 왔는데, 보다 에너지 밀도가 높은 전지로서 니켈 수소 축전지, 비수전해액 이차전지로서 리튬 이차 전지가 실용화되어 있다.In recent years, miniaturization, light weight, and high performance of portable electronic devices such as video cameras, portable CDs, cellular phones, PDAs, and notebook computers are progressing. There is a need for a secondary battery having high capacity and high stability for power of portable electronic devices. Nickel cadmium accumulators have been used as secondary batteries consistent with this purpose, but lithium secondary batteries have been put into practical use as nickel hydrogen accumulator batteries and nonaqueous electrolyte secondary batteries as batteries having higher energy density.
종래의 소형 리튬 이차전지는 일반적으로 양극에 LiCoO2를, 음극에 탄소를 사용한다. LiCoO2는 안정된 충방전특성, 우수한 전자전도성, 높은 안정성 및 평탄한 방전전압 특성을 갖는 뛰어난 물질이나, Co는 매장량이 적고 고가인 데다가 인체에 대한 독성이 있기 때문에 다른 양극 재료 개발이 요망된다. LiCoO2와 같은 층상 구조를 갖는 LiNiO2는 큰 방전용량을 나타내지만 싸이클 수명 및 열적으로 가장 불안정하고 고온에서의 안전성에 문제가 있어 아직 상품화되지 못하고 있다. 이러한 종래 사용되는 양극활물질의 문제점을 해결하기 위해 LiNixCo1-xO2(x=1, 2) 또는 LiNi1-x-yCoxMnyO2(0≤x≤0.5, 0≤y≤0.5)와 같은 많은 개량된 조성의 양극 활물질이 시도되었다.Conventional small lithium secondary batteries generally use LiCoO 2 for the positive electrode and carbon for the negative electrode. LiCoO 2 is an excellent material having stable charge and discharge characteristics, excellent electronic conductivity, high stability, and flat discharge voltage characteristics. However, Co has low reserves, is expensive, and toxic to humans. LiNiO 2 having a layered structure such as LiCoO 2 exhibits a large discharge capacity but has not been commercialized due to problems in cycle life, thermal instability, and safety at high temperatures. LiNi x Co 1-x O 2 (x = 1, 2) or LiNi 1-xy Co x Mn y O 2 (0≤x≤0.5, 0≤y≤0.5) Many improved compositions of positive electrode active materials such as
이차전지용 양극 활물질의 제조방법은 크게 고상 반응법과 습식법으로 나뉘는데, 고상 반응법은 각 구성 원료 분말을 혼합하여 수 회 소성하고 분쇄하는 과정으로 이루어진다. 이러한 고상 방법은 조성이 불균일하며, 분쇄시 불순물의 유입 가능성이 크고, 높은 온도에서 수 회 소성해야 하므로 에너지 소모가 많다는 단점이 있다.A method of manufacturing a cathode active material for a secondary battery is largely divided into a solid phase reaction method and a wet method. The solid phase reaction method consists of a process of baking and pulverizing several times by mixing each component raw material powder. This solid phase method has a disadvantage in that the composition is non-uniform, and there is a high possibility of introducing impurities during pulverization, and the energy consumption is high because it needs to be fired several times at high temperature.
또, 습식법으로는 분무 열분해법과 공침법 등이 있다. 분무 열분해법은 구성 원료를 용매에 녹인 후 일정한 크기의 액적을 발생시키고 순간적으로 소성하여 금속 산화물을 얻는 방법으로 금속원자 간의 안정한 결정구조를 형성할 시간이 확보되지 않으므로 이차전지용 양극 활물질로서 충방전을 반복할 경우 결정구조가 쉽게 붕괴되어 전지의 수명을 단축시키는 원인이 된다. 공침법은 구성 원료를 용매에 녹인 후 pH 조절을 통하여 금속수산화물을 얻게 되는데, 통상적으로 5시간 이상의 반응 시간과 격렬한 교반이 요구된다. 이 때 회분식 반응기(batch type tank reactor)를 사용할 경우, 입도 제어가 용이하고 형교환이 자유로우나, 반응기 안정화 시간이 없고 조성이 균일한 제품의 대량 생산이 어렵다는 단점이 있다. 그러므로 일반적으로 생산성이 뛰어난 연속식 반응기(CSTR, continuous stirring tank reactor)가 주로 사용되고 있다.In addition, the wet method includes spray pyrolysis and coprecipitation. Spray pyrolysis is a method of dissolving a constituent raw material in a solvent to generate droplets of a certain size and firing them instantaneously to obtain a metal oxide. Thus, since the time for forming a stable crystal structure between metal atoms is not secured, charge / discharge as a cathode active material for secondary batteries is prevented. When repeated, the crystal structure easily collapses, causing a shortening of the battery life. In the coprecipitation method, metal hydroxides are obtained by dissolving a constituent raw material in a solvent and adjusting pH, which usually requires a reaction time of 5 hours or more and vigorous stirring. In this case, when a batch type tank reactor is used, particle size control is easy and mold exchange is free, but there is a disadvantage that there is no reactor stabilization time and mass production of a uniform composition is difficult. Therefore, in general, continuous productivity (CSTR, continuous stirring tank reactor) is mainly used.
그러나, 연속식 반응기는 입자의 크기가 시간에 의존하여 성장하므로 반응기 내의 불규칙한 흐름으로 인한 머무름 시간의 차이 때문에, 목적하는 크기에 비해 과대하게 성장한 입자와 미처 성장되지 못한 미립분의 혼합물이 공존, 생성물로서 배출되게 된다. 즉, 합성 초반에는 크기 및 물리적, 화학적 특성이 균질하지 않은 합성물이 배출되고 반응 시간이 지날수록 크기 및 물리적, 화학적 특성이 균질해지는 경향이 있어 연속적으로 동일한 품질의 입자를 얻기 어렵다는 문제점이 있었다.However, in continuous reactors, the particle size grows with time, and because of the difference in retention time due to irregular flow in the reactor, a mixture of overgrown particles and ungrown fines relative to the desired size coexists, product To be discharged. That is, in the early stages of synthesis, composites having inhomogeneous size, physical and chemical properties were discharged and the size, physical, and chemical properties tended to be homogeneous as the reaction time elapsed, so that it was difficult to obtain particles of the same quality continuously.
상기와 같은 문제점을 해결하기 위하여 본 발명은 연속식 반응기를 사용하더라도 반응 시간에 상관없이 균질하고, 탭밀도가 높아 단위 부피당 용량 특성이 우수한 리튬 이차전지용 양극 활물질을 제조하는 방법 및 그에 의하여 제조된 리튬 이차전지용 양극 활물질을 제공하는 것을 그 목적으로 한다.In order to solve the above problems, the present invention is a method for producing a positive electrode active material for a lithium secondary battery having a homogeneous, high tap density and excellent capacity characteristics per unit volume, even if a continuous reactor is used, and the lithium produced thereby It aims to provide the positive electrode active material for secondary batteries.
상기와 같은 목적을 해결하기 위하여 본 발명은 The present invention to solve the above object is
(a) 화학식 (1)로 나타내어지는 염과 암모니아를 증류수와 교반시켜 용액을 제조하는 단계;(a) stirring the salt and ammonia represented by the formula (1) with distilled water to prepare a solution;
C+X- --------------------- 화학식 (1)C + X - --------------------- formula (1)
(상기 화학식 (1)에서 C+는 Na+, K+, NH4 +, 및 Li+으로 이루어지는 군에서 선택되는 어느 하나 이상이고, X-는 SO4 2-, NO3 -, Cl-, CO3 2-, 및 COO-으로 이루어지는 군에서 선택되는 어느 하나 이상이다.)(In the formula (1), and C + is Na +, K +, NH 4 +, and at least one selected from the group consisting of Li +, X - is SO 4 2-, NO 3 -, Cl -, CO 3 2- , and COO , at least one selected from the group consisting of:
(b) 상기 (a)단계에서 제조된 용액에, 니켈염, 코발트염, 및 망간염의 혼합 용액, pH 조절제로서 수산화염 용액 및 착화제를 혼합하여 공침법으로 금속복합수산화물을 제조하는 단계; (b) preparing a metal complex hydroxide by coprecipitation by mixing a solution prepared in step (a) with a mixed solution of nickel salt, cobalt salt, and manganese salt, a hydroxide salt solution and a complexing agent as a pH adjusting agent;
(c) 상기 (b)단계에서 얻은 금속복합수산화물과 리튬 화합물을 혼합하여 리튬금속복합수산화물을 제조하는 단계; 및(c) preparing a lithium metal composite hydroxide by mixing the metal complex hydroxide and the lithium compound obtained in step (b); And
(d) 상기 (c)단계에서 얻은 리튬금속복합수산화물을 소성하여 리튬금속복합산화물을 제조하는 단계;로 이루어지는 리튬 이차전지용 양극 활물질의 제조방법을 제공한다.(d) calcining the lithium metal composite hydroxide obtained in step (c) to produce a lithium metal composite oxide; provides a method of manufacturing a cathode active material for a lithium secondary battery.
본 발명에 있어서, 상기 (a)단계에서 제조되는 용액 내의 X- 이온의 농도는 10 내지 20 중량 %인 것을 특징으로 한다.In the present invention, the concentration of X - ions in the solution prepared in step (a) is characterized in that 10 to 20% by weight.
본 발명에 있어서, 상기 (b)단계에서의 상기 니켈염, 코발트염, 및 망간염은 상기 X-를 포함하는 니켈염, 코발트염, 및 망간염인 것을 특징으로 한다.In the present invention, (b) the nickel salt in the step, a cobalt salt, and manganese are the X - is a nickel salt, a cobalt salt, and manganese is characterized in that it comprises a.
본 발명에 있어서, 상기 (b)단계에서 상기 착화제는 암모니아이고, 상기 니켈염, 코발트염, 및 망간염의 혼합 용액과 상기 암모니아의 농도의 비가 1:0.7 내지 1:0.9가 되도록 연속적으로 혼합하며, pH는 10.5 내지 12.5의 범위를 유지하도록 하는 것을 특징으로 한다.In the present invention, in the step (b), the complexing agent is ammonia, and continuously mixed so that the ratio of the concentration of the mixed solution of the nickel salt, cobalt salt, and manganese salt and the ammonia is 1: 0.7 to 1: 0.9. And, the pH is characterized in that to maintain the range of 10.5 to 12.5.
본 발명에 있어서, 상기 수산화염 용액은 상기 C+을 포함하는 수산화염용액인 것을 특징으로 한다.In the present invention, the hydroxide solution is characterized in that the hydroxide solution containing the C + .
본 발명에 있어서, 상기 (c)단계에서는 상기 (b)단계에서 얻은 금속복합수산화물과 리튬 화합물의 농도의 비가 1 : 1.05 내지 1 : 1.15 가 되도록 혼합하는 것을 특징으로 한다. In the present invention, the step (c) is characterized in that the mixing ratio of the concentration of the metal complex hydroxide and the lithium compound obtained in the step (b) is 1: 1.05 to 1: 1.15.
본 발명에 있어서, 상기 (d)단계에서는 상기 리튬금속복합수산화물을 800 내지 1100℃에서 8 내지 12시간 동안 열처리하여 소성하는 것을 특징으로 한다. In the present invention, the step (d) is characterized in that the lithium metal composite hydroxide is calcined by heat treatment at 800 to 1100 ℃ for 8 to 12 hours.
본 발명은 또한, 본 발명의 제조 방법에 의하여 제조된 리튬 이차전지용 양극 활물질을 제공한다.The present invention also provides a cathode active material for a lithium secondary battery produced by the production method of the present invention.
본 발명의 리튬 이차전지용 양극 활물질의 제조방법에 따르면, 반응 시간에 상관없이 균질한 양극 활물질 입자를 얻을 수 있어 생산성이 증대되고, 탭밀도가 높아 전기 화학적 특성이 우수하고 단위 부피당 용량 특성이 우수한 양극 활물질을 얻을 수 있다.According to the method of manufacturing a cathode active material for a lithium secondary battery of the present invention, it is possible to obtain a homogeneous cathode active material particles irrespective of the reaction time, productivity is increased, the tap density is high, the electrochemical properties are excellent and the capacity characteristics per unit volume is excellent An active material can be obtained.
도 1은 본 발명의 일 실시예에 따른 리튬 이차전지용 양극 활물질의 탭 밀도와 압축 밀도를 나타내는 그래프이다.1 is a graph showing a tap density and a compressive density of a cathode active material for a lithium secondary battery according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 리튬 이차전지용 양극 활물질의 표면 SEM 사진((a) 실시예 1, (b) 비교예 1)이다.2 is a SEM image ((a) Example 1, (b) Comparative Example 1) of a cathode active material for a rechargeable lithium battery according to one embodiment of the present invention.
도 3 내지 10은 본 발명의 일 실시예에 따른 리튬 이차전지용 양극 활물질의 단면 SEM 사진이다.3 to 10 are cross-sectional SEM photographs of the positive electrode active material for a lithium secondary battery according to an embodiment of the present invention.
도 11은 본 발명의 일 비교예에 따른 리튬 이차전지용 양극 활물질의 단면 SEM 사진이다.11 is a cross-sectional SEM photograph of a cathode active material for a lithium secondary battery according to a comparative example of the present invention.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily implement the present invention.
본 발명은 (a) 화학식 (1)로 나타내어지는 염과 암모니아를 증류수와 교반시켜 용액을 제조하는 단계;The present invention comprises the steps of (a) preparing a solution by stirring the salt and ammonia represented by the formula (1) with distilled water;
C+X- --------------------- 화학식 (1)C + X - --------------------- formula (1)
(상기 화학식 (1)에서 C+는 Na+, K+, NH4 +, 및 Li+으로 이루어지는 군에서 선택되는 어느 하나 이상이고, X-는 SO4 2-, NO3 -, Cl-, CO3 2-, 및 COO-으로 이루어지는 군에서 선택되는 어느 하나 이상이다.)(In the formula (1), and C + is Na +, K +, NH 4 +, and at least one selected from the group consisting of Li +, X - is SO 4 2-, NO 3 -, Cl -, CO 3 2- , and COO , at least one selected from the group consisting of:
(b) 상기 (a)단계에서 제조된 용액에, 니켈염, 코발트염, 및 망간염의 혼합 용액, pH 조절제로서 수산화염 용액 및 착화제를 혼합하여 공침법으로 금속복합수산화물을 제조하는 단계; (b) preparing a metal complex hydroxide by coprecipitation by mixing a solution prepared in step (a) with a mixed solution of nickel salt, cobalt salt, and manganese salt, a hydroxide salt solution and a complexing agent as a pH adjusting agent;
(c) 상기 (b)단계에서 얻은 금속복합수산화물과 리튬 화합물을 혼합하여 리튬금속복합수산화물을 제조하는 단계; 및(c) preparing a lithium metal composite hydroxide by mixing the metal complex hydroxide and the lithium compound obtained in step (b); And
(d) 상기 (c)단계에서 얻은 리튬금속복합수산화물을 소성하여 리튬금속복합산화물을 제조하는 단계;로 이루어지는 리튬 이차전지용 양극 활물질의 제조방법을 제공한다.(d) calcining the lithium metal composite hydroxide obtained in step (c) to produce a lithium metal composite oxide; provides a method of manufacturing a cathode active material for a lithium secondary battery.
종래 일반적인 양극 활물질의 제조공정에서 발생하는 반응의 화학반응식은 아래와 같다. 편의를 위하여 화학반응식의 계수는 생략하였다.Chemical reaction formula of the reaction occurring in the conventional manufacturing process of the positive electrode active material is as follows. For convenience, the coefficients of chemical reactions are omitted.
(Ni, Co, Mn)X + COH (Ni, Co, Mn)OH + C+X- ------- 화학반응식 1(Ni, Co, Mn) X + COH (Ni, Co, Mn) OH + C + X - ------- chemical reaction formula 1
금속염과 pH 조절제의 화학 반응 결과 양극활물질의 전구체인 금속복합수산화물이 생성되고 부수물로 C+X- 염이 생성된다.As a result of the chemical reaction between the metal salt and the pH regulator, a metal complex hydroxide, a precursor of the positive electrode active material, is formed, and a C + X - salt is formed as an accompaniment.
본 발명에서는 반응 시작 이전에 의도적으로 용매에 C+X-를 첨가하여 반응 속도 및 반응성 조절이 가능하도록 하는 것을 특징으로 한다.In the present invention, the reaction rate and reactivity can be controlled by intentionally adding C + X - to the solvent before the start of the reaction.
본 발명에 따른 반응의 화학반응식은 아래와 같다. 편의를 위하여 화학반응식의 계수는 생략하였다.The chemical reaction formula of the reaction according to the present invention is as follows. For convenience, the coefficients of chemical reactions are omitted.
용매에 C+X-를 첨가함으로써, 아래 화학반응식 2의 반응물과 생성물에서 X-이 공통이온으로 작용하여 화학 평형을 이동시킴에 따라 반응 속도 및 반응성이 변화되는 것이다.By adding C + X - to the solvent, the reaction rate and reactivity change as X - acts as a common ion in the reactants and products of Scheme 2 below, shifting the chemical equilibrium.
(Ni, Co, Mn)X + COH + C+X- (Ni, Co, Mn)OH + C+X- --- 화학반응식2(Ni, Co, Mn) X + COH + C + X - (Ni, Co, Mn) OH + C + X - --- 2 Chemical Equations
이하, 상기 리튬 이차전지용 양극 활물질의 제조방법을 보다 구체적으로 알아보기로 한다.Hereinafter, a method of manufacturing the cathode active material for a lithium secondary battery will be described in more detail.
먼저, (a) 화학식 (1)로 나타내어지는 염과 암모니아를 증류수와 교반시켜 용액을 제조한다.First, (a) a salt and ammonia represented by the formula (1) are stirred with distilled water to prepare a solution.
C+X- ---------------------------- 화학식 (1)C + X - ---------------------------- formula (1)
(상기 화학식 (1)에서 C+는 Na+, K+, NH4+, Li+으로 이루어지는 군에서 선택되는 어느 하나 이상이고, X-는 SO4 2, NO3 -, Cl-, CO3 2-, COO-으로 이루어지는 군에서 선택되는 어느 하나 이상)(In the formula (1) C + is Na +, K +, and NH 4+, one or more selected from the group consisting of Li +, X - is SO 4 2, NO 3 -, Cl -, CO 3 2 -, COO - at least one selected from the group consisting of a)
상기 (a)단계에서 만들어지는 용액 내의 X- 이온의 농도는 10 내지 20% 인 것이 바람직하다. 후술할 실험예 2에서 확인할 수 있듯이, X- 이온의 농도가 상기 범위 내일 때 탭밀도 및 압축밀도가 가장 높게 나타난다. The concentration of X ions in the solution made in step (a) is preferably 10 to 20%. As can be seen in Experimental Example 2 to be described later, the tap density and the compression density are the highest when the concentration of X - ion is in the above range.
상기 C+X- 염은 X- 음이온의 종류만 동일하면 C+ 양이온은 여러 종류의 염이 혼합될 수 있다. 이 경우에도 용액 내의 X- 이온의 총 농도의 합이 10 내지 20 중량 % 인 것이 바람직하다.As long as the C + X - salts are the same type of X - anion, C + cations may be mixed with various kinds of salts. Even in this case, it is preferable that the sum of the total concentration of X ions in the solution is 10 to 20% by weight.
본 단계에서의 용액 제조시, 온도를 40 내지 60℃로 상승시키고, 약 1시간 교반하는 것이 바람직하다.In preparing the solution in this step, it is preferable to raise the temperature to 40 to 60 ° C. and stir for about 1 hour.
그 다음, (b) 상기 (a)단계에서 제조된 용액에, 니켈염, 코발트염, 및 망간염으로서 음이온으로 상기 X-를 포함하는 니켈염, 코발트염, 및 망간염의 혼합용액, pH 조절제로서 상기 C+를 포함하는 수산화 용액(C+OH-) 및 착화제를 혼합하여 공침법으로 금속복합수산화물을 제조한다.Then, (b) a mixed solution of nickel salt, cobalt salt, and manganese salt containing the X as an anion as nickel salt, cobalt salt, and manganese salt in the solution prepared in step (a), pH adjusting agent a hydroxide solution (C + OH -) containing the C + mixing and complexing agent to prepare a composite metal hydroxide as a co-precipitation.
공침법은 여러 가지 서로 다른 이온들을 수용액 혹은 비수용액에서 동시에 침전시키는 방법으로, 니켈,코발트,망간 금속혼합용액, 착화제 및 pH 조절제를 반응기에 공급시키면서 니켈,코발트,망간 혼합금속염이 반응하여 금속복합수산화물을 제조하는 것이다.Coprecipitation is a method of simultaneously depositing different ions in an aqueous solution or non-aqueous solution. The nickel, cobalt, and manganese mixed metal salts react with the nickel, cobalt, manganese metal mixture solution, complexing agent, and pH adjusting agent to the reactor. It is to prepare a composite hydroxide.
상기 니켈염, 코발트염, 및 망간염의 혼합용액에서의 금속 이온의 농도는 1.5 내지 3.5 M인 것이 바람직하다. 금속 이온의 농도가 1.5M 이하일 경우, 생성되는 물질의 양이 적어 생산성이 나쁘며, 금속 이온의 농도가 3.5M 이상일 경우에는 금속염이 저장조 또는 투입 배관에 석출될 우려가 있어 높은 온도로 가열해주어야 하며 높은 금속용액의 농도는 반응이 빠르게 진행될 수 있기 때문에 공침으로 형성되는 입자의 조절이 힘든 단점이 있기 때문이다.The concentration of metal ions in the mixed solution of nickel salt, cobalt salt, and manganese salt is preferably 1.5 to 3.5 M. If the concentration of metal ions is 1.5M or less, the productivity is poor due to the small amount of material produced. If the concentration of metal ions is 3.5M or more, metal salts may precipitate in the storage tank or the input pipe. This is because the concentration of the metal solution is difficult to control the particles formed by coprecipitation because the reaction can proceed quickly.
상기 착화제는 일반적으로 암모니아(NH3), 황산암모늄((NH4)2SO4), 질산암모늄(NH4NO3) 및 제1 인산암모늄((NH4)2HPO4) 등을 사용할 수 있고, 바람직하게는 암모니아를 사용한다. 착화제로 사용되는 암모니아는 형성되는 금속복합수산화물의 형상을 조절하는 작용을 한다.As the complexing agent, ammonia (NH 3 ), ammonium sulfate ((NH 4 ) 2 SO 4 ), ammonium nitrate (NH 4 NO 3 ), and first ammonium phosphate ((NH 4 ) 2 HPO 4 ) may be used. And preferably ammonia. Ammonia used as a complexing agent serves to control the shape of the metal complex hydroxide formed.
상기 pH 조절제로서의 수산화염 용액은 상기 C+을 포함하는 수산화염 용액을 사용하며, 구체적으로는 수산화리튬(LiOH), 수산화나트륨(NaOH), 수산화칼륨(KOH) 및 암모니아수(NH4OH) 등 알칼리 수용액을 사용할 수 있다. pH 조절제는 침전제의 역할을 하며, 상기 혼합수용액에서 공침이 일어나기에 적합한 pH를 유지하는 작용을 한다. 이 때 반응기는 1~10,00L의 내용적을 사용할 수 있으며 바람직하게는 50~500L의 반응기를 사용한다.The hydroxide solution as the pH adjusting agent is a hydroxide solution containing the C + , specifically, alkali, such as lithium hydroxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH) and ammonia water (NH 4 OH) An aqueous solution can be used. The pH adjusting agent serves as a precipitating agent, and serves to maintain a pH suitable for coprecipitation in the mixed aqueous solution. In this case, the reactor may use a volume of 1 to 10,00 L, and preferably 50 to 500 L of reactor.
상기 (b)단계에서 상기 착화제는 암모니아이고, 상기 음이온으로서 X-를 포함하는 니켈염, 코발트염, 및 망간염의 혼합용액과 상기 암모니아의 농도의 비가 1:0.7 내지 1:0.9가 되도록 연속적으로 혼합하며, pH는 10.5 내지 12.5의 범위를 유지하도록 하는 것이 바람직하다. 상기 범위 내의 농도와 pH조건에서 공침이 가장 효과적으로 일어날 수 있다.In the step (b), the complexing agent is ammonia, and the ratio of the concentration of the mixed solution of nickel salt, cobalt salt, and manganese salt containing X and the manganese salt as the anion and the ammonia is continuously 1: 0.7 to 1: 0.9. It is preferable to mix with and to keep the pH in the range of 10.5 to 12.5. Coprecipitation can occur most effectively at concentrations and pH conditions within this range.
또한, 반응기에의 투입 속도는 0.7 내지 0.9L/h이고, 반응기의 온도는 45 내지 55℃로 유지하는 것이 바람직하다. 상기 범위의 온도를 유지해 주면 외부 온도에 대한 영향이 적어 추운 겨울철에 금속의 석출을 방지할 수 있을 뿐 아니라 금속 혼합용액의 점도를 일정하게 할 수 있어 투입되는 금속혼합용액의 투입량을 보다 일정하게 유지하여 반응기의 안정화를 유지할 수 있다.In addition, the feed rate into the reactor is 0.7 to 0.9 L / h, it is preferable to maintain the temperature of the reactor at 45 to 55 ℃. Maintaining the temperature in the above range is less influenced by the external temperature to prevent the precipitation of metal in the cold winter, as well as to make the viscosity of the metal mixed solution constant, so that the amount of the metal mixed solution to be added is kept more constant. To stabilize the reactor.
그 다음, (c) 상기 (b)단계에서 얻은 금속복합수산화물과 리튬 화합물을 혼합하여 리튬금속복합수산화물을 제조한다.Then, (c) a lithium metal composite hydroxide is prepared by mixing the metal complex hydroxide and the lithium compound obtained in step (b).
상기 (b)단계에서 얻은 금속복합수산화물을 여과, 세척한 후 80 내지 140℃에서 8 내지 16시간 열처리한다. 그 후 리튬 원료 역할을 하는 리튬 화합물과 혼합하는데, 리튬 화합물로 수산화리튬(LiOH), 질산리튬(LiNO3) 및 탄산리튬(LiCO3) 등일반적으로 양극활물질을 제조하기 위해 사용되는 화합물을 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다. The metal complex hydroxide obtained in the step (b) is filtered and washed, and then heat-treated at 80 to 140 ° C. for 8 to 16 hours. Then for mixing with the lithium compound to the lithium source role, the lithium compound, lithium hydroxide (LiOH), lithium nitrate (LiNO 3) and to use the compounds used to prepare the general cathode active material such as lithium carbonate (LiCO 3) However, it is not necessarily limited thereto.
상기 (b)단계에서 얻은 금속복합수산화물과 리튬 화합물의 농도의 비는 1:1.05 내지 1:1.15이 되도록 혼합하는 것이 바람직하다. 1.05보다 작은 경우 최종 양극활물질의 용량이 저하되어 바람직하지 않고, 1.15를 초과하는 경우에는 미반응 리튬 화합물이 형성되어 용량이 저하되고 고온에서 가스 발생의 위험성이 있기 때문이다.The ratio of the concentration of the metal complex hydroxide and the lithium compound obtained in step (b) is preferably mixed so as to be 1: 1.05 to 1: 1.15. If it is less than 1.05, the capacity of the final cathode active material is lowered, which is not preferable. If it exceeds 1.15, an unreacted lithium compound is formed and the capacity is reduced, and there is a risk of gas generation at a high temperature.
마지막으로, (d) 상기 리튬금속복합수산화물을 소성하여 리튬금속복합산화물을 제조한다. 이 때, 상기 리튬금속복합수산화물을 800 내지 1100℃에서 8 내지 12시간 동안 열처리하여 소성하는 것이 바람직하다.Finally, (d) calcining the lithium metal composite hydroxide to produce a lithium metal composite oxide. At this time, the lithium metal composite hydroxide is preferably baked by heat treatment for 8 to 12 hours at 800 to 1100 ℃.
상기 설명된 본 발명의 제조방법은 기존의 용매에 반응 속도를 조절할 수 있는 염을 추가 혼합함으로써 뛰어난 밀도 특성을 가져 단위 부피당 용량 특성이 우수한 양극 활물질을 제조할 수 있게 된다.The method of the present invention described above is capable of producing a cathode active material having superior density characteristics by adding a salt capable of controlling a reaction rate to an existing solvent and having excellent capacity characteristics per unit volume.
이하의 실시를 통하여 본 발명이 더욱 상세하게 설명된다. 단, 실시예는 본 발명을 예시하기 위한 것으로서 이들만으로 본 발명의 범위가 한정되는 것은 아니다.The present invention is described in more detail through the following implementation. However, the examples are provided to illustrate the present invention, and the scope of the present invention is not limited only to these examples.
<실시예 1> <Example 1>
반응조에 총 반응용량 대비 30% 증류수를 투입하여 교반을 시작하고, 온도를 50℃까지 상승시킨 후 Na2SO4를 증류수 대비 5중량% 비율로 투입하여 1시간 동안 교반시켰다. 그리고 암모니아를 0.8몰 비율로 투입 후 충분히 섞일 때까지 교반 시켰다.30% distilled water relative to the total reaction capacity was added to the reaction tank to start stirring, and the temperature was raised to 50 ° C, and Na 2 SO 4 was added at a ratio of 5% by weight relative to distilled water and stirred for 1 hour. And ammonia was added at a rate of 0.8 mol and stirred until it was sufficiently mixed.
그 다음, 황산니켈, 황산코발트 및 황산망간의 몰 비가 0.5: 0.2: 0.3로 혼합된 2.5몰 농도의 금속혼합용액과 암모니아 용액을 각각의 농도의 비가 1:0.8을 유지하도록 하여 반응기에 0.8L/h으로 연속적으로 투입하였다. 또한 25% 농도의 수산화나트륨 수용액을 공급하여 pH가 11.5로 유지되도록 하였으며, 용액의 평균 체류시간은 13시간으로, 반응조의 평균 온도는 45 내지 55℃로 유지하였다.Then, a 2.5 mol metal mixed solution and an ammonia solution in which the molar ratio of nickel sulfate, cobalt sulfate and manganese sulfate were mixed in a ratio of 0.5: 0.2: 0.3 were added to the reactor at a ratio of 0.8 to 0.8 L /. It was dosed continuously in h. In addition, a 25% sodium hydroxide solution was supplied to maintain the pH at 11.5, the average residence time of the solution was 13 hours, the average temperature of the reactor was maintained at 45 to 55 ℃.
이렇게 얻은 화합물을 여과 및 물 세척한 후 110℃ 온풍건조기에서 12시간 동안 건조시켜 금속복합수산화물 형태의 전구체를 얻었다.The compound thus obtained was filtered and washed with water and then dried in a 110 ° C. hot air dryer for 12 hours to obtain a precursor of a metal complex hydroxide form.
그 후 탄산리튬을 상기 금속복합수산화물의 농도 기준 1.10배가 되도록 혼합한 후 1℃/min 승온 속도로 가열한 후, 950℃에서 10시간 열처리하는 소성 단계를 거쳐 양극 활물질 분말을 얻었다.Thereafter, lithium carbonate was mixed so as to be 1.10 times the concentration standard of the metal complex hydroxide, and heated at a temperature of 1 ° C./min, and then calcined to heat treatment at 950 ° C. for 10 hours to obtain a cathode active material powder.
<실시예 2><Example 2>
상기 실시예 1의 Na2SO4를 증류수 대비 5중량% 비율로 투입하는 대신, 10중량% 투입하는 것 외에는 상기 실시예 1과 동일하게 실시하여 양극 활물질 분말을 얻었다.Instead of adding Na 2 SO 4 of Example 1 in a 5% by weight ratio of distilled water, 10% by weight was carried out in the same manner as in Example 1 to obtain a positive electrode active material powder.
<실시예 3><Example 3>
상기 실시예 1의 Na2SO4를 증류수 대비 5중량% 비율로 투입하는 대신, 15중량% 투입하는 것 외에는 상기 실시예 1과 동일하게 실시하여 양극 활물질 분말을 얻었다.The positive electrode active material powder was obtained in the same manner as in Example 1 except that 15 wt% of Na 2 SO 4 of Example 1 was added at a ratio of 5 wt% based on the distilled water.
<실시예 4><Example 4>
상기 실시예 1의 Na2SO4를 증류수 대비 5중량% 비율로 투입하는 대신, 20중량% 투입하는 것 외에는 상기 실시예 1과 동일하게 실시하여 양극 활물질 분말을 얻었다.The positive electrode active material powder was obtained in the same manner as in Example 1 except that 20 wt% of Na 2 SO 4 of Example 1 was added at a ratio of 5 wt% based on distilled water.
<실시예 5>Example 5
상기 실시예 1의 Na2SO4를 증류수 대비 5중량% 비율로 투입하는 대신, 10중량% 투입하고, (NH4)2SO4를 5중량% 추가 투입한 것 외에는 상기 실시예 1과 동일하게 실시하여 양극 활물질 분말을 얻었다.In the same manner as in Example 1 except that Na 2 SO 4 of Example 1 was added in an amount of 5% by weight relative to distilled water, and 10% by weight was added and 5% by weight of (NH 4 ) 2 SO 4 was added. It carried out and obtained the positive electrode active material powder.
<실시예 6><Example 6>
상기 실시예 1의 Na2SO4를 증류수 대비 5중량% 비율로 투입하는 대신, 10중량% 투입하고, (NH4)2SO4를 10중량% 추가 투입한 것 외에는 상기 실시예 1과 동일하게 실시하여 양극 활물질 분말을 얻었다.In the same manner as in Example 1 except that Na 2 SO 4 of Example 1 was added in an amount of 5% by weight relative to distilled water, and 10% by weight of (NH 4 ) 2 SO 4 was added. It carried out and obtained the positive electrode active material powder.
<실시예 7><Example 7>
상기 실시예 1의 Na2SO4를 증류수 대비 5중량% 비율로 투입하는 대신, 15중량% 투입하고, (NH4)2SO4를 5중량% 추가 투입한 것 외에는 상기 실시예 1과 동일하게 실시하여 양극 활물질 분말을 얻었다.Instead of adding Na 2 SO 4 of Example 1 at a ratio of 5% by weight relative to distilled water, 15% by weight was added, and 5% by weight of (NH 4 ) 2 SO 4 was added in the same manner as in Example 1. It carried out and obtained the positive electrode active material powder.
<실시예 8><Example 8>
상기 실시예 1의 Na2SO4를 증류수 대비 5중량% 비율로 투입하는 대신, 15중량% 투입하고, (NH4)2SO4를 10중량% 추가 투입한 것 외에는 상기 실시예 1과 동일하게 실시하여 양극 활물질 분말을 얻었다.Instead of adding Na 2 SO 4 of Example 1 at a ratio of 5% by weight relative to distilled water, 15% by weight was added, and 10% by weight of (NH 4 ) 2 SO 4 was added in the same manner as in Example 1. It carried out and obtained the positive electrode active material powder.
<실시예 9>Example 9
상기 실시예 1의 Na2SO4를 증류수 대비 5중량% 비율로 투입하는 대신, 20중량% 투입하고, (NH4)2SO4를 5 중량% 추가 투입한 것 외에는 상기 실시예 1과 동일하게 실시하여 양극 활물질 분말을 얻었다.Instead of adding Na 2 SO 4 of Example 1 at a ratio of 5% by weight relative to distilled water, 20% by weight was added, and 5% by weight of (NH 4 ) 2 SO 4 was added in the same manner as in Example 1 above. It carried out and obtained the positive electrode active material powder.
<비교예 1>Comparative Example 1
용매인 증류수에 황산니켈, 황산코발트 및 황산망간의 몰 비가 0.5: 0.2: 0.3로 혼합된 2.5몰 농도의 금속혼합용액과 암모니아 용액을 혼합할 때, 금속혼합용액과 암모니아 용액 각각의 농도의 비가 1:0.8을 유지하도록 하여 반응기에 0.8L/h으로 연속적으로 투입하였다. 또한 25%농도의 수산화나트륨 수용액을 공급하여 pH가 11.5로 유지되도록 하였으며 용액의 평균 체류시간은 13시간으로, 반응조의 평균 온도는 45 내지 55℃로 유지하였다.When mixing a 2.5 mole concentration metal mixture solution and an ammonia solution mixed with 0.5: 0.2: 0.3 and a molar ratio of nickel sulfate, cobalt sulfate and manganese sulfate in distilled water as a solvent, the ratio of the concentration of the metal mixture solution and the ammonia solution was 1 The reactor was continuously charged at 0.8 L / h to maintain 0.8. In addition, the pH was maintained at 11.5 by supplying an aqueous 25% sodium hydroxide solution, the average residence time of the solution was 13 hours, the average temperature of the reactor was maintained at 45 to 55 ℃.
이렇게 얻은 화합물을 여과 및 물 세척한 후 110℃ 온풍건조기에서 12시간 동안 건조시켜 금속복합수산화물 형태의 전구체를 얻었다.The compound thus obtained was filtered and washed with water and then dried in a 110 ° C. hot air dryer for 12 hours to obtain a precursor of a metal complex hydroxide form.
그 후 탄산리튬을 상기 금속복합수산화물의 농도 기준 1.10배가 되도록 혼합한 후 1/min 승온 속도로 가열한 후, 950℃에서 10시간 열처리하는 소성 단계를 거쳐 양극 활물질 분말을 얻었다.Thereafter, the lithium carbonate was mixed so as to be 1.10 times the concentration standard of the metal complex hydroxide, heated at a temperature of 1 / min, and then calcined to heat treatment at 950 ° C. for 10 hours to obtain a cathode active material powder.
<실험예 1> SEM 사진 촬영 Experimental Example 1 SEM Photograph
상기 실시예 1 내지 8 및 비교예 1에 따른 양극 활물질의 SEM 사진을 촬영하였다. 그 결과를 도 2 내지 도 11에 도시하였다.SEM pictures of the cathode active material according to Examples 1 to 8 and Comparative Example 1 were taken. The results are shown in FIGS. 2 to 11.
도 2는 표면 분석 SEM 사진으로, 비교예 1((b))의 표면에 비하여 실시예 1((a))의 표면이 더 매끈하고 형태가 구형임을 확인할 수 있다.2 is a surface analysis SEM photograph, it can be confirmed that the surface of Example 1 ((a)) is smoother than the surface of Comparative Example 1 ((b)) and the shape is spherical.
또한, 도 3 내지 도 10은 실시예 1 내지 8, 도 11은 비교예 1의 단면 분석 SEM 사진으로, 본 발명의 실시예에 따른 양극 활물질이 보다 완전한 구형에 가까운 형태를 띄고, 입자의 내부에 기공이 적은 단단한 모양임을 확인할 수 있다.3 to 10 are Examples 1 to 8 and 11 are cross-sectional SEM images of Comparative Example 1, in which the cathode active material according to the embodiment of the present invention had a shape more close to a spherical shape. It can be confirmed that the pores have a small shape.
<실험예 2> 탭밀도 및 압축밀도 측정 Experimental Example 2 Measurement of Tap Density and Compression Density
상기 실시예 1 내지 9 및 비교예 1에 따른 양극 활물질의 탭밀도 및 압축밀도를 측정하였다. 그 결과를 하기 표 1 및 도 1에 나타내었다.The tap density and the compression density of the cathode active materials according to Examples 1 to 9 and Comparative Example 1 were measured. The results are shown in Table 1 and FIG. 1.
표 1
실시예1 실실예2 실시예3 실시예4 실시예5 실시예6 실시예7 실시예8 실시예9 비교예1
Na2SO4 5% 10% 15% 20% 10% 10% 15% 15% 20% 0%
(NH4)2SO4 0% 0% 0% 0% 5% 10% 5% 10% 5% 0%
탭밀도(g/㎤) 2.19 2.21 2.28 2.25 2.23 2.20 2.17 2.05 2.00 1.95
압축밀도(g/㎤) 2.98 3.08 3.11 3.05 3.07 3.06 3.30 2.99 2.94 2.79
Table 1
Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Comparative Example 1
Na 2 SO 4 5% 10% 15% 20% 10% 10% 15% 15% 20% 0%
(NH 4 ) 2 SO 4 0% 0% 0% 0% 5% 10% 5% 10% 5% 0%
Tap density (g / cm 3) 2.19 2.21 2.28 2.25 2.23 2.20 2.17 2.05 2.00 1.95
Compression Density (g / cm 3) 2.98 3.08 3.11 3.05 3.07 3.06 3.30 2.99 2.94 2.79
표 1 및 도 1에서 확인할 수 있는 바와 같이, 탭밀도 및 압축밀도는 양의 상관관계를 가지며, 모든 실시예에서 비교예보다 높게 나타났고 특히 실시예 3에서 두 값 모두가 가장 높게 나타났음을 확인할 수 있다. 본 발명에 의하여 제조된 양극활물질은 단위 부피당 용량 특성이 우수하다는 것을 확인할 수 있다.As can be seen in Table 1 and FIG. 1, the tap density and the compression density have a positive correlation, which is higher than that of the comparative example in all examples, and in particular, in Example 3, both values are the highest. have. It can be seen that the cathode active material prepared according to the present invention has excellent capacity characteristics per unit volume.

Claims (8)

  1. (a) 화학식 (1)로 나타내어지는 염과 암모니아를 증류수와 교반시켜 용액을 제조하는 단계;(a) stirring the salt and ammonia represented by the formula (1) with distilled water to prepare a solution;
    C+X- --------------------- 화학식 (1)C + X - --------------------- formula (1)
    (상기 화학식 (1)에서 C+는 Na+, K+, NH4 +, 및 Li+으로 이루어지는 군에서 선택되는 어느 하나 이상이고, X-는 SO4 2-, NO3 -, Cl-, CO3 2-, 및 COO-으로 이루어지는 군에서 선택되는 어느 하나 이상이다.)(In the formula (1), and C + is Na +, K +, NH 4 +, and at least one selected from the group consisting of Li +, X - is SO 4 2-, NO 3 -, Cl -, CO 3 2- , and COO , at least one selected from the group consisting of:
    (b) 상기 (a)단계에서 제조된 용액에, 니켈염, 코발트염, 및 망간염의 혼합 용액, pH 조절제로서 수산화염 용액 및 착화제를 혼합하여 공침법으로 금속복합수산화물을 제조하는 단계; (b) preparing a metal complex hydroxide by coprecipitation by mixing a solution prepared in step (a) with a mixed solution of nickel salt, cobalt salt, and manganese salt, a hydroxide salt solution and a complexing agent as a pH adjusting agent;
    (c) 상기 (b)단계에서 얻은 금속복합수산화물과 리튬 화합물을 혼합하여 리튬금속복합수산화물을 제조하는 단계; 및 (c) preparing a lithium metal composite hydroxide by mixing the metal complex hydroxide and the lithium compound obtained in step (b); And
    (d) 상기 (c)단계에서 얻은 리튬금속복합수산화물을 소성하여 리튬금속복합산화물을 제조하는 단계;로 이루어지는 것을 특징으로 하는 리튬 이차전지용 양극 활물질의 제조방법.(d) calcining the lithium metal composite hydroxide obtained in the step (c) to produce a lithium metal composite oxide; a method of manufacturing a positive electrode active material for a lithium secondary battery, characterized in that consisting of.
  2. 제1항에 있어서,The method of claim 1,
    상기 (a)단계에서 제조되는 용액 내의 X- 이온의 농도는 10 내지 20 중량 %인 것을 특징으로 하는 리튬 이차전지용 양극 활물질의 제조방법.The concentration of X - ions in the solution prepared in step (a) is 10 to 20% by weight manufacturing method of a positive electrode active material for a lithium secondary battery.
  3. 제1항에 있어서,The method of claim 1,
    상기 (b)단계에서의 상기 니켈염, 코발트염, 및 망간염은 상기 X-를 포함하는 니켈염, 코발트염, 및 망간염인 것을 특징으로 하는 리튬 이차전지용 양극 활물질의 제조방법.The nickel salt, cobalt salt, and manganese salt in the step (b) is a nickel salt, cobalt salt, and manganese salt containing the X - manufacturing method of a positive electrode active material for a lithium secondary battery.
  4. 제1항에 있어서, The method of claim 1,
    상기 (b)단계에서 상기 착화제는 암모니아이고, 상기 니켈염, 코발트염, 및 망간염의 혼합 용액과 상기 암모니아의 농도의 비가 1:0.7 내지 1:0.9가 되도록 연속적으로 혼합하며, pH는 10.5 내지 12.5의 범위를 유지하도록 하는 것을 특징으로 하는 리튬 이차전지용 양극 활물질의 제조방법.In the step (b), the complexing agent is ammonia, and the mixed solution of the nickel salt, cobalt salt, and manganese salt is continuously mixed so that the ratio of the concentration of the ammonia is 1: 0.7 to 1: 0.9, and the pH is 10.5. Method of manufacturing a cathode active material for a lithium secondary battery, characterized in that to maintain the range of 1 to 12.5.
  5. 제1항에 있어서,The method of claim 1,
    상기 pH 조절제로서의 수산화염 용액은 상기 C+을 포함하는 수산화염용액인 것을 특징으로 하는 리튬 이차전지용 양극 활물질의 제조방법.Hydroxide solution as the pH adjuster is a method for producing a cathode active material for a lithium secondary battery, characterized in that the hydroxide solution containing the C + .
  6. 제1항에 있어서, The method of claim 1,
    상기 (c)단계에서는 상기 (b)단계에서 얻은 금속복합수산화물과 리튬 화합물의 농도의 비가 1 : 1.05 내지 1 : 1.15 가 되도록 혼합하는 것을 특징으로 하는 리튬 이차전지용 양극 활물질의 제조방법.In the step (c), the method for producing a cathode active material for a lithium secondary battery, characterized in that the mixing ratio of the concentration of the metal complex hydroxide and the lithium compound obtained in the step (b) is 1: 1.05 to 1: 1.15.
  7. 제1항에 있어서, The method of claim 1,
    상기 (d)단계에서는 상기 리튬금속복합수산화물을 800 내지 1100℃에서 8 내지 12시간 동안 열처리하여 소성하는 것을 특징으로 하는 리튬 이차전지용 양극 활물질의 제조방법.In the step (d), the lithium metal composite hydroxide is heat-treated at 800 to 1100 ° C. for 8 to 12 hours to manufacture the positive electrode active material for a lithium secondary battery.
  8. 제1항 내지 제7항 중 어느 하나의 항에 의하여 제조된 리튬 이차전지용 양극 활물질.The cathode active material for a lithium secondary battery manufactured according to any one of claims 1 to 7.
PCT/KR2012/001824 2011-03-14 2012-03-14 Manufacturing method for anode material for lithium secondary battery and anode material for lithium secondary battery made thereby WO2012124970A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110022457A KR101282014B1 (en) 2011-03-14 2011-03-14 Manufacturing method of positive active material for lithium secondary battery and positive active material for lithium secondary battery made by the same
KR10-2011-0022457 2011-03-14

Publications (2)

Publication Number Publication Date
WO2012124970A2 true WO2012124970A2 (en) 2012-09-20
WO2012124970A3 WO2012124970A3 (en) 2013-03-07

Family

ID=46831202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/001824 WO2012124970A2 (en) 2011-03-14 2012-03-14 Manufacturing method for anode material for lithium secondary battery and anode material for lithium secondary battery made thereby

Country Status (2)

Country Link
KR (1) KR101282014B1 (en)
WO (1) WO2012124970A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103700855A (en) * 2013-12-12 2014-04-02 天津巴莫科技股份有限公司 Preparation method of high-performance lithium manganese phosphate material for lithium-ion power batteries
CN103700856A (en) * 2013-12-12 2014-04-02 天津巴莫科技股份有限公司 Preparation method of high-performance lithium manganese phosphate material for lithium-ion power batteries

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101449535B1 (en) 2013-08-05 2014-10-13 한국전력공사 Apparatus for monitoring signal processing of wind turbine blades and method thereof
KR101633638B1 (en) * 2013-11-28 2016-07-11 주식회사 포스코 Anode material for li-ion secondary battery and method for manufacturing the same
KR101589291B1 (en) * 2013-11-28 2016-01-28 주식회사 포스코 Anode material for li-ion secondary battery and method for manufacturing the same
KR102391115B1 (en) 2015-01-21 2022-04-27 삼성에스디아이 주식회사 Positive electrode active material and lithium secondary battery including positive electrode comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040095837A (en) * 2003-04-28 2004-11-16 선양국 Cathode active material for lithium secondary btteries prepared by coprecipitation method, method for preparing the same, and lithium secondary batteries using the same
KR100759751B1 (en) * 2006-05-08 2007-10-04 주식회사 에코프로 A manufacturing method and device of anode active material of lithium secondary battery using hydro cyclone
US7435402B2 (en) * 2002-11-01 2008-10-14 U Chicago Argonne Llc Method and apparatus for preparation of spherical metal carbonates and lithium metal oxides for lithium rechargeable batteries
KR20100057235A (en) * 2008-11-21 2010-05-31 주식회사 에코프로 Method for manufacturing metal composite oxide using li-ion battery and cathode active material with the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100765970B1 (en) 2006-09-29 2007-10-10 대정화금주식회사 Manganese complex oxides by co-precipitation method and preparation method of the same, and spinel type cathode active material for lithium secondary batteries using thereby and preparation method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7435402B2 (en) * 2002-11-01 2008-10-14 U Chicago Argonne Llc Method and apparatus for preparation of spherical metal carbonates and lithium metal oxides for lithium rechargeable batteries
KR20040095837A (en) * 2003-04-28 2004-11-16 선양국 Cathode active material for lithium secondary btteries prepared by coprecipitation method, method for preparing the same, and lithium secondary batteries using the same
KR100759751B1 (en) * 2006-05-08 2007-10-04 주식회사 에코프로 A manufacturing method and device of anode active material of lithium secondary battery using hydro cyclone
KR20100057235A (en) * 2008-11-21 2010-05-31 주식회사 에코프로 Method for manufacturing metal composite oxide using li-ion battery and cathode active material with the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103700855A (en) * 2013-12-12 2014-04-02 天津巴莫科技股份有限公司 Preparation method of high-performance lithium manganese phosphate material for lithium-ion power batteries
CN103700856A (en) * 2013-12-12 2014-04-02 天津巴莫科技股份有限公司 Preparation method of high-performance lithium manganese phosphate material for lithium-ion power batteries

Also Published As

Publication number Publication date
WO2012124970A3 (en) 2013-03-07
KR20120104821A (en) 2012-09-24
KR101282014B1 (en) 2013-07-05

Similar Documents

Publication Publication Date Title
WO2012093798A2 (en) Anode active material with whole particle concentration gradient for lithium secondary battery, method for preparing same, and lithium secondary battery having same
WO2014178625A1 (en) Anode active material for lithium secondary battery
WO2012011760A2 (en) Method for manufacturing anode active material precursor in lithium secondary battery, anode active material precursor in lithium secondary battery manufactured thereby, and method for preparing lithium metal composite oxide using the anode active material precursor and lithium metal composite oxide for anode active material in lithium secondary battery prepared thereby
WO2012124970A2 (en) Manufacturing method for anode material for lithium secondary battery and anode material for lithium secondary battery made thereby
WO2013147537A1 (en) Method for preparing cathode active material precursor for lithium secondary battery, cathode active material precursor for lithium secondary battery prepared thereby, and cathode active material for lithium secondary battery containing same
WO2013002457A1 (en) Positive electrode active material, electrode including the positive electrode active material, and lithium electrochemical battery
WO2014193203A1 (en) Anode active material for lithium cell and method for manufacturing same
WO2011126182A1 (en) Method for manufacturing a cathode active material for a secondary battery including a metal composite oxide, and cathode active material for a second battery including a metal composite oxide manufactured by said method
WO2016039511A1 (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery comprising same
WO2011081422A9 (en) Lithium composite oxide and a production method therefor
WO2017069407A1 (en) Precursor comprising multi-layered transition metal oxides for producing cathode active material, and cathode active material produced using precursor for lithium secondary battery
WO2015053580A1 (en) Anode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same
WO2016068681A1 (en) Transition metal oxide precursor, method for preparing same, lithium composite transition metal oxide, positive electrode comprising same, and secondary battery
WO2019004714A1 (en) Sulfide-based solid electrolyte material, preparation method therefor, method for preparing solid electrolyte layer and electrode composite layer which comprise sulfide-based solid electrolyte material, and all-solid-state battery comprising same
WO2014077663A1 (en) Anode active material for sodium secondary battery and method for producing same
WO2014077662A1 (en) Method for producing anode active material precursor for sodium secondary battery by using coprecipitation technique and anode active material precursor for sodium secondary battery produced thereby
WO2016035985A1 (en) Preparation method for positive electrode material for secondary battery
KR20190078720A (en) Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
WO2013085306A1 (en) Method for manufacturing cathode active material for lithium secondary battery
WO2019198944A1 (en) Method for producing positive electrode active material
WO2020096212A1 (en) Lithium compound, nickel-based cathode active material, method for preparing lithium oxide, method for preparing nickel-based cathode active material, and secondary battery using same
KR20140039651A (en) Method for preparing nickel-manganese complex hydroxides for cathode materials in lithium batteries, nickel-manganese complex hydroxides prepared by the method and cathode materials in lithium batteries comprising the same
WO2010126185A1 (en) Preparation method for olivine type cathode active material for lithium secondary battery, and lithium secondary battery using the same
WO2016068682A1 (en) Transition metal oxide precursor, lithium composite transition metal oxide, positive electrode comprising same, and secondary battery
KR101681297B1 (en) All solid lithium secondary batteries and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757544

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12757544

Country of ref document: EP

Kind code of ref document: A2