WO2015053580A1 - Anode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same - Google Patents

Anode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2015053580A1
WO2015053580A1 PCT/KR2014/009516 KR2014009516W WO2015053580A1 WO 2015053580 A1 WO2015053580 A1 WO 2015053580A1 KR 2014009516 W KR2014009516 W KR 2014009516W WO 2015053580 A1 WO2015053580 A1 WO 2015053580A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
active material
phosphorus
positive electrode
electrode active
Prior art date
Application number
PCT/KR2014/009516
Other languages
French (fr)
Korean (ko)
Inventor
최수안
이승원
최창민
권수연
조성우
안지선
Original Assignee
주식회사 엘앤에프신소재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘앤에프신소재 filed Critical 주식회사 엘앤에프신소재
Publication of WO2015053580A1 publication Critical patent/WO2015053580A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • It relates to a positive electrode active material for a lithium secondary battery, a production method thereof and a lithium secondary battery.
  • Lithium-containing cobalt oxide (LiCoO 2 ) is mainly used as a positive electrode active material of a lithium secondary battery.
  • lithium-containing manganese oxides such as LiMnO 2 in a layered crystal structure and LiMn 2 O 4 in a spinel crystal structure, and lithium-containing nickel oxide
  • (LiNiO 2 ) is also contemplated.
  • LiCoO 2 is widely used due to its excellent physical properties such as excellent cycle characteristics, but it is low in safety and expensive due to resource limitations of cobalt as a raw material, and is a large power source for fields such as electric vehicles and hybrid electric vehicles. There is a limit to use.
  • Lithium manganese oxides such as LiMnO 2 and LiMn 2 O 4 have the advantage of using a resource-rich and environmentally friendly manganese as a raw material, attracting a lot of attention as a cathode active material that can replace LiCoO 2 .
  • lithium manganese oxides have the disadvantages of low capacity and poor cycle characteristics at high temperatures.
  • lithium nickel-based oxides are less expensive than cobalt-based oxides and exhibit high discharge capacity when charged to 4.3 V.
  • the reversible capacity of doped lithium nickel-based oxides exceeds the capacity of LiCoO 2 (about 165 mAh / g). Approx. 200 mAh / g. Therefore, despite the slightly lower discharge voltage and volumetric density, commercialized batteries including nickel-based positive electrode active materials have improved energy density, and thus, researches on such nickel-based positive electrode active materials have recently been conducted to develop high capacity batteries. It is actively underway.
  • the nickel-based positive electrode active material has a problem in that a volume change occurs during a charge and discharge cycle and a sudden phase transition occurs thereby causing crystal structure collapse.
  • a volume change occurs during a charge and discharge cycle and a sudden phase transition occurs thereby causing crystal structure collapse.
  • LG Chem in this case lithium by excess lithium source
  • the present invention provides a positive electrode active material for a lithium secondary battery having a reduced amount of residual lithium and a method of manufacturing the same, and provides a lithium secondary battery having improved performance such as life characteristics.
  • the core comprising a compound represented by the following formula (1); And a solid solution disposed on the surface of the core and containing lithium (Li), phosphorus (P), and oxygen (O).
  • M 1 and M 2 are different from each other, Al, B, Mg, Ti, or Zr, 95 ⁇ x ⁇ 1.2, 0 ⁇ a ⁇ 0.4, 0 ⁇ b ⁇ 0.4, 0 ⁇ c ⁇ 0.01, 0 ⁇ d ⁇ 0.01, and 0 ⁇ a + b + c + d ⁇ 0.4.
  • the solid solution contains lithium (Li) and phosphorus (P) and oxygen (O), and may be, for example, in the form of Li 3 PO 4 , Li 4 P 2 O 7 or other compound in which Li, P, and O are bonded.
  • the position of the energy at which the intensity of the peak due to the phosphorus (P) atom of the solid solution becomes maximum is 133 eV to 135 eV. Which is an important requirement in the present invention.
  • the amount of lithium remaining in the cathode active material may be 50% or less than the amount of lithium remaining in the core before including the solid solution.
  • Total Lithium, TTL Total Lithium
  • the compound additive containing lithium and phosphorus It may be in the form of a compound in which lithium (Li), phosphorus (P), and oxygen (O) are essentially bound and hydrogen (H) is selectively bonded.
  • the compound additive containing the lithium and phosphorus is, for example Li 2 P 2 O 6, LiH 2 PO 4 , or a combination thereof.
  • the compound additive containing lithium and phosphorus may be added so that the content of phosphorus (P) is 0.05 to 0.5 parts by weight based on 100 parts by weight of the compound represented by Chemical Formula 1.
  • a solid solution containing lithium, phosphorus, and oxygen may be formed on the surface of the compound represented by Chemical Formula 1 by the heat treatment.
  • the heat treatment may be performed at 300 ° C to 500 ° C.
  • Another embodiment of the present invention provides a lithium secondary battery including a cathode, an anode, and an electrolyte including the cathode active material.
  • the content of lithium remaining on the surface of the positive electrode active material is reduced to improve performance such as life characteristics of the lithium secondary battery.
  • Example 1 is an X-ray photoelectron spectroscopic analysis graph of the positive electrode active material of Example 3 and Comparative Example 3.
  • a positive electrode active material for a lithium secondary battery including a core including a compound represented by Chemical Formula 1, and a solid solution disposed on a surface of the core and containing lithium (Li), phosphorus (P), and oxygen (O).
  • M 1 and M 2 are different from each other, Al, B, Mg, Ti, or Zr, 0.95 ⁇ x ⁇ 1.2, 0 ⁇ a ⁇ 0.4, 0 ⁇ b ⁇ 0.4, 0 ⁇ c ⁇ 0.01, 0 ⁇ d ⁇ 0.01, and 0 ⁇ a + b + c + d ⁇ 0.4
  • the amount of lithium remaining in the cathode active material is significantly reduced.
  • the lithium secondary battery including the same has improved life characteristics.
  • the compound represented by Chemical Formula 1 is a lithium nickel metal composite oxide, and is a nickel rich oxide.
  • 1-a-b-c-d which is a molar ratio of nickel
  • the molar ratio of nickel may be 0.65 to 1.0, 0.7 to 1.0, 0.8 to 1.0, 0.6 to 0.9, and 0.7 to 0.9.
  • 0 ⁇ a + b + c + d ⁇ 0.4 0 ⁇ a + b + c + d ⁇ 0.3
  • 0 ⁇ a + b + c + d ⁇ 0.2 0 ⁇ a + b + c + d ⁇ 0.4
  • 0.1 ⁇ a + b + c + d ⁇ 0.4 0.1 ⁇ a + b + c + d ⁇ 0.3.
  • Such a nickel-rich cathode active material can implement high rate charge / discharge characteristics and high rate output characteristics, and particularly, as the nickel content increases, the energy density is high and it is advantageous in terms of price.
  • the nickel-rich cathode active material may have problems such as side reactions with the electrolyte due to the lithium-containing compound remaining as the charge and discharge cycle proceeds.
  • the cathode active material according to the embodiment may contain 60% or more of nickel, and the remaining lithium content may be significantly reduced.
  • x is a molar ratio of lithium (Li), wherein 0.95 ⁇ x ⁇ 1.2.
  • Formula 1 may include cobalt (Co), a may be a molar ratio of cobalt 0 ⁇ a ⁇ 0.4 and specifically 0.1 ⁇ a ⁇ 0.4, 0.1 ⁇ a ⁇ 0.3.
  • Formula 1 may include manganese (Mn), b may be a mole ratio of manganese 0 ⁇ a ⁇ 0.4 and specifically 0.1 ⁇ b ⁇ 0.4, 0.1 ⁇ b ⁇ 0.3.
  • Formula 1 may further contain one or more elements from Al, B, Mg, Ti, or Zr. Due to the doping, the low temperature (approximately 5 ° C.) life characteristics are greatly improved, and the thermal stability is improved, thereby moving the maximum heat generation temperature toward the high temperature and reducing the amount of heat generated.
  • One example may include zirconium Zr.
  • the core may be a Ni-based positive electrode active material containing an excessive amount of Ni in an active material of 60% or more.
  • a cathode active material has a structure in which a solid solution is formed on a surface of the core, and the solid solution includes lithium, phosphorus, and oxygen.
  • the solid solution may be, for example, Li 3 PO 4 , Li 4 P 2 O 7 or another compound in which Li, P, and O are bonded.
  • the position of the energy at which the intensity of the peak due to the phosphorus (P) atom of the solid solution becomes maximum may be 133 eV to 135 eV.
  • the position of energy that maximizes the peak intensity varies depending on the bonding state of lithium (Li), phosphorus (P), and oxygen (O).
  • the energy at which the peak intensity attributable to the phosphorus (P) atom is maximized is at a position in the range of 133 eV to 135 eV, and the lithium (Li) and phosphorus (P) atoms present on the surface of the compound represented by Formula 1 This means that the oxygen (O) atom has a chemical bond.
  • the remaining lithium may be present in the form of Li 2 CO 3 , LiOH, and the like.
  • the amount of lithium remaining in the cathode active material may be 50% or less than the amount of lithium remaining in the core before including the solid solution. That is, the amount of lithium remaining in the positive electrode active material including the solid solution and the core represented by Formula 1 is 50 of the amount of lithium remaining in the positive electrode active material including the core represented by Formula 1 without including the solid solution. It may be less than or equal to%.
  • total lithium, TTL total lithium
  • the cathode active material according to the exemplary embodiment may reduce the amount of lithium remaining, thereby inhibiting side reactions with the electrolyte and improving battery life characteristics.
  • a method of manufacturing a cathode active material for a lithium secondary battery comprising mixing the compound represented by Chemical Formula 1, and a compound additive containing lithium and phosphorus, and heat treating the mixture of the above steps.
  • a cathode active material including a core including the compound represented by Formula 1 and a solid solution containing lithium, phosphorus, and oxygen on the surface of the core may be manufactured.
  • the cathode active material according to the manufacturing method of the present invention may reduce the amount of lithium remaining to improve the performance of the battery.
  • the compound additive containing lithium and phosphorus is, for example, Li 2 P 2 O 6, LiH 2 PO 4 or other compounds in which Li and P and O are essential and H is selectively bonded.
  • the compound additive containing lithium and phosphorus may be added in an amount of 0.05 to 0.5 parts by weight based on 100 parts by weight of the compound represented by Chemical Formula 1. Specifically, 0.1 to 0.3 parts by weight may be added. In this case, lithium remaining in the cathode active material may be effectively reduced.
  • the mixing step may be specifically carried out by a dry mixing method.
  • the compound additive containing lithium and phosphorus may be attached to the surface of the compound represented by the formula (1).
  • a solid solution containing lithium, phosphorus, and oxygen may be formed on the surface of the compound represented by Chemical Formula 1.
  • the solid solution thus formed may be, for example, Li 3 PO 4 , Li 4 P 2 O 7, or the like.
  • the compound containing lithium (Li) and phosphorus (P) is Li 2 CO 3 and LiOH remaining on the surface of the compound represented by the formula (1) than the compound containing only phosphorus (P) except lithium (Li) and Has high reactivity.
  • the heat treatment may be performed at 300 ° C to 500 ° C, specifically 350 ° C to 450 ° C.
  • This is a temperature range for producing a solid solution
  • the compound additive containing lithium and phosphorus may be fused to the surface of the compound represented by Formula 1 in the process of heating up to the range, in the process of maintaining the temperature range
  • Compound additives containing lithium and phosphorus may form a solid solution by reacting with lithium remaining on the surface of the compound represented by Chemical Formula 1.
  • the dry mixed powder was heat-treated at 890 ° C. for 8 hours to prepare a lithium composite compound.
  • LiH 2 PO 4 1000 ppm of LiH 2 PO 4 was added to the Zr-doped lithium composite compound obtained in Preparation Example 1 as a compound additive including lithium (Li) and phosphorus (P), followed by dry mixing to uniformly adhere to the surface of the lithium composite compound. . Thereafter, the mixed powder was heat treated at 400 ° C. for 6 hours to prepare a cathode active material in which a compound including lithium (Li), phosphorus (P), and oxygen (O) was dissolved in the surface.
  • a positive electrode active material was prepared in the same manner as in Example 1, except that 2000 ppm of the compound additive LiH 2 PO 4 including Li and P was added.
  • a positive electrode active material was manufactured in the same manner as in Example 1, except that 3000 ppm of LiH 2 PO 4 was added as a compound additive including lithium (Li) and phosphorus (P).
  • a positive electrode active material was manufactured in the same manner as in Example 3, except that the compound additive including lithium (Li) and phosphorus (P) was added through Preparation Example 4.
  • LiH 2 PO 4 1000 ppm of LiH 2 PO 4 was added to the Zr-doped lithium composite compound obtained in Preparation Example 2 as a compound additive including lithium (Li) and phosphorus (P), followed by dry mixing to uniformly adhere to the surface of the lithium composite compound. . Thereafter, the mixed powder was heat treated at 400 ° C. for 6 hours to prepare a cathode active material in which a compound including lithium (Li), phosphorus (P), and oxygen (O) was dissolved in the surface.
  • a positive electrode active material was manufactured in the same manner as in Example 5, except that 2000 ppm of LiH 2 PO 4 was added as a compound additive including lithium (Li) and phosphorus (P) in Example 5.
  • a positive electrode active material was manufactured in the same manner as in Example 5, except that 3000 ppm of LiH 2 PO 4 was added as a compound additive including lithium (Li) and phosphorus (P) in Example 5.
  • a positive electrode active material was manufactured in the same manner as in Example 7, except for adding the compound additive obtained through Preparation Example 4 as a compound additive including lithium (Li) and phosphorus (P) in Example 7.
  • LiH 2 PO 4 1000 ppm of LiH 2 PO 4 was added to the Zr-doped lithium composite compound obtained in Preparation Example 3 as a compound additive including lithium (Li) and phosphorus (P), followed by dry mixing to uniformly adhere to the surface of the lithium composite compound. . Thereafter, the mixed powder was heat treated at 400 ° C. for 6 hours to prepare a cathode active material in which a compound including lithium (Li), phosphorus (P), and oxygen (O) was dissolved in the surface.
  • a positive electrode active material was manufactured in the same manner as in Example 9, except that 2000 ppm of LiH 2 PO 4 was added as a compound additive including lithium (Li) and phosphorus (P) in Example 9.
  • a positive electrode active material was manufactured in the same manner as in Example 9, except that 3000 ppm of LiH 2 PO 4 was added as a compound additive including lithium (Li) and phosphorus (P) in Example 9.
  • a positive electrode active material was manufactured in the same manner as in Example 11, except that Example 11 was added as a compound additive including lithium (Li) and phosphorus (P).
  • the material obtained in Preparation Example 1 was used as a cathode active material.
  • the material obtained in Preparation Example 2 was used as a cathode active material as it is.
  • the material obtained in Preparation Example 3 was used as a cathode active material as it is.
  • the material obtained in Preparation Example 1 was calcined once more at 700 ° C. for 6 hours without adding a compound additive including lithium (Li) and phosphorus (P) to be used as a cathode active material.
  • the material obtained in Preparation Example 3 was calcined once more at 700 ° C. for 6 hours without adding compound additives including lithium (Li) and phosphorus (P) to be used as a cathode active material.
  • a positive electrode active material was prepared in the same manner as in Example 3, except that (NH 4 ) 3 PO 4 was used instead of the compound additive including lithium (Li) and phosphorus (P) in Example 3.
  • a cathode active material was manufactured in the same manner as in Example 7, except that (NH 4 ) 3 PO 4 was used instead of the compound additive including lithium (Li) and phosphorus (P) in Example 7.
  • a positive electrode active material was prepared in the same manner as in Example 11, except that (NH 4 ) 3 PO 4 was used instead of the compound additive including Li and P in Example 11.
  • Example 1 Li content Metal content Doping element M Li and P-containing compound additives Refiring Temperature (°C) Remarks Ni Co Mn Kinds Content (ppm) Kinds Content (ppm)
  • Example 1 1.02 0.6 0.2 0.2 Zr 1500 LiH 2 PO 4 1000 400 60, 1000
  • Example 2 1.02 0.6 0.2 0.2 Zr 1500 LiH 2 PO 4 2000 400 60, 2000
  • Example 3 1.02 0.6 0.2 0.2 Zr 1500 LiH 2 PO 4 3000 400 60, 3000
  • Example 4 1.02 0.6 0.2 0.2 Zr 1500 Li 2 P 2 O 6 3000 400 LiP source change
  • Example 5 1.02 0.7 0.15 0.15 Zr 1500 LiH 2 PO 4 1000 400 70, 1000
  • Example 6 1.02 0.7 0.15 0.15 Zr 1500 LiH 2 PO 4 2000 400 70, 2000
  • Example 7 1.02 0.7 0.15 0.15 Zr 1500 LiH 2 PO 4 3000 400 70, 3000
  • Example 8 1.02 0.7 0.15 0.15 Zr 1500 Li 2 P 2 O 6 3000 400
  • Evaluation example 1 X-ray photoelectron spectroscopy (X- ray Photoelectron Spectroscopy ; XPS )
  • Example 3 XPS analysis of the cathode active materials prepared in Example 3 and Comparative Example 3 shows the results in FIG. 1.
  • FIG. 1 in the case of Example 3, it can be seen that the position of the energy at which the peak intensity due to the phosphorus (P) atom becomes the maximum ranges from 133 eV to 135 eV. Through this, it can be seen that lithium, phosphorus and oxygen atoms remaining on the surface of the positive electrode active material are in a chemical bonding state.
  • the amount of lithium remaining in the cathode active materials prepared in Examples and Comparative Examples is measured separately for each compound containing Li (eg, LiOH or Li 2 CO 3 ) remaining by the potentiometric neutralization method, and then separately calculates the total amount of Li alone. It was set as the value (TTL, Total Lithium).
  • Li eg, LiOH or Li 2 CO 3
  • Equation 1 The calculation method is shown in Equation 1 below.
  • a positive electrode slurry was prepared by adding to 5.0 wt%.
  • the positive electrode slurry was applied to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of 20 to 40 ⁇ m, vacuum dried, and roll pressed to prepare a positive electrode.
  • Al aluminum
  • Li-metal was used as the negative electrode.
  • a half cell of a coin cell type was prepared by using a cathode and a lithium metal as described above, and 1.15 M LiPF 6 and ethylene carbonate (EC): dimethyl carbonate (DMC) (1: 1 vol%) as an electrolyte. .
  • Capacity of 1 cycle, 20 cycles and 30 cycles was measured under the conditions of 1 C, and the capacity retention rates at 20 cycles and 30 cycles compared to 1 cycle were evaluated. The results are shown in Table 2 below.
  • Example 9 to 12 are cathode active materials containing 80% of nickel, and it can be seen that the residual lithium content is reduced compared to Comparative Example 3 containing 80% of nickel.

Abstract

The present invention relates to an anode active material, a method for manufacturing same, and a lithium secondary battery comprising same, the anode active material comprising: a core containing a compound represented by chemical formula 1 below; and a solid solution which is placed on the surface of the core and contains lithium (Li), phosphorous (P), and oxygen (O). [Chemical formula 1] LixNi(1-a-b-c-d)CoaMnbM1 cM2 dO2, wherein the definition of chemical formula 1 is as described in the specification.

Description

리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 Cathode active material for lithium secondary battery, preparation method thereof, and lithium secondary battery comprising same
리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 리튬 이차 전지에 관한 것이다.It relates to a positive electrode active material for a lithium secondary battery, a production method thereof and a lithium secondary battery.
리튬이차전지의 보급Distribution of Lithium Secondary Batteries
모바일 기기에 대한 수요와 기술 개발이 증가함에 따라 에너지원으로서의 이차 전지의 수요가 급격히 증가하고 있고, 이차 전지 중 높은 에너지 밀도와 전압을 가지고 사이클 수명이 길며, 자기 방전율이 낮은 리튬 이차 전지가 상용화되어 널리 사용되고 있다. As the demand for mobile devices and technology developments increase, the demand for secondary batteries as energy sources is rapidly increasing, and lithium secondary batteries with high energy density and voltage, long cycle life, and low self discharge rate are commercialized. It is widely used.
양극재의 적용Application of Cathode Material
리튬 이차 전지의 양극 활물질로는 리튬 함유 코발트 산화물(LiCoO2)이 주로 사용되고 있고, 그 외에 층상 결정 구조의 LiMnO2, 스피넬 결정 구조의 LiMn2O4 등의 리튬 함유 망간 산화물과, 리튬 함유 니켈 산화물(LiNiO2)의 사용도 고려되고 있다. Lithium-containing cobalt oxide (LiCoO 2 ) is mainly used as a positive electrode active material of a lithium secondary battery. In addition, lithium-containing manganese oxides such as LiMnO 2 in a layered crystal structure and LiMn 2 O 4 in a spinel crystal structure, and lithium-containing nickel oxide The use of (LiNiO 2 ) is also contemplated.
상기 양극 활물질들 중 LiCoO2은 우수한 사이클 특성 등 제반 물성이 우수하여 많이 사용되고 있지만, 안전성이 낮으며 원료로서 코발트의 자원적 한계로 인해 고가이고, 전기자동차, 하이브리드 전기자동차 등과 같은 분야의 동력원으로 대량 사용하기에는 한계가 있다. Among the cathode active materials, LiCoO 2 is widely used due to its excellent physical properties such as excellent cycle characteristics, but it is low in safety and expensive due to resource limitations of cobalt as a raw material, and is a large power source for fields such as electric vehicles and hybrid electric vehicles. There is a limit to use.
LiMnO2, LiMn2O4 등의 리튬 망간 산화물은 원료로서 자원이 풍부하고 환경친화적인 망간을 사용한다는 장점을 가지고 있으므로, LiCoO2를 대체할 수 있는 양극 활물질로 많은 관심을 모으고 있다. 그러나 리튬 망간 산화물은 용량이 작고 고온에서 사이클 특성 등이 나쁘다는 단점을 가지고 있다.Lithium manganese oxides such as LiMnO 2 and LiMn 2 O 4 have the advantage of using a resource-rich and environmentally friendly manganese as a raw material, attracting a lot of attention as a cathode active material that can replace LiCoO 2 . However, lithium manganese oxides have the disadvantages of low capacity and poor cycle characteristics at high temperatures.
니켈의 적용Application of nickel
반면 리튬 니켈계 산화물은 코발트계 산화물보다 비용이 저렴하면서도 4.3 V로 충전되었을 때 높은 방전 용량을 나타내는 바, 도핑된 리튬 니켈계 산화물의 가역 용량은 LiCoO2의 용량(약 165 mAh/g)을 초과하는 약 200 mAh/g에 근접한다. 따라서 약간 낮은 방전 전압과 체적 밀도(volumetric density)에도 불구하고, 니켈계 양극 활물질을 포함하는 상용화 전지는 개선된 에너지 밀도를 가지므로, 최근 고용량 전지를 개발하기 위하여 이러한 니켈계 양극 활물질에 대한 연구가 활발하게 진행되고 있다. On the other hand, lithium nickel-based oxides are less expensive than cobalt-based oxides and exhibit high discharge capacity when charged to 4.3 V. The reversible capacity of doped lithium nickel-based oxides exceeds the capacity of LiCoO 2 (about 165 mAh / g). Approx. 200 mAh / g. Therefore, despite the slightly lower discharge voltage and volumetric density, commercialized batteries including nickel-based positive electrode active materials have improved energy density, and thus, researches on such nickel-based positive electrode active materials have recently been conducted to develop high capacity batteries. It is actively underway.
니켈계 양극 활물질의 문제점Problems of Nickel-Based Cathode Active Material
그러나 니켈계 양극 활물질은 충방전 사이클이 진행되는 동안 체적 변화가 일어나며 이에 의한 급격한 상전이가 발생하여 결정구조 붕괴가 일어나는 문제점이 있다. 이에, LiNiO2계를 제조하는 과정에서 결정 구조를 잘 형성시키기 위해 리튬 소스를 과잉으로 넣는 방법으로 이를 보완하였으나, 국내등록특허 제10-1169947호(LG화학)에서는 이 경우 과잉 리튬 소스에 의해 리튬 함유 불순물이 발생하여 전지의 성능이 저하되는 문제를 지적하였다.However, the nickel-based positive electrode active material has a problem in that a volume change occurs during a charge and discharge cycle and a sudden phase transition occurs thereby causing crystal structure collapse. Thus, in order to form a crystal structure well in the process of manufacturing the LiNiO 2 system supplemented with a method of excess lithium source, but in the case of domestic patent No. 10-1169947 (LG Chem) in this case lithium by excess lithium source The problem that the impurity which generate | occur | produces and the battery performance falls is pointed out.
잔류하는 리튬량이 저감된 리튬 이차 전지용 양극 활물질 및 이의 제조 방법을 제공하고, 수명 특성 등의 성능이 향상된 리튬 이차 전지를 제공하는 것이다. The present invention provides a positive electrode active material for a lithium secondary battery having a reduced amount of residual lithium and a method of manufacturing the same, and provides a lithium secondary battery having improved performance such as life characteristics.
본 발명의 일 구현예에서는 하기 화학식 1로 표시되는 화합물을 포함하는 코어; 및 상기 코어의 표면에 위치하고 리튬(Li), 인(P) 및 산소(O)를 함유하는 고용체;를 포함하는 리튬 이차 전지용 양극 활물질을 제공한다. In one embodiment of the present invention, the core comprising a compound represented by the following formula (1); And a solid solution disposed on the surface of the core and containing lithium (Li), phosphorus (P), and oxygen (O).
[화학식 1][Formula 1]
LixNi(1-a-b-c-d)CoaMnbM1 cM2 dO2 Li x Ni (1-abcd) Co a Mn b M 1 c M 2 d O 2
상기 화학식 1에서, M1 및 M2는 서로 상이한 원소로, Al, B, Mg, Ti, 또는 Zr이고, 95≤x≤1.2, 0<a≤0.4, 0<b≤0.4, 0≤c≤0.01, 0≤d≤0.01, 및 0≤a+b+c+d≤0.4이다. In Formula 1, M 1 and M 2 are different from each other, Al, B, Mg, Ti, or Zr, 95≤x≤1.2, 0 <a≤0.4, 0 <b≤0.4, 0≤c≤ 0.01, 0 ≦ d ≦ 0.01, and 0 ≦ a + b + c + d ≦ 0.4.
상기 고용체는 리튬(Li) 및 인(P) 및 산소(O)를 함유하며, 예를 들어 Li3PO4, Li4P2O7 또는 Li과 P과 O가 결합한 다른 화합물 형태일 수 있다. The solid solution contains lithium (Li) and phosphorus (P) and oxygen (O), and may be, for example, in the form of Li 3 PO 4 , Li 4 P 2 O 7 or other compound in which Li, P, and O are bonded.
상기 양극 활물질의 입자 표면에 대한 X선 광전자 분광 분석(X-ray Photoelectron Spectroscopy; XPS)에서 상기 고용체의 인(P) 원자에 기인하는 피크의 강도가 최대가 되는 에너지의 위치는 133 eV 내지 135 eV일 수 있으며, 이는 본 발명에 있어서 중요한 요건이 된다.In X-ray photoelectron spectroscopy (XPS) on the particle surface of the positive electrode active material, the position of the energy at which the intensity of the peak due to the phosphorus (P) atom of the solid solution becomes maximum is 133 eV to 135 eV. Which is an important requirement in the present invention.
상기 양극 활물질에 잔류하는 리튬의 양은 상기 고용체를 포함하기 전의 코어에 잔류하는 리튬의 양에 비하여 50% 이하일 수 있다. The amount of lithium remaining in the cathode active material may be 50% or less than the amount of lithium remaining in the core before including the solid solution.
상기 양극 활물질에 잔류하는 리튬의 총량(Total Lithium, TTL)은 상기 양극 활물질 100 중량부에 대하여 0.1 중량부 이하일 수 있다. The total amount of lithium remaining in the cathode active material (Total Lithium, TTL) may be 0.1 parts by weight or less based on 100 parts by weight of the cathode active material.
본 발명의 다른 일 구현예에 있어서는 화학식 1로 표시되는 화합물; 및 리튬과 인을 함유하는 화합물 첨가제;를 혼합하는 단계, 및 상기 단계의 혼합물을 열처리하는 단계를 포함하는 리튬 이차 전지용 양극 활물질의 제조 방법을 제공한다. In another embodiment of the present invention; And a compound additive containing lithium and phosphorus; and a heat treatment of the mixture of the above steps.
화학식 1의 정의 및 이에 대한 설명은 전술한 바와 같다. The definition of Formula 1 and a description thereof are as described above.
상기 리튬과 인을 함유하는 화합물 첨가제는 리튬(Li), 인(P), 및 산소(O)가 필수로 결합되어 있고 수소(H)가 선택적으로 결합된 화합물 형태일 수 있다. 상기 리튬과 인을 함유하는 화합물 첨가제는 예를 들어 Li2P2O6, LiH2PO4, 또는 이들의 조합일 수 있다. The compound additive containing lithium and phosphorus It may be in the form of a compound in which lithium (Li), phosphorus (P), and oxygen (O) are essentially bound and hydrogen (H) is selectively bonded. The compound additive containing the lithium and phosphorus is, for example Li 2 P 2 O 6, LiH 2 PO 4 , or a combination thereof.
상기 리튬과 인을 함유하는 화합물 첨가제는 상기 화학식 1로 표시되는 화합물 100 중량부에 대하여 인(P)의 함량이 0.05 내지 0.5중량부가 되도록 첨가되는 것일 수 있다. The compound additive containing lithium and phosphorus may be added so that the content of phosphorus (P) is 0.05 to 0.5 parts by weight based on 100 parts by weight of the compound represented by Chemical Formula 1.
상기 열처리하는 단계에 의하여 상기 화학식 1로 표시되는 화합물의 표면에 리튬, 인 및 산소를 함유하는 고용체가 형성될 수 있다. A solid solution containing lithium, phosphorus, and oxygen may be formed on the surface of the compound represented by Chemical Formula 1 by the heat treatment.
상기 열처리하는 단계는 300℃ 내지 500℃에서 수행되는 것일 수 있다. The heat treatment may be performed at 300 ° C to 500 ° C.
본 발명의 또 다른 일 구현예에서는 상기 양극 활물질을 포함하는 양극, 음극, 및 전해질을 포함하는 리튬 이차 전지를 제공한다. Another embodiment of the present invention provides a lithium secondary battery including a cathode, an anode, and an electrolyte including the cathode active material.
양극 활물질의 표면에 잔류하는 리튬의 함량이 저감되어 리튬 이차 전지의 수명 특성 등의 성능이 향상된다.The content of lithium remaining on the surface of the positive electrode active material is reduced to improve performance such as life characteristics of the lithium secondary battery.
도 1은 실시예 3 및 비교예 3의 양극 활물질에 대한 X선 광전자 분광 분석 그래프이다.1 is an X-ray photoelectron spectroscopic analysis graph of the positive electrode active material of Example 3 and Comparative Example 3.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다.Hereinafter, embodiments of the present invention will be described in detail. However, this is presented as an example, by which the present invention is not limited and the present invention is defined only by the scope of the claims to be described later.
일 구현예에서는 하기 화학식 1로 표시되는 화합물을 포함하는 코어, 및 상기 코어의 표면에 위치하고, 리튬(Li) 및 인(P) 및 산소(O)를 함유하는 고용체를 포함하는 리튬 이차 전지용 양극 활물질을 제공한다. In one embodiment, a positive electrode active material for a lithium secondary battery including a core including a compound represented by Chemical Formula 1, and a solid solution disposed on a surface of the core and containing lithium (Li), phosphorus (P), and oxygen (O). To provide.
[화학식 1][Formula 1]
LixNi(1-a-b-c-d)CoaMnbM1 cM2 dO2 Li x Ni (1-abcd) Co a Mn b M 1 c M 2 d O 2
상기 화학식 1에서, M1 및 M2는 서로 상이한 원소로, Al, B, Mg, Ti, 또는 Zr이고, 0.95≤x≤1.2, 0<a≤0.4, 0<b≤0.4, 0≤c≤0.01, 0≤d≤0.01, 및 0≤a+b+c+d≤0.4이다In Formula 1, M 1 and M 2 are different from each other, Al, B, Mg, Ti, or Zr, 0.95≤x≤1.2, 0 <a≤0.4, 0 <b≤0.4, 0≤c≤ 0.01, 0 ≦ d ≦ 0.01, and 0 ≦ a + b + c + d ≦ 0.4
상기 양극 활물질은 잔류하는 리튬의 양이 현저히 저감된다. 이를 포함하는 리튬 이차 전지는 수명 특성 등이 향상된다.The amount of lithium remaining in the cathode active material is significantly reduced. The lithium secondary battery including the same has improved life characteristics.
상기 화학식 1로 표시되는 화합물은 리튬 니켈 금속 복합 산화물로, 니켈 리치계 산화물이다. The compound represented by Chemical Formula 1 is a lithium nickel metal composite oxide, and is a nickel rich oxide.
상기 화학식 1에서 니켈의 몰비인 1-a-b-c-d는 0.6 내지 1.0이다. 구체적으로 니켈의 몰비는 0.65 내지 1.0, 0.7 내지 1.0, 0.8 내지 1.0, 0.6 내지 0.9, 0.7 내지 0.9일 수 있다. 다시 말해, 0≤a+b+c+d ≤0.4, 0≤a+b+c+d ≤0.3, 0≤a+b+c+d ≤0.2, 0.1≤a+b+c+d ≤0.4, 0.1≤a+b+c+d ≤0.3일 수 있다. In Formula 1, 1-a-b-c-d, which is a molar ratio of nickel, is 0.6 to 1.0. Specifically, the molar ratio of nickel may be 0.65 to 1.0, 0.7 to 1.0, 0.8 to 1.0, 0.6 to 0.9, and 0.7 to 0.9. In other words, 0≤a + b + c + d≤0.4, 0≤a + b + c + d≤0.3, 0≤a + b + c + d≤0.2, 0.1≤a + b + c + d≤0.4 , 0.1 ≦ a + b + c + d ≦ 0.3.
이러한 니켈 리치계 양극 활물질은 고율 충방전 특성 및 고율 출력 특성을 구현할 수 있고, 특히 니켈의 함량이 증가할수록 에너지 밀도가 높고 가격 측면에서 유리하다.Such a nickel-rich cathode active material can implement high rate charge / discharge characteristics and high rate output characteristics, and particularly, as the nickel content increases, the energy density is high and it is advantageous in terms of price.
일반적으로 니켈 리치계 양극 활물질은 충방전 사이클이 진행됨에 따라 잔류하는 리튬 함유 화합물로 인해 전해액과 부반응이 일어나는 등의 문제가 있을 수 있다. 그러나 일 구현예에 따른 양극 활물질은 니켈을 60%이상 함유하면서도, 잔류하는 리튬 함량이 획기적으로 저감될 수 있다.In general, the nickel-rich cathode active material may have problems such as side reactions with the electrolyte due to the lithium-containing compound remaining as the charge and discharge cycle proceeds. However, the cathode active material according to the embodiment may contain 60% or more of nickel, and the remaining lithium content may be significantly reduced.
상기 화학식 1에서 x는 리튬(Li)의 몰비로, 0.95≤x≤1.2이다. In Formula 1, x is a molar ratio of lithium (Li), wherein 0.95 ≦ x ≦ 1.2.
상기 화학식 1은 코발트(Co)를 포함할 수 있으며, a는 코발트의 몰비로 0<a≤0.4이고 구체적으로 0.1≤a≤0.4, 0.1≤a≤0.3일 수 있다.Formula 1 may include cobalt (Co), a may be a molar ratio of cobalt 0 <a <0.4 and specifically 0.1 <a <0.4, 0.1 <a <0.3.
상기 화학식 1은 망간(Mn)을 포함할 수 있으며, b는 망간의 몰비로 0<a≤0.4이고 구체적으로 0.1≤b≤0.4, 0.1≤b≤0.3일 수 있다.Formula 1 may include manganese (Mn), b may be a mole ratio of manganese 0 <a≤0.4 and specifically 0.1≤b≤0.4, 0.1≤b≤0.3.
또한 상기 화학식 1은 Al, B, Mg, Ti, 또는 Zr 중에서 1종 이상의 원소를 더 함유할 수 있다. 상기 도핑으로 인해 저온(약 5℃) 수명 특성이 크게 향상되며 열적 안정성을 향상시켜 최대발열 온도를 고온 쪽으로 이동시키며 발열량을 줄여주는 장점이 있다. 이 중 일 예로 지르코늄Zr이 포함될 수 있다In addition, Formula 1 may further contain one or more elements from Al, B, Mg, Ti, or Zr. Due to the doping, the low temperature (approximately 5 ° C.) life characteristics are greatly improved, and the thermal stability is improved, thereby moving the maximum heat generation temperature toward the high temperature and reducing the amount of heat generated. One example may include zirconium Zr.
상기 코어는 활물질내 Ni의 함량이 60% 이상으로 과량 포함된 Ni계 양극 활물질 일 수 있다. The core may be a Ni-based positive electrode active material containing an excessive amount of Ni in an active material of 60% or more.
일 구현예에 따른 양극 활물질은 상기 코어의 표면에 고용체가 형성되어 있는 구조로, 상기 고용체는 리튬 및 인 및 산소를 포함한다.A cathode active material according to an embodiment has a structure in which a solid solution is formed on a surface of the core, and the solid solution includes lithium, phosphorus, and oxygen.
상기 고용체는 예를 들어 Li3PO4, Li4P2O7 또는 Li과 P과 O가 결합한 다른 화합물 형태일 수 있다. The solid solution may be, for example, Li 3 PO 4 , Li 4 P 2 O 7 or another compound in which Li, P, and O are bonded.
한편 상기 양극 활물질의 입자 표면에 대한 X선 광전자 분광 분석(XPS 분석)에서 상기 고용체의 인(P) 원자에 기인하는 피크의 강도가 최대가 되는 에너지의 위치는 133 eV 내지 135 eV일 수 있다. Meanwhile, in the X-ray photoelectron spectroscopy (XPS analysis) of the surface of the positive electrode active material, the position of the energy at which the intensity of the peak due to the phosphorus (P) atom of the solid solution becomes maximum may be 133 eV to 135 eV.
상기 XPS 분석에서는 리튬 (Li)과 인(P)과 산소(O)의 결합 상태에 따라 피크 강도의 최대가 되는 에너지의 위치가 달라진다.In the XPS analysis, the position of energy that maximizes the peak intensity varies depending on the bonding state of lithium (Li), phosphorus (P), and oxygen (O).
인(P) 원자에 기인하는 피크 강도가 최대가 되는 에너지가 133 eV 내지 135 eV 범위의 위치에 존재하는 것은 상기 화학식 1로 표시되는 화합물 표면에 존재하는 리튬(Li)과 인(P) 원자와 산소(O) 원자가 화학적인 결합을 하고 있다는 것을 의미한다.The energy at which the peak intensity attributable to the phosphorus (P) atom is maximized is at a position in the range of 133 eV to 135 eV, and the lithium (Li) and phosphorus (P) atoms present on the surface of the compound represented by Formula 1 This means that the oxygen (O) atom has a chemical bond.
상기 잔류하는 리튬은 Li2CO3, LiOH 등의 형태로 존재할 수 있다.The remaining lithium may be present in the form of Li 2 CO 3 , LiOH, and the like.
상기 양극 활물질에 잔류하는 리튬의 양은 상기 고용체를 포함하기 전의 코어에 잔류하는 리튬의 양에 비하여 50% 이하일 수 있다. 즉, 상기 고용체 및 상기 화학식 1로 표시되는 코어를 포함하는 양극 활물질에 잔류하는 리튬의 양은, 상기 고용체를 포함하지 않으며 상기 화학식 1로 표시되는 코어를 포함하는 양극 활물질에 잔류하는 리튬의 양의 50% 이하일 수 있다. The amount of lithium remaining in the cathode active material may be 50% or less than the amount of lithium remaining in the core before including the solid solution. That is, the amount of lithium remaining in the positive electrode active material including the solid solution and the core represented by Formula 1 is 50 of the amount of lithium remaining in the positive electrode active material including the core represented by Formula 1 without including the solid solution. It may be less than or equal to%.
또한 상기 양극 활물질에 잔류하는 리튬의 총 중량(total lithium, TTL)은 상기 양극 활물질 100 중량부에 대하여 0.1 중량부 이하일 수 있다.In addition, the total weight of lithium remaining in the cathode active material (total lithium, TTL) may be 0.1 parts by weight or less based on 100 parts by weight of the cathode active material.
이와 같이 일 구현예에 따른 양극 활물질은 잔류하는 리튬의 양이 감소되어 전해액과의 부반응이 억제되고 전지의 수명 특성 등이 향상될 수 있다.As described above, the cathode active material according to the exemplary embodiment may reduce the amount of lithium remaining, thereby inhibiting side reactions with the electrolyte and improving battery life characteristics.
본 발명의 다른 일 구현예에서는 상기 화학식 1로 표시되는 화합물, 및 리튬과 인을 함유하는 화합물 첨가제를 혼합하는 단계, 및 상기 단계의 혼합물을 열처리하는 단계를 포함하는 리튬 이차 전지용 양극 활물질의 제조 방법을 제공한다.In another embodiment of the present invention, a method of manufacturing a cathode active material for a lithium secondary battery comprising mixing the compound represented by Chemical Formula 1, and a compound additive containing lithium and phosphorus, and heat treating the mixture of the above steps. To provide.
화학식 1의 정의 및 이에 대한 설명은 전술한 바와 같다. The definition of Formula 1 and a description thereof are as described above.
상기 제조 방법에 따라, 상기 화학식 1로 표시되는 화합물을 포함하는 코어 및 상기 코어의 표면에 리튬 및 인 및 산소를 함유하는 고용체를 포함한 양극 활물질을 제조할 수 있다. According to the preparation method, a cathode active material including a core including the compound represented by Formula 1 and a solid solution containing lithium, phosphorus, and oxygen on the surface of the core may be manufactured.
국내등록특허 제1169947호 등에서는 리튬(Li) 함유 인(P)화합물을 첨가하기도 하나 건식 코팅 이후 열합성 과정이 없어 리튬과 인을 함유하는 화합물 첨가제와 잔류 리튬 간의 반응에 의한 고용체를 형성하지 않아 잔류 리튬 저감 효과가 있는지 불분명하다.In Korean Patent No. 1169947, a lithium (Li) -containing phosphorus (P) compound is added, but there is no thermal synthesis process after dry coating, and thus a solid solution is not formed by a reaction between lithium and phosphorus-containing compound additives and residual lithium. It is unclear whether there is a residual lithium reduction effect.
그러나 상기 본 발명의 제조 방법에 따른 양극 활물질은 잔류하는 리튬의 양이 감소되어 전지의 성능이 향상될 수 있다. However, the cathode active material according to the manufacturing method of the present invention may reduce the amount of lithium remaining to improve the performance of the battery.
상기 리튬과 인을 함유하는 화합물 첨가제는 예를 들어, Li2P2O6, LiH2PO4 또는 Li과 P과 O를 필수로 하고 H를 선택적으로 결합한 다른 화합물 형태일 수 있다. The compound additive containing lithium and phosphorus is, for example, Li 2 P 2 O 6, LiH 2 PO 4 or other compounds in which Li and P and O are essential and H is selectively bonded.
상기 리튬과 인을 함유하는 화합물 첨가제는 상기 화학식 1로 표시되는 화합물 100 중량부에 대하여 0.05 내지 0.5중량부 첨가될 수 있다. 구체적으로 0.1 내지 0.3 중량부 첨가될 수 있다. 이 경우 상기 양극 활물질은 잔류하는 리튬이 효과적으로 저감될 수 있다. The compound additive containing lithium and phosphorus may be added in an amount of 0.05 to 0.5 parts by weight based on 100 parts by weight of the compound represented by Chemical Formula 1. Specifically, 0.1 to 0.3 parts by weight may be added. In this case, lithium remaining in the cathode active material may be effectively reduced.
상기 혼합하는 단계는 구체적으로 건식 혼합 방법에 의해 수행될 수 있다.The mixing step may be specifically carried out by a dry mixing method.
상기 혼합하는 단계에 의하여, 상기 화학식 1로 표시되는 화합물의 표면에 리튬과 인을 함유하는 화합물 첨가제가 부착될 수 있다. 그 후 열처리 함으로써 상기 화학식 1로 표시되는 화합물의 표면에 리튬 및 인 및 산소를 함유하는 고용체가 형성될 수 있다. By the mixing step, the compound additive containing lithium and phosphorus may be attached to the surface of the compound represented by the formula (1). After heat treatment, a solid solution containing lithium, phosphorus, and oxygen may be formed on the surface of the compound represented by Chemical Formula 1.
상기 화학식 1로 표시되는 화합물과 리튬 및 인을 함유하는 화합물 첨가제를 혼합한 후 특정 온도에서 열처리하면, 상기 화학식 1로 표시되는 화합물의 표면에 잔류하는 Li2CO3, LiOH 등이 상기 리튬과 인을 함유하는 화합물 첨가제와 반응하여 고용화를 이룰 수 있다.When the compound represented by the formula (1) and the compound additive containing lithium and phosphorus are mixed and then heat treated at a specific temperature, Li 2 CO 3 , LiOH, etc. remaining on the surface of the compound represented by the formula (1) are lithium and phosphorus It may be reacted with a compound additive containing to achieve a solubilization.
이렇게 형성된 고용체는 예를 들어 Li3PO4, Li4P2O7 등일 수 있다. The solid solution thus formed may be, for example, Li 3 PO 4 , Li 4 P 2 O 7, or the like.
상기 리튬과 인을 함유하는 화합물 첨가제가 활물질 표면의 잔존 과잉 리튬과 반응하는 과정의 예로서 하기 반응식 1을 들 수 있다.The following Reaction Scheme 1 is mentioned as an example of the process by which the said compound additive containing lithium and phosphorus reacts with the excess excess lithium on the surface of an active material.
[반응식 1] Scheme 1
1/2·Li2P2O6 + 1/2·Li2CO3 + LiOH → Li3PO4 + 1/2·H2O + 1/2·CO2 1 / 2Li 2 P 2 O 6 + 1 / 2Li 2 CO 3 + LiOH → Li 3 PO 4 + 1/2 · H 2 O + 1/2 · CO 2
상기 리튬(Li)과 인(P)을 함유하는 화합물은 리튬(Li)을 제외하고 인(P)만을 포함하는 화합물보다 상기 화학식 1로 표시되는 화합물의 표면에 잔류하는 Li2CO3 및 LiOH와 높은 반응성을 갖는다.The compound containing lithium (Li) and phosphorus (P) is Li 2 CO 3 and LiOH remaining on the surface of the compound represented by the formula (1) than the compound containing only phosphorus (P) except lithium (Li) and Has high reactivity.
상기 열처리하는 단계는 300℃ 내지 500℃, 구체적으로 350℃ 내지 450℃에서 수행될 수 있다. 이는 고용체를 생성하기 위한 온도 범위로, 상기 범위까지 승온하는 과정에서 상기 리튬과 인을 함유하는 화합물 첨가제가 상기 화학식 1로 표시되는 화합물의 표면에 융착될 수 있고, 상기 온도 범위를 유지하는 과정에서 리튬과 인을 함유하는 화합물 첨가제가 상기 화학식 1로 표시되는 화합물의 표면에 잔류하는 리튬과 반응하여 고용체를 이룰 수 있다. 상기 범위로 열처리를 수행할 경우 효과적으로 고용체를 형성시킬 수 있다. The heat treatment may be performed at 300 ° C to 500 ° C, specifically 350 ° C to 450 ° C. This is a temperature range for producing a solid solution, the compound additive containing lithium and phosphorus may be fused to the surface of the compound represented by Formula 1 in the process of heating up to the range, in the process of maintaining the temperature range Compound additives containing lithium and phosphorus may form a solid solution by reacting with lithium remaining on the surface of the compound represented by Chemical Formula 1. When the heat treatment in the above range can be formed effectively solid solution.
이하 본 발명의 실시예 및 비교예를 기재한다. 그러나, 하기의 실시예는 본 발명의 일 실시예일뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.Hereinafter, examples and comparative examples of the present invention are described. However, the following examples are merely examples of the present invention and the present invention is not limited to the following examples.
제조예Production Example 1:  One: NiNi 60%의 코어 제조 60% core manufacturing
믹서에 NCM 복합 전이 금속수산화물(몰비는 Ni : Co : Mn = 60 : 20 : 20) 과 분산된 ZrO2 분말을 각각 100 : 0.2 의 중량비로 건식 혼합하여 ZrO2 분말을 복합 전이 금속 수산화물의 입자 표면에 균일하게 부착시킨다. The Nr composite transition metal hydroxide (molar ratio Ni: Co: Mn = 60: 20: 20) and the dispersed ZrO 2 powder were dry mixed in a weight ratio of 100: 0.2, respectively, in the mixer to form a ZrO 2 powder particle surface of the composite transition metal hydroxide. Evenly attach to
이후 상기 ZrO2 분말이 표면에 균일하게 부착된 복합 전이 금속 수산화물 1몰에 대해 Li2CO3이 1.025몰이 되는 비율(Li/Metal = 1.025)로 Li2CO3을 넣고 건식 혼합하였다. Thereafter, Li 2 CO 3 was added and mixed in a ratio (Li / Metal = 1.025) in which Li 2 CO 3 became 1.025 mol with respect to 1 mol of the composite transition metal hydroxide having the ZrO 2 powder uniformly attached to the surface thereof.
건식 혼합된 분말을 890℃에서 8시간 동안 열처리하여 리튬 복합 화합물을 제조하였다.The dry mixed powder was heat-treated at 890 ° C. for 8 hours to prepare a lithium composite compound.
제조예Production Example 2:  2: NiNi 70%의 코어 제조 70% core manufacturing
상기 제조예 1에서 NCM 복합 전이 금속수산화물이 NCM 복합 전이 금속수산화물(몰비는 Ni : Co : Mn = 70 : 15 : 15) 인 것과 건식 혼합된 분말을 830 ℃로 열처리 한 것을 제외하고, 제조예 1과 동일한 방법으로 리튬 복합 화합물을 제조하였다.In Preparation Example 1, except that the NCM composite transition metal hydroxide was NCM composite transition metal hydroxide (molar ratio Ni: Co: Mn = 70: 15: 15) and the dry mixed powder was heat treated at 830 ° C., Preparation Example 1 In the same manner as in the lithium composite compound was prepared.
제조예Production Example 3:  3: NiNi 80%의 코어 제조 80% core manufacturing
상기 제조예 1에서 NCM 복합 전이 금속수산화물이 NCM 복합 전이 금속수산화물(몰비는 Ni : Co : Mn = 80 : 10 : 10) 인 것과 건식 혼합된 분말을 800 ℃로 열처리 한 것을 제외하고, 제조예 1과 동일한 방법으로 리튬 복합 화합물을 제조하였다.In Preparation Example 1, except that the NCM composite transition metal hydroxide was NCM composite transition metal hydroxide (molar ratio of Ni: Co: Mn = 80: 10: 10) and the dry mixed powder was heat treated at 800 ° C. In the same manner as in the lithium composite compound was prepared.
제조예4Preparation Example 4 : 리튬(: Lithium LiLi )과 인(P)을 포함하는 화합물 첨가제 제조 () Preparation of Compound Additives Containing Phosphorus (P) LiLi 22 PP 22 OO 66 ))
에탄올에 4M의 LiOH 분말을 넣은 후 2M의 (NH4)3PO4를 넣고 호모믹서로 20분 동안 교반하였다. 교반된 수용액을 트레이에 담은 다음 진공에서 80℃로 2시간 동안 건조하고 얻어진 Li2P2O6의 고형물을 유발로 분쇄하여 분말화하였다.4M LiOH powder was added to ethanol, and 2M (NH 4 ) 3 PO 4 was added thereto and stirred with a homomixer for 20 minutes. The stirred aqueous solution was placed in a tray and then dried in vacuo at 80 ° C. for 2 hours, and the resulting solids of Li 2 P 2 O 6 were ground by pulverization to powder.
한편, 또 다른 리튬(Li)과 인(P)을 포함하는 화합물 첨가제로서 시판용 알드리치제 LiH2PO4 를 사용하였다. On the other hand, commercially available Aldrich LiH 2 PO 4 was used as another compound additive containing lithium (Li) and phosphorus (P).
이하 실시예와 비교예의 주요 내용은 하기 표 1에 간략히 나타내었다.The main contents of the following Examples and Comparative Examples are briefly shown in Table 1 below.
실시예1Example 1
제조예 1로 얻은 Zr이 도핑된 리튬 복합 화합물에 리튬(Li)과 인(P) 를 포함하는 화합물 첨가제로서 LiH2PO4를 1000ppm 첨가한 후 건식 혼합하여 상기 리튬 복합 화합물 표면에 균일하게 부착하였다. 이후 혼합된 분말을 400℃에서 6 시간 동안 열처리하여 리튬(Li) 및 인(P) 및 산소(O)를 포함하는 화합물을 표면에 고용시킨 양극 활물질을 제조하였다.1000 ppm of LiH 2 PO 4 was added to the Zr-doped lithium composite compound obtained in Preparation Example 1 as a compound additive including lithium (Li) and phosphorus (P), followed by dry mixing to uniformly adhere to the surface of the lithium composite compound. . Thereafter, the mixed powder was heat treated at 400 ° C. for 6 hours to prepare a cathode active material in which a compound including lithium (Li), phosphorus (P), and oxygen (O) was dissolved in the surface.
실시예2Example 2
Li과 P를 포함하는 화합물 첨가제 LiH2PO4을 2000ppm 첨가 한 것을 제외하고, 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.A positive electrode active material was prepared in the same manner as in Example 1, except that 2000 ppm of the compound additive LiH 2 PO 4 including Li and P was added.
실시예3Example 3
리튬(Li)과 인(P) 를 포함하는 화합물 첨가제로서 LiH2PO4을 3000ppm 첨가 한 것을 제외하고, 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.A positive electrode active material was manufactured in the same manner as in Example 1, except that 3000 ppm of LiH 2 PO 4 was added as a compound additive including lithium (Li) and phosphorus (P).
실시예4Example 4
리튬(Li)과 인(P) 를 포함하는 화합물 첨가제로서 제조예 4를 통해 얻은 것을 첨가한 것을 제외하고, 실시예 3과 동일한 방법으로 양극 활물질을 제조하였다.A positive electrode active material was manufactured in the same manner as in Example 3, except that the compound additive including lithium (Li) and phosphorus (P) was added through Preparation Example 4.
실시예5Example 5
제조예 2로 얻은 Zr이 도핑된 리튬 복합 화합물에 리튬(Li)과 인(P) 를 포함하는 화합물 첨가제로서 LiH2PO4를 1000ppm 첨가한 후 건식 혼합하여 상기 리튬 복합 화합물 표면에 균일하게 부착하였다. 이후 혼합된 분말을 400℃에서 6 시간 동안 열처리하여 리튬(Li) 및 인(P) 및 산소(O)를 포함하는 화합물을 표면에 고용시킨 양극 활물질을 제조하였다.1000 ppm of LiH 2 PO 4 was added to the Zr-doped lithium composite compound obtained in Preparation Example 2 as a compound additive including lithium (Li) and phosphorus (P), followed by dry mixing to uniformly adhere to the surface of the lithium composite compound. . Thereafter, the mixed powder was heat treated at 400 ° C. for 6 hours to prepare a cathode active material in which a compound including lithium (Li), phosphorus (P), and oxygen (O) was dissolved in the surface.
실시예6Example 6
상기 실시예 5에서 리튬(Li)과 인(P) 를 포함하는 화합물 첨가제로서 LiH2PO4을 2000ppm 첨가 한 것을 제외하고, 상기 실시예 5와 동일한 방법으로 양극 활물질을 제조하였다.A positive electrode active material was manufactured in the same manner as in Example 5, except that 2000 ppm of LiH 2 PO 4 was added as a compound additive including lithium (Li) and phosphorus (P) in Example 5.
실시예7Example 7
상기 실시예 5에서 리튬(Li)과 인(P) 를 포함하는 화합물 첨가제로서 LiH2PO4을 3000ppm 첨가 한 것을 제외하고, 상기 실시예 5와 동일한 방법으로 양극 활물질을 제조하였다.A positive electrode active material was manufactured in the same manner as in Example 5, except that 3000 ppm of LiH 2 PO 4 was added as a compound additive including lithium (Li) and phosphorus (P) in Example 5.
실시예8Example 8
상기 실시예 7에서 리튬(Li)과 인(P) 를 포함하는 화합물 첨가제로서 제조예 4를 통해 얻은 것을 첨가하는 것을 제외하고, 상기 실시예 7과 동일한 방법으로 양극 활물질을 제조하였다.A positive electrode active material was manufactured in the same manner as in Example 7, except for adding the compound additive obtained through Preparation Example 4 as a compound additive including lithium (Li) and phosphorus (P) in Example 7.
실시예9Example 9
제조예 3으로 얻은 Zr이 도핑된 리튬 복합 화합물에 리튬(Li)과 인(P) 를 포함하는 화합물 첨가제로서 LiH2PO4를 1000ppm 첨가한 후 건식 혼합하여 상기 리튬 복합 화합물 표면에 균일하게 부착하였다. 이후 혼합된 분말을 400℃에서 6 시간 동안 열처리하여 리튬(Li) 및 인(P) 및 산소(O)를 포함하는 화합물을 표면에 고용시킨 양극 활물질을 제조하였다.1000 ppm of LiH 2 PO 4 was added to the Zr-doped lithium composite compound obtained in Preparation Example 3 as a compound additive including lithium (Li) and phosphorus (P), followed by dry mixing to uniformly adhere to the surface of the lithium composite compound. . Thereafter, the mixed powder was heat treated at 400 ° C. for 6 hours to prepare a cathode active material in which a compound including lithium (Li), phosphorus (P), and oxygen (O) was dissolved in the surface.
실시예10Example 10
상기 실시예 9에서 리튬(Li)과 인(P) 를 포함하는 화합물 첨가제로서 LiH2PO4을 2000ppm 첨가 한 것을 제외하고, 상기 실시예 9와 동일한 방법으로 양극 활물질을 제조하였다.A positive electrode active material was manufactured in the same manner as in Example 9, except that 2000 ppm of LiH 2 PO 4 was added as a compound additive including lithium (Li) and phosphorus (P) in Example 9.
실시예11Example 11
상기 실시예 9에서 리튬(Li)과 인(P) 를 포함하는 화합물 첨가제로서 LiH2PO4을 3000ppm 첨가 한 것을 제외하고, 상기 실시예 9와 동일한 방법으로 양극 활물질을 제조하였다.A positive electrode active material was manufactured in the same manner as in Example 9, except that 3000 ppm of LiH 2 PO 4 was added as a compound additive including lithium (Li) and phosphorus (P) in Example 9.
실시예12Example 12
상기 실시예 11에서 리튬(Li)과 인(P) 를 포함하는 화합물 첨가제로서 제조예 4를 통해 얻은 것을 첨가하는 것을 제외하고, 상기 실시예 11과 동일한 방법으로 양극 활물질을 제조하였다.A positive electrode active material was manufactured in the same manner as in Example 11, except that Example 11 was added as a compound additive including lithium (Li) and phosphorus (P).
비교예1Comparative Example 1
제조예 1에서 얻은 물질을 그대로 양극 활물질로 사용하였다. The material obtained in Preparation Example 1 was used as a cathode active material.
비교예2Comparative Example 2
제조예 2에서 얻은 물질을 그대로 양극활물질로 사용하였다. The material obtained in Preparation Example 2 was used as a cathode active material as it is.
비교예3Comparative Example 3
제조예 3에서 얻은 물질을 그대로 양극활물질로 사용하였다. The material obtained in Preparation Example 3 was used as a cathode active material as it is.
비교예4Comparative Example 4
제조예 1로 얻은 물질을 리튬(Li)과 인(P) 를 포함하는 화합물 첨가제를 첨가하지 않고 700℃에서 6 시간 동안 한 번 더 소성하여 양극 활물질로 사용하였다. The material obtained in Preparation Example 1 was calcined once more at 700 ° C. for 6 hours without adding a compound additive including lithium (Li) and phosphorus (P) to be used as a cathode active material.
비교예5Comparative Example 5
제조예 2에서 얻은 물질에 리튬(Li)과 인(P) 를 포함하는 화합물 첨가제를 첨가하지 않고 700℃에서 6시간 동안 한 번 더 소성하여 양극 활물질로 사용하였다. Without adding a compound additive including lithium (Li) and phosphorus (P) to the material obtained in Preparation Example 2 was calcined once more for 6 hours at 700 ℃ was used as a positive electrode active material.
비교예6Comparative Example 6
제조예 3에서 얻은 물질을 리튬(Li)과 인(P) 를 포함하는 화합물 첨가제를 첨가하지 않고 700℃에서 6시간 동안 한 번 더 소성하여 양극 활물질로 사용하였다. The material obtained in Preparation Example 3 was calcined once more at 700 ° C. for 6 hours without adding compound additives including lithium (Li) and phosphorus (P) to be used as a cathode active material.
비교예7Comparative Example 7
실시예 3에서 리튬(Li)과 인(P) 를 포함하는 화합물 첨가제 대신 (NH4)3PO4를 사용하는 것을 제외하고, 실시예 3과 동일한 방법으로 양극활물질을 제조하였다.A positive electrode active material was prepared in the same manner as in Example 3, except that (NH 4 ) 3 PO 4 was used instead of the compound additive including lithium (Li) and phosphorus (P) in Example 3.
비교예8Comparative Example 8
실시예 7에서 리튬(Li)과 인(P) 를 포함하는 화합물 첨가제 대신 (NH4)3PO4를 사용하는 것을 제외하고, 실시예 7과 동일한 방법으로 양극 활물질을 제조하였다.A cathode active material was manufactured in the same manner as in Example 7, except that (NH 4 ) 3 PO 4 was used instead of the compound additive including lithium (Li) and phosphorus (P) in Example 7.
비교예9Comparative Example 9
실시예 11에서 Li과 P을 포함하는 화합물 첨가제 대신 (NH4)3PO4를 사용하는 것을 제외하고, 실시예 11과 동일한 방법으로 양극활물질을 제조하였다.A positive electrode active material was prepared in the same manner as in Example 11, except that (NH 4 ) 3 PO 4 was used instead of the compound additive including Li and P in Example 11.
상기 실시예 및 비교예의 주요 내용을 하기 표 1에 간략하게 나타내었다. The main contents of the Examples and Comparative Examples are briefly shown in Table 1 below.
표 1
Li 함량 금속함량 도핑원소 M Li및P함유 화합물 첨가제 재소성 온도 (℃) 비고
Ni Co Mn 종류 함량(ppm) 종류 함량(ppm)
실시예 1 1.02 0.6 0.2 0.2 Zr 1500 LiH2PO4 1000 400 60, 1000
실시예 2 1.02 0.6 0.2 0.2 Zr 1500 LiH2PO4 2000 400 60, 2000
실시예 3 1.02 0.6 0.2 0.2 Zr 1500 LiH2PO4 3000 400 60, 3000
실시예 4 1.02 0.6 0.2 0.2 Zr 1500 Li2P2O6 3000 400 LiP 소스변경
실시예 5 1.02 0.7 0.15 0.15 Zr 1500 LiH2PO4 1000 400 70, 1000
실시예 6 1.02 0.7 0.15 0.15 Zr 1500 LiH2PO4 2000 400 70, 2000
실시예 7 1.02 0.7 0.15 0.15 Zr 1500 LiH2PO4 3000 400 70, 3000
실시예 8 1.02 0.7 0.15 0.15 Zr 1500 Li2P2O6 3000 400 LiP 소스변경
실시예 9 1.02 0.8 0.1 0.1 Zr 1500 LiH2PO4 1000 400 80, 1000
실시예 10 1.02 0.8 0.1 0.1 Zr 1500 LiH2PO4 2000 400 80, 2000
실시예 11 1.02 0.8 0.1 0.1 Zr 1500 LiH2PO4 3000 400 80, 3000
실시예 12 1.02 0.8 0.1 0.1 Zr 1500 Li2P2O6 3000 400 LiP 소스변경
비교예 1 1.02 0.6 0.2 0.2 Zr 1500 - - - 60, 無
비교예 2 1.02 0.7 0.15 0.15 Zr 1500 - - - 70, 無
비교예 3 1.02 0.8 0.1 0.1 Zr 1500 - - - 80, 無
비교예 4 1.02 0.6 0.2 0.2 Zr 1500 - - 700 단순재소성
비교예 5 1.02 0.7 0.15 0.15 Zr 1500 - - 700 단순재소성
비교예 6 1.02 0.8 0.1 0.1 Zr 1500 - 700 단순재소성
비교예 7 1.02 0.6 0.2 0.2 Zr 1500 (NH4)2HPO4 3000 400 (NH4)2HPO4
비교예 8 1.02 0.7 0.15 0.15 Zr 1500 (NH4)2HPO4 3000 400 (NH4)2HPO4
비교예 9 1.02 0.8 0.1 0.1 Zr 1500 (NH4)2HPO4 3000 400 (NH4)2HPO4
Table 1
Li content Metal content Doping element M Li and P-containing compound additives Refiring Temperature (℃) Remarks
Ni Co Mn Kinds Content (ppm) Kinds Content (ppm)
Example 1 1.02 0.6 0.2 0.2 Zr 1500 LiH 2 PO 4 1000 400 60, 1000
Example 2 1.02 0.6 0.2 0.2 Zr 1500 LiH 2 PO 4 2000 400 60, 2000
Example 3 1.02 0.6 0.2 0.2 Zr 1500 LiH 2 PO 4 3000 400 60, 3000
Example 4 1.02 0.6 0.2 0.2 Zr 1500 Li 2 P 2 O 6 3000 400 LiP source change
Example 5 1.02 0.7 0.15 0.15 Zr 1500 LiH 2 PO 4 1000 400 70, 1000
Example 6 1.02 0.7 0.15 0.15 Zr 1500 LiH 2 PO 4 2000 400 70, 2000
Example 7 1.02 0.7 0.15 0.15 Zr 1500 LiH 2 PO 4 3000 400 70, 3000
Example 8 1.02 0.7 0.15 0.15 Zr 1500 Li 2 P 2 O 6 3000 400 LiP source change
Example 9 1.02 0.8 0.1 0.1 Zr 1500 LiH 2 PO 4 1000 400 80, 1000
Example 10 1.02 0.8 0.1 0.1 Zr 1500 LiH 2 PO 4 2000 400 80, 2000
Example 11 1.02 0.8 0.1 0.1 Zr 1500 LiH 2 PO 4 3000 400 80, 3000
Example 12 1.02 0.8 0.1 0.1 Zr 1500 Li 2 P 2 O 6 3000 400 LiP source change
Comparative Example 1 1.02 0.6 0.2 0.2 Zr 1500 - - - 60, no
Comparative Example 2 1.02 0.7 0.15 0.15 Zr 1500 - - - 70, no
Comparative Example 3 1.02 0.8 0.1 0.1 Zr 1500 - - - 80, no
Comparative Example 4 1.02 0.6 0.2 0.2 Zr 1500 - - 700 Simplicity
Comparative Example 5 1.02 0.7 0.15 0.15 Zr 1500 - - 700 Simplicity
Comparative Example 6 1.02 0.8 0.1 0.1 Zr 1500 - 700 Simplicity
Comparative Example 7 1.02 0.6 0.2 0.2 Zr 1500 (NH 4 ) 2 HPO 4 3000 400 (NH 4 ) 2 HPO 4
Comparative Example 8 1.02 0.7 0.15 0.15 Zr 1500 (NH 4 ) 2 HPO 4 3000 400 (NH 4 ) 2 HPO 4
Comparative Example 9 1.02 0.8 0.1 0.1 Zr 1500 (NH 4 ) 2 HPO 4 3000 400 (NH 4 ) 2 HPO 4
평가예Evaluation example 1: X선 광전자 분광 분석(X- 1: X-ray photoelectron spectroscopy (X- rayray PhotoelectronPhotoelectron SpectroscopySpectroscopy ; ; XPSXPS ))
상기 실시예 3 및 비교예 3에서 제조한 양극 활물질에 대하여 XPS 분석하여 그 결과를 도 1에 나타내었다. 도 1을 참고하면, 실시예 3의 경우 인(P) 원자에 기인하는 피크 강도가 최대가 되는 에너지의 위치는 133 eV 내지 135 eV 범위임을 확인할 수 있다. 이를 통해 양극 활물질의 표면에 잔류하는 리튬, 인과 산소 원자가 화학적 결합 상태에 있다는 것을 알 수 있다. XPS analysis of the cathode active materials prepared in Example 3 and Comparative Example 3 shows the results in FIG. 1. Referring to FIG. 1, in the case of Example 3, it can be seen that the position of the energy at which the peak intensity due to the phosphorus (P) atom becomes the maximum ranges from 133 eV to 135 eV. Through this, it can be seen that lithium, phosphorus and oxygen atoms remaining on the surface of the positive electrode active material are in a chemical bonding state.
평가예Evaluation example 2: 잔류 리튬 함량 측정 2: determination of residual lithium content
상기 실시예 및 비교예에서 제조된 양극 활물질에서 잔류하는 리튬의 함량은전위차 중화적정법으로 잔류하는 Li을 포함하는 화합물 (예를 들어 LiOH 또는 Li2CO3)별로 측정한 후 Li만의 총량을 따로 계산하여 구한 값(TTL, Total Lithium)으로 하였다.The amount of lithium remaining in the cathode active materials prepared in Examples and Comparative Examples is measured separately for each compound containing Li (eg, LiOH or Li 2 CO 3 ) remaining by the potentiometric neutralization method, and then separately calculates the total amount of Li alone. It was set as the value (TTL, Total Lithium).
계산법은 아래 계산식 1과 같다.The calculation method is shown in Equation 1 below.
[계산식 1][Calculation 1]
TTL(Total Li) = LiOH분석값(%)*Li/LiOH + Li2CO3분석값(%)*2Li/Li2CO3 = LiOH분석값(%)*0.29 + Li2CO3분석값(%)*0.188TTL (Total Li) = LiOH Analysis Value (%) * Li / LiOH + Li 2 CO 3 Analysis Value (%) * 2Li / Li 2 CO 3 = LiOH Analysis Value (%) * 0.29 + Li 2 CO 3 Analysis Value ( %) * 0.188
평가예 3: 리튬 이차 전지의 수명 특성 평가Evaluation Example 3 Evaluation of Life Characteristics of Lithium Secondary Battery
상기 실시예 및 비교예에서 제조된 양극 활물질 95 중량%, 도전제로 카본 블랙(carbon black) 2.5 중량%, 결합제로 PVDF 2.5중량% 를 용제(솔벤트)인 N-메틸-2 피롤리돈(NMP) 5.0 중량%에 첨가하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 두께 20 내지 40㎛의 양극 집전체인 알루미늄(Al) 박막에 도포 및 진공 건조하고 롤 프레스(roll press)를 실시하여 양극을 제조하였다.95% by weight of the positive electrode active material prepared in Examples and Comparative Examples, 2.5% by weight of carbon black as a conductive agent, 2.5% by weight of PVDF as a binder, N-methyl-2 pyrrolidone (NMP) as a solvent (solvent) A positive electrode slurry was prepared by adding to 5.0 wt%. The positive electrode slurry was applied to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of 20 to 40 μm, vacuum dried, and roll pressed to prepare a positive electrode.
음극으로는 Li-금속을 이용하였다.Li-metal was used as the negative electrode.
이와 같이 제조된 양극과 Li-금속을 대극으로, 전해액으로는 1.15M LiPF6, 에틸렌카보네이트(EC):디메틸카보네이트(DMC) (1:1vol%)을 사용하여 코인 셀 타입의 반쪽 전지를 제조하였다.A half cell of a coin cell type was prepared by using a cathode and a lithium metal as described above, and 1.15 M LiPF 6 and ethylene carbonate (EC): dimethyl carbonate (DMC) (1: 1 vol%) as an electrolyte. .
제조된 전지에 대하여 1 C 조건으로 1 사이클, 20 사이클 및 30 사이클 진행시의 용량을 측정하여, 1 사이클 대비 20 사이클 및 30 사이클에서의 용량 유지율을 평가하여 그 결과를 하기 표 2에 나타내었다. Capacity of 1 cycle, 20 cycles and 30 cycles was measured under the conditions of 1 C, and the capacity retention rates at 20 cycles and 30 cycles compared to 1 cycle were evaluated. The results are shown in Table 2 below.
표 2
Ni 함량, 첨가물 함량 잔류 Li함량 (TTL) Bare 대비 잔류 Li 수준 1CY 20CY 30CY 수명 특성
(20CY/1CY,%) (30CY/1CY,%)
실시예 1 60, 1000 0.060 45.45 % 198.46 178.21 161.85 89.80 % 81.55 %
실시예 2 60, 2000 0.058 43.94 % 198.02 180.11 162.88 90.96 % 82.25 %
실시예 3 60, 3000 0.050 37.88 % 198.21 181.37 164.91 91.50 % 83.20 %
실시예 4 LiP 소스변경 0.062 46.97 % 197.89 178.89 161.89 90.40 % 81.81 %
실시예 5 70, 1000 0.052 37.68 % 208.12 188.16 170.17 90.41 % 81.77 %
실시예 6 70, 2000 0.051 36.96 % 208.85 188.81 170.75 90.40 % 81.76 %
실시예 7 70, 3000 0.064 46.38 % 208.77 192.77 174.77 92.34 % 83.71 %
실시예 8 LiP 소스변경 0.055 39.86 % 208.41 192.41 171.41 92.32 % 82.25 %
실시예 9 80, 1000 0.080 46.48 % 205.79 182.79 168.79 88.82 % 82.02 %
실시예 10 80, 2000 0.081 49.09 % 206.35 183.55 169.21 88.95 % 82.00 %
실시예 11 80, 3000 0.058 35.15 % 205.74 184.71 170.54 89.78 % 82.89 %
실시예 12 LiP 소스변경 0.031 18.79 % 205.46 182.23 164.55 88.69 % 80.09 %
비교예 1 60, 無 0.132 - 198.36 178.44 154.23 89.96 % 77.75 %
비교예 2 70, 無 0.138 - 208.93 180.23 164.77 86.26 % 78.86 %
비교예 3 80, 無 0.165 - 205.56 175.21 162.32 85.24 % 78.96 %
비교예 4 단순 재소성 0.129 97.73 % 198.26 174.23 160.23 87.88 % 80.82 %
비교예 5 단순 재소성 0.162 117.39 % 208.98 185.39 164.27 88.71 % 78.61 %
비교예 6 단순 재소성 0.256 155.15 % 207.25 180.14 164.74 86.92 % 79.49 %
비교예 7 (NH4)2HPO4 0.128 96.97 % 200.32 180.24 160.88 89.98 % 80.31 %
비교예 8 (NH4)2HPO4 0.138 100.00 % 207.56 185.24 160.78 89.25 % 77.46 %
비교예 9 (NH4)2HPO4 0.156 94.55 % 205.57 183.8 160.6 89.41 % 78.12 %
TABLE 2
Ni content, additive content Residual Li Content (TTL) Residual Li Level compared to Bare 1CY 20CY 30CY Life characteristics
(20CY / 1CY,%) (30CY / 1CY,%)
Example 1 60, 1000 0.060 45.45% 198.46 178.21 161.85 89.80% 81.55%
Example 2 60, 2000 0.058 43.94% 198.02 180.11 162.88 90.96% 82.25%
Example 3 60, 3000 0.050 37.88% 198.21 181.37 164.91 91.50% 83.20%
Example 4 LiP source change 0.062 46.97% 197.89 178.89 161.89 90.40% 81.81%
Example 5 70, 1000 0.052 37.68% 208.12 188.16 170.17 90.41% 81.77%
Example 6 70, 2000 0.051 36.96% 208.85 188.81 170.75 90.40% 81.76%
Example 7 70, 3000 0.064 46.38% 208.77 192.77 174.77 92.34% 83.71%
Example 8 LiP source change 0.055 39.86% 208.41 192.41 171.41 92.32% 82.25%
Example 9 80, 1000 0.080 46.48% 205.79 182.79 168.79 88.82% 82.02%
Example 10 80, 2000 0.081 49.09% 206.35 183.55 169.21 88.95% 82.00%
Example 11 80, 3000 0.058 35.15% 205.74 184.71 170.54 89.78% 82.89%
Example 12 LiP source change 0.031 18.79% 205.46 182.23 164.55 88.69% 80.09%
Comparative Example 1 60, no 0.132 - 198.36 178.44 154.23 89.96% 77.75%
Comparative Example 2 70, no 0.138 - 208.93 180.23 164.77 86.26% 78.86%
Comparative Example 3 80, no 0.165 - 205.56 175.21 162.32 85.24% 78.96%
Comparative Example 4 Simple refire 0.129 97.73% 198.26 174.23 160.23 87.88% 80.82%
Comparative Example 5 Simple refire 0.162 117.39% 208.98 185.39 164.27 88.71% 78.61%
Comparative Example 6 Simple refire 0.256 155.15% 207.25 180.14 164.74 86.92% 79.49%
Comparative Example 7 (NH 4 ) 2 HPO 4 0.128 96.97% 200.32 180.24 160.88 89.98% 80.31%
Comparative Example 8 (NH 4 ) 2 HPO 4 0.138 100.00% 207.56 185.24 160.78 89.25% 77.46%
Comparative Example 9 (NH 4 ) 2 HPO 4 0.156 94.55% 205.57 183.8 160.6 89.41% 78.12%
상기 표 2를 참고하면, 실시예의 경우 비교예에 비하여 30 사이클에서의 용량 유지율이 더욱 개선되어 수명 특성이 향상되었음을 확인할 수 있다. Referring to Table 2, in the case of the embodiment it can be seen that the capacity retention rate in 30 cycles compared to the comparative example further improved life characteristics.
또한 실시예는 비교예에 비하여 잔류하는 리튬 양이 저감되었다는 것을 확인할 수 있다. 예를 들어, 실시예 9 내지 12는 니켈이 80% 함유된 양극 활물질로, 니켈이 80% 함유된 비교예 3에 비하여 잔류하는 리튬 함량이 감소되었다는 것을 알 수 있다. In addition, the Example can confirm that the amount of lithium remaining compared to the comparative example was reduced. For example, Examples 9 to 12 are cathode active materials containing 80% of nickel, and it can be seen that the residual lithium content is reduced compared to Comparative Example 3 containing 80% of nickel.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and various modifications and changes can be made within the scope of the claims and the detailed description of the invention and the accompanying drawings. Naturally, it belongs to the scope of the invention.

Claims (13)

  1. 하기 화학식 1로 표시되는 화합물을 포함하는 코어; 및A core comprising a compound represented by the formula (1); And
    상기 코어의 표면에 위치하고 리튬(Li), 인(P) 및 산소(O)를 함유하는 고용체;A solid solution placed on the surface of the core and containing lithium (Li), phosphorus (P) and oxygen (O);
    를 포함하는 리튬 이차 전지용 양극 활물질:A cathode active material for a lithium secondary battery comprising:
    [화학식 1][Formula 1]
    LixNi(1-a-b-c-d)CoaMnbM1 cM2 dO2 Li x Ni (1-abcd) Co a Mn b M 1 c M 2 d O 2
    상기 화학식 1에서,In Chemical Formula 1,
    M1 및 M2는 서로 상이한 원소로, Al, B, Mg, Ti, 또는 Zr이고,M 1 and M 2 are elements different from each other, and are Al, B, Mg, Ti, or Zr,
    0.95≤x≤1.2, 0<a≤0.4, 0<b≤0.4, 0≤c≤0.01, 0≤d≤0.01, 및 0≤a+b+c+d≤0.4이다.0.95 ≦ x ≦ 1.2, 0 <a ≦ 0.4, 0 <b ≦ 0.4, 0 ≦ c ≦ 0.01, 0 ≦ d ≦ 0.01, and 0 ≦ a + b + c + d ≦ 0.4.
  2. 제1항에서, In claim 1,
    상기 고용체는 Li3PO4, Li4P2O7 또는 이들의 조합을 포함하는 리튬 이차 전지용 양극 활물질. The solid solution is a lithium secondary battery positive electrode active material containing Li 3 PO 4 , Li 4 P 2 O 7 or a combination thereof.
  3. 제1항에서, In claim 1,
    상기 양극 활물질의 입자 표면에 대한 X선 광전자 분광 분석 (X-ray Photoelectron Spectroscopy; XPS)에서 상기 고용체의 인(P) 원자에 기인하는 피크의 강도가 최대가 되는 에너지의 위치는 133 eV 내지 135 eV인 리튬 이차 전지용 양극 활물질.In X-ray Photoelectron Spectroscopy (XPS) on the particle surface of the positive electrode active material, the position of the energy at which the intensity of the peak due to the phosphorus (P) atom of the solid solution is maximized is 133 eV to 135 eV. A positive electrode active material for phosphorus secondary batteries.
  4. 제1항에서,In claim 1,
    상기 양극 활물질에 잔류하는 리튬의 양은 The amount of lithium remaining in the positive electrode active material
    상기 고용체를 포함하기 전의 코어에 잔류하는 리튬의 양에 비하여 50% 이하인 것을 특징으로 하는 리튬 이차 전지용 양극 활물질.The positive electrode active material for lithium secondary batteries, characterized in that 50% or less than the amount of lithium remaining in the core before including the solid solution.
  5. 제1항에서,In claim 1,
    상기 양극 활물질에 잔류하는 리튬의 총량(Total Lithium, TTL)은 상기 양극 활물질 100중량부에 대하여 0.1중량부 이하인 리튬 이차 전지용 양극 활물질.The total amount of lithium remaining in the cathode active material (Total Lithium, TTL) is 0.1 parts by weight or less based on 100 parts by weight of the cathode active material.
  6. 제1항 내지 제5항 중 어느 한 항에 따른 양극 활물질을 포함하는 양극, A positive electrode comprising the positive electrode active material according to any one of claims 1 to 5,
    음극, 및 전해질을 포함하는 리튬 이차 전지.A lithium secondary battery comprising a negative electrode, and an electrolyte.
  7. 하기 화학식 1로 표시되는 화합물; 및 리튬과 인을 함유하는 화합물 첨가제;를 혼합하는 단계, 및A compound represented by Formula 1; And a compound additive containing lithium and phosphorus; and
    상기 단계의 혼합물을 열처리하는 단계,Heat-treating the mixture of said step,
    를 포함하는 리튬 이차 전지용 양극 활물질의 제조 방법:Method for producing a cathode active material for a lithium secondary battery comprising:
    [화학식 1][Formula 1]
    LixNi(1-a-b-c-d)CoaMnbM1 cM2 dO2 Li x Ni (1-abcd) Co a Mn b M 1 c M 2 d O 2
    상기 화학식 1에서,In Chemical Formula 1,
    M1 및 M2는 서로 상이한 원소로, Al, B, Mg, Ti, 또는 Zr이고,M 1 and M 2 are elements different from each other, and are Al, B, Mg, Ti, or Zr,
    0.95≤x≤1.2, 0<a≤0.4, 0<b≤0.4, 0≤c≤0.01, 0≤d≤0.01, 및 0≤a+b+c+d≤0.4이다.0.95 ≦ x ≦ 1.2, 0 <a ≦ 0.4, 0 <b ≦ 0.4, 0 ≦ c ≦ 0.01, 0 ≦ d ≦ 0.01, and 0 ≦ a + b + c + d ≦ 0.4.
  8. 제7항에서,In claim 7,
    상기 리튬과 인을 함유하는 화합물 첨가제는 리튬(Li), 인(P), 및 산소(O)가 필수로 결합되어 있고 수소(H)가 선택적으로 결합된 형태의 화합물인 것을 특징으로 하는 리튬 이차 전지용 양극 활물질의 제조 방법.The lithium and phosphorus-containing compound additives are lithium secondary, characterized in that lithium (Li), phosphorus (P), and oxygen (O) is essentially a compound and hydrogen (H) is selectively bonded to the compound The manufacturing method of the positive electrode active material for batteries.
  9. 제7항에서,In claim 7,
    상기 리튬과 인을 함유하는 화합물 첨가제는 Li2P2O6, LiH2PO4 또는 이들의 조합인 리튬 이차 전지용 양극 활물질의 제조 방법.The compound additive containing lithium and phosphorus is Li 2 P 2 O 6, LiH 2 PO 4 or a combination thereof.
  10. 제7항에서, In claim 7,
    상기 리튬과 인을 함유하는 화합물 첨가제는 상기 화학식 1로 표시되는 화합물 100 중량부에 대하여 인(P)의 함량이 0.05 내지 0.5중량부가 되도록 첨가되는 것인 리튬 이차 전지용 양극 활물질의 제조 방법.The compound additive containing lithium and phosphorus is a method for producing a positive electrode active material for a lithium secondary battery is added so that the content of phosphorus (P) is 0.05 to 0.5 parts by weight based on 100 parts by weight of the compound represented by the formula (1).
  11. 제7항에서,In claim 7,
    상기 열처리하는 단계에 의하여, 상기 화학식 1로 표시되는 화합물의 표면에 리튬, 인, 및 산소를 함유하는 고용체가 형성되는 것인 리튬 이차 전지용 양극 활물질의 제조 방법.By the heat treatment step, a solid solution containing lithium, phosphorus, and oxygen is formed on the surface of the compound represented by the formula (1).
  12. 제7항에서,In claim 7,
    상기 열처리하는 단계는 300℃ 내지 500℃에서 수행되는 것인 리튬 이차 전지용 양극 활물질의 제조 방법.The heat treatment is a method of manufacturing a positive electrode active material for a lithium secondary battery that is carried out at 300 ℃ to 500 ℃.
  13. 제7항 내지 제12항 중 어느 한 항에 따라 제조된 양극 활물질을 포함하는 양극, 음극, 및 전해질을 포함하는 리튬 이차 전지.A lithium secondary battery comprising a positive electrode, a negative electrode, and an electrolyte comprising a positive electrode active material prepared according to any one of claims 7 to 12.
PCT/KR2014/009516 2013-10-11 2014-10-10 Anode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same WO2015053580A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0121479 2013-10-11
KR1020130121479A KR101646729B1 (en) 2013-10-11 2013-10-11 Positive electrode active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Publications (1)

Publication Number Publication Date
WO2015053580A1 true WO2015053580A1 (en) 2015-04-16

Family

ID=52813342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009516 WO2015053580A1 (en) 2013-10-11 2014-10-10 Anode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same

Country Status (2)

Country Link
KR (1) KR101646729B1 (en)
WO (1) WO2015053580A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10847781B2 (en) 2017-12-04 2020-11-24 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US11522189B2 (en) 2017-12-04 2022-12-06 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, preparing method thereof, and rechargeable lithium battery comprising positive electrode
US11670754B2 (en) 2017-12-04 2023-06-06 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US11728473B2 (en) 2020-09-24 2023-08-15 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
US11777075B2 (en) 2017-12-04 2023-10-03 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102178876B1 (en) 2017-10-20 2020-11-13 주식회사 엘지화학 Method for preparing positive electrode active material for secondary battery and secondary battery using the same
KR102179968B1 (en) 2017-10-20 2020-11-17 주식회사 엘지화학 Preparing method of positive electrode active material for lithium secondary battery, positive electrode active material thereby, positive electrode and lithium secondary battery including the same
KR102165118B1 (en) * 2017-10-26 2020-10-14 주식회사 엘지화학 Positive electrode active material for secondary battery, method for preparing the same and lithium secondary battery comprising the same
KR102288290B1 (en) 2018-02-23 2021-08-10 주식회사 엘지화학 Positive electrode active material for secondary battery, method for preparing the same and lithium secondary battery comprising the same
KR102231062B1 (en) 2018-03-09 2021-03-23 주식회사 엘지화학 Positive electrode active material, method for producing thereof, positive electrode and secondary battery comprising the same
KR102288851B1 (en) 2018-05-11 2021-08-12 주식회사 엘지화학 Preparing method of positive electrode active material for lithium secondary battery, positive electrode active material thereby, positive electrode and lithium secondary battery including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020095421A (en) * 2001-06-14 2002-12-26 삼성에스디아이 주식회사 Active material for battery and a method of preparing same
KR20100081952A (en) * 2009-01-06 2010-07-15 주식회사 엘지화학 Cathode active material for lithium secondary battery
JP2010232001A (en) * 2009-03-27 2010-10-14 Hitachi Ltd Positive electrode material for lithium secondary battery, lithium secondary battery, and secondary battery module using the same
KR20130022018A (en) * 2011-08-24 2013-03-06 국립대학법인 울산과학기술대학교 산학협력단 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20130052394A (en) * 2011-11-11 2013-05-22 에스케이씨 주식회사 Cathode active material for lithium secondary battery containing phosphate fluoride and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8871113B2 (en) * 2010-03-31 2014-10-28 Samsung Sdi Co., Ltd. Positive active material, and positive electrode and lithium battery including positive active material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020095421A (en) * 2001-06-14 2002-12-26 삼성에스디아이 주식회사 Active material for battery and a method of preparing same
KR20100081952A (en) * 2009-01-06 2010-07-15 주식회사 엘지화학 Cathode active material for lithium secondary battery
JP2010232001A (en) * 2009-03-27 2010-10-14 Hitachi Ltd Positive electrode material for lithium secondary battery, lithium secondary battery, and secondary battery module using the same
KR20130022018A (en) * 2011-08-24 2013-03-06 국립대학법인 울산과학기술대학교 산학협력단 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20130052394A (en) * 2011-11-11 2013-05-22 에스케이씨 주식회사 Cathode active material for lithium secondary battery containing phosphate fluoride and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10847781B2 (en) 2017-12-04 2020-11-24 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US11522189B2 (en) 2017-12-04 2022-12-06 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, preparing method thereof, and rechargeable lithium battery comprising positive electrode
US11670754B2 (en) 2017-12-04 2023-06-06 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US11682755B2 (en) 2017-12-04 2023-06-20 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US11777075B2 (en) 2017-12-04 2023-10-03 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US11728473B2 (en) 2020-09-24 2023-08-15 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Also Published As

Publication number Publication date
KR20150042610A (en) 2015-04-21
KR101646729B1 (en) 2016-08-08

Similar Documents

Publication Publication Date Title
WO2015053580A1 (en) Anode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same
WO2019151813A1 (en) Anode active material, anode comprising same, and lithium secondary battery
WO2019112279A2 (en) Cathode active material for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising cathode comprising same
WO2014178625A1 (en) Anode active material for lithium secondary battery
WO2017069405A1 (en) Precursor comprising multi-layered transition metal oxides for producing cathode active material, and cathode active material produced using precursor for lithium secondary battery
WO2014193203A1 (en) Anode active material for lithium cell and method for manufacturing same
WO2017069410A1 (en) Cathode active material comprising multi-layered transition metal oxide for lithium secondary battery, and cathode comprising cathode active material
WO2015130106A1 (en) Lithium-nickel based cathode active material, method for preparing same, and lithium secondary battery including same
WO2012093798A2 (en) Anode active material with whole particle concentration gradient for lithium secondary battery, method for preparing same, and lithium secondary battery having same
WO2014204213A1 (en) Cathode active material for lithium secondary battery and manufacturing method therefor
WO2013002457A1 (en) Positive electrode active material, electrode including the positive electrode active material, and lithium electrochemical battery
WO2019168301A1 (en) Positive electrode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2017069407A1 (en) Precursor comprising multi-layered transition metal oxides for producing cathode active material, and cathode active material produced using precursor for lithium secondary battery
WO2018056650A1 (en) Lithium-rich antiperovskite-coated lco-based lithium composite, method for preparing same, and positive electrode active material and lithium secondary battery comprising same
WO2019074306A2 (en) Positive electrode active material, method for preparing same, and lithium secondary battery comprising same
WO2018062770A1 (en) Lithium-rich antiperovskite compound, lithium secondary battery electrolyte comprising same, and lithium secondary battery comprising same
WO2019083221A1 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2019098541A1 (en) Cathode active material for secondary battery, fabrication method therefor, and lithium secondary battery comprising same
WO2019212321A1 (en) Method for cleaning positive electrode active material, positive electrode active material manufacturing method comprising same, and positive electrode active material manufactured by same
WO2020111318A1 (en) Cathode active material for lithium secondary battery
WO2019078688A2 (en) Lithium secondary battery positive electrode active material, method for preparing same, and lithium secondary battery positive electrode and lithium secondary battery comprising same
WO2022055309A1 (en) Negative electrode active material, negative electrode comprising negative electrode active material, and secondary battery comprising negative electrode
WO2016068682A1 (en) Transition metal oxide precursor, lithium composite transition metal oxide, positive electrode comprising same, and secondary battery
WO2019078506A2 (en) Method for preparing cathode active material for lithium secondary battery, cathode active material prepared thereby, cathode comprising same for lithium secondary battery, and lithium secondary battery
WO2020145638A1 (en) Method for producing positive electrode active material for lithium secondary battery, and positive electrode active material produced thereby

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14852870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14852870

Country of ref document: EP

Kind code of ref document: A1