WO2014077663A1 - Anode active material for sodium secondary battery and method for producing same - Google Patents

Anode active material for sodium secondary battery and method for producing same Download PDF

Info

Publication number
WO2014077663A1
WO2014077663A1 PCT/KR2013/010521 KR2013010521W WO2014077663A1 WO 2014077663 A1 WO2014077663 A1 WO 2014077663A1 KR 2013010521 W KR2013010521 W KR 2013010521W WO 2014077663 A1 WO2014077663 A1 WO 2014077663A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
active material
sodium
sodium secondary
cathode active
Prior art date
Application number
PCT/KR2013/010521
Other languages
French (fr)
Korean (ko)
Inventor
선양국
오승민
장민우
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to CN201380068762.9A priority Critical patent/CN104904047A/en
Priority claimed from KR1020130140911A external-priority patent/KR20140064681A/en
Publication of WO2014077663A1 publication Critical patent/WO2014077663A1/en
Priority to US14/716,362 priority patent/US20150333325A1/en
Priority to US15/993,174 priority patent/US10781110B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material for a sodium secondary battery and a method for manufacturing the same, and more particularly, to a cathode active material for a sodium secondary battery having a new O 3 structure and a method for manufacturing the same.
  • a lithium ion secondary battery using a nonaqueous electrolyte solution in which an electrolyte salt is dissolved in a nonaqueous solvent and moving lithium ions between a positive electrode and a negative electrode so that charge and discharge is performed is widely used.
  • Lithium ion batteries using an intercalation reaction of lithium ions using lithium transition metal oxides are commercially available as positive electrode materials.
  • lithium included in the lithium ion battery is expensive, there is a need for a battery having a lower cost and a higher capacity.
  • Japanese Unexamined Patent Application Publication No. 2007-287661 has a positive electrode made of a composite metal oxide obtained by firing a raw material having a composition ratio of Na, Mn and Co (Na: Mn: Co) of 0.7: 0.5: 0.5 and a negative electrode made of sodium metal. Secondary batteries are described in detail. Further, Japanese Patent Laid-Open No. 2005-317511 discloses ⁇ -NaFeO 2 having a hexagonal crystal (layered rock salt) crystal structure as a sum metal oxide, specifically, by mixing Na 2 O 2 and Fe 3 O 4 . This composite metal oxide was obtained by baking at 600-700 degreeC in air. However, the conventional sodium secondary battery cannot be said to have sufficient lifespan characteristics, that is, a discharge capacity retention rate when repeated charging and discharging.
  • An object of the present invention is to provide a cathode active material for a sodium secondary battery of a novel composition with improved life characteristics and a method of manufacturing the same in order to solve the problems of the prior art as described above.
  • the present invention to solve the above problems Na x [Ni y Fe z Mn 1-yz ] O 2 (0.8 ⁇ x ⁇ 1.2, 0.05 ⁇ y ⁇ 0.9, 0.05 ⁇ z ⁇ 0.9, 0.05 ⁇ 1-yz ⁇ 0.9), which provides a cathode active material for a sodium secondary battery having an O 3 crystal structure.
  • the cathode active material for sodium secondary battery according to the present invention is a spherical particle having a particle size of 5 to 15 ⁇ m, and the particle size distribution is monodisperse.
  • the cathode active material for sodium secondary battery according to the present invention is characterized in that 2 ⁇ in XRD shows three peaks in a range of 30 ° to 40 °.
  • the cathode active material for a sodium secondary battery according to the present invention is characterized in that the peak (104) having a main peak in the range of 2 ⁇ in the range of 40 ° to 45 ° in XRD.
  • the cathode active material for sodium secondary battery according to the present invention is characterized in that the tap density is 1.0 to 2.4 g / cc.
  • the present invention also provides
  • It provides a method for producing a cathode active material for sodium secondary battery according to the present invention comprising a heat treatment step.
  • the cathode active material precursor for sodium secondary battery is characterized in that represented by any one of the following formulas (1) to (3).
  • the cathode active material precursor for sodium secondary battery is preferably prepared by the co-precipitation method, such as the application No. 10-2012-0130824 of the inventors filed on November 19, 2012.
  • the second pH adjusting agent in the step (b) is characterized in that selected from the group consisting of ammonium oxalate, NaOH and KOH.
  • the pH in the reactor is adjusted to 9 to 11, and the ammonium oxalate is used as the second pH adjusting agent.
  • the pH in the reactor is characterized in that to adjust to 6.5 to 11.
  • the nickel salt in the step (c) is selected from the group consisting of nickel sulfate, nickel nitrate, nickel chloride, and nickel fluoride, and the iron salt is iron sulfate, It is selected from iron nitrate, iron chloride, iron fluoride, and the manganese salt is characterized in that it is selected from manganese sulfate, manganese nitrate, manganese chloride, manganese fluoride.
  • the complexing agent in the step (c) is an aqueous ammonia solution (NH 4 OH), ammonium sulfate ((NH 4 ) 2 SO 4 ), ammonium nitrate (NH 4 NO 3 ) and first ammonium phosphate ((NH 4 ) 2 HPO 4 ).
  • the ratio of the concentration of the complexing agent and the concentration of the aqueous solution of the transition metal compound in the step (c) is 0.8 to 1.2.
  • the sodium compound is characterized in that one of sodium carbonate, sodium nitrate, sodium acetate, sodium hydroxide, sodium hydroxide hydrate, sodium oxide or a combination thereof.
  • the sodium compound per 1 mol of the cathode active material precursor for sodium secondary battery is mixed in a ratio of 1.0 to 1.5 mol It is characterized by.
  • the heat treatment step is characterized in that the heat treatment at 800 °C to 1000 °C.
  • the sodium secondary battery positive electrode active material according to the present invention is structurally stable in the O 3 structure unlike the prior art, and thus the sodium battery including the sodium secondary battery positive electrode active material according to the present invention exhibits excellent life characteristics.
  • 1 to 4 show SEM pictures of the precursor prepared in the embodiment of the present invention.
  • 5 to 8 show the results of measuring the particle size distribution of the precursor prepared in the embodiment of the present invention.
  • Figure 9 shows the results of measuring the XRD of the precursor prepared in the embodiment of the present invention.
  • Figure 10 shows the results of measuring the particle size distribution of the precursor prepared in the embodiment of the present invention.
  • the reactor was charged with 4 L of distilled water and stirred at 1000 rpm while adding ammonia to maintain the reactor internal pH at 7 and the internal temperature at 50 ° C. 4 M NaOH solution was added as a second pH adjusting agent to adjust the pH inside the reactor to 10.2 and maintained for 30 minutes.
  • NiSO 4 ⁇ 6H 2 O, FeSO 4 ⁇ 7H 2 O, MnSO 4 ⁇ 5H 2 O as an aqueous solution of a transition metal compound were mixed in an equivalent ratio, and introduced into the reactor together with NH 4 OH as a complexing agent, A precursor was prepared.
  • Example 2 Except for adjusting the mixing ratio of the transition metal compound aqueous solution in Example 1 as shown in Table 1 below as shown in Table 1 Ni 0.25 Fe 0.35 Mn 0.4 (OH) 2 , Ni 0.25 Fe 0.5 Mn The precursors of Examples 2-4 were prepared, represented by 0.25 (OH) 2 and Ni 0.15 Fe 0.35 Mn 0.5 (OH) 2 .
  • Example 1 Ni 0.25 Fe 0.25 Mn 0.5 (OH) 2
  • Example 2 Ni 0.25 Fe 0.35 Mn 0.4 (OH) 2
  • Example 3 Ni 0.25 Fe 0.5 Mn 0.25 (OH) 2
  • Example 4 Ni 0.15 Fe 0.35 Mn 0.5 (OH) 2
  • Example 5 Ni 0.25 Fe 0.5 Mn 0.25 C 2 O 4
  • Example 6 Ni 0.2 Fe 0.6 Mn 0.2 C 2 O 4
  • Example 7 Ni 0.17 Fe 0.66 Mn 0.17 C 2 O 4
  • Example 8 Ni 0.2 Fe 0.55 Mn 0.25 C 2 O 4
  • Example 9 Ni 0.3 Fe 0.45 Mn 0.25 C 2 O 4
  • Example 10 Ni 0.35 Fe 0.4 Mn 0.25 C 2 O 4
  • Example 11 Ni 0.25 Fe 0.5 Mn 0.25 ) 3 O 4
  • Example 12 (Ni 0.25 Fe 0.25 Mn 0.5 ) 3 O 4
  • the particle size distribution of the precursors prepared in Examples 1 to 4 was measured and shown in FIGS. 5 to 8. 5 to 8, it can be seen that the particle size of the precursor particles is monodisperse.
  • Example 5 In the same manner as in Example 1 except that the pH inside the reactor was adjusted to 7 using ammonia as the first pH regulator, and the pH inside the reactor was adjusted to 7 using an aqueous 0.5M ammonium oxalate solution as the second pH regulator.
  • the precursors of Examples 5 to 10 of the composition as shown in Table 1 were prepared.
  • the internal pH of the reactor was adjusted to 7 using ammonia as the first pH regulator, and the internal pH of the reactor was adjusted to 9.2 by adding 4 M NaOH as the second pH regulator (Ni).
  • Particle size distributions of the precursors prepared in Examples 11 and 12 were measured and shown in FIGS. 13 and 14. It can be seen from FIG. 13 and FIG. 14 that the particle size distribution is monodisperse.
  • the results of measuring XRD of the cathode active materials of Examples 13 to 16 are shown in FIGS. 15 to 18, and the results of XRD measurement of the cathode active materials of Examples 17 to 19 are shown in FIG. 19.
  • the results of measuring XRD with respect to the positive electrode active materials of 20 to 22 are shown in FIG. 20, and the results of measuring XRD with respect to the positive electrode active materials of Examples 23 and 24 are shown in FIGS. 21 and 22.
  • the cathode active material for the sodium secondary battery prepared in Examples of the present invention exhibits three peaks in a range of 30 ° to 40 ° in 2RD in XRD, and O 3 in a range of 40 ° to 45 ° in 2 ⁇ . It can be seen that the (104) main peak, which is characteristic of the crystal structure, appears.
  • Composite metal oxide E1 acetylene black (manufactured by Denki Chemical Co., Ltd.) as a conductive material, and PVDF (PolyVinylidene DiFluoride Polyflon) as a binder are used as the composite metal oxide E1.
  • Conductive material: Binder 85: 10: 5 (weight ratio), each weighed so as to have a composition.
  • the composite metal oxide and acetylene black are sufficiently mixed with an agate mortar, and N-methyl-2-pyrrolidone (NMP: manufactured by Tokyo Kasei Kogyo Co., Ltd.) is appropriately added to the mixture, followed by addition.
  • PVDF was added to the mixture to make it uniform and slurryed.
  • An anode prepared with aluminum foil facing downward was placed in the recess of the lower part of the coin cell (manufactured by Hosen Kabushiki Co., Ltd.), followed by 1 M NaClO 4 / propylene carbonate + 2 vol% fluoroethylene carbonate as a nonaqueous electrolyte.
  • a sodium secondary battery was produced by combining (FEC, Fluoro Ethylene Carbonate), a polypropylene porous membrane (thickness 20 ⁇ m) as a separator, and sodium metal as a negative electrode.
  • the charge and discharge characteristics of the sodium secondary battery including the active materials of Examples 13 to 19 and 23 made of the precursors of Examples 1 to 7 and 11 were measured and the results are shown in Table 2 below.
  • Example 13 Ni 0.25 Fe 0.25 Mn 0.5 (OH) 2 precursor / Na 95%, sintered at 970 ° C / 24h, 4.3V 155.5 mAh / g 94.1%
  • Example 2 Ni 0.25 Fe 0.35 Mn 0.4 (OH) 2 Precursor / Na 98%, 900 ° C / 24h Sintered, 4.3V 180.1 mAh / g 101.2% Ni 0.25 Fe 0.35 Mn 0.4 (OH) 2 precursor / Na 98%, sintered at 930 ° C / 24h, 4.3V 176.3 mAh / g 100.9% Ni 0.25 Fe 0.35 Mn 0.4 (OH) 2 Precursor / Na 98%, 970 ° C / 24h Sintered, 4.3V 166.2 mAh / g 95.4%
  • Example 3 Example 15 Ni 0.25 Fe 0.5 Mn 0.25 (OH) 2 / Na 98%,
  • Example 13 155.5 mAh / g 130.2 mAh / g 83.7% 106.9 mAh / g 96.0 mAh / g 89.8%
  • Example 2 Example 14 180.1 mAh / g 141.3 mAh / g 78.5% 125.6 mAh / g 117.5 mAh / g 93.6% 176.3 mAh / g 140.5 mAh / g 76.7% 125.9 mAh / g 117.8 mAh / g 93.6% 166.2 mAh / g 124.6 mAh / g 75.0% 107.7 mAh / g 95.1 mAh / g 88.3%
  • Example 3 Example 15 130.7 mAh / g 122.0 mAh / g 93.3% 114.3 mAh / g 105.4 mAh / g 92
  • the sodium secondary battery including the active material having the O 3 crystal structure according to the present invention shows that the charge and discharge efficiency up to 20 cycles has a very high lifespan characteristic of about 90%.
  • the charge and discharge characteristics of the sodium secondary battery including the active material prepared in Examples 13 to 16 are measured in FIGS. 23 to 26, and the charge and discharge characteristics and lifetime characteristics of the sodium secondary batteries of Examples 17 to 19 were measured.
  • the results are shown in FIGS. 27 and 28, and the results of measuring charge and discharge characteristics and life characteristics of the sodium secondary battery including the active materials prepared in Examples 17 and 20 to 22 are shown in FIGS. 29 to 31.
  • 32 and 33 show the results of measuring charge and discharge characteristics and lifespan characteristics of a sodium secondary battery including an active material having an O 3 crystal structure formed at 23 and 24.
  • the sodium secondary battery positive electrode active material according to the present invention is structurally stable in the O 3 structure unlike the prior art, and thus the sodium battery including the sodium secondary battery positive electrode active material according to the present invention exhibits excellent life characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to an anode active material for a sodium secondary battery and a method for producing same and, more specifically, to an anode active material, having a new O3 structure, for a sodium secondary battery and a method for producing same. The anode active material for a sodium secondary battery according to the present invention has an O3 structure and thus is structurally stable, unlike conventional anode active materials, and accordingly, a sodium battery comprising the anode active material for a sodium secondary battery according to the present invention exhibits excellent lifespan characteristics.

Description

나트륨 이차전지용 양극활물질 및 이의 제조 방법Cathode active material for sodium secondary battery and manufacturing method thereof
본 발명은 나트륨 이차전지용 양극활물질 및 이의 제조방법에 관한 것으로서, 더욱 상세하게는 새로운 O3 구조의 나트륨 이차전지용 양극활물질 및 이의 제조 방법에 관한 것이다.The present invention relates to a cathode active material for a sodium secondary battery and a method for manufacturing the same, and more particularly, to a cathode active material for a sodium secondary battery having a new O 3 structure and a method for manufacturing the same.
현재, 고에너지 밀도의 이차전지로서, 전해질염을 비수용매에 용해시킨 비수 전해액을 사용하고, 리튬 이온을 양극과 음극 사이에서 이동시켜 충방전이 이루어지도록 한 리튬 이온 이차전지가 많이 이용되고 있다. 양극 재료로서는 리튬 전이금속 산화물을 사용하여 리튬 이온의 중간 삽입반응을 이용한 리튬 이온 전지가 상용화되고 있다. 그러나, 리튬 이온 전지에 포함되는 리튬은 가격이 비싸므로 보다 값이 싸고 높은 용량을 가지는 전지가 필요한 실정이다. Currently, as a secondary battery having a high energy density, a lithium ion secondary battery using a nonaqueous electrolyte solution in which an electrolyte salt is dissolved in a nonaqueous solvent and moving lithium ions between a positive electrode and a negative electrode so that charge and discharge is performed is widely used. Lithium ion batteries using an intercalation reaction of lithium ions using lithium transition metal oxides are commercially available as positive electrode materials. However, since lithium included in the lithium ion battery is expensive, there is a need for a battery having a lower cost and a higher capacity.
최근에는 리튬 이온 대신에 나트륨 이온을 이용한 나트륨 이온 이차전지의 연구가 시작되고 있다. 나트륨은 자원 매장량이 풍부하기 때문에 리튬 이온 대신에 나트륨 이온을 이용한 이차전지를 제작할 수 있다면 이차전지를 낮은 비용으로 제조할 수 있게 된다. Recently, research on sodium ion secondary batteries using sodium ions instead of lithium ions has begun. Since sodium has abundant resource reserves, if a secondary battery using sodium ions can be manufactured instead of lithium ions, the secondary battery can be manufactured at low cost.
일본 특허 공개 제2007-287661호 공보에는 Na, Mn 및 Co의 조성비(Na:Mn:Co)가 0.7:0.5:0.5인 원료를 소성하여 얻어지는 복합 금속 산화물을 이용한 정극과 나트륨 금속으로 이루어지는 부극을 가지는 이차 전지가 구체적으로 기재되어 있다. 또한, 일본 특허 공개 제2005-317511호 공보에는 합 금속 산화물로서 육방정(층상 암염형) 결정 구조를 갖는 α-NaFeO2가 구체적으로 개시되어 있고, Na2O2와 Fe3O4를 혼합하여 공기 중에 600 내지 700 ℃에서 소성시킴으로써 이 복합 금속 산화물을 얻었다. 그러나, 종래의 나트륨 이차 전지는, 수명 특성, 즉 충방전을 반복했을 때의 방전 용량 유지율은 충분하다고는 할 수 없었다.Japanese Unexamined Patent Application Publication No. 2007-287661 has a positive electrode made of a composite metal oxide obtained by firing a raw material having a composition ratio of Na, Mn and Co (Na: Mn: Co) of 0.7: 0.5: 0.5 and a negative electrode made of sodium metal. Secondary batteries are described in detail. Further, Japanese Patent Laid-Open No. 2005-317511 discloses α-NaFeO 2 having a hexagonal crystal (layered rock salt) crystal structure as a sum metal oxide, specifically, by mixing Na 2 O 2 and Fe 3 O 4 . This composite metal oxide was obtained by baking at 600-700 degreeC in air. However, the conventional sodium secondary battery cannot be said to have sufficient lifespan characteristics, that is, a discharge capacity retention rate when repeated charging and discharging.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 수명 특성이 개선된 새로운 조성의 나트륨 이차전지용 양극활물질 및 이의 제조 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a cathode active material for a sodium secondary battery of a novel composition with improved life characteristics and a method of manufacturing the same in order to solve the problems of the prior art as described above.
본 발명은 상기와 같은 과제를 해결하기 위하여 Nax[NiyFezMn1-y-z]O2 (0.8≤x≤1.2, 0.05≤y≤0.9, 0.05≤z≤0.9, 0.05≤1-y-z≤0.9)로 표시되고, O3 결정 구조인 나트륨 이차전지용 양극활물질을 제공한다.The present invention to solve the above problems Na x [Ni y Fe z Mn 1-yz ] O 2 (0.8≤x≤1.2, 0.05≤y≤0.9, 0.05≤z≤0.9, 0.05≤1-yz≤ 0.9), which provides a cathode active material for a sodium secondary battery having an O 3 crystal structure.
본 발명에 의한 나트륨 이차전지용 양극활물질은 입자 크기가 5 내지 15㎛의 구형 입자이고, 입자 크기 분포가 단분산형인 것을 특징으로 한다. The cathode active material for sodium secondary battery according to the present invention is a spherical particle having a particle size of 5 to 15 μm, and the particle size distribution is monodisperse.
본 발명에 의한 나트륨 이차전지용 양극활물질은 XRD 에서 2θ가 30°내지 40°범위에서 3개의 피크를 나타내는 것을 특징으로 한다. The cathode active material for sodium secondary battery according to the present invention is characterized in that 2θ in XRD shows three peaks in a range of 30 ° to 40 °.
본 발명에 의한 나트륨 이차전지용 양극활물질은 XRD 에서 2θ가 40°내지 45°범위에서 주피크인 (104) 피크가 나타나는 것을 특징으로 한다. The cathode active material for a sodium secondary battery according to the present invention is characterized in that the peak (104) having a main peak in the range of 2θ in the range of 40 ° to 45 ° in XRD.
본 발명에 의한 나트륨 이차전지용 양극활물질은 탭밀도가 1.0 내지 2.4 g/cc 인 것을 특징으로 한다. The cathode active material for sodium secondary battery according to the present invention is characterized in that the tap density is 1.0 to 2.4 g / cc.
본 발명은 또한, The present invention also provides
나트륨 이차전지용 양극활물질 전구체와 나트륨 화합물을 혼합하는 단계; 및Mixing a positive electrode active material precursor for a sodium secondary battery and a sodium compound; And
열처리 단계;를 포함하는 본 발명에 의한 나트륨 이차전지용 양극활물질의 제조 방법을 제공한다.It provides a method for producing a cathode active material for sodium secondary battery according to the present invention comprising a heat treatment step.
본 발명에 의한 나트륨 이차전지용 양극활물질의 제조 방법에 있어서, 상기 나트륨 이차전지용 양극활물질 전구체는 다음의 화학식 1 내지 3 중 어느 하나로 표시되는 것을 특징으로 한다. In the method for producing a cathode active material for sodium secondary battery according to the present invention, the cathode active material precursor for sodium secondary battery is characterized in that represented by any one of the following formulas (1) to (3).
[화학식 1] NixFeyMn1-x-y(OH)2, [Formula 1] Ni x Fe y Mn 1-xy (OH) 2,
[화학식 2] NixFeyMn1-x-yC2O4, [Formula 2] Ni x Fe y Mn 1-xy C 2 O 4,
[화학식 3] [NixFeyMn1-x-y]3O4 [Ni x Fe y Mn 1-xy ] 3 O 4
(상기 화학식 1 내지 3에서 0.05≤x≤0.9, 0.1≤y≤0.9, 0.05≤1-x-y≤0.9) (In the above Chemical Formulas 1 to 3 0.05≤x≤0.9, 0.1≤y≤0.9, 0.05≤1-xy≤0.9 )
상기 나트륨 이차전지용 양극활물질전구체는2012년 11월 19일에 출원된 본 발명자들의 출원번호 10-2012-0130824 와 같이 공침법에 의하여 제조되는 것이 바람직하다. The cathode active material precursor for sodium secondary battery is preferably prepared by the co-precipitation method, such as the application No. 10-2012-0130824 of the inventors filed on November 19, 2012.
즉, 상기 나트륨 이차전지용 양극활물질 전구체는That is, the cathode active material precursor for sodium secondary battery
(a) 공침 반응기에 증류수와 제 1 pH 조절제를 넣고, 공기 또는 질소 기체를 공급하여 교반하면서 반응기 내부의 pH를 6.5 내지 7.5 로 유지하는 단계; (a) adding distilled water and a first pH adjusting agent to the coprecipitation reactor, and maintaining the pH inside the reactor at 6.5 to 7.5 while supplying air or nitrogen gas and stirring;
(b) 상기 반응기 내로 제 2 pH 조절제를 연속적으로 투입한 후 혼합하여 반응기 내의 pH를 6.5 내지 11 로 조절하는 단계; 및(b) continuously adding a second pH adjusting agent into the reactor and mixing to adjust the pH in the reactor to 6.5 to 11; And
(c) 니켈염, 철염, 및 망간염을 당량비로 포함하는 전이금속 화합물 수용액, 착화제를 투입하여 나트륨 이차전지용 양극활물질 전구체 입자를 형성하는 단계;로 구성된다. (c) adding an aqueous solution of a transition metal compound containing an equivalent ratio of nickel salt, iron salt, and manganese salt and a complexing agent to form cathode active material precursor particles for a sodium secondary battery.
상기 나트륨 이차전지용 양극활물질 전구체의 제조 방법에 있어서, 상기 (b) 단계에서의 상기 제 2 pH 조절제는 암모늄 옥살레이트, NaOH 및 KOH 으로 이루어진 그룹에서 선택되는 것을 특징으로 한다. In the method of preparing a cathode active material precursor for a sodium secondary battery, the second pH adjusting agent in the step (b) is characterized in that selected from the group consisting of ammonium oxalate, NaOH and KOH.
본 발명의 양극활물질 전구체 제조 방법에 있어서, 상기 (b) 단계에서 상기 제 2 pH 조절제로 KOH 또는 NaOH 를 투입하는 경우 반응기 내의 pH를 9 내지 11로 조절하고, 상기 제 2 pH 조절제로 암모늄 옥살레이트를 투입하는 경우 반응기 내의 pH를 6.5 내지 11 으로 조절하는 것을 특징으로 한다. In the method of preparing a cathode active material precursor of the present invention, when KOH or NaOH is added to the second pH adjusting agent in the step (b), the pH in the reactor is adjusted to 9 to 11, and the ammonium oxalate is used as the second pH adjusting agent. In the case of adding the pH in the reactor is characterized in that to adjust to 6.5 to 11.
본 발명의 나트륨 이차전지용 양극활물질 전구체 제조 방법에 있어서, 상기 (c) 단계에서의 상기 니켈염은 황산니켈, 질산니켈, 염화니켈, 및 불화니켈으로 이루어진 그룹 중에서 선택되고, 상기 철염은 황산철, 질산철, 염화철, 불화철 중에서 선택되고, 상기 망간염은 황산망간, 질산망간, 염화망간, 불화망간 중에서 선택되는 것을 특징으로 한다. In the method for preparing a cathode active material precursor for a sodium secondary battery of the present invention, the nickel salt in the step (c) is selected from the group consisting of nickel sulfate, nickel nitrate, nickel chloride, and nickel fluoride, and the iron salt is iron sulfate, It is selected from iron nitrate, iron chloride, iron fluoride, and the manganese salt is characterized in that it is selected from manganese sulfate, manganese nitrate, manganese chloride, manganese fluoride.
본 발명의 나트륨 이차전지용 양극활물질 전구체 제조 방법에 있어서, 상기 (c) 단계에서의 상기 착화제는 암모니아 수용액(NH4OH), 황산암모늄((NH4)2SO4), 질산암모늄(NH4NO3) 및 제1 인산암모늄((NH4)2HPO4)으로 이루어진 그룹에서 선택되는 것을 특징으로 한다. In the method for preparing a cathode active material precursor for a sodium secondary battery of the present invention, the complexing agent in the step (c) is an aqueous ammonia solution (NH 4 OH), ammonium sulfate ((NH 4 ) 2 SO 4 ), ammonium nitrate (NH 4 NO 3 ) and first ammonium phosphate ((NH 4 ) 2 HPO 4 ).
본 발명의 나트륨 이차전지용 양극활물질 전구체 제조 방법에 있어서, 상기 (c) 단계에서의 상기 착화제의 농도와 상기 전이금속화합물 수용액의 농도의 비는 0.8 내지 1.2 인 것을 특징으로 한다. In the method for preparing a cathode active material precursor for a sodium secondary battery of the present invention, the ratio of the concentration of the complexing agent and the concentration of the aqueous solution of the transition metal compound in the step (c) is 0.8 to 1.2.
본 발명에 의한 나트륨 이차전지용 양극활물질의 제조 방법에 있어서, 상기 나트륨 화합물은 소듐카보네이트, 소듐나이트레이트, 소듐아세테이트, 수산화소듐, 수산화소듐수화물, 소듐옥사이드 또는 이들의 조합 중 하나인 것을 특징으로 한다. In the method for producing a cathode active material for sodium secondary battery according to the present invention, the sodium compound is characterized in that one of sodium carbonate, sodium nitrate, sodium acetate, sodium hydroxide, sodium hydroxide hydrate, sodium oxide or a combination thereof.
본 발명에 의한 나트륨 이차전지용 양극활물질의 제조 방법에 있어서, 나트륨 이차전지용 양극활물질 전구체와 나트륨 화합물을 혼합하는 단계에서는 상기 나트륨 이차전지용 양극활물질 전구체 1 몰당 상기 나트륨 화합물은 1.0 내지 1.5 몰의 비율로 혼합되는 것을 특징으로 한다. In the method for producing a cathode active material for sodium secondary battery according to the present invention, in the step of mixing the cathode active material precursor for sodium secondary battery and the sodium compound, the sodium compound per 1 mol of the cathode active material precursor for sodium secondary battery is mixed in a ratio of 1.0 to 1.5 mol It is characterized by.
본 발명에 의한 나트륨 이차전지용 양극활물질의 제조 방법에 있어서, 상기 열처리 단계에서는 800 ℃ 내지 1000 ℃에서 열처리하는 것을 특징으로 한다. In the method for producing a cathode active material for sodium secondary battery according to the present invention, the heat treatment step is characterized in that the heat treatment at 800 ℃ to 1000 ℃.
본 발명에 의한 나트륨 이차 전지 양극활물질은 종래와 달리 O3 구조로 구조 안정적이고, 이에 따라 본 발명에 의한 나트륨 이차 전지 양극활물질을 포함하는 나트륨 전지는 우수한 수명 특성을 나타낸다. The sodium secondary battery positive electrode active material according to the present invention is structurally stable in the O 3 structure unlike the prior art, and thus the sodium battery including the sodium secondary battery positive electrode active material according to the present invention exhibits excellent life characteristics.
도 1 내지 도 4는 본 발명의 실시예에서 제조된 전구체의 SEM 사진을 나타낸다. 1 to 4 show SEM pictures of the precursor prepared in the embodiment of the present invention.
도 5 내지 도 8은 본 발명의 실시예에서 제조된 전구체의 입도 분포를 측정한 결과를 나타낸다. 5 to 8 show the results of measuring the particle size distribution of the precursor prepared in the embodiment of the present invention.
도 9는 본 발명의 실시예에서 제조된 전구체의 XRD 를 측정한 결과를 나타낸다. Figure 9 shows the results of measuring the XRD of the precursor prepared in the embodiment of the present invention.
도 10은 본 발명의 실시예에서 제조된 전구체의 입도 분포를 측정한 결과를 나타낸다. Figure 10 shows the results of measuring the particle size distribution of the precursor prepared in the embodiment of the present invention.
도 11, 12는 본 발명의 실시예에서 제조된 전구체의 SEM 사진을 나타낸다. 11 and 12 show SEM photographs of the precursors prepared in Examples of the present invention.
도 13, 14는 본 발명의 실시예에서 제조된 전구체의 입도 분포를 측정한 결과를 나타낸다. 13 and 14 show the results of measuring the particle size distribution of the precursor prepared in Examples of the present invention.
도 15 내지 도 22는 본 발명의 실시예에서 제조된 양극활물질에 대하여 XRD 를 측정한 결과를 나타내었다. 15 to 22 show XRD results of the cathode active materials prepared in Examples of the present invention.
도 23 내지 도 33은 본 발명의 실시예에서 제조된 양극활물질을 포함하는 나트륨 이차 전지의 수명 특성 또는 충방전 특성을 측정한 결과를 나타내었다.23 to 33 show the results of measuring the life characteristics or charge and discharge characteristics of the sodium secondary battery including the positive electrode active material prepared in the embodiment of the present invention.
이하, 본 발명을 실시예에 의해 더욱 상세히 설명하지만, 본 발명이 이들에 의해서 한정되는 것은 아니다.Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited by these.
<실시예 1 내지 4><Examples 1 to 4>
반응기에 4ℓ의 증류수를 채우고, 암모니아를 첨가하면서 1000 rpm 으로 교반하여 반응기 내부 pH를 7 로, 내부 온도를 50 ℃ 로 유지하였다. 제 2 pH 조절제로서 4M NaOH 용액을 투입하여 반응기 내부 pH 를 10.2 로 맞추고 30분간 유지시켰다. The reactor was charged with 4 L of distilled water and stirred at 1000 rpm while adding ammonia to maintain the reactor internal pH at 7 and the internal temperature at 50 ° C. 4 M NaOH solution was added as a second pH adjusting agent to adjust the pH inside the reactor to 10.2 and maintained for 30 minutes.
전이금속 화합물 수용액으로 NiSO4ㆍ6H2O , FeSO4ㆍ7H2O , MnSO4ㆍ5H2O 를 당량비로 혼합하고, 착화제로서 NH4OH 와 함께 반응기 내로 투입하여 아래 표 1에서 보는 바와 같은 전구체를 제조하였다. NiSO 4 ㆍ 6H 2 O, FeSO 4 ㆍ 7H 2 O, MnSO 4 ㆍ 5H 2 O as an aqueous solution of a transition metal compound were mixed in an equivalent ratio, and introduced into the reactor together with NH 4 OH as a complexing agent, A precursor was prepared.
상기 실시예 1에서 전이금속 화합물 수용액의 혼합비를 조절하는 것을 제외하고는 상기 실시예 1과 동일하게 하여 아래 표 1에 나타난 바와 같이각각 Ni0.25Fe0.35Mn0.4(OH)2 , Ni0.25Fe0.5Mn0.25(OH)2 및 Ni0.15Fe0.35Mn0.5(OH)2 로 표시되는 실시예 2 내지 4의 전구체를 제조하였다. Except for adjusting the mixing ratio of the transition metal compound aqueous solution in Example 1 as shown in Table 1 below as shown in Table 1 Ni 0.25 Fe 0.35 Mn 0.4 (OH) 2 , Ni 0.25 Fe 0.5 Mn The precursors of Examples 2-4 were prepared, represented by 0.25 (OH) 2 and Ni 0.15 Fe 0.35 Mn 0.5 (OH) 2 .
표 1
구분 전구체 조성
실시예 1 Ni0.25Fe 0.25Mn0.5(OH)2
실시예 2 Ni0.25Fe0.35Mn0.4(OH)2
실시예 3 Ni0.25Fe0.5Mn0.25(OH)2
실시예 4 Ni0.15Fe0.35Mn0.5(OH)2
실시예 5 Ni0.25Fe0.5Mn0.25C2O4
실시예 6 Ni0.2Fe0.6Mn0.2C2O4
실시예 7 Ni0.17Fe0.66Mn0.17C2O4
실시예 8 Ni0.2Fe0.55Mn0.25C2O4
실시예 9 Ni0.3Fe0.45Mn0.25C2O4
실시예 10 Ni0.35Fe0.4Mn0.25C2O4
실시예 11 (Ni0.25Fe0.5Mn0.25)3O4
실시예 12 (Ni0.25Fe0.25Mn0.5)3O4
Table 1
division Precursor composition
Example 1 Ni 0.25 Fe 0.25 Mn 0.5 (OH) 2
Example 2 Ni 0.25 Fe 0.35 Mn 0.4 (OH) 2
Example 3 Ni 0.25 Fe 0.5 Mn 0.25 (OH) 2
Example 4 Ni 0.15 Fe 0.35 Mn 0.5 (OH) 2
Example 5 Ni 0.25 Fe 0.5 Mn 0.25 C 2 O 4
Example 6 Ni 0.2 Fe 0.6 Mn 0.2 C 2 O 4
Example 7 Ni 0.17 Fe 0.66 Mn 0.17 C 2 O 4
Example 8 Ni 0.2 Fe 0.55 Mn 0.25 C 2 O 4
Example 9 Ni 0.3 Fe 0.45 Mn 0.25 C 2 O 4
Example 10 Ni 0.35 Fe 0.4 Mn 0.25 C 2 O 4
Example 11 (Ni 0.25 Fe 0.5 Mn 0.25 ) 3 O 4
Example 12 (Ni 0.25 Fe 0.25 Mn 0.5 ) 3 O 4
<실험예 1> SEM 사진 측정Experimental Example 1 SEM Photographic Measurement
상기 실시예 1 내지 4에서 제조된 전구체의 SEM 사진을 측정하고 도 1 내지 도 4에 나타내었다. SEM pictures of the precursors prepared in Examples 1 to 4 were measured and shown in FIGS. 1 to 4.
<실험예 2> 입도 분포 측정Experimental Example 2 Particle Size Distribution Measurement
상기 실시예 1 내지 4 에서 제조된 전구체의 입도 분포를 측정하고 도 5 내지 도 8에 나타내었다. 도 5 내지 도 8 에서 전구체 입자의 입도가 단분산형인 것을 알 수 있다. The particle size distribution of the precursors prepared in Examples 1 to 4 was measured and shown in FIGS. 5 to 8. 5 to 8, it can be seen that the particle size of the precursor particles is monodisperse.
<실시예 5 내지 10> NiExamples 5 to 10 Ni xx FeFe yy MnMn 1-x-y1-x-y CC 22 OO 44 전구체 제조 Precursor manufacturing
제 1 pH 조절제로서 암모니아를 사용하여 반응기 내부 pH를 7 로 맞추고, 제 2 pH 조절제로서 0.5M 암모늄 옥살레이트 수용액을 사용하여 반응기 내부 pH 를 7 로 맞추는 것을 제외하고는 상기 실시예 1 과 동일하게 하여 상기 표 1에서 보는 바와 같은 조성의 실시예 5 내지 10의 전구체를 제조하였다.In the same manner as in Example 1 except that the pH inside the reactor was adjusted to 7 using ammonia as the first pH regulator, and the pH inside the reactor was adjusted to 7 using an aqueous 0.5M ammonium oxalate solution as the second pH regulator. The precursors of Examples 5 to 10 of the composition as shown in Table 1 were prepared.
<실험예 3> XRD 측정Experimental Example 3 XRD Measurement
상기 실시예 5 내지 7에서 제조된 전구체의 XRD 를 측정하고 도 9 에 나타내었다. XRDs of the precursors prepared in Examples 5 to 7 were measured and shown in FIG. 9.
<실험예 4> 입도 분포 측정Experimental Example 4 Measurement of Particle Size Distribution
상기 실시예 5 내지 7 에서 제조된 전구체의 입도 분포를 측정하고 도 10 에 나타내었다. The particle size distribution of the precursors prepared in Examples 5 to 7 was measured and shown in FIG. 10.
<실시예 11, 12><Examples 11 and 12>
제 1 pH 조절제로서 암모니아를 사용하여 반응기 내부 pH를 7 로 맞추고, 제 2 pH 조절제로서 4 M의 NaOH 를 첨가하여 반응기 내부 pH 를 9.2 로 맞추는 것을 제외하고는 상기 실시예 1 과 동일하게 하여 (Ni0.25Fe0.5Mn0.25)3O4, (Ni0.25Fe0.25Mn0.5)3O4 로 표시되는 실시예 11, 실시예 12의 전구체를 제조하였다. The internal pH of the reactor was adjusted to 7 using ammonia as the first pH regulator, and the internal pH of the reactor was adjusted to 9.2 by adding 4 M NaOH as the second pH regulator (Ni). The precursors of Example 11 and Example 12, which are represented by 0.25 Fe 0.5 Mn 0.25 ) 3 O 4 and (Ni 0.25 Fe 0.25 Mn 0.5 ) 3 O 4 , were prepared.
<실험예5> SEM 사진 측정Experimental Example 5 SEM Photographic Measurement
상기 실시예 11, 12 에서 제조된 전구체의 SEM 사진을 측정하고 도 11, 도 12에 나타내었다. SEM photographs of the precursors prepared in Examples 11 and 12 were measured and shown in FIGS. 11 and 12.
<실험예6> 입도 분포 측정Experimental Example 6 Measurement of Particle Size Distribution
상기 실시예 11, 12 에서 제조된 전구체의 입도 분포를 측정하고 도 13, 도 14에 나타내었다. 도 13, 도 14에서 입도 분포가 단분산형태임을 알 수 있다. Particle size distributions of the precursors prepared in Examples 11 and 12 were measured and shown in FIGS. 13 and 14. It can be seen from FIG. 13 and FIG. 14 that the particle size distribution is monodisperse.
<실시예 13 내지 24> 양극활물질의 제조 <Examples 13 to 24> Preparation of a positive electrode active material
상기 표 1에서 실시예 1 내지 12에서 제조된 전구체와 나트륨 화합물로서 소듐카보네이트를 혼합하고 교반한 후, 열처리하여 실시예 13 내지 24 의 양극활물질을 제조하였다. In Table 1, the precursors prepared in Examples 1 to 12 and sodium carbonate were mixed and stirred as the sodium compound, followed by heat treatment to prepare the cathode active materials of Examples 13 to 24.
<실험예> XRD 측정Experimental Example XRD Measurement
상기 실시예 13 내지 16의 양극활물질에 대하여 XRD 를 측정한 결과를 도 15 내지 도 18에 나타내고, 상기 실시예 17 내지 19의 양극활물질에 대하여 XRD 를 측정한 결과를 도 19에 나타내고, 상기 실시예 20 내지 22의 양극활물질에 대하여 XRD 를 측정한 결과를 도 20에 나타내고, 상기 실시예 23, 24의 양극활물질에 대하여 XRD 를 측정한 결과를 도 21, 22에 나타내었다. The results of measuring XRD of the cathode active materials of Examples 13 to 16 are shown in FIGS. 15 to 18, and the results of XRD measurement of the cathode active materials of Examples 17 to 19 are shown in FIG. 19. The results of measuring XRD with respect to the positive electrode active materials of 20 to 22 are shown in FIG. 20, and the results of measuring XRD with respect to the positive electrode active materials of Examples 23 and 24 are shown in FIGS. 21 and 22.
도 15 내지 도 22에서 본 발명의 실시예에서 제조된 나트륨 이차전지용 양극활물질은 XRD 에서 2θ가 30°내지 40°의 범위에서 3개의 피크를 나타내고, 2θ가 40 °내지 45 °의 범위에서 O3 결정 구조의 특징인 (104) 주피크가 나타나는 것을 확인할 수 있다. In FIGS. 15 to 22, the cathode active material for the sodium secondary battery prepared in Examples of the present invention exhibits three peaks in a range of 30 ° to 40 ° in 2RD in XRD, and O 3 in a range of 40 ° to 45 ° in 2θ. It can be seen that the (104) main peak, which is characteristic of the crystal structure, appears.
<제조예> 전지의 제조Preparation Example Production of Battery
복합 금속 산화물 E1, 도전재로서의 아세틸렌 블랙(덴키가가꾸 고교 가부시끼가이샤 제조) 및 결합제로서의 PVDF(가부시끼가이샤쿠레하 제조, 폴리비닐리덴디플루오라이드폴리플론(PolyVinylidene DiFluoride Polyflon))를 복합 금속 산화물 E1:도전재:결합제=85:10:5(중량비)의 조성이 되도록 각각 칭량하였다. Composite metal oxide E1, acetylene black (manufactured by Denki Chemical Co., Ltd.) as a conductive material, and PVDF (PolyVinylidene DiFluoride Polyflon) as a binder are used as the composite metal oxide E1. : Conductive material: Binder = 85: 10: 5 (weight ratio), each weighed so as to have a composition.
그 후, 우선 복합 금속 산화물과 아세틸렌 블랙을 아게이트 모르타르(agate mortar)로 충분히 혼합하고, 이 혼합물에 N-메틸-2-피롤리돈(NMP: 도쿄 가세이 고교 가부시끼가이샤 제조)을 적량 가하고, 추가로 PVDF를 가하여 계속해서 균일하게 되도록 혼합하여 슬러리화하였다. 얻어진 슬러리를 집전체인 두께 40㎛의 알루미늄박 상에 어플리케이터를 이용하여 100 ㎛의 두께로 도포하고, 이를 건조기에 넣고, NMP를 제거시키면서 충분히 건조함으로써 정극 시트를 얻었다. 이 정극 시트를 전극 펀칭기로 직경 1.5 cm 로 펀칭한 후, 핸드 프레스로 충분히 압착하여, 양극을 제조하였다. Thereafter, first, the composite metal oxide and acetylene black are sufficiently mixed with an agate mortar, and N-methyl-2-pyrrolidone (NMP: manufactured by Tokyo Kasei Kogyo Co., Ltd.) is appropriately added to the mixture, followed by addition. PVDF was added to the mixture to make it uniform and slurryed. The obtained slurry was apply | coated to the thickness of 100 micrometers using an applicator on the aluminum foil of 40 micrometers thickness which is an electrical power collector, it was put into a drier, and it dried sufficiently, removing NMP, and the positive electrode sheet was obtained. After punching this positive electrode sheet to 1.5 cm in diameter with the electrode puncher, it fully crimped | bonded by the hand press and manufactured the positive electrode.
코인셀(호센 가부시끼가이샤 제조)의 하측 파트의 오목부에 알루미늄박을 아래로 향하여 제조된 양극을 놓고, 이어서 비수 전해액으로서 1 M의 NaClO4/프로필렌카르보네이트+ 2 vol% 플루오로에틸렌카보네이트(FEC, Fluoro Ethylene Carbonate), 세퍼레이터로서의 폴리프로필렌 다공질막(두께 20 ㎛) 및 음극으로서 나트륨 금속을 조합하여 나트륨 이차 전지를 제작하였다.An anode prepared with aluminum foil facing downward was placed in the recess of the lower part of the coin cell (manufactured by Hosen Kabushiki Co., Ltd.), followed by 1 M NaClO 4 / propylene carbonate + 2 vol% fluoroethylene carbonate as a nonaqueous electrolyte. A sodium secondary battery was produced by combining (FEC, Fluoro Ethylene Carbonate), a polypropylene porous membrane (thickness 20 µm) as a separator, and sodium metal as a negative electrode.
<실험예> 충방전 특성 측정Experimental Example Measurement of Charge and Discharge Characteristics
상기 실시예 1 내지 7 및 11의 전구체로 만들어진 실시예 13 내지 19 및 23의 활물질을 포함하는 나트륨 이차 전지의 충방전 특성을 측정하고 그 결과를 아래 표 2에 나타내었다. The charge and discharge characteristics of the sodium secondary battery including the active materials of Examples 13 to 19 and 23 made of the precursors of Examples 1 to 7 and 11 were measured and the results are shown in Table 2 below.
표 2
구분 소결조건및충방전조건 0.2C 1st 1stEfficiency
실시예 1 실시예 13 Ni0.25Fe0.25Mn0.5(OH)2전구체 / Na 95%, 970℃/24h 소결, 4.3V 155.5 mAh/g 94.1 %
실시예 2 실시예 14 Ni0.25Fe0.35Mn0.4(OH)2전구체 / Na 98%, 900℃/24h 소결, 4.3V 180.1 mAh/g 101.2 %
Ni0.25Fe0.35Mn0.4(OH)2전구체 / Na 98%, 930℃/24h소결, 4.3V 176.3 mAh/g 100.9 %
Ni0.25Fe0.35Mn0.4(OH)2전구체 / Na 98%, 970℃/24h소결, 4.3V 166.2 mAh/g 95.4 %
실시예 3 실시예 15 Ni0.25Fe0.5Mn0.25(OH)2 / Na 98%, 970℃/24h소결, 3.9V 130.7 mAh/g 91.6 %
실시예 4 실시예 16 Ni0.15Fe0.35Mn0.5(OH)2 전구체 / Na 98%, 970℃/24h소결, 4.3V 141.3 mAh/g 104 %
실시예 5 실시예 17 Ni0.25Fe0.5Mn0.25C2O4 전구체 / Na 98%, 950℃/24h소결, 3.9V 135.7 mAh/g 93.4 %
실시예 6 실시예 18 Ni0.2Fe0.6Mn0.2C2O4전구체 / Na 98%, 950℃/24h 소결, 3.8V 123.0 mAh/g 93.6 %
실시예 7 실시예 19 Ni0.17Fe0.66Mn0.17C2O4,전구체 / Na 98%, 950℃/24h 소결, 3.7V 116.8 mAh/g 91.8 %
실시예 11 실시예 23 (Ni0.25Fe0.5Mn0.25)3O4 전구체 / Na 98%, 970℃/24h 소결, 3.9V 124.3 mAh/g 92.1 %
TABLE 2
division Sintering condition and charging / discharging condition 0.2C 1 st 1 st Efficiency
Example 1 Example 13 Ni 0.25 Fe 0.25 Mn 0.5 (OH) 2 precursor / Na 95%, sintered at 970 ° C / 24h, 4.3V 155.5 mAh / g 94.1%
Example 2 Example 14 Ni 0.25 Fe 0.35 Mn 0.4 (OH) 2 Precursor / Na 98%, 900 ° C / 24h Sintered, 4.3V 180.1 mAh / g 101.2%
Ni 0.25 Fe 0.35 Mn 0.4 (OH) 2 precursor / Na 98%, sintered at 930 ° C / 24h, 4.3V 176.3 mAh / g 100.9%
Ni 0.25 Fe 0.35 Mn 0.4 (OH) 2 Precursor / Na 98%, 970 ° C / 24h Sintered, 4.3V 166.2 mAh / g 95.4%
Example 3 Example 15 Ni 0.25 Fe 0.5 Mn 0.25 (OH) 2 / Na 98%, 970 ° C / 24h Sintered, 3.9V 130.7 mAh / g 91.6%
Example 4 Example 16 Ni 0.15 Fe 0.35 Mn 0.5 (OH) 2 precursor / Na 98%, sintered at 970 ° C / 24h, 4.3V 141.3 mAh / g 104%
Example 5 Example 17 Ni 0.25 Fe 0.5 Mn 0.25 C 2 O 4 Precursor / Na 98%, 950 ° C / 24h Sintered, 3.9V 135.7 mAh / g 93.4%
Example 6 Example 18 Ni 0.2 Fe 0.6 Mn 0.2 C 2 O 4 Precursor / Na 98%, sintered at 950 ° C / 24h, 3.8V 123.0 mAh / g 93.6%
Example 7 Example 19 Ni 0.17 Fe 0.66 Mn 0.17 C 2 O 4 , Precursor / Na 98%, sintered at 950 ° C / 24h, 3.7V 116.8 mAh / g 91.8%
Example 11 Example 23 (Ni 0.25 Fe 0.5 Mn 0.25 ) 3 O 4 precursor / Na 98%, sintered at 970 ° C / 24h, 3.9V 124.3 mAh / g 92.1%
상기 표 2에서 본 발명에 의하여 제조된 O3 결정 구조의 나트륨 전지 양극활물질을 포함하는 전지의 경우 초기 충방전 효율이 90% 이상으로 나타남을 알수 있다. In Table 2, in the case of a battery including a sodium battery cathode active material having a crystal structure of O 3 prepared according to the present invention, the initial charge and discharge efficiency was found to be 90% or more.
<실험예> 수명 특성 측정Experimental Example Measurement of Life Characteristics
상기 실시예 1 내지 4, 및 실시예 11의 전구체로 만들어진 실시예 13 내지 16 및 실시예 23의 O3 결정 구조의 활물질을 포함하는 나트륨 이차 전지의 충방전 특성을 측정한 결과를 아래 표 3에 나타내고, 상기 실시예 5 내지 7의 전구체로 만들어진 실시예 17 내지 19의 O3 결정 구조의 활물질을 포함하는 나트륨 이차 전지의 충방전 특성을 측정한 결과를 도 27에 나타내었다.The charge and discharge characteristics of the sodium secondary battery including the active material of the O 3 crystal structure of Examples 13 to 16 and Example 23 made of the precursors of Examples 1 to 4 and Example 11 are measured in Table 3 below. 27 shows the results of measuring charge and discharge characteristics of the sodium secondary battery including the active material having the O 3 crystal structure of Examples 17 to 19 made of the precursors of Examples 5 to 7. FIG.
표 3
구분 0.2C 1st 0.2C 20th 0.2C retention 0.5C 1st 0.5C 20th 0.5C retention
실시예 1 실시예13 155.5 mAh/g 130.2 mAh/g 83.7 % 106.9 mAh/g 96.0 mAh/g 89.8 %
실시예 2 실시예14 180.1 mAh/g 141.3 mAh/g 78.5 % 125.6 mAh/g 117.5 mAh/g 93.6 %
176.3 mAh/g 140.5 mAh/g 76.7 % 125.9 mAh/g 117.8 mAh/g 93.6 %
166.2 mAh/g 124.6 mAh/g 75.0 % 107.7 mAh/g 95.1 mAh/g 88.3 %
실시예 3 실시예15 130.7 mAh/g 122.0 mAh/g 93.3 % 114.3 mAh/g 105.4 mAh/g 92.2 %
실시예 4 실시예 16 141.3 mAh/g 119.9 mAh/g 84.9 % 90.7 mAh/g 81.7 mAh/g 90.1 %
실시예 11 실시예 23 124.3 mAh/g 114.7 mAh/g 92.3 % 106.5 mAh/g 100.7 mAh/g 94.6 %
TABLE 3
division 0.2C 1st 0.2C 20th 0.2C retention 0.5C 1st 0.5C 20th 0.5C retention
Example 1 Example 13 155.5 mAh / g 130.2 mAh / g 83.7% 106.9 mAh / g 96.0 mAh / g 89.8%
Example 2 Example 14 180.1 mAh / g 141.3 mAh / g 78.5% 125.6 mAh / g 117.5 mAh / g 93.6%
176.3 mAh / g 140.5 mAh / g 76.7% 125.9 mAh / g 117.8 mAh / g 93.6%
166.2 mAh / g 124.6 mAh / g 75.0% 107.7 mAh / g 95.1 mAh / g 88.3%
Example 3 Example 15 130.7 mAh / g 122.0 mAh / g 93.3% 114.3 mAh / g 105.4 mAh / g 92.2%
Example 4 Example 16 141.3 mAh / g 119.9 mAh / g 84.9% 90.7 mAh / g 81.7 mAh / g 90.1%
Example 11 Example 23 124.3 mAh / g 114.7 mAh / g 92.3% 106.5 mAh / g 100.7 mAh / g 94.6%
            
상기 표 2 및 도 27에서 본 발명에 의한 O3 결정 구조의 활물질을 포함하는 나트륨 이차 전지의 경우 20 사이클까지의 충방전 효율이 90% 정도로 매우 높은 수명 특성을 나타내는 것을 알 수 있다. In Table 2 and FIG. 27, the sodium secondary battery including the active material having the O 3 crystal structure according to the present invention shows that the charge and discharge efficiency up to 20 cycles has a very high lifespan characteristic of about 90%.
<실험예>충방전 특성 및 수명 특성 측정Experimental Example Measurement of charge and discharge characteristics and lifetime characteristics
상기 실시예 13 내지 16에서 만들어진 활물질을 포함하는 나트륨 이차 전지의 충방전 특성을 측정한 결과를 도 23 내지 26에, 상기 실시예 17 내지 19의 나트륨 이차 전지의 충방전 특성 및 수명 특성을 측정한 결과를 도 27, 및 도 28에 나타내고, 상기 실시예 17 및 20 내지 22에서 만들어진 활물질을 포함하는 나트륨 이차 전지의 충방전 특성 및 수명 특성을 측정한 결과를 도 29 내지 31에 나타내고, 상기 실시예 23, 및 24에서 만들어진 O3 결정 구조의 활물질을 포함하는 나트륨 이차 전지의 충방전 특성 및 수명 특성을 측정한 결과를 도 32, 33에 나타내었다.The charge and discharge characteristics of the sodium secondary battery including the active material prepared in Examples 13 to 16 are measured in FIGS. 23 to 26, and the charge and discharge characteristics and lifetime characteristics of the sodium secondary batteries of Examples 17 to 19 were measured. The results are shown in FIGS. 27 and 28, and the results of measuring charge and discharge characteristics and life characteristics of the sodium secondary battery including the active materials prepared in Examples 17 and 20 to 22 are shown in FIGS. 29 to 31. 32 and 33 show the results of measuring charge and discharge characteristics and lifespan characteristics of a sodium secondary battery including an active material having an O 3 crystal structure formed at 23 and 24.
본 발명에 의한 나트륨 이차 전지 양극활물질은 종래와 달리 O3 구조로 구조 안정적이고, 이에 따라 본 발명에 의한 나트륨 이차 전지 양극활물질을 포함하는 나트륨 전지는 우수한 수명 특성을 나타낸다.The sodium secondary battery positive electrode active material according to the present invention is structurally stable in the O 3 structure unlike the prior art, and thus the sodium battery including the sodium secondary battery positive electrode active material according to the present invention exhibits excellent life characteristics.

Claims (10)

  1. Nax[NiyFezMn1-y-z]O2 (0.8≤x≤1.2, 0.05≤y≤0.9, 0.05≤z≤0.9, 0.05≤1-y-z≤0.9)로 표시되고, O3 결정 구조인 나트륨 이차전지용 양극활물질.Na x [Ni y Fe z Mn 1-yz ] O 2 (0.8 ≦ x ≦ 1.2, 0.05 ≦ y ≦ 0.9, 0.05 ≦ z ≦ 0.9, 0.05 ≦ 1-yz ≦ 0.9), and is an O 3 crystal structure. Cathode active material for sodium secondary battery.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 나트륨 이차전지용 양극활물질은 입자 크기가 5 내지 15 ㎛의 구형 입자이고, 입자 크기 분포가 단분산형인 것을 특징으로 하는 나트륨 이차전지용 양극활물질.The cathode active material for sodium secondary battery is a spherical particle having a particle size of 5 to 15 ㎛, the particle size distribution is a cathode active material for sodium secondary battery, characterized in that the monodisperse type.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 나트륨 이차전지용 양극활물질은 XRD 에서 2θ가 30°내지 40°범위에서 3개의 피크를 나타내는 것을 특징으로 하는 나트륨 이차전지용 양극활물질.The cathode active material for sodium secondary battery is a cathode active material for sodium secondary battery, characterized in that 2θ in the XRD shows three peaks in the range of 30 ° to 40 °.
  4. 제 3 항에 있어서, The method of claim 3, wherein
    상기 나트륨 이차전지용 양극활물질은 XRD 에서 2θ가 40°내지 45°범위에서 주피크인 (104) 피크가 나타나는 것을 특징으로 하는 나트륨 이차전지용 양극활물질. The cathode active material for sodium secondary battery is a cathode active material for sodium secondary battery, characterized in that the peak (104) peak in the range 2θ is 40 ° to 45 ° in XRD.
  5. 제 1항에 있어서, The method of claim 1,
    상기 나트륨 이차전지용 양극활물질은 탭밀도가 1.0 내지 2.4 g/cc 인 것을 특징으로 하는 나트륨 이차전지용 양극활물질.The cathode active material for sodium secondary battery is a cathode active material for sodium secondary battery, characterized in that the tap density is 1.0 to 2.4 g / cc.
  6. 나트륨 이차전지용 양극활물질 전구체와 나트륨 화합물을 혼합하는 단계; 및Mixing a positive electrode active material precursor for a sodium secondary battery and a sodium compound; And
    열처리 단계;를 포함하는 Heat treatment step; comprising
    제 1 항에 의한 나트륨 이차전지용 양극활물질의 제조 방법.A method for producing a cathode active material for sodium secondary battery according to claim 1.
  7. 제 6 항에 있어서, The method of claim 6,
    상기 나트륨 이차전지용 양극활물질 전구체는 다음의 화학식 1 내지 3 중 어느 하나로 표시되는 것인 나트륨 이차전지용 양극활물질의 제조 방법.The cathode active material precursor for the sodium secondary battery is a method for producing a cathode active material for sodium secondary battery which is represented by any one of the following formula (1).
    [화학식 1] NixFeyMn1-x-y(OH)2, [Formula 1] Ni x Fe y Mn 1-xy (OH) 2,
    [화학식 2] NixFeyMn1-x-yC2O4, [Formula 2] Ni x Fe y Mn 1-xy C 2 O 4,
    [화학식 3] [NixFeyMn1-x-y]3O4 [Ni x Fe y Mn 1-xy ] 3 O 4
    (상기 화학식 1 내지 3에서 0.05≤x≤0.9, 0.1≤y≤0.9, 0.05≤1-x-y≤0.9) (In the above Chemical Formulas 1 to 3 0.05≤x≤0.9, 0.1≤y≤0.9, 0.05≤1-xy≤0.9 )
  8. 제 6 항에 있어서, The method of claim 6,
    상기 나트륨 화합물은 소듐카보네이트, 소듐나이트레이트, 소듐아세테이트, 수산화소듐, 수산화소듐수화물, 소듐옥사이드 또는 이들의 조합 중 하나인 것을 특징으로 하는 나트륨 이차전지용 양극활물질의 제조 방법.The sodium compound is sodium carbonate, sodium nitrate, sodium acetate, sodium hydroxide, sodium hydroxide hydrate, sodium oxide or a method for producing a positive electrode active material for sodium secondary battery, characterized in that any one of them.
  9. 제 6 항에 있어서, The method of claim 6,
    상기 나트륨 이차전지용 양극활물질 전구체 1 몰당 상기 나트륨 화합물은 1.0 내지 1.5 몰의 비율로 혼합되는 것을 특징으로 하는 나트륨 이차전지용 양극활물질의 제조 방법.The sodium compound per one mole of the positive electrode active material precursor for the sodium secondary battery is a method for producing a positive electrode active material for sodium secondary battery, characterized in that the mixture of 1.0 to 1.5 moles.
  10. 제 6 항에 있어서, The method of claim 6,
    상기 열처리 단계에서는 800 ℃ 내지 1000 ℃에서 열처리 하는 것을 특징으로 하는 나트륨 이차전지용 양극활물질의 제조 방법.In the heat treatment step, the cathode active material for a sodium secondary battery, characterized in that the heat treatment at 800 ℃ to 1000 ℃.
PCT/KR2013/010521 2012-11-19 2013-11-19 Anode active material for sodium secondary battery and method for producing same WO2014077663A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380068762.9A CN104904047A (en) 2012-11-19 2013-11-19 Anode active material for sodium secondary battery and method for producing same
US14/716,362 US20150333325A1 (en) 2012-11-19 2015-05-19 Manufacturing method of positive active material precursor for sodium rechargeable batteries, positive active material precursor for sodium rechargeable batteries made by the same, and manufacturing method of positive active material for sodium rechargeable batteries, positive active material for sodium rechargeable batteries made by the same
US15/993,174 US10781110B2 (en) 2012-11-19 2018-05-30 Manufacturing method of positive active material precursor for sodium rechargeable batteries, positive active material precursor for sodium rechargeable batteries made by the same, and manufacturing method of positive active material for sodium rechargeable batteries, positive active material for sodium rechargeable batteries made by the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0131027 2012-11-19
KR20120131027 2012-11-19
KR1020130140911A KR20140064681A (en) 2012-11-19 2013-11-19 Positive active material for sodium rechargeable batteries and method of manufacturing the same
KR10-2013-0140911 2013-11-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010520 Continuation-In-Part WO2014077662A1 (en) 2012-11-19 2013-11-19 Method for producing anode active material precursor for sodium secondary battery by using coprecipitation technique and anode active material precursor for sodium secondary battery produced thereby

Publications (1)

Publication Number Publication Date
WO2014077663A1 true WO2014077663A1 (en) 2014-05-22

Family

ID=50731493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010521 WO2014077663A1 (en) 2012-11-19 2013-11-19 Anode active material for sodium secondary battery and method for producing same

Country Status (1)

Country Link
WO (1) WO2014077663A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104953172A (en) * 2015-07-24 2015-09-30 上海中聚佳华电池科技有限公司 Sodium-ion battery cathode materials, preparation method of sodium-ion battery cathode materials, and sodium-ion batteries
US10196280B2 (en) 2014-05-22 2019-02-05 Faradion Limited Compositions containing doped nickelate compounds
CN111628164A (en) * 2020-05-22 2020-09-04 兰州理工大学 Sodium ion battery positive electrode material and preparation method thereof
US10781110B2 (en) 2012-11-19 2020-09-22 Iucf-Hyu(Industry-University Cooperation Foundation Hanyang University) Manufacturing method of positive active material precursor for sodium rechargeable batteries, positive active material precursor for sodium rechargeable batteries made by the same, and manufacturing method of positive active material for sodium rechargeable batteries, positive active material for sodium rechargeable batteries made by the same
US10978708B2 (en) 2014-01-09 2021-04-13 Faradion Limited Doped nickelate compounds
CN114920306A (en) * 2022-06-29 2022-08-19 荆门市格林美新材料有限公司 Positive electrode material precursor, positive electrode material, preparation method of positive electrode material and sodium ion battery
CN115000399A (en) * 2022-05-25 2022-09-02 西安交通大学 Spherical-like sodium ion battery positive electrode material, preparation method thereof and sodium ion battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100248001A1 (en) * 2007-11-09 2010-09-30 Sumitomo Chemical Company, Limited Mixed metal oxide and sodium secondary battery
US20100266900A1 (en) * 2007-11-22 2010-10-21 Sumitomo Chemical Company,Limited Sodium-manganese mixed metal oxide, production method thereof and sodium secondary battery
KR20100120138A (en) * 2008-02-04 2010-11-12 스미또모 가가꾸 가부시키가이샤 Composite metal oxide and sodium rechargeable battery
WO2012060295A1 (en) * 2010-11-05 2012-05-10 学校法人東京理科大学 Composite metal oxide, process for producing the composite metal oxide, positive active material for sodium secondary battery, positive electrode for sodium secondary battery, and sodium secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100248001A1 (en) * 2007-11-09 2010-09-30 Sumitomo Chemical Company, Limited Mixed metal oxide and sodium secondary battery
US20100266900A1 (en) * 2007-11-22 2010-10-21 Sumitomo Chemical Company,Limited Sodium-manganese mixed metal oxide, production method thereof and sodium secondary battery
KR20100120138A (en) * 2008-02-04 2010-11-12 스미또모 가가꾸 가부시키가이샤 Composite metal oxide and sodium rechargeable battery
WO2012060295A1 (en) * 2010-11-05 2012-05-10 学校法人東京理科大学 Composite metal oxide, process for producing the composite metal oxide, positive active material for sodium secondary battery, positive electrode for sodium secondary battery, and sodium secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SATHIYA, M. ET AL.: "Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNil/3Mnl/3Col/302", CHEM. MATER., vol. 24, no. 10, 17 April 2012 (2012-04-17), pages 1846 - 1853, XP055278630, DOI: doi:10.1021/cm300466b *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10781110B2 (en) 2012-11-19 2020-09-22 Iucf-Hyu(Industry-University Cooperation Foundation Hanyang University) Manufacturing method of positive active material precursor for sodium rechargeable batteries, positive active material precursor for sodium rechargeable batteries made by the same, and manufacturing method of positive active material for sodium rechargeable batteries, positive active material for sodium rechargeable batteries made by the same
US10978708B2 (en) 2014-01-09 2021-04-13 Faradion Limited Doped nickelate compounds
US10196280B2 (en) 2014-05-22 2019-02-05 Faradion Limited Compositions containing doped nickelate compounds
US10399863B2 (en) 2014-05-22 2019-09-03 Faradion Limited Doped nickelate materials
US10550007B2 (en) 2014-05-22 2020-02-04 Faradion Limited Compositions containing doped nickelate compounds
CN104953172A (en) * 2015-07-24 2015-09-30 上海中聚佳华电池科技有限公司 Sodium-ion battery cathode materials, preparation method of sodium-ion battery cathode materials, and sodium-ion batteries
CN111628164A (en) * 2020-05-22 2020-09-04 兰州理工大学 Sodium ion battery positive electrode material and preparation method thereof
CN115000399A (en) * 2022-05-25 2022-09-02 西安交通大学 Spherical-like sodium ion battery positive electrode material, preparation method thereof and sodium ion battery
CN114920306A (en) * 2022-06-29 2022-08-19 荆门市格林美新材料有限公司 Positive electrode material precursor, positive electrode material, preparation method of positive electrode material and sodium ion battery
CN114920306B (en) * 2022-06-29 2024-03-26 荆门市格林美新材料有限公司 Positive electrode material precursor, positive electrode material, preparation method of positive electrode material precursor and sodium ion battery

Similar Documents

Publication Publication Date Title
WO2014077662A1 (en) Method for producing anode active material precursor for sodium secondary battery by using coprecipitation technique and anode active material precursor for sodium secondary battery produced thereby
WO2014077663A1 (en) Anode active material for sodium secondary battery and method for producing same
WO2019112279A2 (en) Cathode active material for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising cathode comprising same
WO2016021791A1 (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery comprising same
WO2013002457A1 (en) Positive electrode active material, electrode including the positive electrode active material, and lithium electrochemical battery
WO2014104759A1 (en) Cathode active material for lithium secondary batteries
WO2016052820A1 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery including same
WO2014178625A1 (en) Anode active material for lithium secondary battery
WO2016039511A1 (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery comprising same
WO2014133370A1 (en) Cathode active material for lithium secondary battery
KR101762540B1 (en) Positive active material for sodium rechargeable batteries and method of manufacturing the same
KR20160045029A (en) Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
KR20140119621A (en) Precusor for lithium rich active material and lithium rich active material made by the same
WO2014010970A1 (en) High density anode active material and preparation method thereof
WO2014126312A1 (en) Method for producing anodic composite material for lithium secondary battery, method for producing electrode using same, and method for charging and discharging electrode
WO2015105225A1 (en) Method for preparing nickel-cobalt-manganese composite precursor
WO2019240496A1 (en) Anode active material for lithium secondary battery and lithium secondary battery comprising same
WO2014104811A1 (en) Method for producing cathode active material for lithium secondary battery, and cathode active material for lithium secondary battery produded thereby
WO2011126182A1 (en) Method for manufacturing a cathode active material for a secondary battery including a metal composite oxide, and cathode active material for a second battery including a metal composite oxide manufactured by said method
WO2010143805A1 (en) Cathode material for a lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
WO2018155746A1 (en) Method for producing nickel-cobalt-manganese complex precursor with high specific surface area
KR20150078672A (en) Complx metal precursor for lithium secondary battery, method for production thereof, cathode active material, lithium secondary battery including the same
WO2010126185A1 (en) Preparation method for olivine type cathode active material for lithium secondary battery, and lithium secondary battery using the same
KR100644915B1 (en) Cathode active material for a Lithium secondary battery and a Lithium secondary battery containing the same
WO2015041415A1 (en) Cathode catalyst for metal-air battery, method for manufacturing same, and metal-air battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13855661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13855661

Country of ref document: EP

Kind code of ref document: A1