WO2010126010A1 - Transmission system - Google Patents

Transmission system Download PDF

Info

Publication number
WO2010126010A1
WO2010126010A1 PCT/JP2010/057378 JP2010057378W WO2010126010A1 WO 2010126010 A1 WO2010126010 A1 WO 2010126010A1 JP 2010057378 W JP2010057378 W JP 2010057378W WO 2010126010 A1 WO2010126010 A1 WO 2010126010A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
relay devices
transmission system
relay
power
Prior art date
Application number
PCT/JP2010/057378
Other languages
French (fr)
Japanese (ja)
Inventor
秀明 安倍
Original Assignee
パナソニック電工 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工 株式会社 filed Critical パナソニック電工 株式会社
Publication of WO2010126010A1 publication Critical patent/WO2010126010A1/en

Links

Images

Classifications

    • H04B5/79
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/50Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices
    • H04B5/266

Definitions

  • the present invention relates to a contactless transmission system.
  • the power supply system includes a primary coil 10, a power supply device 1 that generates a magnetic flux ⁇ a by flowing a high-frequency current from a high-frequency inverter 11 through the primary coil 10, and a load (for example, a charge) Battery) 21 and a secondary coil 20, and a power receiving device 2 that supplies induced current generated in the secondary coil 20 to the load 21.
  • the secondary coil 20 generates magnetic flux ⁇ a generated in the primary coil 10. As a result, the induced current is generated, and power is supplied to the load 21.
  • a power supply system that can supply power to the power receiving device even when the power supply device and the power receiving device are separated has been provided (see, for example, Patent Documents 1 and 2).
  • a conversion comprising a receiving coil for linking the magnetic flux generated in the primary coil of the power feeding device and a feeding coil for generating a magnetic flux linked to the secondary coil of the power receiving device.
  • a plug is provided, and by interposing this conversion plug between the power supply device and the power receiving device, power can be supplied to the power receiving device even when the power supply device and the power receiving device are separated from each other.
  • JP 2007-60829 A (paragraph [0038] -paragraph [0044] and FIG. 5) JP 2001-275281 (paragraph [0027] -paragraph [0036] and FIG. 6)
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a small transmission system capable of expanding a transmission range while suppressing an increase in cost.
  • the transmission system includes a primary coil and a transmission side device that sends power or an electric signal corresponding to a magnetic flux generated by flowing a high-frequency current through the primary coil, and a secondary coil, and the power is transmitted by the secondary coil.
  • a receiving device that receives an electrical signal, and one or a plurality of relay devices each having a closed circuit composed of a single extension coil and an impedance element, wherein the secondary coil is the one
  • the primary coil is electromagnetically coupled via at least one extension coil of a plurality of relay devices, and the one or more relay devices increase or decrease the distance between the sending device and the receiving device. It arrange
  • the shape and size of the primary coil are the same as those of the conventional example, but the receiving device is arranged via the expansion coil of the relay device even if the receiving device is arranged at a location away from the primary coil. Power and electrical signals can be transmitted. Therefore, restrictions on the arrangement location of the receiving device are reduced, and an easy-to-use transmission system can be provided.
  • the relay device may be provided with a single extension coil, and it is not necessary to provide the relay device with two coils corresponding to the coil of the sending device and the coil of the receiving device as in the conventional example. Therefore, a small transmission system can be constructed while suppressing an increase in cost.
  • the one or more relay devices are constituted by a plurality of relay devices, and the plurality of relay devices are interposed between the sending side device and the receiving side device. According to this configuration, it is possible to construct a transmission system according to various applications by preparing a plurality of types of relay devices having different shapes and sizes of the expansion coils.
  • the extension coil is arranged so as to be partially close to a part of the primary coil.
  • a secondary coil can be arrange
  • the induction current generated in the secondary coil can be increased, and the transmission efficiency to the receiving device can be increased.
  • the position of the one or more relay devices can be changed with respect to the sending device according to the position of the receiving device.
  • positioning of a receiving side apparatus can be improved.
  • the feeding side device and the one or more relay devices constitute an integral feeding means by arranging the primary coil and the extension coil close to each other, and the feeding device The means can be folded between adjacent coils.
  • the range of the feeding means can be set large by expanding it during use, and the storage space can be reduced by folding it when not in use.
  • the one or more relay devices are configured by a plurality of relay devices, and the extension coils of the plurality of relay devices are in a state of being partially close to a part of the primary coil. It arrange
  • the distance between the primary coil and each expansion coil is substantially equal. Therefore, the magnetic flux generated in each expansion coil is a uniform and stable magnetic flux. Therefore, the same level of power and electrical signals can be received from any relay device.
  • the extension coil and the primary coil are arranged close to each other and have a coil shape such that the adjacent coil portions are parallel to each other. According to this configuration, the gap between the coils is reduced, and as a result, the magnetic flux can be efficiently linked. For this reason, it becomes possible to arrange
  • the coil shape is a polygon or a polyhedron. According to this configuration, the gap between the coils can be reduced, and the magnetic flux can be efficiently linked.
  • the one or more relay devices are configured by a plurality of relay devices, and the plurality of relay devices include a coil surface of the extension coil of the plurality of relay devices and a coil surface of the primary coil. It arrange
  • the one or more relay devices are configured by a plurality of relay devices, and the plurality of relay devices have coil surfaces of the extension coils of the plurality of relay devices facing each other, and the 1 It arrange
  • the one or more relay devices are configured by a plurality of relay devices including first and second relay devices, and the first and second relay devices are the first relay device.
  • the coil surface of the extension coil faces the first coil surface of the primary coil
  • the coil surface of the extension coil of the second relay device faces the second coil surface of the primary coil.
  • the transmission range can be further expanded by using the magnetic fluxes on both sides of the sending device.
  • the sending device is one of a plurality of sending devices provided in the transmission system, and the one or more relay devices are configured by a plurality of relay devices, Each of the relay devices is arranged so as to be close to at least one of the plurality of sending side devices.
  • the impedance element is a capacitor that forms a resonance circuit together with the expansion coil.
  • At least one of the one or more relay devices includes a load operated by electric power or an electric signal corresponding to magnetic flux generated in a primary coil of the sending device. According to this configuration, it is possible to realize a relay device having not only a function of transmitting electric power and an electric signal from the sending device to the receiving device, but also a load driving function.
  • the expansion coil is an air-core coil. According to this configuration, since the air-core coil has high power resistance and small inductance, a non-contact transmission system using high frequency can be suitably realized.
  • the extension coil made of a planar coil and the impedance element made of a chip element are arranged on the same plane. According to this configuration, a thin relay device can be realized.
  • the receiving device includes a light emitting diode as a load
  • the sending device supplies power to the receiving device via the one or more relay devices.
  • the sending device is operable by a battery.
  • a cordless transmission system can be realized by supplying power from the battery to the sending device.
  • the present system can be used as a mobile system or used in different places.
  • the sending device and the one or more relay devices are configured as puzzle pieces having different shapes. According to this configuration, the system can be constructed while enjoying the system.
  • FIG. (A), (b) is a schematic diagram explaining operation
  • (A), (b) is the schematic diagram of the transmission system of Embodiment 1.
  • FIG. (A)-(e) is a schematic diagram explaining the operation principle of the transmission system of Embodiment 1.
  • FIG. (A)-(c) is a schematic diagram which shows the example of the transmission system of Embodiment 1.
  • FIG. (A)-(e) is a schematic diagram which shows the other example of the transmission system of Embodiment 1.
  • FIG. (A), (b) is a schematic diagram which shows the further another example of the transmission system of Embodiment 1.
  • FIG. (A), (b) is a schematic diagram of the transmission system of Embodiment 2.
  • FIG. (A), (b) is a schematic diagram of the electric power feeding apparatus and relay apparatus which are used for the transmission system of Embodiment 3,
  • (c) shows the other example of the coil for an extension used for the transmission system of Embodiment 3.
  • FIG. It is a perspective view.
  • (A), (b) is a schematic diagram explaining the structure of the electric power feeder and relay apparatus used for the transmission system of Embodiment 4.
  • FIG. (A), (b) is a schematic diagram explaining the transmission system of Embodiment 5.
  • FIG. (A) is a schematic diagram which shows the example of the electric power feeding system using the transmission system of Embodiment 5
  • (b) is a partial detail drawing of Fig.12 (a).
  • FIG. 10 is a schematic diagram of a transmission system according to a seventh embodiment.
  • FIG. 10 is a schematic diagram of a relay device used in the transmission system according to the seventh embodiment.
  • FIG. 10 is a schematic diagram of a transmission system according to an eighth embodiment.
  • 10 is a schematic diagram of a transmission system according to Embodiment 9.
  • FIG. 16 is a schematic diagram of a transmission system according to a tenth embodiment.
  • Embodiments of a transmission system according to the present invention will be described with reference to the drawings.
  • a power supply system that supplies power to a device on the power receiving side will be described as an example.
  • the transmission system according to the present invention is not limited to the power supply system, and is a system that transmits an electrical signal or the like. May be.
  • FIG. 3 shows an example of the power feeding system according to the first embodiment.
  • the power feeding system includes a power feeding device 1 that supplies power, a power receiving device 2 that receives power transmitted from the power feeding device 1, and a relay device 3 that relays between the power feeding device 1 and the power receiving device 2.
  • the feeding device 1 constitutes the sending device
  • the power receiving device 2 constitutes the receiving device.
  • the power supply device 1 includes a primary coil 10 formed of an air-core coil wound in a spiral shape, and a high-frequency inverter 11 for applying a high-frequency current to the primary coil 10.
  • a high-frequency current is supplied to the primary coil 10.
  • the high frequency inverter 11 is supplied with power from a commercial power source.
  • the power receiving device 2 is connected to both ends of the secondary coil 20, which is a spirally wound air-core coil, and the secondary coil 20, and power is transmitted through the secondary coil 20. And a load (for example, a light emitting diode) 21 to be supplied. A capacitor 22 is further connected between both ends of the secondary coil 20.
  • the relay device 3 includes a closed circuit composed of an extension coil 30 formed of an air-core coil spirally wound in the same manner as the primary coil 10 and an impedance element 31, and is a power supply on the power supply side. It plays a role of relaying power between the device 1 and the power receiving device 2 on the power receiving side.
  • FIG. 3A shows an arrangement example in which the coils 10, 20, and 30 are arranged so as to be partially close to a part of adjacent coils.
  • the expansion coil 30 is disposed close to the primary coil 10 such that the winding axis direction is orthogonal to the winding axis direction of the primary coil 10. However, the extension coil 30 and the primary coil 10 do not overlap.
  • the secondary coil 20 is disposed close to the expansion coil 30 so that the winding axis direction is oblique to the winding axis direction of the expansion coil 30. Note that by arranging the coils 10 to 30 as shown in FIG. 3A, the magnetic flux generated at the peripheral edge of each coil can be used effectively.
  • FIG. 3B shows an arrangement example in which a plurality (two in this example) of expansion coils 30 are arranged.
  • the first extension coil 30 is disposed close to the primary coil 10 such that the winding axis direction thereof is orthogonal to the winding axis direction of the primary coil 10.
  • the second extension coils 30 are arranged side by side so that the winding axis direction thereof is parallel to the winding axis direction of the first extension coil 30.
  • the secondary coil 20 is arranged such that its coil surface faces the coil surface of the second expansion coil 30.
  • the power receiving device 2 can receive power via the primary coil 10 of the power feeding device 1 as well as via the expansion coil 30 of the relay device 3. Power can be received. Therefore, power can be supplied at a position away from the power supply device 1 and the degree of freedom of arrangement of the power reception device 2 is increased.
  • the power feeding device 1, the power receiving device 2, and the relay device 3 are configured as separate devices in a form of being housed in a case (not shown).
  • the load 21 of the power receiving device 2 is a rechargeable battery
  • the power receiving device 2 is arranged at an arbitrary position where the magnetic flux of the power feeding device 1 or the relay device 3 arranged at a predetermined position is linked at the time of charging. Will do.
  • FIG. 4A shows a state in which the primary coil 10 and the expansion coil 30 are arranged so that their coil surfaces face each other.
  • a magnetic flux ⁇ a is generated so as to link the primary coil 10.
  • an induced electromotive force E is generated between both ends of the expansion coil 30 in accordance with Faraday's law of electromagnetic induction.
  • FIG. 4B shows a state in which an impedance element (such as a resistor) 31 is connected between both ends of the expansion coil 30.
  • Current Ia flows through the impedance element 31 by the induced electromotive force E.
  • the current Ia also flows through the expansion coil 30 connected in series with the impedance element 31, and a magnetic flux ⁇ b is generated in the form of linking the expansion coil 30.
  • the magnetic flux ⁇ b is generated so as to cancel the magnetic flux change of the primary coil 10 according to Lenz's law.
  • the magnetic flux ⁇ b generated by the current Ia includes a magnetic flux generated so as to link the primary coil 10 and a magnetic flux ⁇ b linked only to the expansion coil 30, and the latter magnetic flux is referred to as a leakage magnetic flux.
  • the inductance that generates this leakage magnetic flux is called leakage inductance.
  • FIG. 4C shows an arrangement example in which a plurality (two in this example) of expansion coils 30 are arranged side by side.
  • the leakage magnetic flux ⁇ b generated in the first expansion coil 30 disposed opposite to the primary coil 10 is linked to the adjacent second expansion coil 30, and further this second expansion coil 30.
  • the leakage magnetic flux ⁇ b generated in the above is linked to the secondary coil 20.
  • an induced electromotive force is generated in the secondary coil 20 as described above, and an induced current can be passed through the load 21 connected to the secondary coil 20.
  • the first expansion coil 30 is arranged so that the magnetic flux ⁇ a of the primary coil 10 is linked, and the leakage magnetic flux ⁇ b generated in the first expansion coil 30 is used to supply power Power can be supplied at a position away from 1, and the degree of freedom of arrangement of the power receiving device 2 is increased.
  • a capacitor is used as the impedance element 31 in FIG. 4C, and the capacitor and the expansion coil 30 constitute a resonance circuit that resonates with the operating frequency of the high-frequency inverter 11.
  • the induced current flowing through the expansion coil 30 increases, and more magnetic flux can be generated. Therefore, when a power supply system is configured via a plurality of relay devices 3, it is preferable to configure a resonance circuit in consideration of the attenuation of magnetic flux in each expansion coil 30. In this case, it is preferable to use a capacitor for the impedance element 31.
  • FIG. 4E shows another example using a plurality of expansion coils 30.
  • the secondary coil 20 is arranged side by side with respect to the terminal expansion coil 30.
  • the coil surface of the terminal expansion coil 30 and the secondary coil 20 are arranged. It arrange
  • FIG. 5 shows a specific example of a power feeding system using the above operating principle.
  • the power feeding device 1 and the relay device 3 are arranged so that the winding axis direction of the primary coil 10 and the winding axis direction of the expansion coil 30 coincide.
  • the relay device 3 and the power receiving device 2 are arranged side by side so that the winding axis direction of the extension coil 30 and the winding axis direction of the secondary coil 20 do not match (do not overlap).
  • the magnetic flux ⁇ a of the primary coil 10 is linked to the expansion coil 30, and the leakage magnetic flux ⁇ b of the expansion coil 30 is linked to the secondary coil 20.
  • the feeding device 1 and the first and second power supply devices 1 and 2 are arranged so that the winding direction of the primary coil 10 and the winding direction of the first and second extension coils 30 do not overlap.
  • the relay device 3 is arranged side by side.
  • the second (that is, terminal) repeater device 3 and the power receiving device 2 are arranged such that the coil surface of the second (that is, terminal) extension coil 30 and the coil surface of the secondary coil 20 face each other. Is arranged.
  • the leakage magnetic flux ⁇ a of the primary coil 10 is linked to the first expansion coil 30 that is disposed close to the primary coil 10.
  • the leakage magnetic flux ⁇ b of the adjacent first expansion coil 30 is linked to the second expansion coil 30 disposed in proximity to the first expansion coil 30.
  • the magnetic flux ⁇ b of the second expansion coil 30 is linked to the secondary coil 20.
  • a load for example, a light emitting diode
  • the function of transmitting the power sent from the power feeding device 1 to the power receiving device 2 and the function of operating the load 32 with a part of the power sent from the power feeding device 1 are provided.
  • the provided relay device 3 can be realized.
  • the power supply device 1 and the relay device 3 are separate, and therefore the position of the relay device 3 relative to the power supply device 1 can be changed according to the position of the power reception device 2. Therefore, it is possible to easily construct a power supply system according to the arrangement of the power receiving device 2.
  • FIG. 6 shows another example of the power feeding system according to the first embodiment. 6 (a), FIG. 6 (d), and FIG. 6 (e) include one power supply device 1 and one power reception device 2, and a plurality (two in this example) of relay devices 3. It has.
  • the power feeding device 1 and the first relay device 3 are arranged side by side so that the winding axis direction of the primary coil 10 and the winding axis direction of the first extension coil 30 are parallel to each other.
  • the first and second relay devices 3 and 3 are arranged to face each other with the coil surfaces of the first and second extension coils 30 facing each other.
  • the second relay device 3 and the power receiving device 2 are arranged side by side so that the winding axis direction of the second extension coil 30 and the winding axis direction of the secondary coil 20 are parallel to each other.
  • the leakage flux ⁇ a of the primary coil 10 links the first extension coil 30.
  • the magnetic flux ⁇ b generated in the first expansion coil 30 links the second expansion coil 30.
  • the leakage flux ⁇ b generated in the second expansion coil 30 links the secondary coil 20.
  • FIG.6 (d) the winding direction of the primary coil 10, the secondary coil 20, and the 1st and 2nd expansion coils 30 and 30 is parallel, and the electric power feeder 1, the receiving device 2,
  • the first and second relay devices 3 and 3 are arranged side by side.
  • the leakage magnetic flux of the adjacent coil is linked to each coil. 6 (a) and 6 (d), by using the leakage magnetic flux of the primary coil 10, it is possible to supply power at a position away from the power supply device 1, and The degree of freedom of arrangement increases.
  • FIG. 6 (e) a lamp is used for the load 21 in FIG. 6 (d), and the operation principle is the same as in FIG.
  • FIGS. 6 (b) and 6 (c) are configurations in which one relay device 3 is reduced from FIGS. 6 (d) and 6 (e), respectively, the description thereof is omitted here. . Note that by arranging each coil as shown in FIGS. 6B to 6E, the magnetic flux generated at the peripheral edge of the coil can be used effectively.
  • FIG. 7 shows still another example of the power feeding system according to the first embodiment.
  • This power feeding system includes one power feeding device 1 and one power receiving device 2 each, and a plurality (three in this example) of relay devices 3.
  • the power feeding device 1 and the first to third relay devices 3 are formed so that the winding direction of the primary coil 10 and the winding direction of the first to third extension coils 30 are parallel to each other. Are arranged side by side.
  • the third (that is, terminal) relay device 3 and the power receiving device 2 are arranged so that the coil surface of the secondary coil 20 faces the coil surface of the third (that is, terminal) extension coil 30.
  • FIG. 7B is obtained by adding one relay device 3 to the above-described FIG.
  • FIG. 7 As compared with the power supply system of FIG. 6, power can be supplied at a position further away from the power supply device 1, and the degree of freedom of arrangement of the power reception device 2 is increased.
  • the three expansion coils 30 are in relation to the primary coil 10 or the secondary coil 20 so as to be partially close to a part of the adjacent coils. Are arranged side by side. Thereby, the leakage magnetic flux can be effectively used as the main magnetic flux.
  • electromagnetic induction is performed in the plane direction (side-by-side direction) by the interlinkage magnetic flux, the power supply range in the plane direction can be expanded. Furthermore, the closer the adjacent coils are, the larger the proportion of the leakage magnetic flux that is linked can be increased. As a result, the amount of power that can be supplied also increases.
  • the operating frequency of the high-frequency inverter 11 is set in consideration of the attenuation of magnetic flux in each expansion coil 30 as described above. It is preferable to configure a resonant circuit that resonates. Therefore, a capacitor may be used as the impedance element 31.
  • the shape and size of the primary coil 10 are the same as those in the conventional example, but relaying is performed even if the power receiving device 2 is disposed away from the primary coil 10. Electric power can be supplied via the expansion coil 30 of the device 3. Therefore, restrictions on the location of the power receiving device 2 are reduced, and an easy-to-use power supply system can be provided. Further, by preparing a plurality of types of relay devices 3 having different shapes and sizes of the expansion coil 30, it is possible to construct a power feeding system corresponding to various applications.
  • the relay device 3 since the relay device 3 only needs to be provided with a single extension coil 30, it is necessary to provide two coils corresponding to the power supply side coil and the power reception side coil as in the conventional example, There is no need to use a core to suppress Therefore, a small power supply system can be constructed while suppressing an increase in cost.
  • the magnetic flux of the primary coil 10 and the expansion coil can also be arranged at a position where both of the magnetic fluxes of the coil 30 are linked.
  • the air-core coil has a large power resistance and a small inductance. Therefore, an optimum system can be constructed by using an air-core coil in a system using a high frequency such as the power feeding system.
  • light emitting diodes are used as the loads 21 and 32, since the light emitting diodes consume less power, it is possible to realize a lighting device with high brightness while suppressing running costs.
  • the case where the primary coil 10, the secondary coil 20, and the expansion coil 30 are cylindrical coils has been described as an example.
  • the shape of each coil is not limited to the first embodiment.
  • it may be a rectangular tube.
  • the number of relay devices 3 is not limited to that in the first embodiment, and may be set as needed.
  • each of the above forms is an example, and any other form may be used as long as it uses a leakage magnetic flux.
  • Embodiment 2 of the electric power feeding system which concerns on this invention is demonstrated based on FIG.
  • the power supply system of the second embodiment is different from the first embodiment in that a plurality of relay devices 3 are arranged so as to surround the power supply device 1.
  • the basic configuration is the same as that of the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
  • illustration of the power receiving apparatus 2 is abbreviate
  • the power feeding system according to the second embodiment is similar to the power feeding device 1 including the cylindrical primary coil 10 and the power receiving device 2 including the cylindrical secondary coil 20.
  • a plurality of (for example, six) relay devices 3 each having a cylindrical expansion coil 30 are provided.
  • the six relay devices 3 are arranged so as to surround the power feeding device 1 in a state in which a part of the winding of the expansion coil 30 is brought close to a part of the primary coil 10.
  • the power receiving device 2 is arranged in a state where a part of the winding of the secondary coil 20 is brought close to a part of the expansion coil 30 of the relay device 3.
  • each relay device 3 is provided with a load (for example, a heat source, a light emitting diode, a buzzer, etc.) 32.
  • a load for example, a heat source, a light emitting diode, a buzzer, etc.
  • the power feeding device 1, the power receiving device 2, and the relay device 3 are configured as separate devices in a form that is housed in a case (not shown).
  • the power receiving device 2 can receive the same level of power from any relay device 3.
  • each coil is not limited to a cylindrical coil, and may be a rectangular tube.
  • Embodiment 3 of the electric power feeding system which concerns on this invention is demonstrated based on FIG.
  • the primary coil 10 and the extension coil 30 are used as cylindrical spiral coils.
  • a rectangular cylindrical spiral coil is used as the primary coil 10 and the extension coil 30.
  • the basic configuration is the same as that of the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
  • illustration of the power receiving apparatus 2 is abbreviate
  • the power feeding system includes a power feeding device 1 including a primary coil 10 made of a rectangular cylindrical spiral coil, a power receiving device (not shown), and a rectangular cylindrical shape. And a plurality of (for example, three) relay devices 3 each having an expansion coil 30 made of a spiral coil.
  • the power supply device 1 and the relay device 3 are configured as separate devices in a form that is housed in a case (not shown).
  • FIG. 9A the power supply device 1 and the three relay devices 3 are arranged so that the coil portions (winding portions) adjacent to each other are in parallel. That is, the power supply device 1 and the three relay devices 3 constitute one rectangular power supply unit.
  • FIG. 9B shows another example of the third embodiment. The power supply device 1 and the three relay devices 3 are arranged side by side so that the coil portions adjacent to each other are parallel to each other. That is, in FIG. 9B, the power supply device 1 and the three relay devices 3 form one horizontally long power supply unit.
  • the gap between the coils is reduced by arranging the power supply device 1 and the plurality of relay devices 3 so that the coil portions close to each other are parallel to each other.
  • more relay devices 3 can be arranged along the plane direction (side-by-side direction). Therefore, the feeding distance in the plane direction can be extended.
  • each coil shape may be a polygon other than a quadrangle (for example, a triangle) or a polyhedral shape such as a triangular pyramid or a quadrangular pyramid. In these coils as well, the gaps between the coils can be reduced, and as a result, the magnetic flux can be linked efficiently.
  • Embodiment 4 of the electric power feeding system which concerns on this invention is demonstrated based on FIG.
  • the power feeding device 1 and the relay device 3 are individually configured as separate devices, but in the fourth embodiment, an integral power feeding means is provided between the power feeding device 1 and the relay device 3. It is composed. Furthermore, in Embodiment 4, a plurality of coils can be folded between the coils.
  • the basic configuration is the same as that of the third embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
  • the illustration of the power receiving device is omitted to simplify the illustration.
  • the power feeding system includes a power feeding device 1 including a primary coil 10 formed of a rectangular cylindrical spiral coil, a power receiving device (not shown), and an expansion coil 30 formed of a rectangular cylindrical spiral coil.
  • a power feeding device 1 including a primary coil 10 formed of a rectangular cylindrical spiral coil, a power receiving device (not shown), and an expansion coil 30 formed of a rectangular cylindrical spiral coil.
  • the mounting member 4 is, for example, a flexible resin molded product, and is provided with a cross-shaped crease 4a that is divided into four equal parts.
  • the attachment member 4 can be folded by the fold 4a.
  • the power supply device 1 and the three relay devices 3 are respectively attached to four areas that are divided into four equal parts by the fold line 4a to constitute an integral power supply means (feed means).
  • each coil is arrange
  • the attachment member 4 is expanded as shown in FIG. Further, as shown in FIG. 10B, the power supply means can be accommodated by folding the attachment member 4.
  • the power supply range can be set large by expanding it during use, and the storage space can be reduced by folding it when not in use.
  • the fold 4a is provided on the attachment member 4 so that it can be folded, but it may be folded via a hinge, for example.
  • the mounting member 4 may be made of a foldable material (for example, cloth). In this case, there is an advantage that a fold or a hinge is not necessary.
  • Embodiment 5 of the power feeding system according to the present invention will be described with reference to FIGS. 11 and 12.
  • the primary coil 10 and the expansion coil 30 are generally arranged in a plane, whereas in the fifth embodiment, the primary coil 10 and the expansion coil 30 are generally arranged three-dimensionally. is doing.
  • the basic configuration is the same as that of the third embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 11A shows a conventional power supply system, which includes a power supply device 1 including a primary coil 10 formed of a square cylindrical spiral coil, a secondary coil 20 formed of a cylindrical spiral coil, and an illumination 21. And a power receiving device 2.
  • the power feeding device 1 and the power receiving device 2 are arranged such that the coil surface of the primary coil 10 and the coil surface of the secondary coil 20 face each other. In this configuration, the illumination 21 is turned on when the distance between the power feeding device 1 and the power receiving device 2 is D1.
  • FIG. 11B shows a power feeding system according to the fifth embodiment, which includes a power feeding device 1 and a power receiving device 2 similar to those in FIG. 11A, and an expansion coil 30 made up of a rectangular spiral coil.
  • a plurality of (for example, two) relay devices 3 and 3 are provided.
  • the two relay devices 3 and 3 are arranged between the power feeding device 1 and the power receiving device 2.
  • the extension coil 30 of each relay device 3 is arranged such that its own coil surface and the coil surfaces of the primary coil 10 and the secondary coil 20 face each other.
  • a capacitor is used as the impedance element 31 of each relay device 3, and a resonance circuit that resonates with the operating frequency of the high-frequency inverter 11 is configured by the capacitor and the expansion coil 30.
  • the magnetic flux interlinking with the expansion coil 30 decreases when the distance between the power supply device 1 and the relay device 3 is greater than D1, but the induction flowing through the expansion coil 30 The current is increased by the resonant circuit. For this reason, the magnetic flux generated in the expansion coil 30 increases. As a result, the illumination 21 can be turned on by interlinking the magnetic flux generated in the expansion coil 30 with the secondary coil 20. That is, the distance D2 from the power feeding device 1 that can turn on the illumination 21 to the power receiving device 2 can be made longer than the distance D1 of the conventional example.
  • FIG. 12 shows an example of a display device using the power feeding system.
  • Exhibits P are arranged on the upper, middle, and lower stages of the rectangular box-shaped case 5, respectively, and each exhibit P is irradiated with spot illumination from the lower side.
  • a power supply device 1 including a primary coil 10 is disposed at the lower part of the lower display space, and a power reception device 2 including a secondary coil 20 and an illumination 21 is disposed above the power supply device 1.
  • relay devices 3 each having an extension coil 30 are arranged in the lower part of the upper and middle exhibition spaces, and power receiving devices each having a secondary coil 20 and an illumination 21 are provided above each relay device 3. 2 is arranged.
  • the magnetic flux generated in the primary coil 10 is linked to the expansion coil 30 of the intermediate relay device 3.
  • the expansion coil 30 and the impedance element 31 constitute a resonance circuit. Therefore, for example, even when the distance from the primary coil 10 to the expansion coil 30 is long and the interlinkage magnetic flux is small, the magnetic flux generated in the expansion coil 30 is increased by the resonance circuit. As a result, an induced current flows through the secondary coil 20 by interlinking this magnetic flux with the corresponding secondary coil 20. Due to this induced current, the illumination 21 of the middle power receiving device 2 is turned on.
  • the magnetic flux generated in the expansion coil 30 of the intermediate relay device 3 is linked to the expansion coil 30 of the upper relay device 3. Then, the illumination 21 of the upper power receiving device 2 is turned on through the same processing as described above.
  • the relay devices 3 and 3 are disposed between the power feeding device 1 and the power receiving device 2 with the coil surfaces of the coils 10, 20, and 30 facing each other. ing.
  • a capacitor is used as the impedance element 31 of each relay device 3, and a resonance circuit is configured in combination with the expansion coil 30. Therefore, even if the distance between the power supply device 1 and the power receiving device 2 is farther than the conventional example, power can be supplied to the power receiving device 2, and therefore a power supply system that enables power supply at a position further away from the power supply device 1. Can be realized.
  • each coil is not limited to Embodiment 5, Other shapes may be sufficient similarly to said other embodiment.
  • Embodiment 6 of the electric power feeding system which concerns on this invention is demonstrated based on FIG.
  • the relay device 3 is disposed between the power feeding device 1 and the power receiving device 2 so that the coil surfaces of the respective coils face each other. 3 is arranged.
  • the basic configuration is the same as that of the third embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 13A shows a display device using a conventional power supply system.
  • a power supply device 1 including a primary coil 10 made of a rectangular tube-shaped spiral coil is disposed.
  • a power receiving device 2 including a secondary coil 20 made of a cylindrical spiral coil is suspended.
  • the illumination 21 is turned on when the distance between the power supply device 1 and the power receiving device 2 is H1.
  • FIG. 13B is a display device using the power supply system of the sixth embodiment.
  • the power supply device 1 and the power receiving device 2 are the same as those in FIG. 13A, and the expansion coil is composed of a rectangular spiral coil.
  • a plurality of (for example, two) relay devices 3 and 3 each having 30 are provided.
  • a power feeding device 1 is arranged at the lower part of the case 5.
  • two relay devices 3 and 3 are arranged close to each other with their coil surfaces facing each other.
  • the power receiving device 2 is suspended from the upper part of the case 5.
  • a capacitor is used as the impedance element 31, and this capacitor and the expansion coil 30 constitute a resonance circuit that resonates with the operating frequency of the high-frequency inverter 11.
  • the sixth embodiment similarly to the fifth embodiment, even when the magnetic flux of the primary coil 10 linked to the expansion coil 30 is small, the induced current flowing through the expansion coil 30 is increased by the resonance circuit. For this reason, even if the distance from the power feeding device 1 to the power receiving device 2 is H2 (H2> H1), the magnetic flux necessary for lighting the illumination 21 is generated in the expansion coil 30. And since this magnetic flux is linked to the secondary coil 20, an induced current flows through the secondary coil 20, and the illumination 21 can be turned on.
  • the relay devices 3 and 3 are placed on the opposite side of the power supply device 1 with respect to the power receiving device 2 with the coil surfaces of the coils 10, 20 and 30 facing each other. Is arranged.
  • a capacitor is used as the impedance element 31 of each relay device 3, and a resonance circuit is configured in combination with the expansion coil 30. Therefore, even if the distance between the power supply device 1 and the power receiving device 2 is farther than the conventional example, power can be supplied to the power receiving device 2, and therefore a power supply system that enables power supply at a position further away from the power supply device 1. Can be realized.
  • each coil is not limited to Embodiment 6, Other shapes may be sufficient similarly to said other embodiment.
  • Embodiment 7 of the electric power feeding system which concerns on this invention is demonstrated based on FIG.
  • the seventh embodiment is different from the above-described embodiments in that the extension coils 30 of the relay device 3 are disposed on both sides of the primary coil 10 of the power supply device 1.
  • the basic configuration is the same as that of FIG. 7B of the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
  • the power feeding system includes a power feeding device 1 including a primary coil 10, a plurality (for example, two) of power receiving devices 2 each including a secondary coil 20, and a plurality (for example) each including an expansion coil 30.
  • a power feeding device 1 including a primary coil 10, a plurality (for example, two) of power receiving devices 2 each including a secondary coil 20, and a plurality (for example) each including an expansion coil 30.
  • six relay devices 3 are provided.
  • One relay device 3 is arranged on each side of the power supply device 1 such that the coil surface of the extension coil 30 faces the coil surface of the primary coil 10.
  • the remaining relay devices 3 are arranged such that their extension coils 30 are arranged side by side with respect to the extension coils 30 of the relay devices 3 arranged on both sides of the power supply device 1.
  • each power receiving device 2 is arranged such that the secondary coil 20 is arranged side by side with respect to the expansion coil 30 of each relay device 3 arranged at the end.
  • FIG. 15 is a schematic diagram of the relay device 3 of the seventh embodiment.
  • a circular extension coil 30 made of a planar coil and an impedance element 31 made of a chip element are arranged on the same plane.
  • the expansion coil 30 may be formed into a sheet shape by printed wiring, or may be wrapped with a plastic film or the like wound with a thin copper wire.
  • the thin relay device 3 can be realized by arranging the extension coil 30 made of a planar coil and the impedance element 31 made of a chip element on the same plane.
  • planar coils may be used as the primary coil 10 and the secondary coil 20, and in this case as well, the power feeding device 1 and the power receiving device 2 can be reduced in thickness.
  • a plurality of relay devices 3 are arranged side by side. Therefore, in consideration of the attenuation of magnetic flux in each expansion coil 30, the high-frequency inverter 11. It is preferable to configure a resonance circuit that resonates at the operating frequency. In this case, it is preferable to use a capacitor for the impedance element 31.
  • the seventh embodiment by using the magnetic flux on both sides of the primary coil 10 of the power supply device 1, the power supply range to the power reception device 2 can be further expanded.
  • the degree of freedom of arrangement is further increased.
  • relay devices 3 to be used is not limited to that in the seventh embodiment, and may be set as appropriate according to the application.
  • the coil shape of each coil is not limited to Embodiment 7, Other shapes may be sufficient like the said other embodiment.
  • the relay device 3 shown in FIG. 15 may be used.
  • Embodiment 8 of the electric power feeding system which concerns on this invention is demonstrated based on FIG.
  • a commercial power source is used as the power source of the high-frequency inverter 11, but in Embodiment 8, the battery 6 is used.
  • the basic configuration is the same as that of FIG. 7A of the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
  • the power feeding system includes a power feeding device 1 including a primary coil 10 formed of a cylindrical spiral coil, a power receiving device 2 including a secondary coil 20 formed of a cylindrical spiral coil, and a cylindrical shape. And a plurality of (for example, three) relay devices 3 each having an extension coil 30 made of a spiral coil.
  • the power feeding device 1 and the three relay devices 3 are arranged side by side so that the primary coil 10 and each of the expansion coils 30 are close to the coils adjacent to each other.
  • the power receiving device 2 is arranged so that the coil surface of the secondary coil 20 faces the coil surface of the expansion coil 30 of the terminal relay device 3.
  • the high-frequency inverter 11 of the power supply device 1 is supplied with power from the battery 6.
  • the battery 6 may be a primary battery or a secondary battery, or an electric double layer capacitor or a solar battery. Also in the eighth embodiment, the power feeding device 1, the power receiving device 2, and the relay device 3 are configured as separate devices so as to be housed in a case (not shown).
  • the high frequency inverter 11 is considered in consideration of the attenuation of magnetic flux in each expansion coil 30. It is preferable to configure a resonance circuit that resonates at the operating frequency. In this case, it is preferable to use a capacitor for the impedance element 31.
  • a power supply of the power supply device 1 is supplied from the battery 6 to realize a cordless power supply system.
  • the power supply system can be used in a mobile system or in different places.
  • relay devices 3 to be used is not limited to that in the eighth embodiment, and may be set as appropriate according to the application.
  • the coil shape of each coil is not limited to Embodiment 8, Other shapes may be sufficient like the said other embodiment.
  • the relay device 3 shown in FIG. 15 may be used.
  • Embodiment 9 of the power feeding system according to the present invention will be described with reference to FIG.
  • the ninth embodiment is different from the above-described embodiments in that each relay device 3 is arranged so as to be close to at least one power supply device 1.
  • the basic configuration is the same as that of the third embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
  • the power supply system includes a plurality of (for example, two) power supply devices 1 each including a primary coil 10 formed of a rectangular tube-shaped spiral coil and a secondary coil 20 formed of a rectangular tube-shaped helical coil.
  • the power receiving device 2 includes a plurality of (for example, 13) relay devices 3 each including an expansion coil 30 that is similarly formed of a square cylindrical spiral coil.
  • the power feeding device 1, the power receiving device 2, and the relay device 3 are each configured as a separate device in a form that is housed in a case (not shown).
  • each power supply device 1 is surrounded by eight relay devices 3.
  • the two power supply devices 1 and the 13 relay devices 3 constitute a single rectangular power supply unit by connecting adjacent devices with attachment means (not shown).
  • each relay device 3 is arranged so as to be close to at least one power supply device 1, and further, three relay devices 3 arranged in the center are so close to two power supply devices 1, 1. Is arranged.
  • the power receiving device 2 is arranged so that the coil surface of the secondary coil 20 faces the coil surface of the primary coil 10 and / or the coil surface of the expansion coil 30. For this reason, when power is supplied to the power receiving device 2, the magnetic flux of the primary coil 10 and / or the magnetic flux of the expansion coil 30 links the secondary coil 20. When an induction current flows through the secondary coil 20 due to the interlinkage magnetic flux, electric power is supplied to the load 21. Therefore, according to the ninth embodiment, the power receiving device 2 can be arbitrarily arranged at a position where the magnetic flux of the primary coil 10 or the expansion coil 30 is linked.
  • each relay device 3 is arranged so as to be close to at least one power supply device 1. Therefore, the attenuation of the magnetic flux linked to each expansion coil 30 can be suppressed, and as a result, the power receiving device 2 can receive power from any relay device 3.
  • the number of power supply devices 1 and relay devices 3 to be used is not limited to that of the ninth embodiment, and may be set as appropriate according to the application.
  • the coil shape of each coil is not limited to Embodiment 9, Other shapes may be sufficient like the said other embodiment.
  • the relay device 3 shown in FIG. 15 may be used.
  • Embodiment 10 of the power feeding system according to the present invention will be described with reference to FIG.
  • the tenth embodiment is different from the above embodiments in that the power supply device 1 and the relay device 3 are each formed as a puzzle piece having a predetermined shape (for example, a different shape). Since the basic configuration is the same as that of the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted. In FIG. 18, the illustration of the power receiving device is omitted to simplify the illustration.
  • the power supply system of the tenth embodiment includes a power supply device 1 including a primary coil 10, a power receiving device (not shown), and a plurality (for example, four) of relay devices 3 each including an expansion coil 30. ing.
  • the power supply device 1 and the four relay devices 3 are formed as puzzle pieces formed in different shapes. A coil is wired along each side edge of each puzzle piece. And in the state which assembled the puzzle piece, each adjacent coil is arrange
  • the power supply device 1 and each relay device 3 are provided with light emitting diodes 12 and 32 that are turned on by a current flowing through the coil.
  • a resonance circuit that resonates with the operating frequency of the high-frequency inverter 11 is configured in consideration of the attenuation of magnetic flux in each expansion coil 30. It is preferable to do this. In this case, it is preferable to use a capacitor for the impedance element 31.
  • the power supply device 1 and the relay device 3 are puzzle pieces having different shapes, respectively, and can be constructed while enjoying this system. Further, when a light emitting diode is provided in each device as in the tenth embodiment, it is possible to improve the design.
  • the number of power supply devices 1 and relay devices 3 to be used is not limited to that of the tenth embodiment, and may be set as appropriate according to the application. Also in the tenth embodiment, the relay device 3 shown in FIG. 15 may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

A non-contact transmission system comprises: a power supply device (1) that supplies power induced by the magnetic flux (Φa) generated by the passage of a high-frequency current through a primary coil (10); a power receiving device (2) that receives power by means of a secondary coil (20); and a relay device (3) equipped with a closed circuit constituted by a single expansion coil (30) and an impedance element (31). The secondary coil (20) is electromagnetically coupled with the primary coil (10) through the expansion coil (30) of the relay device (3). The relay device (3) is arranged so as to extend the distance between the power supply device (1) and the power receiving device (2) in the vertical direction and/or horizontal direction.

Description

伝送システムTransmission system
 本発明は、非接触式の伝送システムに関するものである。 The present invention relates to a contactless transmission system.
 従来より、電動歯ブラシや携帯電話などの携帯機器への充電に使用される非接触式の給電システムがあった。この給電システムは、図1に示すように、1次コイル10を具備し、高周波インバータ11からの高周波電流を1次コイル10に流すことによって磁束Φaを生じさせる給電機器1と、負荷(例えば充電電池など)21および2次コイル20を具備し、2次コイル20に生じた誘導電流を負荷21に供給する受電機器2とで構成され、1次コイル10に生じた磁束Φaを2次コイル20に鎖交させることによって上記誘導電流が発生し、負荷21に電力が供給されるようになっている。しかし、本給電システムでは、1次コイル10に生じた磁束Φaを2次コイル20に鎖交させるためには両者を近づける必要があり、その結果受電機器2を置く位置も図2(a)に示すように1次コイル10で生じた磁束Φaが2次コイル20に鎖交する範囲内に制限され、例えば図2(b)に示す位置に受電機器2を置いた場合には負荷21への給電が困難であった。 Conventionally, there has been a non-contact power supply system used for charging mobile devices such as electric toothbrushes and mobile phones. As shown in FIG. 1, the power supply system includes a primary coil 10, a power supply device 1 that generates a magnetic flux Φa by flowing a high-frequency current from a high-frequency inverter 11 through the primary coil 10, and a load (for example, a charge) Battery) 21 and a secondary coil 20, and a power receiving device 2 that supplies induced current generated in the secondary coil 20 to the load 21. The secondary coil 20 generates magnetic flux Φa generated in the primary coil 10. As a result, the induced current is generated, and power is supplied to the load 21. However, in this power feeding system, in order to link the magnetic flux Φa generated in the primary coil 10 to the secondary coil 20, it is necessary to bring them close to each other. As a result, the position where the power receiving device 2 is placed is also shown in FIG. As shown in the figure, the magnetic flux Φa generated in the primary coil 10 is limited to a range interlinked with the secondary coil 20. For example, when the power receiving device 2 is placed at the position shown in FIG. Power supply was difficult.
 そのため近年では、給電機器と受電機器とが離れた状態でも受電機器への給電を可能にする給電システムも提供されている(例えば特許文献1,2参照)。これらの給電システムでは、給電機器の1次コイルで発生する磁束を鎖交させるための受け側コイルと、受電機器の2次コイルに鎖交させる磁束を発生させるための送り側コイルとからなる変換プラグが設けられており、この変換プラグを給電機器と受電機器との間に介在させることで給電機器と受電機器とが離れた状態でも受電機器への給電が可能になっている。 Therefore, in recent years, a power supply system that can supply power to the power receiving device even when the power supply device and the power receiving device are separated has been provided (see, for example, Patent Documents 1 and 2). In these power feeding systems, a conversion comprising a receiving coil for linking the magnetic flux generated in the primary coil of the power feeding device and a feeding coil for generating a magnetic flux linked to the secondary coil of the power receiving device. A plug is provided, and by interposing this conversion plug between the power supply device and the power receiving device, power can be supplied to the power receiving device even when the power supply device and the power receiving device are separated from each other.
特開2007-60829号公報(段落[0038]-段落[0044]、及び、第5図)JP 2007-60829 A (paragraph [0038] -paragraph [0044] and FIG. 5) 特開2001-275281号公報(段落[0027]-段落[0036]、及び、第6図)JP 2001-275281 (paragraph [0027] -paragraph [0036] and FIG. 6)
 上述の特許文献1,2に示した給電システムでは、給電機器と受電機器とが離れた状態でも受電機器への給電を可能にするものであるが、給電機器の1次コイルで発生する磁束を鎖交させるための受け側コイルと、受電機器の2次コイルに鎖交させる磁束を発生させるための送り側コイルとが別々に必要であり、また漏れ磁束を抑えるためにコアを用いているので上記変換プラグが大型化し、コストアップになるものであった。 In the power supply systems shown in Patent Documents 1 and 2 described above, power can be supplied to the power receiving device even when the power supply device and the power receiving device are separated from each other. However, the magnetic flux generated by the primary coil of the power supply device is reduced. Since a receiving side coil for interlinking and a feeding side coil for generating a magnetic flux to be interlinked with a secondary coil of a power receiving device are required separately, and a core is used to suppress leakage magnetic flux. The conversion plug was increased in size and increased in cost.
 本発明は上記問題点に鑑みて為されたものであり、その目的とするところは、コストアップを抑えつつ、伝送範囲の拡大を可能にする小型の伝送システムを提供することにある。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a small transmission system capable of expanding a transmission range while suppressing an increase in cost.
 本発明の一つの態様は、非接触式の伝送システムである。伝送システムは、1次コイルを具備し当該1次コイルに高周波電流を流すことによって生じる磁束に応じた電力または電気信号を送る送り側機器と、2次コイルを具備し当該2次コイルによって前記電力または電気信号を受ける受け側機器と、各々単一の拡張用コイルとインピーダンス素子とで構成される閉回路を具備する1つまたは複数の中継機器とを備え、前記2次コイルは、前記1つまたは複数の中継機器の少なくとも1つの拡張用コイルを介して前記1次コイルと電磁結合され、前記1つまたは複数の中継機器は、前記送り側機器と前記受け側機器との間の距離を上下方向と水平方向との少なくとも一方に拡張するように配置される。 One aspect of the present invention is a contactless transmission system. The transmission system includes a primary coil and a transmission side device that sends power or an electric signal corresponding to a magnetic flux generated by flowing a high-frequency current through the primary coil, and a secondary coil, and the power is transmitted by the secondary coil. Or a receiving device that receives an electrical signal, and one or a plurality of relay devices each having a closed circuit composed of a single extension coil and an impedance element, wherein the secondary coil is the one Alternatively, the primary coil is electromagnetically coupled via at least one extension coil of a plurality of relay devices, and the one or more relay devices increase or decrease the distance between the sending device and the receiving device. It arrange | positions so that it may extend to at least one of a direction and a horizontal direction.
 この構成によれば、1次コイルの形状や大きさなどが従来例と同じ条件でありながら、受け側機器が1次コイルから離れた場所に配置されていても中継機器の拡張用コイルを介して電力や電気信号の伝送が可能である。従って、受け側機器の配置場所の制約が少なくなり、使い勝手のよい伝送システムを提供することができる。さらに、中継機器には単一の拡張用コイルを設ければよく、従来例のように送り側機器のコイル、受け側機器のコイルにそれぞれ対応する2つのコイルを中継機器に設けなくてもいいので、コストアップを抑えつつ小型の伝送システムが構築できる。 According to this configuration, the shape and size of the primary coil are the same as those of the conventional example, but the receiving device is arranged via the expansion coil of the relay device even if the receiving device is arranged at a location away from the primary coil. Power and electrical signals can be transmitted. Therefore, restrictions on the arrangement location of the receiving device are reduced, and an easy-to-use transmission system can be provided. Furthermore, the relay device may be provided with a single extension coil, and it is not necessary to provide the relay device with two coils corresponding to the coil of the sending device and the coil of the receiving device as in the conventional example. Therefore, a small transmission system can be constructed while suppressing an increase in cost.
 好適には、前記1つまたは複数の中継機器は、複数の中継機器によって構成され、当該複数の中継機器は、前記送り側機器と前記受け側機器との間に介在される。
 この構成によれば、拡張用コイルの形状や大きさなどが異なる複数種類の中継機器を用意することで、様々な用途に応じた伝送システムを構築することができる。
Preferably, the one or more relay devices are constituted by a plurality of relay devices, and the plurality of relay devices are interposed between the sending side device and the receiving side device.
According to this configuration, it is possible to construct a transmission system according to various applications by preparing a plurality of types of relay devices having different shapes and sizes of the expansion coils.
 好適には、前記拡張用コイルは、前記1次コイルの一部に対して部分的に近接するように配置される。
 この構成によれば、1次コイルの磁束と拡張用コイルの磁束の両方が鎖交する位置に2次コイルを配置することができる。これにより、2次コイルで発生する誘導電流を増大させて、受け側機器への伝送効率を高めることができる。
Preferably, the extension coil is arranged so as to be partially close to a part of the primary coil.
According to this structure, a secondary coil can be arrange | positioned in the position where both the magnetic flux of a primary coil and the magnetic flux of an expansion coil link. Thereby, the induction current generated in the secondary coil can be increased, and the transmission efficiency to the receiving device can be increased.
 好適には、前記1つまたは複数の中継機器の位置が、前記受け側機器の位置に応じて、前記送り側機器に対して変更可能である。
 この構成によれば、受け側機器の配置の自由度を向上できる。
Preferably, the position of the one or more relay devices can be changed with respect to the sending device according to the position of the receiving device.
According to this structure, the freedom degree of arrangement | positioning of a receiving side apparatus can be improved.
 好適には、前記送り側機器と前記1つまたは複数の中継機器とは、前記1次コイルと前記拡張用コイルとを互いに近接して配置することによって一体的な送り手段を構成し、当該送り手段は、隣接するコイル間で折り畳み可能である。 Preferably, the feeding side device and the one or more relay devices constitute an integral feeding means by arranging the primary coil and the extension coil close to each other, and the feeding device The means can be folded between adjacent coils.
 この構成によれば、使用時には拡げることで送り手段の範囲を大きく設定することができ、また未使用時には折り畳むことで収納スペースを小さくすることができる。
 好適には、前記1つまたは複数の中継機器は、複数の中継機器によって構成され、当該複数の中継機器の拡張用コイルは、前記1次コイルの一部に対して部分的に近接する状態で当該1次コイルを取り囲むように配置される。
According to this configuration, the range of the feeding means can be set large by expanding it during use, and the storage space can be reduced by folding it when not in use.
Preferably, the one or more relay devices are configured by a plurality of relay devices, and the extension coils of the plurality of relay devices are in a state of being partially close to a part of the primary coil. It arrange | positions so that the said primary coil may be surrounded.
 この構成によれば、1次コイルと各拡張用コイルとの距離が略等しくなる。そのため、各拡張用コイルに発生する磁束は均一で安定した磁束となる。従って、何れの中継機器からでも同程度の電力や電気信号を受け取ることができる。 According to this configuration, the distance between the primary coil and each expansion coil is substantially equal. Therefore, the magnetic flux generated in each expansion coil is a uniform and stable magnetic flux. Therefore, the same level of power and electrical signals can be received from any relay device.
 好適には、前記拡張用コイルおよび前記1次コイルは互いに近接して配置されるとともに、当該互いに近接するコイル部分が並行となるようなコイル形状を有する。
 この構成によれば、各コイル間の隙間が小さくなり、その結果磁束を効率よく鎖交させることができる。このため、複数の中継機器を平面方向に沿って配置することが可能になり、平面方向における給電距離を延ばすことができる。
Preferably, the extension coil and the primary coil are arranged close to each other and have a coil shape such that the adjacent coil portions are parallel to each other.
According to this configuration, the gap between the coils is reduced, and as a result, the magnetic flux can be efficiently linked. For this reason, it becomes possible to arrange | position a some relay apparatus along a plane direction, and can extend the electric power feeding distance in a plane direction.
 好適には、コイル形状は、多角形または多面体である。
 この構成によれば、各コイル間の隙間を小さくすることが可能になり、磁束を効率よく鎖交させることができる。
Preferably, the coil shape is a polygon or a polyhedron.
According to this configuration, the gap between the coils can be reduced, and the magnetic flux can be efficiently linked.
 好適には、前記1つまたは複数の中継機器は、複数の中継機器によって構成され、当該複数の中継機器は、当該複数の中継機器の拡張用コイルのコイル面が前記1次コイルのコイル面および前記2次コイルのコイル面と対向するように、前記送り側機器と前記受け側機器との間に配置される。 Preferably, the one or more relay devices are configured by a plurality of relay devices, and the plurality of relay devices include a coil surface of the extension coil of the plurality of relay devices and a coil surface of the primary coil. It arrange | positions between the said sending apparatus and the said receiving apparatus so that the coil surface of the said secondary coil may be opposed.
 この構成によれば、送り側機器と受け側機器との間の距離が従来例よりも離れていても、複数の中継機器によって電力や電気信号の伝送が可能になる。
 好適には、前記1つまたは複数の中継機器は、複数の中継機器によって構成され、当該複数の中継機器は、当該複数の中継機器の拡張用コイルのコイル面が互いに対向し、且つ、前記1次コイルのコイル面と前記2次コイルのコイル面とが対向するように、前記受け側機器に対して前記送り側機器と反対側に配置される。
According to this configuration, even if the distance between the sending side device and the receiving side device is longer than that of the conventional example, it is possible to transmit electric power and electric signals by the plurality of relay devices.
Preferably, the one or more relay devices are configured by a plurality of relay devices, and the plurality of relay devices have coil surfaces of the extension coils of the plurality of relay devices facing each other, and the 1 It arrange | positions with respect to the said receiving side apparatus on the opposite side to the said sending side apparatus so that the coil surface of a secondary coil and the coil surface of the said secondary coil may oppose.
 この構成によれば、送り側機器と受け側機器との間の距離が従来例よりも離れていても、複数の中継機器によって電力や電気信号の伝送が可能になる。
 好適には、前記1つまたは複数の中継機器は、第1および第2の中継機器を含む複数の中継機器によって構成され、前記第1および第2の中継機器は、前記第1の中継機器の拡張用コイルのコイル面が、前記1次コイルの第1コイル面に対向し、前記第2の中継機器の拡張用コイルのコイル面が、前記1次コイルの第2コイル面に対向するように、前記送り側機器の両側に配置される。
According to this configuration, even if the distance between the sending side device and the receiving side device is longer than that of the conventional example, it is possible to transmit electric power and electric signals by the plurality of relay devices.
Preferably, the one or more relay devices are configured by a plurality of relay devices including first and second relay devices, and the first and second relay devices are the first relay device. The coil surface of the extension coil faces the first coil surface of the primary coil, and the coil surface of the extension coil of the second relay device faces the second coil surface of the primary coil. , Arranged on both sides of the sending side device.
 この構成によれば、送り側機器の両側の磁束を利用することによって、伝送範囲をさらに拡げることができる。
 好適には、前記送り側機器は、前記伝送システムに設けられる複数の送り側機器のうちの1つであり、前記1つまたは複数の中継機器は、複数の中継機器によって構成され、前記複数の中継機器の各々は、前記複数の送り側機器の少なくとも1つに近接するように配置される。
According to this configuration, the transmission range can be further expanded by using the magnetic fluxes on both sides of the sending device.
Preferably, the sending device is one of a plurality of sending devices provided in the transmission system, and the one or more relay devices are configured by a plurality of relay devices, Each of the relay devices is arranged so as to be close to at least one of the plurality of sending side devices.
 この構成によれば、各拡張用コイルに鎖交する磁束の減衰が抑えられる。その結果、何れの中継機器からでも電力や電気信号を受け取ることができる。
 好適には、インピーダンス素子は、拡張用コイルとともに共振回路を構成するコンデンサである。
According to this structure, attenuation of the magnetic flux linked to each expansion coil can be suppressed. As a result, power and electrical signals can be received from any relay device.
Preferably, the impedance element is a capacitor that forms a resonance circuit together with the expansion coil.
 この構成によれば、コンデンサと拡張用コイルとの共振により、拡張用コイルに流れる電流を増加させて、拡張用コイルにより多くの磁束を発生させることができる。このため、伝送範囲をさらに拡げることができる。 According to this configuration, it is possible to increase the current flowing through the expansion coil due to resonance between the capacitor and the expansion coil, thereby generating more magnetic flux in the expansion coil. For this reason, the transmission range can be further expanded.
 好適には、前記1つまたは複数の中継機器の少なくとも1つは、前記送り側機器の1次コイルで生じた磁束に応じた電力または電気信号によって動作する負荷を含む。
 この構成によれば、送り側機器から受け側機器へ電力や電気信号を伝送する機能だけでなく、負荷駆動機能も備える中継機器を実現できる。
Preferably, at least one of the one or more relay devices includes a load operated by electric power or an electric signal corresponding to magnetic flux generated in a primary coil of the sending device.
According to this configuration, it is possible to realize a relay device having not only a function of transmitting electric power and an electric signal from the sending device to the receiving device, but also a load driving function.
 好適には、拡張用コイルは、空芯コイルである。
 この構成によれば、空芯コイルは耐電力が大きく、且つインダクタンスが小さいので、高周波を利用した非接触式の伝送システムを好適に実現できる。
Preferably, the expansion coil is an air-core coil.
According to this configuration, since the air-core coil has high power resistance and small inductance, a non-contact transmission system using high frequency can be suitably realized.
 好適には、平面コイルからなる拡張用コイルと、チップ素子からなるインピーダンス素子とは同一平面上に配置される。
 この構成によれば、薄型の中継機器を実現できる。
Preferably, the extension coil made of a planar coil and the impedance element made of a chip element are arranged on the same plane.
According to this configuration, a thin relay device can be realized.
 好適には、前記受け側機器は、発光ダイオードを負荷として備え、前記送り側機器は、前記1つまたは複数の中継機器を介して前記受け側機器に電力を供給する。
 この構成によれば、負荷として消費電力の小さい発光ダイオードを用いることによって、ランニングコストを抑えつつ輝度の高い照明機器を実現することができる。
Preferably, the receiving device includes a light emitting diode as a load, and the sending device supplies power to the receiving device via the one or more relay devices.
According to this configuration, by using a light emitting diode with low power consumption as a load, it is possible to realize a lighting device with high luminance while suppressing running cost.
 好適には、前記送り側機器は、電池によって動作可能である。
 この構成によれば、送り側機器に電池からの電源を供給することによって、コードレスの伝送システムを実現することができる。その結果、本システムをモバイルシステムとして使用したり、異なる場所で使用することが可能になる。
Preferably, the sending device is operable by a battery.
According to this configuration, a cordless transmission system can be realized by supplying power from the battery to the sending device. As a result, the present system can be used as a mobile system or used in different places.
 好適には、前記送り側機器および前記1つまたは複数の中継機器は、それぞれ形状が異なるパズルピースとして構成される。
 この構成によれば、本システムを楽しみながら構築することができる。
Preferably, the sending device and the one or more relay devices are configured as puzzle pieces having different shapes.
According to this configuration, the system can be constructed while enjoying the system.
従来の非接触式給電システムの模式図である。It is a schematic diagram of the conventional non-contact-type electric power feeding system. (a),(b)は従来の非接触式給電システムの動作を説明する模式図である。(A), (b) is a schematic diagram explaining operation | movement of the conventional non-contact-type electric power feeding system. (a),(b)は実施形態1の伝送システムの模式図である。(A), (b) is the schematic diagram of the transmission system of Embodiment 1. FIG. (a)~(e)は実施形態1の伝送システムの動作原理を説明する模式図である。(A)-(e) is a schematic diagram explaining the operation principle of the transmission system of Embodiment 1. FIG. (a)~(c)は実施形態1の伝送システムの例を示す模式図である。(A)-(c) is a schematic diagram which shows the example of the transmission system of Embodiment 1. FIG. (a)~(e)は実施形態1の伝送システムの他の例を示す模式図である。(A)-(e) is a schematic diagram which shows the other example of the transmission system of Embodiment 1. FIG. (a),(b)は実施形態1の伝送システムのさらに他の例を示す模式図である。(A), (b) is a schematic diagram which shows the further another example of the transmission system of Embodiment 1. FIG. (a),(b)は実施形態2の伝送システムの模式図である。(A), (b) is a schematic diagram of the transmission system of Embodiment 2. FIG. (a),(b)は実施形態3の伝送システムに用いられる給電機器および中継機器の模式図であり、(c)は実施形態3の伝送システムに用いられる拡張用コイルの他の例を示す斜視図である。(A), (b) is a schematic diagram of the electric power feeding apparatus and relay apparatus which are used for the transmission system of Embodiment 3, (c) shows the other example of the coil for an extension used for the transmission system of Embodiment 3. FIG. It is a perspective view. (a),(b)は実施形態4の伝送システムに用いられる給電機器および中継機器の構成を説明する模式図である。(A), (b) is a schematic diagram explaining the structure of the electric power feeder and relay apparatus used for the transmission system of Embodiment 4. FIG. (a),(b)は実施形態5の伝送システムを説明する模式図である。(A), (b) is a schematic diagram explaining the transmission system of Embodiment 5. FIG. (a)は実施形態5の伝送システムを用いた給電システムの例を示す模式図であり、(b)は図12(a)の一部詳細図である。(A) is a schematic diagram which shows the example of the electric power feeding system using the transmission system of Embodiment 5, (b) is a partial detail drawing of Fig.12 (a). (a),(b)は実施形態6の伝送システムを用いた例を示す模式図である。(A), (b) is a schematic diagram which shows the example using the transmission system of Embodiment 6. FIG. 実施形態7の伝送システムの模式図である。FIG. 10 is a schematic diagram of a transmission system according to a seventh embodiment. 実施形態7の伝送システムに用いられる中継機器の模式図である。FIG. 10 is a schematic diagram of a relay device used in the transmission system according to the seventh embodiment. 実施形態8の伝送システムの模式図である。FIG. 10 is a schematic diagram of a transmission system according to an eighth embodiment. 実施形態9の伝送システムの模式図である。10 is a schematic diagram of a transmission system according to Embodiment 9. FIG. 実施形態10の伝送システムの模式図である。FIG. 16 is a schematic diagram of a transmission system according to a tenth embodiment.
 本発明に係る伝送システムの実施形態を図面に基づいて説明する。なお、以下では受電側の機器に電力を供給する給電システムを例に説明するが、本発明に係る伝送システムは給電システムに限定されるものではなく、電気信号などを伝送するようなシステムであってもよい。 Embodiments of a transmission system according to the present invention will be described with reference to the drawings. In the following, a power supply system that supplies power to a device on the power receiving side will be described as an example. However, the transmission system according to the present invention is not limited to the power supply system, and is a system that transmits an electrical signal or the like. May be.
 (実施形態1)
 図3は、実施形態1の給電システムの一例を示す。本給電システムは、電力を供給する給電機器1と、給電機器1から送られた電力を受け取る受電機器2と、給電機器1と受電機器2とを中継する中継機器3とを備えている。ここに、実施形態1では、給電機器1により送り側機器が構成され、受電機器2により受け側機器が構成されている。
(Embodiment 1)
FIG. 3 shows an example of the power feeding system according to the first embodiment. The power feeding system includes a power feeding device 1 that supplies power, a power receiving device 2 that receives power transmitted from the power feeding device 1, and a relay device 3 that relays between the power feeding device 1 and the power receiving device 2. Here, in the first embodiment, the feeding device 1 constitutes the sending device, and the power receiving device 2 constitutes the receiving device.
 給電機器1は、螺旋状に巻回された空芯コイルからなる1次コイル10と、1次コイル10に高周波電流を印加するための高周波インバータ11とを含み、1次コイル10に高周波電流を印加することによって当該1次コイル10を鎖交する形で磁束Φaが発生する。なお、上記の高周波インバータ11は、商用電源により電源供給されるようになっている。 The power supply device 1 includes a primary coil 10 formed of an air-core coil wound in a spiral shape, and a high-frequency inverter 11 for applying a high-frequency current to the primary coil 10. A high-frequency current is supplied to the primary coil 10. By applying the magnetic flux Φa, the primary coil 10 is linked to the magnetic flux Φa. The high frequency inverter 11 is supplied with power from a commercial power source.
 受電機器2は、1次コイル10と同様に螺旋状に巻回された空芯コイルからなる2次コイル20と、2次コイル20の両端に接続され、当該2次コイル20を介して電力が供給される負荷(例えば発光ダイオードなど)21とを含む。2次コイル20の両端間にはさらにコンデンサ22が接続されている。 Similarly to the primary coil 10, the power receiving device 2 is connected to both ends of the secondary coil 20, which is a spirally wound air-core coil, and the secondary coil 20, and power is transmitted through the secondary coil 20. And a load (for example, a light emitting diode) 21 to be supplied. A capacitor 22 is further connected between both ends of the secondary coil 20.
 中継機器3は、1次コイル10と同様に螺旋状に巻回された空芯コイルからなる拡張用コイル30と、インピーダンス素子31とで構成される閉回路を備えており、給電側である給電機器1と受電側である受電機器2との間で電力を中継する役割を担うものである。 The relay device 3 includes a closed circuit composed of an extension coil 30 formed of an air-core coil spirally wound in the same manner as the primary coil 10 and an impedance element 31, and is a power supply on the power supply side. It plays a role of relaying power between the device 1 and the power receiving device 2 on the power receiving side.
 ここで、図3(a)は、隣接するコイルの一部に対して部分的に近接するようにしてコイル10,20,30を配置した配置例を示す。拡張用コイル30は、その巻軸方向が1次コイル10の巻軸方向と直交するようにして当該1次コイル10に近接配置されている。ただし、拡張コイル30と1次コイル10とは重なっていない。また、2次コイル20は、その巻軸方向が拡張用コイル30の巻軸方向に対して斜め方向となるようにして当該拡張用コイル30に近接配置されている。なお、図3(a)に示すようにコイル10~30を配置することで、各コイルの周縁部に発生する磁束も有効に利用できるのである。 Here, FIG. 3A shows an arrangement example in which the coils 10, 20, and 30 are arranged so as to be partially close to a part of adjacent coils. The expansion coil 30 is disposed close to the primary coil 10 such that the winding axis direction is orthogonal to the winding axis direction of the primary coil 10. However, the extension coil 30 and the primary coil 10 do not overlap. The secondary coil 20 is disposed close to the expansion coil 30 so that the winding axis direction is oblique to the winding axis direction of the expansion coil 30. Note that by arranging the coils 10 to 30 as shown in FIG. 3A, the magnetic flux generated at the peripheral edge of each coil can be used effectively.
 一方、図3(b)は、複数(本例では2個)の拡張用コイル30を配置した配置例を示す。第1の拡張用コイル30は、その巻軸方向が1次コイル10の巻軸方向と直交するようにして当該1次コイル10に近接配置されている。第2の拡張用コイル30は、その巻軸方向が第1の拡張用コイル30の巻軸方向と並行する形で横並びに配置されている。さらに、2次コイル20は、そのコイル面が第2の拡張用コイル30のコイル面と対向するようにして配置されている。 On the other hand, FIG. 3B shows an arrangement example in which a plurality (two in this example) of expansion coils 30 are arranged. The first extension coil 30 is disposed close to the primary coil 10 such that the winding axis direction thereof is orthogonal to the winding axis direction of the primary coil 10. The second extension coils 30 are arranged side by side so that the winding axis direction thereof is parallel to the winding axis direction of the first extension coil 30. Further, the secondary coil 20 is arranged such that its coil surface faces the coil surface of the second expansion coil 30.
 図3(a)(b)の各配置例では、受電機器2は、給電機器1の1次コイル10を介して受電可能であるだけでなく、中継機器3の拡張用コイル30を介しても受電可能である。従って、給電機器1から離れた位置での給電が可能になるとともに、受電機器2の配置の自由度が大きくなるのである。 3A and 3B, the power receiving device 2 can receive power via the primary coil 10 of the power feeding device 1 as well as via the expansion coil 30 of the relay device 3. Power can be received. Therefore, power can be supplied at a position away from the power supply device 1 and the degree of freedom of arrangement of the power reception device 2 is increased.
 ここにおいて、上記の給電機器1、受電機器2および中継機器3は、それぞれ図示しないケースに収納される形で別個の機器として構成されている。例えば、受電機器2の負荷21が充電電池である場合には充電の際に、所定の位置に配置された給電機器1または中継機器3の磁束が鎖交する任意の位置に受電機器2を配置することになる。 Here, the power feeding device 1, the power receiving device 2, and the relay device 3 are configured as separate devices in a form of being housed in a case (not shown). For example, when the load 21 of the power receiving device 2 is a rechargeable battery, the power receiving device 2 is arranged at an arbitrary position where the magnetic flux of the power feeding device 1 or the relay device 3 arranged at a predetermined position is linked at the time of charging. Will do.
 次に、本給電システムの動作原理について図4に基づいて説明する。図4(a)は、1次コイル10および拡張用コイル30を、互いのコイル面が対向するように配置した状態を示す。この状態において高周波インバータ11により1次コイル10に高周波電流を印加すると、1次コイル10を鎖交する形で磁束Φaが発生する。そして、この磁束Φaを拡張用コイル30に鎖交させると、ファラデーの電磁誘導の法則に従って、拡張用コイル30の両端間に誘導起電力Eが発生する。 Next, the operating principle of the power supply system will be described with reference to FIG. FIG. 4A shows a state in which the primary coil 10 and the expansion coil 30 are arranged so that their coil surfaces face each other. In this state, when a high-frequency current is applied to the primary coil 10 by the high-frequency inverter 11, a magnetic flux Φa is generated so as to link the primary coil 10. When this magnetic flux Φa is linked to the expansion coil 30, an induced electromotive force E is generated between both ends of the expansion coil 30 in accordance with Faraday's law of electromagnetic induction.
 図4(b)は、拡張用コイル30の両端間にインピーダンス素子(ここでは抵抗など)31を接続した状態を示す。上記の誘導起電力Eによりインピーダンス素子31に電流Iaが流れる。さらに、インピーダンス素子31と直列に接続された拡張用コイル30にも電流Iaが流れて、拡張用コイル30を鎖交する形で磁束Φbが発生する。なお、この磁束Φbは、レンツの法則に従い、1次コイル10の磁束変化を打ち消すように発生する。 FIG. 4B shows a state in which an impedance element (such as a resistor) 31 is connected between both ends of the expansion coil 30. Current Ia flows through the impedance element 31 by the induced electromotive force E. Furthermore, the current Ia also flows through the expansion coil 30 connected in series with the impedance element 31, and a magnetic flux Φb is generated in the form of linking the expansion coil 30. The magnetic flux Φb is generated so as to cancel the magnetic flux change of the primary coil 10 according to Lenz's law.
 ところで、上記の電流Iaによって生じる磁束Φbは、1次コイル10を鎖交するように発生するものと、拡張用コイル30にのみ鎖交するものとがあり、後者の磁束を漏れ磁束という。また、この漏れ磁束を生じさせるインダクタンスを漏れインダクタンスという。そして、電磁誘導による給電を行う場合、1次コイルと2次コイル(本例では拡張用コイル30)とが離れて磁気結合されるため、2次コイルの自己インダクタンスと漏れインダクタンスは近い値となる場合が多い。 Incidentally, the magnetic flux Φb generated by the current Ia includes a magnetic flux generated so as to link the primary coil 10 and a magnetic flux Φb linked only to the expansion coil 30, and the latter magnetic flux is referred to as a leakage magnetic flux. The inductance that generates this leakage magnetic flux is called leakage inductance. When power is supplied by electromagnetic induction, the primary coil and the secondary coil (in this example, the expansion coil 30) are separated and magnetically coupled, so that the self-inductance and leakage inductance of the secondary coil are close to each other. There are many cases.
 図4(c)は、複数(本例では2個)の拡張用コイル30を横並びに配置した配置例を示す。この場合、1次コイル10に対向配設された第1の拡張用コイル30で発生する漏れ磁束Φbが隣接する第2の拡張用コイル30に鎖交し、さらにこの第2の拡張用コイル30で発生する漏れ磁束Φbが2次コイル20に鎖交する。その結果、上述と同様に2次コイル20に誘導起電力が発生し、2次コイル20に接続された負荷21に誘導電流を流すことができる。すなわち、第1の拡張用コイル30を1次コイル10の磁束Φaが鎖交するように配置し、且つ、この第1の拡張用コイル30で発生する漏れ磁束Φbを利用することで、給電機器1から離れた位置での給電が可能であるとともに、受電機器2の配置の自由度も大きくなるのである。 FIG. 4C shows an arrangement example in which a plurality (two in this example) of expansion coils 30 are arranged side by side. In this case, the leakage magnetic flux Φb generated in the first expansion coil 30 disposed opposite to the primary coil 10 is linked to the adjacent second expansion coil 30, and further this second expansion coil 30. The leakage magnetic flux Φb generated in the above is linked to the secondary coil 20. As a result, an induced electromotive force is generated in the secondary coil 20 as described above, and an induced current can be passed through the load 21 connected to the secondary coil 20. That is, the first expansion coil 30 is arranged so that the magnetic flux Φa of the primary coil 10 is linked, and the leakage magnetic flux Φb generated in the first expansion coil 30 is used to supply power Power can be supplied at a position away from 1, and the degree of freedom of arrangement of the power receiving device 2 is increased.
 また、図4(d)では、図4(c)におけるインピーダンス素子31にコンデンサを用いて、コンデンサと拡張用コイル30とで高周波インバータ11の動作周波数に共振する共振回路を構成している。この構成では、拡張用コイル30に流れる誘導電流が増加し、より多くの磁束を発生させることが可能になる。したがって、複数の中継機器3を介して給電システムを構成する場合には、各拡張用コイル30での磁束の減衰を考慮して共振回路を構成することが好ましい。この場合、インピーダンス素子31にはコンデンサを用いるのがよい。 4D, a capacitor is used as the impedance element 31 in FIG. 4C, and the capacitor and the expansion coil 30 constitute a resonance circuit that resonates with the operating frequency of the high-frequency inverter 11. In this configuration, the induced current flowing through the expansion coil 30 increases, and more magnetic flux can be generated. Therefore, when a power supply system is configured via a plurality of relay devices 3, it is preferable to configure a resonance circuit in consideration of the attenuation of magnetic flux in each expansion coil 30. In this case, it is preferable to use a capacitor for the impedance element 31.
 なお、図4(e)は、複数の拡張用コイル30を用いた他の例を示す。上述の図4(d)では2次コイル20を末端の拡張用コイル30に対して横並びに配置していたが、図4(e)では末端の拡張用コイル30のコイル面と2次コイル20のコイル面とが対向するように配置されている。この場合も同様に、給電機器1から離れた位置での給電が可能であるとともに、受電機器2の配置の自由度も大きくなる。 FIG. 4E shows another example using a plurality of expansion coils 30. In FIG. 4D described above, the secondary coil 20 is arranged side by side with respect to the terminal expansion coil 30. In FIG. 4E, the coil surface of the terminal expansion coil 30 and the secondary coil 20 are arranged. It arrange | positions so that the coil surface of this may oppose. In this case as well, power can be supplied at a position away from the power supply device 1 and the degree of freedom of arrangement of the power reception device 2 is increased.
 図5は、上記動作原理を利用した給電システムの具体例を示す。図5(a)では、1次コイル10の巻軸方向と、拡張用コイル30の巻軸方向とが一致するようにして給電機器1と中継機器3とが配置されている。さらに、拡張用コイル30の巻軸方向と、2次コイル20の巻軸方向とが一致しない(重ならない)ようにして中継機器3と受電機器2とが横並びに配置されている。なおこのとき、拡張用コイル30には1次コイル10の磁束Φaが鎖交し、2次コイル20には拡張用コイル30の漏れ磁束Φbが鎖交する。 FIG. 5 shows a specific example of a power feeding system using the above operating principle. In FIG. 5A, the power feeding device 1 and the relay device 3 are arranged so that the winding axis direction of the primary coil 10 and the winding axis direction of the expansion coil 30 coincide. Further, the relay device 3 and the power receiving device 2 are arranged side by side so that the winding axis direction of the extension coil 30 and the winding axis direction of the secondary coil 20 do not match (do not overlap). At this time, the magnetic flux Φa of the primary coil 10 is linked to the expansion coil 30, and the leakage magnetic flux Φb of the expansion coil 30 is linked to the secondary coil 20.
 一方、図5(b)では、1次コイル10の巻軸方向と、第1及び第2の拡張用コイル30の巻軸方向とが重ならないようにして給電機器1と第1及び第2の中継機器3とが横並びに配置されている。さらに、第2の(すなわち末端の)拡張用コイル30のコイル面と、2次コイル20のコイル面とが対向するようにして第2の(すなわち末端の)中継器機3と受電機器2とが配置されている。このとき、1次コイル10に近接配置された第1の拡張用コイル30には1次コイル10の漏れ磁束Φaが鎖交する。またこの第1の拡張用コイル30に近接配置された第2の拡張用コイル30には、隣接する第1の拡張用コイル30の漏れ磁束Φbが鎖交する。さらに2次コイル20には第2の拡張用コイル30の磁束Φbが鎖交する。 On the other hand, in FIG. 5B, the feeding device 1 and the first and second power supply devices 1 and 2 are arranged so that the winding direction of the primary coil 10 and the winding direction of the first and second extension coils 30 do not overlap. The relay device 3 is arranged side by side. Further, the second (that is, terminal) repeater device 3 and the power receiving device 2 are arranged such that the coil surface of the second (that is, terminal) extension coil 30 and the coil surface of the secondary coil 20 face each other. Is arranged. At this time, the leakage magnetic flux Φa of the primary coil 10 is linked to the first expansion coil 30 that is disposed close to the primary coil 10. Further, the leakage magnetic flux Φb of the adjacent first expansion coil 30 is linked to the second expansion coil 30 disposed in proximity to the first expansion coil 30. Further, the magnetic flux Φb of the second expansion coil 30 is linked to the secondary coil 20.
 図5(a)(b)の何れの場合でも、中継機器3を介在させることによって、給電機器1から離れた位置での給電が可能であるとともに、受電機器2の配置の自由度が大きくなる。なお、図5(c)では、図5(b)の給電システムにおいて、中継機器3に負荷(例えば発光ダイオードなど)32が設けられている。このように中継機器3に負荷32を設けることで、給電機器1から送られる電力を受電機器2に伝送する機能と、給電機器1から送られる電力の一部で負荷32を動作させる機能とを備えた中継機器3を実現できる。 5A and 5B, by interposing the relay device 3, it is possible to supply power at a position away from the power supply device 1, and the degree of freedom of arrangement of the power reception device 2 is increased. . In FIG. 5C, a load (for example, a light emitting diode) 32 is provided in the relay device 3 in the power supply system of FIG. Thus, by providing the load 32 on the relay device 3, the function of transmitting the power sent from the power feeding device 1 to the power receiving device 2 and the function of operating the load 32 with a part of the power sent from the power feeding device 1 are provided. The provided relay device 3 can be realized.
 ここにおいて、実施形態1の給電システムでは、給電機器1と中継機器3とが別体であるから、受電機器2の位置に応じて、給電機器1に対する中継機器3の位置が変更可能である。したがって、受電機器2の配置に応じた給電システムを容易に構築することが可能である。 Here, in the power supply system of the first embodiment, the power supply device 1 and the relay device 3 are separate, and therefore the position of the relay device 3 relative to the power supply device 1 can be changed according to the position of the power reception device 2. Therefore, it is possible to easily construct a power supply system according to the arrangement of the power receiving device 2.
 図6は、実施形態1の給電システムの他の例を示す。図6(a)、図6(d)、図6(e)に示す給電システムは、各1個ずつの給電機器1および受電機器2と、複数(本例では2個)の中継機器3とを備えている。図6(a)では、1次コイル10の巻軸方向と第1の拡張用コイル30の巻軸方向とが並行する形で、給電機器1と第1の中継機器3とが横並びに配置されている。さらに、第1及び第2の拡張用コイル30のコイル面が互いに対向する形で、第1及び第2の中継機器3,3が対向配置されている。また、第2の拡張用コイル30の巻軸方向と2次コイル20の巻軸方向とが並行する形で、第2の中継機器3と受電機器2とが横並びに配置されている。この図6(a)の例では、1次コイル10の漏れ磁束Φaが第1の拡張用コイル30を鎖交する。また、この第1の拡張用コイル30で発生した磁束Φbが第2の拡張用コイル30を鎖交する。さらに第2の拡張用コイル30で発生した漏れ磁束Φbが2次コイル20を鎖交する。 FIG. 6 shows another example of the power feeding system according to the first embodiment. 6 (a), FIG. 6 (d), and FIG. 6 (e) include one power supply device 1 and one power reception device 2, and a plurality (two in this example) of relay devices 3. It has. In FIG. 6A, the power feeding device 1 and the first relay device 3 are arranged side by side so that the winding axis direction of the primary coil 10 and the winding axis direction of the first extension coil 30 are parallel to each other. ing. Further, the first and second relay devices 3 and 3 are arranged to face each other with the coil surfaces of the first and second extension coils 30 facing each other. Further, the second relay device 3 and the power receiving device 2 are arranged side by side so that the winding axis direction of the second extension coil 30 and the winding axis direction of the secondary coil 20 are parallel to each other. In the example of FIG. 6A, the leakage flux Φa of the primary coil 10 links the first extension coil 30. Further, the magnetic flux Φb generated in the first expansion coil 30 links the second expansion coil 30. Furthermore, the leakage flux Φb generated in the second expansion coil 30 links the secondary coil 20.
 一方、図6(d)では、1次コイル10、2次コイル20、並びに第1及び第2の拡張用コイル30,30の巻軸方向が並行する形で、給電機器1、受電機器2、並びに第1及び第2の中継機器3,3が横並びに配置されている。この図6(d)の例では、隣接するコイルの漏れ磁束が各コイルに鎖交することになる。そして、図6(a)(d)の何れの場合にも、1次コイル10の漏れ磁束を利用することによって、給電機器1から離れた位置での給電が可能であるとともに、受電機器2の配置の自由度が大きくなるのである。なお、図6(e)では、図6(d)における負荷21にランプが用いられており、この動作原理については図6(d)と同様であるから説明は省略する。 On the other hand, in FIG.6 (d), the winding direction of the primary coil 10, the secondary coil 20, and the 1st and 2nd expansion coils 30 and 30 is parallel, and the electric power feeder 1, the receiving device 2, In addition, the first and second relay devices 3 and 3 are arranged side by side. In the example of FIG. 6D, the leakage magnetic flux of the adjacent coil is linked to each coil. 6 (a) and 6 (d), by using the leakage magnetic flux of the primary coil 10, it is possible to supply power at a position away from the power supply device 1, and The degree of freedom of arrangement increases. In FIG. 6 (e), a lamp is used for the load 21 in FIG. 6 (d), and the operation principle is the same as in FIG.
 また、図6(b)および図6(c)は、ぞれぞれ図6(d)および図6(e)から中継機器3を1個減らした構成であるから、ここでは説明は省略する。なお、図6(b)~図6(e)に示すように各コイルを配置することで、コイルの周縁部に発生する磁束も有効に利用できるのである。 6 (b) and 6 (c) are configurations in which one relay device 3 is reduced from FIGS. 6 (d) and 6 (e), respectively, the description thereof is omitted here. . Note that by arranging each coil as shown in FIGS. 6B to 6E, the magnetic flux generated at the peripheral edge of the coil can be used effectively.
 図7は、実施形態1の給電システムのさらに他の例を示す。この給電システムは、各1個ずつの給電機器1および受電機器2と、複数(本例では3個)の中継機器3とを備えている。図7(a)では、1次コイル10の巻軸方向と第1~第3の拡張用コイル30の巻軸方向とが並行する形で、給電機器1と第1~第3の中継機器3とが横並びに配置されている。また、第3の(すなわち末端の)拡張用コイル30のコイル面に2次コイル20のコイル面が対向するようにして第3の(すなわち末端の)中継装置3と受電機器2とが配置されている。なお、図7(b)は上述した図4(d)に対して中継機器3を1個増やしたものであるから、ここでは説明を省略する。 FIG. 7 shows still another example of the power feeding system according to the first embodiment. This power feeding system includes one power feeding device 1 and one power receiving device 2 each, and a plurality (three in this example) of relay devices 3. In FIG. 7A, the power feeding device 1 and the first to third relay devices 3 are formed so that the winding direction of the primary coil 10 and the winding direction of the first to third extension coils 30 are parallel to each other. Are arranged side by side. Further, the third (that is, terminal) relay device 3 and the power receiving device 2 are arranged so that the coil surface of the secondary coil 20 faces the coil surface of the third (that is, terminal) extension coil 30. ing. Note that FIG. 7B is obtained by adding one relay device 3 to the above-described FIG.
 図7の場合、図6の給電システムに比べて、給電機器1からさらに離れた位置での給電が可能であるとともに、受電機器2の配置の自由度もより大きくなる。また、図7(a)および図7(b)では、3つの拡張用コイル30は、隣接するコイルの一部に対して部分的に近接するように1次コイル10または2次コイル20に対して横並びに配置されている。これによって、漏れ磁束を主磁束として有効に活用することができる。また、鎖交磁束により平面方向(横並び方向)に電磁誘導が行われるので平面方向への給電範囲を拡張することが可能になる。さらに、隣接するコイル同士が近いほど鎖交する漏れ磁束の割合を大きくすることができ、その結果供給可能な電力量も大きくなる。 In the case of FIG. 7, as compared with the power supply system of FIG. 6, power can be supplied at a position further away from the power supply device 1, and the degree of freedom of arrangement of the power reception device 2 is increased. Also, in FIGS. 7A and 7B, the three expansion coils 30 are in relation to the primary coil 10 or the secondary coil 20 so as to be partially close to a part of the adjacent coils. Are arranged side by side. Thereby, the leakage magnetic flux can be effectively used as the main magnetic flux. Moreover, since electromagnetic induction is performed in the plane direction (side-by-side direction) by the interlinkage magnetic flux, the power supply range in the plane direction can be expanded. Furthermore, the closer the adjacent coils are, the larger the proportion of the leakage magnetic flux that is linked can be increased. As a result, the amount of power that can be supplied also increases.
 ここにおいて、図7の例のように複数の中継機器3を横並びに配置する場合には、上述したように各拡張用コイル30での磁束の減衰を考慮して、高周波インバータ11の動作周波数に共振する共振回路を構成するのが好ましく、したがってインピーダンス素子31としてはコンデンサを用いるのがよい。 Here, when a plurality of relay devices 3 are arranged side by side as in the example of FIG. 7, the operating frequency of the high-frequency inverter 11 is set in consideration of the attenuation of magnetic flux in each expansion coil 30 as described above. It is preferable to configure a resonant circuit that resonates. Therefore, a capacitor may be used as the impedance element 31.
 而して、実施形態1によれば、1次コイル10の形状や大きさなどが従来例と同じ条件でありながら、受電機器2が1次コイル10から離れた場所に配置されていても中継機器3の拡張用コイル30を介して電力を供給することが可能である。従って、受電機器2の配置場所の制約が少なくなり、使い勝手のよい給電システムを提供することができる。また、拡張用コイル30の形状や大きさなどが異なる複数種類の中継機器3を用意することで、様々な用途に応じた給電システムを構築することができる。さらに、中継機器3には単一の拡張用コイル30を設ければよいため、従来例のように給電側のコイルと受電側のコイルとにそれぞれ対応する2つのコイルを設ける必要や、漏れ磁束を抑えるためのコアを使用する必要がない。従って、コストアップを抑えつつ小型の給電システムが構築できる。 Thus, according to the first embodiment, the shape and size of the primary coil 10 are the same as those in the conventional example, but relaying is performed even if the power receiving device 2 is disposed away from the primary coil 10. Electric power can be supplied via the expansion coil 30 of the device 3. Therefore, restrictions on the location of the power receiving device 2 are reduced, and an easy-to-use power supply system can be provided. Further, by preparing a plurality of types of relay devices 3 having different shapes and sizes of the expansion coil 30, it is possible to construct a power feeding system corresponding to various applications. Furthermore, since the relay device 3 only needs to be provided with a single extension coil 30, it is necessary to provide two coils corresponding to the power supply side coil and the power reception side coil as in the conventional example, There is no need to use a core to suppress Therefore, a small power supply system can be constructed while suppressing an increase in cost.
 また、拡張用コイル30の巻線の一部を1次コイル10の一部に近接させるようにして給電機器1と中継機器3とを配置した場合には、1次コイル10の磁束と拡張用コイル30の磁束の両方が鎖交する位置に2次コイル20を配置することもできる。これによって、2次コイル20で発生する誘導電流が大きくなり、その結果受電機器2への給電効率を高めることもできる。さらに、空芯コイルは耐電力が大きく、且つインダクタンスが小さい。従って、本給電システムのような高周波を利用したシステムに空芯コイルを用いることによって、最適なシステム構築が可能になる。また、負荷21,32として発光ダイオードを用いた場合には、発光ダイオードは消費電力が小さいので、ランニングコストを抑えつつ輝度の高い照明機器を実現できる。 Further, when the power supply device 1 and the relay device 3 are arranged so that a part of the winding of the expansion coil 30 is close to a part of the primary coil 10, the magnetic flux of the primary coil 10 and the expansion coil The secondary coil 20 can also be arranged at a position where both of the magnetic fluxes of the coil 30 are linked. As a result, the induced current generated in the secondary coil 20 increases, and as a result, the power supply efficiency to the power receiving device 2 can be increased. Furthermore, the air-core coil has a large power resistance and a small inductance. Therefore, an optimum system can be constructed by using an air-core coil in a system using a high frequency such as the power feeding system. Further, when light emitting diodes are used as the loads 21 and 32, since the light emitting diodes consume less power, it is possible to realize a lighting device with high brightness while suppressing running costs.
 なお、実施形態1では、1次コイル10、2次コイル20および拡張用コイル30が円筒状のコイルの場合を例に説明したが、各コイルの形状は実施形態1に限定されるものではなく、例えば角筒状のものであってもよい。また、中継機器3の数についても実施形態1に限定されるものではなく、必要に応じて適宜設定すればよい。さらに、上記の各形態は一例であって、漏れ磁束を利用する構成のものであれば他の形態でもよい。 In the first embodiment, the case where the primary coil 10, the secondary coil 20, and the expansion coil 30 are cylindrical coils has been described as an example. However, the shape of each coil is not limited to the first embodiment. For example, it may be a rectangular tube. Further, the number of relay devices 3 is not limited to that in the first embodiment, and may be set as needed. Furthermore, each of the above forms is an example, and any other form may be used as long as it uses a leakage magnetic flux.
 (実施形態2)
 本発明に係る給電システムの実施形態2を図8に基づいて説明する。実施形態2の給電システムは、給電機器1を取り囲むようにして複数の中継機器3が配置されている点で実施形態1と異なっている。なお、基本構成は実施形態1と同様であり、同一の構成要素には同一の符号を付して説明は省略する。また、図8(b)では、図示を簡略化するために受電機器2の図示を省略している。
(Embodiment 2)
Embodiment 2 of the electric power feeding system which concerns on this invention is demonstrated based on FIG. The power supply system of the second embodiment is different from the first embodiment in that a plurality of relay devices 3 are arranged so as to surround the power supply device 1. The basic configuration is the same as that of the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted. Moreover, in FIG.8 (b), in order to simplify illustration, illustration of the power receiving apparatus 2 is abbreviate | omitted.
 図8(a)に示すように、実施形態2の給電システムは、円筒状の1次コイル10を具備する給電機器1と、同じく円筒状の2次コイル20を具備する受電機器2と、同じく円筒状の拡張用コイル30を各々具備する複数(例えば6個)の中継機器3とを備えている。6個の中継機器3は、それぞれ1次コイル10の一部に対して拡張用コイル30の巻線の一部を近接させた状態で、給電機器1を取り囲むようにして配置されている。そして、受電機器2は、中継機器3の拡張用コイル30の一部に対して2次コイル20の巻線の一部を近接させた状態で配置されている。また、図8(b)は、各中継機器3にそれぞれ負荷(例えば熱源や発光ダイオードやブザーなど)32を設けた例を示す。なお、実施形態2でも、上記の給電機器1、受電機器2および中継機器3は、それぞれ図示しないケースに収納される形で別個の機器として構成されている。 As shown in FIG. 8A, the power feeding system according to the second embodiment is similar to the power feeding device 1 including the cylindrical primary coil 10 and the power receiving device 2 including the cylindrical secondary coil 20. A plurality of (for example, six) relay devices 3 each having a cylindrical expansion coil 30 are provided. The six relay devices 3 are arranged so as to surround the power feeding device 1 in a state in which a part of the winding of the expansion coil 30 is brought close to a part of the primary coil 10. The power receiving device 2 is arranged in a state where a part of the winding of the secondary coil 20 is brought close to a part of the expansion coil 30 of the relay device 3. FIG. 8B shows an example in which each relay device 3 is provided with a load (for example, a heat source, a light emitting diode, a buzzer, etc.) 32. In the second embodiment, the power feeding device 1, the power receiving device 2, and the relay device 3 are configured as separate devices in a form that is housed in a case (not shown).
 而して、実施形態2によれば、1次コイル10を取り囲むように複数の拡張用コイル30を配置することによって、1次コイル10と各拡張用コイル30との距離が略等しくなる。そのため各拡張用コイル30に発生する磁束は均一で安定した磁束となるから、受電機器2は何れの中継機器3からでも同程度の電力を受け取ることが可能になる。 Thus, according to the second embodiment, by disposing the plurality of expansion coils 30 so as to surround the primary coil 10, the distance between the primary coil 10 and each expansion coil 30 becomes substantially equal. Therefore, since the magnetic flux generated in each expansion coil 30 is a uniform and stable magnetic flux, the power receiving device 2 can receive the same level of power from any relay device 3.
 なお、中継機器3の個数は実施形態2に限定されるものではなく、用途などに応じて適宜設定すればよい。また、実施形態2においても、各コイルは円筒状のコイルに限定されるものではなく、角筒状のものであってもよい。 Note that the number of relay devices 3 is not limited to that of the second embodiment, and may be set as appropriate according to the application. Also in the second embodiment, each coil is not limited to a cylindrical coil, and may be a rectangular tube.
 (実施形態3)
 本発明に係る給電システムの実施形態3を図9に基づいて説明する。上述した実施形態1,2では1次コイル10および拡張用コイル30に円筒状の螺旋コイルに用いたが、実施形態3では1次コイル10および拡張用コイル30に角筒状の螺旋コイルを用いている。なお、基本構成は実施形態1と同様であり、同一の構成要素には同一の符号を付して説明は省略する。また、図9では、図示を簡略化するために受電機器2の図示を省略している。
(Embodiment 3)
Embodiment 3 of the electric power feeding system which concerns on this invention is demonstrated based on FIG. In the first and second embodiments, the primary coil 10 and the extension coil 30 are used as cylindrical spiral coils. However, in the third embodiment, a rectangular cylindrical spiral coil is used as the primary coil 10 and the extension coil 30. ing. The basic configuration is the same as that of the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted. Moreover, in FIG. 9, illustration of the power receiving apparatus 2 is abbreviate | omitted in order to simplify illustration.
 実施形態3の給電システムは、図9(a)に示すように角筒状の螺旋コイルからなる1次コイル10を具備する給電機器1と、受電機器(図示せず)と、同じく角筒状の螺旋コイルからなる拡張用コイル30を具備する複数(例えば3個)の中継機器3とを備えている。なお、実施形態3でも、給電機器1および中継機器3は、それぞれ図示しないケースに収納される形で別個の機器として構成されている。 As shown in FIG. 9A, the power feeding system according to the third embodiment includes a power feeding device 1 including a primary coil 10 made of a rectangular cylindrical spiral coil, a power receiving device (not shown), and a rectangular cylindrical shape. And a plurality of (for example, three) relay devices 3 each having an expansion coil 30 made of a spiral coil. In the third embodiment as well, the power supply device 1 and the relay device 3 are configured as separate devices in a form that is housed in a case (not shown).
 図9(a)の例では、給電機器1および3つの中継機器3は、互いに近接するコイル部分(巻線部分)が並行となるように配置されている。つまり、給電機器1と3つの中継機器3とは、1つの矩形状の給電部を構成している。また、図9(b)は実施形態3の他の例を示しており、給電機器1および3つの中継機器3は、互いに近接するコイル部分が並行となるように横並びに配置されている。つまり、図9(b)では、給電機器1と3つの中継機器3とは、1つの横長の給電部を構成している。 In the example of FIG. 9A, the power supply device 1 and the three relay devices 3 are arranged so that the coil portions (winding portions) adjacent to each other are in parallel. That is, the power supply device 1 and the three relay devices 3 constitute one rectangular power supply unit. FIG. 9B shows another example of the third embodiment. The power supply device 1 and the three relay devices 3 are arranged side by side so that the coil portions adjacent to each other are parallel to each other. That is, in FIG. 9B, the power supply device 1 and the three relay devices 3 form one horizontally long power supply unit.
 而して、実施形態3によれば、互いに近接するコイル部分が並行となるように給電機器1と複数の中継機器3とを配置することによって、各コイル間の隙間が小さくなる。その結果、磁束を効率よく鎖交させることができるので、より多くの中継機器3を平面方向(横並び方向)に沿って配置することが可能になる。従って、平面方向における給電距離を延ばすことができる。 Thus, according to the third embodiment, the gap between the coils is reduced by arranging the power supply device 1 and the plurality of relay devices 3 so that the coil portions close to each other are parallel to each other. As a result, since the magnetic fluxes can be efficiently linked, more relay devices 3 can be arranged along the plane direction (side-by-side direction). Therefore, the feeding distance in the plane direction can be extended.
 なお、1次コイル10および拡張用コイル30の形状は、上記した図9(a)(b)の実施例に限定されるものではなく、例えば図9(c)に示すように全ての辺部に沿って巻線を配置した立方体形状のコイルでもよい。また、互いに近接する巻線部分が並行になればいいので、各コイル形状は、四角形以外の他の多角形(例えば三角形など)でもいいし、三角錐や四角錐などの多面体形状でもよい。これらのコイルでも同様に各コイル間の隙間を小さくすることが可能になり、その結果磁束を効率よく鎖交させることができる。 The shapes of the primary coil 10 and the expansion coil 30 are not limited to the embodiment shown in FIGS. 9A and 9B. For example, as shown in FIG. It may be a cube-shaped coil in which windings are arranged along. Further, since the winding portions adjacent to each other need only be in parallel, each coil shape may be a polygon other than a quadrangle (for example, a triangle) or a polyhedral shape such as a triangular pyramid or a quadrangular pyramid. In these coils as well, the gaps between the coils can be reduced, and as a result, the magnetic flux can be linked efficiently.
 (実施形態4)
 本発明に係る給電システムの実施形態4を図10に基づいて説明する。上述した実施形態1~3では、給電機器1と中継機器3とを別個の機器として個別に構成しているが、実施形態4では、給電機器1および中継機器3とで一体的な給電手段を構成している。さらに、実施形態4では、各コイル間で複数のコイルを折り畳み可能としている。なお、基本構成は実施形態3と同様であり、同一の構成要素には同一の符号を付して説明は省略する。また、図10では、図示を簡略化するために受電機器の図示を省略している。
(Embodiment 4)
Embodiment 4 of the electric power feeding system which concerns on this invention is demonstrated based on FIG. In the first to third embodiments described above, the power feeding device 1 and the relay device 3 are individually configured as separate devices, but in the fourth embodiment, an integral power feeding means is provided between the power feeding device 1 and the relay device 3. It is composed. Furthermore, in Embodiment 4, a plurality of coils can be folded between the coils. The basic configuration is the same as that of the third embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted. In FIG. 10, the illustration of the power receiving device is omitted to simplify the illustration.
 実施形態4の給電システムは、角筒状の螺旋コイルからなる1次コイル10を具備する給電機器1と、受電機器(図示せず)と、同じく角筒状の螺旋コイルからなる拡張用コイル30を各々具備する複数(例えば3個)の中継機器3と、給電機器1および中継機器3が取り付けられる取付部材4とを備えている。 The power feeding system according to the fourth embodiment includes a power feeding device 1 including a primary coil 10 formed of a rectangular cylindrical spiral coil, a power receiving device (not shown), and an expansion coil 30 formed of a rectangular cylindrical spiral coil. Are provided with a plurality of (for example, three) relay devices 3 and an attachment member 4 to which the power supply device 1 and the relay device 3 are attached.
 取付部材4は、例えば可撓性を有する樹脂成形品であって、四等分する形で十字状の折り目4aが設けられている。取付部材4は、この折り目4aにより折り畳み可能になっている。 The mounting member 4 is, for example, a flexible resin molded product, and is provided with a cross-shaped crease 4a that is divided into four equal parts. The attachment member 4 can be folded by the fold 4a.
 給電機器1および3つの中継機器3は、折り目4aによって四等分された4つのエリアにそれぞれ取り付けられて、一体的な給電手段(送り手段)を構成する。なお、各コイルは、それぞれ自己に隣接するコイルに対して並行且つ近接する状態で各エリアに配置されている。 The power supply device 1 and the three relay devices 3 are respectively attached to four areas that are divided into four equal parts by the fold line 4a to constitute an integral power supply means (feed means). In addition, each coil is arrange | positioned in each area in the state which is parallel and adjacent with respect to the coil adjacent to each, respectively.
 上述のように構成された給電手段を使用する場合には、図10(a)に示すように取付部材4を拡げる。また、図10(b)に示すように取付部材4を折り畳むことによって給電手段を収納することができる。 When using the power supply means configured as described above, the attachment member 4 is expanded as shown in FIG. Further, as shown in FIG. 10B, the power supply means can be accommodated by folding the attachment member 4.
 而して、実施形態4によれば、使用時には拡げることで給電範囲を大きく設定することができ、また未使用時には折り畳むことで収納スペースを小さくすることができる。
 なお、実施形態4では、取付部材4に折り目4aを設けて折り畳めるようにしているが、例えばヒンジなどを介して折り畳めるようにしてもよい。また、上記取付部材4を折り曲げ自在の素材(例えば布など)で構成してもよく、この場合には折り目やヒンジも不要になるという利点がある。
Thus, according to the fourth embodiment, the power supply range can be set large by expanding it during use, and the storage space can be reduced by folding it when not in use.
In the fourth embodiment, the fold 4a is provided on the attachment member 4 so that it can be folded, but it may be folded via a hinge, for example. Further, the mounting member 4 may be made of a foldable material (for example, cloth). In this case, there is an advantage that a fold or a hinge is not necessary.
 (実施形態5)
 本発明に係る給電システムの実施形態5を図11および図12に基づいて説明する。上述の実施形態1~4では、概して1次コイル10および拡張用コイル30を平面的に配置したのに対して、実施形態5では、概して1次コイル10および拡張用コイル30を立体的に配置している。なお、基本構成は実施形態3と同様であり、同一の構成要素には同一の符号を付して説明は省略する。
(Embodiment 5)
Embodiment 5 of the power feeding system according to the present invention will be described with reference to FIGS. 11 and 12. In the first to fourth embodiments described above, the primary coil 10 and the expansion coil 30 are generally arranged in a plane, whereas in the fifth embodiment, the primary coil 10 and the expansion coil 30 are generally arranged three-dimensionally. is doing. The basic configuration is the same as that of the third embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
 図11(a)は従来の給電システムであり、角筒状の螺旋コイルからなる1次コイル10を具備する給電機器1と、円筒状の螺旋コイルからなる2次コイル20および照明21を具備する受電機器2とを備えている。給電機器1および受電機器2は、1次コイル10のコイル面と2次コイル20のコイル面とが対向するようにして配置されている。この構成では、給電機器1と受電機器2の間の距離がD1のときに照明21が点灯する。 FIG. 11A shows a conventional power supply system, which includes a power supply device 1 including a primary coil 10 formed of a square cylindrical spiral coil, a secondary coil 20 formed of a cylindrical spiral coil, and an illumination 21. And a power receiving device 2. The power feeding device 1 and the power receiving device 2 are arranged such that the coil surface of the primary coil 10 and the coil surface of the secondary coil 20 face each other. In this configuration, the illumination 21 is turned on when the distance between the power feeding device 1 and the power receiving device 2 is D1.
 一方、図11(b)は実施形態5の給電システムであり、図11(a)と同様な給電機器1および受電機器2と、角筒状の螺旋コイルからなる拡張用コイル30をそれぞれ具備する複数(例えば2個)の中継機器3,3とを備えている。2つの中継機器3,3は給電機器1と受電機器2との間に配置されている。なお、各中継機器3の拡張用コイル30は、それぞれ自己のコイル面と1次コイル10および2次コイル20のコイル面とが対向するように配置されている。また、各中継機器3のインピーダンス素子31にはコンデンサが用いられており、コンデンサと拡張用コイル30とで高周波インバータ11の動作周波数に共振する共振回路が構成されている。 On the other hand, FIG. 11B shows a power feeding system according to the fifth embodiment, which includes a power feeding device 1 and a power receiving device 2 similar to those in FIG. 11A, and an expansion coil 30 made up of a rectangular spiral coil. A plurality of (for example, two) relay devices 3 and 3 are provided. The two relay devices 3 and 3 are arranged between the power feeding device 1 and the power receiving device 2. The extension coil 30 of each relay device 3 is arranged such that its own coil surface and the coil surfaces of the primary coil 10 and the secondary coil 20 face each other. A capacitor is used as the impedance element 31 of each relay device 3, and a resonance circuit that resonates with the operating frequency of the high-frequency inverter 11 is configured by the capacitor and the expansion coil 30.
 図11(b)に示す給電システムでは、給電機器1と中継機器3との距離がD1より離れた場合には拡張用コイル30に鎖交する磁束は少なくなるが、拡張用コイル30に流れる誘導電流は共振回路によって増加する。このため、拡張用コイル30で生じる磁束は増加することになる。その結果、拡張用コイル30で生じた磁束を2次コイル20に鎖交させることによって、照明21を点灯させることができる。すなわち、照明21を点灯させることができる給電機器1から受電機器2までの距離D2を、従来例の距離D1よりも長くできるのである。 In the power supply system shown in FIG. 11B, the magnetic flux interlinking with the expansion coil 30 decreases when the distance between the power supply device 1 and the relay device 3 is greater than D1, but the induction flowing through the expansion coil 30 The current is increased by the resonant circuit. For this reason, the magnetic flux generated in the expansion coil 30 increases. As a result, the illumination 21 can be turned on by interlinking the magnetic flux generated in the expansion coil 30 with the secondary coil 20. That is, the distance D2 from the power feeding device 1 that can turn on the illumination 21 to the power receiving device 2 can be made longer than the distance D1 of the conventional example.
 図12は、上記給電システムを利用したディスプレイ装置の一例を示す。矩形箱状のケース5の上段、中段、下段にはそれぞれ展示物Pが配置され、各展示物Pにはそれぞれ下側からスポット照明が照射されるようになっている。下段の展示スペースの下部には1次コイル10を備えた給電機器1が配置されており、この給電機器1の上部には2次コイル20および照明21を備えた受電機器2が配置されている。また、上段および中段の展示スペースの下部にはそれぞれ拡張用コイル30を備えた中継機器3が配置されており、各中継機器3の上部にはそれぞれ2次コイル20および照明21を備えた受電機器2が配置されている。 FIG. 12 shows an example of a display device using the power feeding system. Exhibits P are arranged on the upper, middle, and lower stages of the rectangular box-shaped case 5, respectively, and each exhibit P is irradiated with spot illumination from the lower side. A power supply device 1 including a primary coil 10 is disposed at the lower part of the lower display space, and a power reception device 2 including a secondary coil 20 and an illumination 21 is disposed above the power supply device 1. . In addition, relay devices 3 each having an extension coil 30 are arranged in the lower part of the upper and middle exhibition spaces, and power receiving devices each having a secondary coil 20 and an illumination 21 are provided above each relay device 3. 2 is arranged.
 次に、図12の給電システムの動作について簡単に説明する。給電機器1の高周波インバータ11により1次コイル10に高周波電流を印加すると、1次コイル10を鎖交する形で磁束が発生する。下段の受電機器2では、上記磁束が2次コイル20を鎖交することで2次コイル20に誘導電流が流れる。この誘導電流により、下段の受電機器2の照明21が点灯する。 Next, the operation of the power supply system in FIG. 12 will be briefly described. When a high-frequency current is applied to the primary coil 10 by the high-frequency inverter 11 of the power supply device 1, a magnetic flux is generated so as to link the primary coil 10. In the lower power receiving device 2, an induced current flows through the secondary coil 20 by the magnetic flux interlinking the secondary coil 20. Due to this induced current, the illumination 21 of the lower power receiving device 2 is turned on.
 また、1次コイル10に発生した磁束は中段の中継機器3の拡張用コイル30にも鎖交する。上述したように拡張用コイル30はインピーダンス素子31とともに共振回路を構成している。従って、例えば1次コイル10から拡張用コイル30までの距離が長く鎖交磁束が少ない場合でも、拡張用コイル30に発生する磁束が上記共振回路により増加することになる。その結果、この磁束を対応する2次コイル20に鎖交させることによって当該2次コイル20に誘導電流が流れる。この誘導電流により、中段の受電機器2の照明21が点灯する。 Also, the magnetic flux generated in the primary coil 10 is linked to the expansion coil 30 of the intermediate relay device 3. As described above, the expansion coil 30 and the impedance element 31 constitute a resonance circuit. Therefore, for example, even when the distance from the primary coil 10 to the expansion coil 30 is long and the interlinkage magnetic flux is small, the magnetic flux generated in the expansion coil 30 is increased by the resonance circuit. As a result, an induced current flows through the secondary coil 20 by interlinking this magnetic flux with the corresponding secondary coil 20. Due to this induced current, the illumination 21 of the middle power receiving device 2 is turned on.
 さらに、中段の中継機器3の拡張用コイル30で発生した磁束は、上段の中継機器3の拡張用コイル30にも鎖交する。そして、上述と同様の処理を経て上段の受電機器2の照明21が点灯する。 Furthermore, the magnetic flux generated in the expansion coil 30 of the intermediate relay device 3 is linked to the expansion coil 30 of the upper relay device 3. Then, the illumination 21 of the upper power receiving device 2 is turned on through the same processing as described above.
 而して、実施形態5によれば、各コイル10,20,30のコイル面が互いに対向するようにした状態で、中継機器3,3が給電機器1と受電機器2との間に配置されている。また、各中継機器3のインピーダンス素子31にコンデンサを用い、拡張用コイル30と組み合わせて共振回路が構成されている。従って、給電機器1と受電機器2との間の距離が従来例より離れていても受電機器2に給電可能であるから、給電機器1からさらに離れた位置での給電を可能にする給電システムを実現することができる。 Thus, according to the fifth embodiment, the relay devices 3 and 3 are disposed between the power feeding device 1 and the power receiving device 2 with the coil surfaces of the coils 10, 20, and 30 facing each other. ing. In addition, a capacitor is used as the impedance element 31 of each relay device 3, and a resonance circuit is configured in combination with the expansion coil 30. Therefore, even if the distance between the power supply device 1 and the power receiving device 2 is farther than the conventional example, power can be supplied to the power receiving device 2, and therefore a power supply system that enables power supply at a position further away from the power supply device 1. Can be realized.
 なお、各コイルのコイル形状は実施形態5に限定されるものではなく、上記の他の実施形態と同様に他の形状であってもよい。
 (実施形態6)
 本発明に係る給電システムの実施形態6を図13に基づいて説明する。実施形態5では、各コイルのコイル面が互いに対向するようにして中継機器3を給電機器1と受電機器2の間に配置したが、実施形態6では、受電機器2を給電機器1と中継機器3の間に配置している。なお、基本構成は実施形態3と同様であり、同一の構成要素には同一の符号を付して説明は省略する。
In addition, the coil shape of each coil is not limited to Embodiment 5, Other shapes may be sufficient similarly to said other embodiment.
(Embodiment 6)
Embodiment 6 of the electric power feeding system which concerns on this invention is demonstrated based on FIG. In the fifth embodiment, the relay device 3 is disposed between the power feeding device 1 and the power receiving device 2 so that the coil surfaces of the respective coils face each other. 3 is arranged. The basic configuration is the same as that of the third embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
 図13(a)は従来の給電システムを利用したディスプレイ装置を示す。ケース5の下部には、角筒状の螺旋コイルからなる1次コイル10を備えた給電機器1が配置されている。ケース5の上部からは、円筒状の螺旋コイルからなる2次コイル20を備えた受電機器2が吊り下げられている。そして、図13(a)では、給電機器1と受電機器2の間の距離がH1のときに照明21が点灯する。 FIG. 13A shows a display device using a conventional power supply system. In the lower part of the case 5, a power supply device 1 including a primary coil 10 made of a rectangular tube-shaped spiral coil is disposed. From the upper part of the case 5, a power receiving device 2 including a secondary coil 20 made of a cylindrical spiral coil is suspended. In FIG. 13A, the illumination 21 is turned on when the distance between the power supply device 1 and the power receiving device 2 is H1.
 一方、図13(b)は実施形態6の給電システムを利用したディスプレイ装置であり、図13(a)と同様な給電機器1および受電機器2と、角筒状の螺旋コイルからなる拡張用コイル30をそれぞれ具備する複数(例えば2個)の中継機器3,3とを備えている。ケース5の下部には給電機器1が配置されている。ケース5の上部には、2つの中継機器3,3が互いのコイル面が対向する形で近接配置されている。さらにケース5の上部からは、受電機器2が吊り下げられている。ここに、実施形態6でも、インピーダンス素子31としてコンデンサを用いており、このコンデンサと拡張用コイル30とにより、高周波インバータ11の動作周波数に共振する共振回路が構成されている。 On the other hand, FIG. 13B is a display device using the power supply system of the sixth embodiment. The power supply device 1 and the power receiving device 2 are the same as those in FIG. 13A, and the expansion coil is composed of a rectangular spiral coil. A plurality of (for example, two) relay devices 3 and 3 each having 30 are provided. A power feeding device 1 is arranged at the lower part of the case 5. In the upper part of the case 5, two relay devices 3 and 3 are arranged close to each other with their coil surfaces facing each other. Furthermore, the power receiving device 2 is suspended from the upper part of the case 5. Here, also in the sixth embodiment, a capacitor is used as the impedance element 31, and this capacitor and the expansion coil 30 constitute a resonance circuit that resonates with the operating frequency of the high-frequency inverter 11.
 したがって、実施形態6では、実施形態5と同様に拡張用コイル30に鎖交する1次コイル10の磁束が少ない場合でも、拡張用コイル30に流れる誘導電流が共振回路により増加する。このため、給電機器1から受電機器2までの距離がH2(H2>H1)であっても、照明21を点灯させるのに必要な磁束が拡張用コイル30に発生する。そして、この磁束が2次コイル20に鎖交することで2次コイル20に誘導電流が流れ、照明21を点灯させることができるのである。 Therefore, in the sixth embodiment, similarly to the fifth embodiment, even when the magnetic flux of the primary coil 10 linked to the expansion coil 30 is small, the induced current flowing through the expansion coil 30 is increased by the resonance circuit. For this reason, even if the distance from the power feeding device 1 to the power receiving device 2 is H2 (H2> H1), the magnetic flux necessary for lighting the illumination 21 is generated in the expansion coil 30. And since this magnetic flux is linked to the secondary coil 20, an induced current flows through the secondary coil 20, and the illumination 21 can be turned on.
 而して、実施形態6によれば、各コイル10,20,30のコイル面が互いに対向するようにした状態で、中継機器3,3が受電機器2に対して給電機器1と反対側に配置されている。また、各中継機器3のインピーダンス素子31にコンデンサを用い、拡張用コイル30と組み合わせて共振回路が構成されている。従って、給電機器1と受電機器2との間の距離が従来例より離れていても受電機器2に給電可能であるから、給電機器1からさらに離れた位置での給電を可能にする給電システムを実現することができる。 Thus, according to the sixth embodiment, the relay devices 3 and 3 are placed on the opposite side of the power supply device 1 with respect to the power receiving device 2 with the coil surfaces of the coils 10, 20 and 30 facing each other. Is arranged. In addition, a capacitor is used as the impedance element 31 of each relay device 3, and a resonance circuit is configured in combination with the expansion coil 30. Therefore, even if the distance between the power supply device 1 and the power receiving device 2 is farther than the conventional example, power can be supplied to the power receiving device 2, and therefore a power supply system that enables power supply at a position further away from the power supply device 1. Can be realized.
 なお、各コイルのコイル形状は実施形態6に限定されるものではなく、上記の他の実施形態と同様に他の形状であってもよい。
 (実施形態7)
 本発明に係る給電システムの実施形態7を図14に基づいて説明する。本実施形態7では、給電機器1の1次コイル10の両側に、中継機器3の拡張用コイル30が配置されている点で上記の各実施形態と異なっている。なお、基本構成は実施形態1の図7(b)と同様であり、同一の構成要素には同一の符号を付して説明は省略する。
In addition, the coil shape of each coil is not limited to Embodiment 6, Other shapes may be sufficient similarly to said other embodiment.
(Embodiment 7)
Embodiment 7 of the electric power feeding system which concerns on this invention is demonstrated based on FIG. The seventh embodiment is different from the above-described embodiments in that the extension coils 30 of the relay device 3 are disposed on both sides of the primary coil 10 of the power supply device 1. The basic configuration is the same as that of FIG. 7B of the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
 実施形態7の給電システムは、1次コイル10を具備する給電機器1と、2次コイル20を各々具備する複数(例えば2個)の受電機器2と、拡張用コイル30を各々具備する複数(例えば6個)の中継機器3とを備えている。給電機器1の両側には、拡張用コイル30のコイル面が1次コイル10のコイル面に対向するようにして中継機器3が各1つずつ配置されている。また、残りの中継機器3は、給電機器1の両側に配置された各中継機器3の拡張用コイル30に対して自己の拡張用コイル30が横並びとなるようにそれぞれ配置されている。さらに、各受電機器2は、末端に配置された各中継機器3の拡張用コイル30に対して2次コイル20が横並びとなるようにそれぞれ配置されている。なお、実施形態7でも、給電機器1、受電機器2および中継機器3は、それぞれ図示しないケースに収納される形で別個の機器として構成されている。 The power feeding system according to the seventh embodiment includes a power feeding device 1 including a primary coil 10, a plurality (for example, two) of power receiving devices 2 each including a secondary coil 20, and a plurality (for example) each including an expansion coil 30. For example, six relay devices 3 are provided. One relay device 3 is arranged on each side of the power supply device 1 such that the coil surface of the extension coil 30 faces the coil surface of the primary coil 10. Further, the remaining relay devices 3 are arranged such that their extension coils 30 are arranged side by side with respect to the extension coils 30 of the relay devices 3 arranged on both sides of the power supply device 1. Further, each power receiving device 2 is arranged such that the secondary coil 20 is arranged side by side with respect to the expansion coil 30 of each relay device 3 arranged at the end. In the seventh embodiment as well, the power feeding device 1, the power receiving device 2, and the relay device 3 are configured as separate devices so as to be housed in a case (not shown).
 ここで、図15は実施形態7の中継機器3の模式図を示す。中継機器3には、平面コイルからなる円形の拡張用コイル30と、チップ素子からなるインピーダンス素子31とが同一平面上に配置されている。なお、上記拡張用コイル30は、印刷配線によりシート状に形成してもいいし、細い銅線により巻回したものをプラスチックフィルムなどでラッピングしてもよい。このように、平面コイルからなる拡張用コイル30と、チップ素子からなるインピーダンス素子31とを同一平面上に配置することによって、薄型の中継機器3を実現できる。なお、1次コイル10および2次コイル20として平面コイルを用いてもよく、この場合も同様に給電機器1および受電機器2の薄型化が可能になる。 Here, FIG. 15 is a schematic diagram of the relay device 3 of the seventh embodiment. In the relay device 3, a circular extension coil 30 made of a planar coil and an impedance element 31 made of a chip element are arranged on the same plane. The expansion coil 30 may be formed into a sheet shape by printed wiring, or may be wrapped with a plastic film or the like wound with a thin copper wire. Thus, the thin relay device 3 can be realized by arranging the extension coil 30 made of a planar coil and the impedance element 31 made of a chip element on the same plane. Note that planar coils may be used as the primary coil 10 and the secondary coil 20, and in this case as well, the power feeding device 1 and the power receiving device 2 can be reduced in thickness.
 また、実施形態7では、図7において説明した給電システムと同様に、複数の中継機器3を横並びに配置しているので、各拡張用コイル30での磁束の減衰を考慮して、高周波インバータ11の動作周波数に共振する共振回路を構成するのが好ましい。この場合、インピーダンス素子31にはコンデンサを用いるのがよい。 In the seventh embodiment, as in the power supply system described with reference to FIG. 7, a plurality of relay devices 3 are arranged side by side. Therefore, in consideration of the attenuation of magnetic flux in each expansion coil 30, the high-frequency inverter 11. It is preferable to configure a resonance circuit that resonates at the operating frequency. In this case, it is preferable to use a capacitor for the impedance element 31.
 次に、図14の給電システムの動作を簡単に説明する。給電機器1の1次コイル10で発生した磁束が両側の拡張用コイル30,30に鎖交すると、それらの拡張用コイル30,30にはそれぞれ誘導電流に応じた磁束が発生する。これらの磁束の漏れ磁束はそれぞれ隣接する拡張用コイル30,30に鎖交し、隣接する拡張用コイル30,30には誘導電流に応じた磁束が発生する。以下同様にして、漏れ磁束は隣接する拡張用コイル30,30に順次鎖交していく。そして、末端の2つの拡張用コイル30,30の漏れ磁束が対応する2次コイル20,20にそれぞれ鎖交すると、各2次コイル20,20に誘導電流が流れ、それぞれ対応する負荷21,21に電力が供給される。 Next, the operation of the power supply system of FIG. 14 will be briefly described. When the magnetic flux generated in the primary coil 10 of the power supply device 1 is linked to the expansion coils 30 and 30 on both sides, magnetic fluxes corresponding to the induced current are generated in the expansion coils 30 and 30 respectively. The leakage fluxes of these magnetic fluxes are linked to the adjacent expansion coils 30 and 30, and a magnetic flux corresponding to the induced current is generated in the adjacent expansion coils 30 and 30. In the same manner, the leakage magnetic flux is sequentially linked to the adjacent expansion coils 30 and 30. When the leakage magnetic fluxes of the two extension coils 30 and 30 at the ends are linked to the corresponding secondary coils 20 and 20, respectively, induced current flows through the secondary coils 20 and 20, and the corresponding loads 21 and 21 respectively. Is supplied with power.
 而して、実施形態7によれば、給電機器1の1次コイル10の両側の磁束を利用することによって、受電機器2への給電範囲をさらに拡げることができ、その結果、受電機器2の配置の自由度がさらに大きくなる。 Thus, according to the seventh embodiment, by using the magnetic flux on both sides of the primary coil 10 of the power supply device 1, the power supply range to the power reception device 2 can be further expanded. The degree of freedom of arrangement is further increased.
 なお、使用する中継機器3の個数は実施形態7に限定されるものではなく、用途などに応じて適宜設定すればよい。また、各コイルのコイル形状は実施形態7に限定されるものではなく、上記の他の実施形態と同様に他の形状であってもよい。さらに、上記の実施形態1~6においても、図15に示す中継機器3を用いてもよい。 Note that the number of relay devices 3 to be used is not limited to that in the seventh embodiment, and may be set as appropriate according to the application. Moreover, the coil shape of each coil is not limited to Embodiment 7, Other shapes may be sufficient like the said other embodiment. Further, also in the first to sixth embodiments, the relay device 3 shown in FIG. 15 may be used.
 (実施形態8)
 本発明に係る給電システムの実施形態8を図16に基づいて説明する。上述の実施形態1~7では、高周波インバータ11の電源として商用電源を用いたが、実施形態8では、電池6を用いている。なお、基本構成は実施形態1の図7(a)と同様であり、同一の構成要素には同一の符号を付して説明は省略する。
(Embodiment 8)
Embodiment 8 of the electric power feeding system which concerns on this invention is demonstrated based on FIG. In Embodiments 1 to 7 described above, a commercial power source is used as the power source of the high-frequency inverter 11, but in Embodiment 8, the battery 6 is used. The basic configuration is the same as that of FIG. 7A of the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
 実施形態8の給電システムは、円筒状の螺旋コイルからなる1次コイル10を具備する給電機器1と、同じく円筒状の螺旋コイルからなる2次コイル20を具備する受電機器2と、同じく円筒状の螺旋コイルからなる拡張用コイル30を各々具備する複数(例えば3個)の中継機器3とを備えている。給電機器1および3つの中継機器3は、1次コイル10および各拡張用コイル30が、それぞれ自己に隣接するコイルに対して近接するようにして横並びに配置されている。さらに受電機器2は、末端の中継機器3の拡張用コイル30のコイル面に2次コイル20のコイル面が対向するようにして配置されている。そして、給電機器1の高周波インバータ11には、電池6から電源が供給されるようになっている。なお、電池6は一次電池でも二次電池でもよく、また電気二重層コンデンサや太陽電池などであってもよい。また、実施形態8でも、給電機器1、受電機器2および中継機器3は、それぞれ図示しないケースに収納される形で別個の機器として構成されている。 The power feeding system according to the eighth embodiment includes a power feeding device 1 including a primary coil 10 formed of a cylindrical spiral coil, a power receiving device 2 including a secondary coil 20 formed of a cylindrical spiral coil, and a cylindrical shape. And a plurality of (for example, three) relay devices 3 each having an extension coil 30 made of a spiral coil. The power feeding device 1 and the three relay devices 3 are arranged side by side so that the primary coil 10 and each of the expansion coils 30 are close to the coils adjacent to each other. Furthermore, the power receiving device 2 is arranged so that the coil surface of the secondary coil 20 faces the coil surface of the expansion coil 30 of the terminal relay device 3. The high-frequency inverter 11 of the power supply device 1 is supplied with power from the battery 6. The battery 6 may be a primary battery or a secondary battery, or an electric double layer capacitor or a solar battery. Also in the eighth embodiment, the power feeding device 1, the power receiving device 2, and the relay device 3 are configured as separate devices so as to be housed in a case (not shown).
 さらに、実施形態8では、図7において説明した給電システムと同様に、複数の中継機器3を横並びに配置しているので、各拡張用コイル30での磁束の減衰を考慮して、高周波インバータ11の動作周波数に共振する共振回路を構成するのが好ましい。この場合、インピーダンス素子31にはコンデンサを用いるのがよい。 Further, in the eighth embodiment, since the plurality of relay devices 3 are arranged side by side as in the power supply system described in FIG. 7, the high frequency inverter 11 is considered in consideration of the attenuation of magnetic flux in each expansion coil 30. It is preferable to configure a resonance circuit that resonates at the operating frequency. In this case, it is preferable to use a capacitor for the impedance element 31.
 次に、図16の給電システムの動作を簡単に説明する。給電機器1の1次コイル10で発生した磁束の漏れ磁束が隣接する拡張用コイル30に鎖交すると、この拡張用コイル30に、誘導電流に応じた磁束が発生する。さらに、この磁束の漏れ磁束が隣接する拡張用コイル30に鎖交すると、隣接する拡張用コイル30にも、誘導電流に応じた磁束が発生する。以下同様にして、漏れ磁束が隣接する拡張用コイル30に順次鎖交していく。そして、末端の拡張用コイル30の磁束が2次コイル20に鎖交すると、2次コイル20に誘導電流が流れ、負荷21に電力が供給される。 Next, the operation of the power supply system of FIG. 16 will be briefly described. When the leakage flux of the magnetic flux generated in the primary coil 10 of the power supply device 1 is linked to the adjacent expansion coil 30, a magnetic flux corresponding to the induced current is generated in the expansion coil 30. Further, when the leakage flux of the magnetic flux is linked to the adjacent expansion coil 30, a magnetic flux corresponding to the induced current is also generated in the adjacent expansion coil 30. In the same manner, the leakage magnetic flux sequentially links to the adjacent expansion coils 30. When the magnetic flux of the terminal expansion coil 30 is linked to the secondary coil 20, an induced current flows through the secondary coil 20, and power is supplied to the load 21.
 而して、実施形態8によれば、給電機器1の電源を電池6から供給することによって、コードレスの給電システムを実現することができる。その結果、本給電システムをモバイルシステムにて使用したり、異なる場所で使用することが可能になる。 Thus, according to the eighth embodiment, a power supply of the power supply device 1 is supplied from the battery 6 to realize a cordless power supply system. As a result, the power supply system can be used in a mobile system or in different places.
 なお、使用する中継機器3の個数は実施形態8に限定されるものではなく、用途などに応じて適宜設定すればよい。また、各コイルのコイル形状は実施形態8に限定されるものではなく、上記の他の実施形態と同様に他の形状であってもよい。さらに、実施形態8においても、図15に示す中継機器3を用いてもよい。 Note that the number of relay devices 3 to be used is not limited to that in the eighth embodiment, and may be set as appropriate according to the application. Moreover, the coil shape of each coil is not limited to Embodiment 8, Other shapes may be sufficient like the said other embodiment. Further, in the eighth embodiment, the relay device 3 shown in FIG. 15 may be used.
 (実施形態9)
 本発明に係る給電システムの実施形態9を図17に基づいて説明する。本実施形態9は、各中継機器3が少なくとも1つの給電機器1に近接するように配置されている点で上記の各実施形態と異なっている。なお、基本構成は実施形態3と同様であり、同一の構成要素には同一の符号を付して説明は省略する。
(Embodiment 9)
Embodiment 9 of the power feeding system according to the present invention will be described with reference to FIG. The ninth embodiment is different from the above-described embodiments in that each relay device 3 is arranged so as to be close to at least one power supply device 1. The basic configuration is the same as that of the third embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
 実施形態9の給電システムは、角筒状の螺旋コイルからなる1次コイル10を各々具備する複数(例えば2個)の給電機器1と、同じく角筒状の螺旋コイルからなる2次コイル20を具備する受電機器2と、同じく角筒状の螺旋コイルからなる拡張用コイル30を各々具備する複数(例えば13個)の中継機器3とを備えている。なお、実施形態9でも、給電機器1、受電機器2および中継機器3はそれぞれ図示しないケースに収納される形で別個の機器として構成されている。 The power supply system according to the ninth embodiment includes a plurality of (for example, two) power supply devices 1 each including a primary coil 10 formed of a rectangular tube-shaped spiral coil and a secondary coil 20 formed of a rectangular tube-shaped helical coil. The power receiving device 2 includes a plurality of (for example, 13) relay devices 3 each including an expansion coil 30 that is similarly formed of a square cylindrical spiral coil. In the ninth embodiment, the power feeding device 1, the power receiving device 2, and the relay device 3 are each configured as a separate device in a form that is housed in a case (not shown).
 図17の例では、各給電機器1は、8個の中継機器3によって取り囲まれている。2個の給電機器1および13個の中継機器3は、互いに隣接する機器の間を図示しない取付手段により連結することで1つの矩形状の給電部を構成している。この構成では、各中継機器3は少なくとも1つの給電機器1に近接するように配置され、さらに中央に配置された3個の中継機器3は、2個の給電機器1,1に近接するように配置されている。 In the example of FIG. 17, each power supply device 1 is surrounded by eight relay devices 3. The two power supply devices 1 and the 13 relay devices 3 constitute a single rectangular power supply unit by connecting adjacent devices with attachment means (not shown). In this configuration, each relay device 3 is arranged so as to be close to at least one power supply device 1, and further, three relay devices 3 arranged in the center are so close to two power supply devices 1, 1. Is arranged.
 受電機器2は、2次コイル20のコイル面が1次コイル10のコイル面および/または拡張用コイル30のコイル面に対向するように配置されている。このため、受電機器2に給電する際には、1次コイル10の磁束および/または拡張用コイル30の磁束が2次コイル20を鎖交する。この鎖交磁束により2次コイル20に誘導電流が流れると負荷21に電力が供給されるようになっている。したがって、実施形態9によれば、1次コイル10または拡張用コイル30の磁束が鎖交する位置であれば、受電機器2を任意に配置することができるのである。 The power receiving device 2 is arranged so that the coil surface of the secondary coil 20 faces the coil surface of the primary coil 10 and / or the coil surface of the expansion coil 30. For this reason, when power is supplied to the power receiving device 2, the magnetic flux of the primary coil 10 and / or the magnetic flux of the expansion coil 30 links the secondary coil 20. When an induction current flows through the secondary coil 20 due to the interlinkage magnetic flux, electric power is supplied to the load 21. Therefore, according to the ninth embodiment, the power receiving device 2 can be arbitrarily arranged at a position where the magnetic flux of the primary coil 10 or the expansion coil 30 is linked.
 而して、実施形態9によれば、各中継機器3が少なくとも1つの給電機器1に近接するように配置される。従って、各拡張用コイル30に鎖交する磁束の減衰を抑えることができ、その結果、受電機器2は何れの中継機器3からでも電力を受け取ることが可能になる。 Thus, according to the ninth embodiment, each relay device 3 is arranged so as to be close to at least one power supply device 1. Therefore, the attenuation of the magnetic flux linked to each expansion coil 30 can be suppressed, and as a result, the power receiving device 2 can receive power from any relay device 3.
 なお、使用する給電機器1や中継機器3の個数は実施形態9に限定されるものではなく、用途などに応じて適宜設定すればよい。また、各コイルのコイル形状は実施形態9に限定されるものではなく、上記の他の実施形態と同様に他の形状であってもよい。さらに、実施形態9においても、図15に示す中継機器3を用いてもよい。 Note that the number of power supply devices 1 and relay devices 3 to be used is not limited to that of the ninth embodiment, and may be set as appropriate according to the application. Moreover, the coil shape of each coil is not limited to Embodiment 9, Other shapes may be sufficient like the said other embodiment. Further, also in the ninth embodiment, the relay device 3 shown in FIG. 15 may be used.
 (実施形態10)
 本発明に係る給電システムの実施形態10を図18に基づいて説明する。本実施形態10は、給電機器1および中継機器3がそれぞれ所定の形状(例えば異なる形状)を有するパズルピースとして形成されている点で上記各実施形態と異なっている。なお、基本構成は実施形態1と同様であるから、同一の構成要素には同一の符号を付して説明は省略する。また、図18では、図示を簡略化するために受電機器の図示を省略している。
(Embodiment 10)
Embodiment 10 of the power feeding system according to the present invention will be described with reference to FIG. The tenth embodiment is different from the above embodiments in that the power supply device 1 and the relay device 3 are each formed as a puzzle piece having a predetermined shape (for example, a different shape). Since the basic configuration is the same as that of the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted. In FIG. 18, the illustration of the power receiving device is omitted to simplify the illustration.
 実施形態10の給電システムは、1次コイル10を具備する給電機器1と、受電機器(図示せず)と、拡張用コイル30を各々具備する複数(例えば4個)の中継機器3とを備えている。給電機器1および4個の中継機器3は互いに異なる形状に形成されたパズルピースとして形成されている。各パズルピースにはその側縁に沿ってコイルが配線されている。そして、パズルピースを組み立てた状態では、隣接する各コイルが互いに近接した状態に配置され、全体として1つの矩形状の給電部が構成されるようになっている。また、給電機器1および各中継機器3には、それぞれコイルに流れる電流によって点灯する発光ダイオード12,32が設けられている。 The power supply system of the tenth embodiment includes a power supply device 1 including a primary coil 10, a power receiving device (not shown), and a plurality (for example, four) of relay devices 3 each including an expansion coil 30. ing. The power supply device 1 and the four relay devices 3 are formed as puzzle pieces formed in different shapes. A coil is wired along each side edge of each puzzle piece. And in the state which assembled the puzzle piece, each adjacent coil is arrange | positioned in the state which adjoined mutually, and one rectangular-shaped electric power feeding part is comprised as a whole. In addition, the power supply device 1 and each relay device 3 are provided with light emitting diodes 12 and 32 that are turned on by a current flowing through the coil.
 次に、図18の給電システムの動作について簡単に説明する。高周波インバータ11により1次コイル10に高周波電流が印加されると、1次コイル10を鎖交する形で磁束が発生するとともに、1次コイル10に流れる高周波電流によって発光ダイオード12が点灯する。また、1次コイル10で発生した磁束が隣接する各中継機器3の拡張用コイル30を鎖交すると、各拡張コイル30に誘導電流が流れるとともに、この誘導電流に応じた磁束が発生する。そして、各中継機器3では、拡張コイル30に流れる誘導電流によって対応する発光ダイオード32が点灯する。なお、給電機器1に隣接していない中継機器3には、隣接する中継機器3の漏れ磁束が鎖交し、その結果拡張用コイル30に誘導電流が流れることで対応する発光ダイオード32が点灯する。 Next, the operation of the power supply system in FIG. 18 will be briefly described. When a high frequency current is applied to the primary coil 10 by the high frequency inverter 11, a magnetic flux is generated so as to link the primary coil 10, and the light emitting diode 12 is turned on by the high frequency current flowing through the primary coil 10. In addition, when the magnetic flux generated in the primary coil 10 is linked to the expansion coils 30 of the adjacent relay devices 3, an induced current flows through each expansion coil 30 and a magnetic flux corresponding to the induced current is generated. In each relay device 3, the corresponding light emitting diode 32 is turned on by the induced current flowing through the expansion coil 30. The relay device 3 that is not adjacent to the power supply device 1 is linked to the leakage magnetic flux of the adjacent relay device 3, and as a result, an induced current flows through the expansion coil 30, so that the corresponding light emitting diode 32 is turned on. .
 ここに、実施形態10においても中継機器3が横並びに配置されることになるので、各拡張用コイル30での磁束の減衰を考慮して、高周波インバータ11の動作周波数に共振する共振回路を構成するのが好ましい。この場合、インピーダンス素子31にはコンデンサを用いるのがよい。 Here, since the relay devices 3 are also arranged side by side in the tenth embodiment, a resonance circuit that resonates with the operating frequency of the high-frequency inverter 11 is configured in consideration of the attenuation of magnetic flux in each expansion coil 30. It is preferable to do this. In this case, it is preferable to use a capacitor for the impedance element 31.
 而して、実施形態10によれば、給電機器1および中継機器3をそれぞれ形状の異なるパズルピースとすることによって、本システムを楽しみながら構築することができる。また、実施形態10のように各機器に発光ダイオードを設けた場合には、意匠性の向上を図ることも可能である。 Thus, according to the tenth embodiment, the power supply device 1 and the relay device 3 are puzzle pieces having different shapes, respectively, and can be constructed while enjoying this system. Further, when a light emitting diode is provided in each device as in the tenth embodiment, it is possible to improve the design.
 なお、使用する給電機器1や中継機器3の個数は実施形態10に限定されるものではなく、用途などに応じて適宜設定すればよい。また、実施形態10においても、図15に示す中継機器3を用いてもよい。 Note that the number of power supply devices 1 and relay devices 3 to be used is not limited to that of the tenth embodiment, and may be set as appropriate according to the application. Also in the tenth embodiment, the relay device 3 shown in FIG. 15 may be used.

Claims (19)

  1.  非接触式の伝送システムであって、
     1次コイルを具備し当該1次コイルに高周波電流を流すことによって生じる磁束に応じた電力または電気信号を送る送り側機器と、
     2次コイルを具備し当該2次コイルによって前記電力または電気信号を受ける受け側機器と、
     各々単一の拡張用コイルとインピーダンス素子とで構成される閉回路を具備する1つまたは複数の中継機器とを備え、
     前記2次コイルは、前記1つまたは複数の中継機器の少なくとも1つの拡張用コイルを介して前記1次コイルと電磁結合され、
     前記1つまたは複数の中継機器は、前記送り側機器と前記受け側機器との間の距離を上下方向と水平方向との少なくとも一方に拡張するように配置されることを特徴とする伝送システム。
    A non-contact transmission system,
    A sending-side device that includes a primary coil and sends electric power or an electric signal corresponding to magnetic flux generated by flowing high-frequency current through the primary coil;
    A receiving device comprising a secondary coil and receiving the power or electric signal by the secondary coil;
    One or more relay devices each having a closed circuit composed of a single extension coil and an impedance element;
    The secondary coil is electromagnetically coupled to the primary coil via at least one expansion coil of the one or more relay devices;
    The transmission system is characterized in that the one or more relay devices are arranged to extend a distance between the sending device and the receiving device in at least one of a vertical direction and a horizontal direction.
  2.  前記1つまたは複数の中継機器は、複数の中継機器によって構成され、当該複数の中継機器は、前記送り側機器と前記受け側機器との間に介在されることを特徴とする請求項1に記載の伝送システム。 The one or more relay devices are configured by a plurality of relay devices, and the plurality of relay devices are interposed between the sending device and the receiving device. The described transmission system.
  3.  前記拡張用コイルは、前記1次コイルの一部に対して部分的に近接するように配置されることを特徴とする請求項1に記載の伝送システム。 The transmission system according to claim 1, wherein the extension coil is arranged so as to be partially close to a part of the primary coil.
  4.  前記1つまたは複数の中継機器の位置が、前記受け側機器の位置に応じて、前記送り側機器に対して変更可能であることを特徴とする請求項1に記載の伝送システム。 The transmission system according to claim 1, wherein the position of the one or more relay devices can be changed with respect to the sending device according to the position of the receiving device.
  5.  前記送り側機器と前記1つまたは複数の中継機器とは、前記1次コイルと前記拡張用コイルとを互いに近接して配置することによって一体的な送り手段を構成し、当該送り手段は、隣接するコイル間で折り畳み可能であることを特徴とする請求項1に記載の伝送システム。 The feeding side device and the one or more relay devices constitute an integral feeding means by arranging the primary coil and the extension coil close to each other, and the feeding means is adjacent to the feeding device. The transmission system according to claim 1, wherein the transmission system is foldable between coils.
  6.  前記1つまたは複数の中継機器は、複数の中継機器によって構成され、当該複数の中継機器の拡張用コイルは、前記1次コイルの一部に対して部分的に近接する状態で当該1次コイルを取り囲むように配置されることを特徴とする請求項1に記載の伝送システム。 The one or more relay devices are constituted by a plurality of relay devices, and the extension coil of the plurality of relay devices is in a state of being partially close to a part of the primary coil. The transmission system according to claim 1, wherein the transmission system is arranged so as to enclose the frame.
  7.  前記拡張用コイルおよび前記1次コイルは互いに近接して配置されるとともに、当該互いに近接するコイル部分が並行となるようなコイル形状を有することを特徴とする請求項1に記載の伝送システム。 The transmission system according to claim 1, wherein the extension coil and the primary coil are arranged close to each other and have a coil shape such that the adjacent coil portions are parallel to each other.
  8.  前記コイル形状は、多角形または多面体であることを特徴とする請求項7に記載の伝送システム。 The transmission system according to claim 7, wherein the coil shape is a polygon or a polyhedron.
  9.  前記1つまたは複数の中継機器は、複数の中継機器によって構成され、当該複数の中継機器は、当該複数の中継機器の拡張用コイルのコイル面が前記1次コイルのコイル面および前記2次コイルのコイル面と対向するように、前記送り側機器と前記受け側機器との間に配置されることを特徴とする請求項1に記載の伝送システム。 The one or more relay devices are configured by a plurality of relay devices, and the plurality of relay devices are configured such that the coil surface of the extension coil of the plurality of relay devices is the coil surface of the primary coil and the secondary coil. 2. The transmission system according to claim 1, wherein the transmission system is disposed between the sending device and the receiving device so as to face the coil surface.
  10.  前記1つまたは複数の中継機器は、複数の中継機器によって構成され、当該複数の中継機器は、当該複数の中継機器の拡張用コイルのコイル面が互いに対向し、且つ、前記1次コイルのコイル面と前記2次コイルのコイル面とが対向するように、前記受け側機器に対して前記送り側機器と反対側に配置されることを特徴とする請求項1に記載の伝送システム。 The one or more relay devices are constituted by a plurality of relay devices, and the plurality of relay devices are such that the coil surfaces of the extension coils of the plurality of relay devices face each other, and the coil of the primary coil The transmission system according to claim 1, wherein the transmission system is disposed on the opposite side of the sending device with respect to the receiving device such that a surface of the coil is opposite to a coil surface of the secondary coil.
  11.  前記1つまたは複数の中継機器は、第1および第2の中継機器を含む複数の中継機器によって構成され、前記第1および第2の中継機器は、前記第1の中継機器の拡張用コイルのコイル面が、前記1次コイルの第1コイル面に対向し、前記第2の中継機器の拡張用コイルのコイル面が、前記1次コイルの第2コイル面に対向するように、前記送り側機器の両側に配置されることを特徴とする請求項1に記載の伝送システム。 The one or more relay devices are constituted by a plurality of relay devices including first and second relay devices, and the first and second relay devices are the extension coils of the first relay device. The feeding side so that the coil surface faces the first coil surface of the primary coil and the coil surface of the expansion coil of the second relay device faces the second coil surface of the primary coil. The transmission system according to claim 1, wherein the transmission system is disposed on both sides of the device.
  12.  前記送り側機器は、前記伝送システムに設けられる複数の送り側機器のうちの1つであり、前記1つまたは複数の中継機器は、複数の中継機器によって構成され、前記複数の中継機器の各々は、前記複数の送り側機器の少なくとも1つに近接するように配置されることを特徴とする請求項1に記載の伝送システム。 The sending device is one of a plurality of sending devices provided in the transmission system, and the one or more relay devices are constituted by a plurality of relay devices, each of the plurality of relay devices. The transmission system according to claim 1, wherein the transmission system is arranged so as to be close to at least one of the plurality of sending devices.
  13.  前記インピーダンス素子は、前記拡張用コイルとともに共振回路を構成するコンデンサであることを特徴とする請求項1記載の伝送システム。 The transmission system according to claim 1, wherein the impedance element is a capacitor that forms a resonance circuit together with the expansion coil.
  14.  前記1つまたは複数の中継機器の少なくとも1つは、前記送り側機器の1次コイルで生じた磁束に応じた電力または電気信号によって動作する負荷を含むことを特徴とする請求項1記載の伝送システム。 The transmission according to claim 1, wherein at least one of the one or more relay devices includes a load that is operated by electric power or an electric signal corresponding to magnetic flux generated in a primary coil of the sending device. system.
  15.  前記拡張用コイルは、空芯コイルであることを特徴とする請求項1に記載の伝送システム。 The transmission system according to claim 1, wherein the expansion coil is an air-core coil.
  16.  平面コイルからなる前記拡張用コイルと、チップ素子からなる前記インピーダンス素子とが同一平面上に配置されることを特徴とする請求項1に記載の伝送システム。 The transmission system according to claim 1, wherein the extension coil made of a planar coil and the impedance element made of a chip element are arranged on the same plane.
  17.  前記受け側機器は、発光ダイオードを負荷として備え、前記送り側機器は、前記1つまたは複数の中継機器を介して前記受け側機器に電力を供給することを特徴とする請求項1に記載の伝送システム。 The said receiving side apparatus is equipped with a light emitting diode as a load, The said sending side apparatus supplies electric power to the said receiving side apparatus via the said 1 or several relay apparatus, The Claim 1 characterized by the above-mentioned. Transmission system.
  18.  前記送り側機器は、電池によって動作可能であることを特徴とする請求項1に記載の伝送システム。 The transmission system according to claim 1, wherein the sending device is operable by a battery.
  19.  前記送り側機器および前記1つまたは複数の中継機器は、それぞれ形状が異なるパズルピースとして構成されることを特徴とする請求項1に記載の伝送システム。 The transmission system according to claim 1, wherein the sending device and the one or more relay devices are configured as puzzle pieces having different shapes.
PCT/JP2010/057378 2009-05-01 2010-04-26 Transmission system WO2010126010A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-112174 2009-05-01
JP2009112174A JP2010263690A (en) 2009-05-01 2009-05-01 Transmission system

Publications (1)

Publication Number Publication Date
WO2010126010A1 true WO2010126010A1 (en) 2010-11-04

Family

ID=43032155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057378 WO2010126010A1 (en) 2009-05-01 2010-04-26 Transmission system

Country Status (3)

Country Link
JP (1) JP2010263690A (en)
TW (1) TW201104720A (en)
WO (1) WO2010126010A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011156555A3 (en) * 2010-06-10 2012-10-26 Access Business Group International Llc Coil configurations for inductive power transfer
JP2013046439A (en) * 2011-08-22 2013-03-04 Panasonic Corp Non-contact power supply system and power reception device mounted on electric apparatus
WO2013089170A1 (en) * 2011-12-16 2013-06-20 株式会社Ihi Power supply system and method for contactless power supply
EP2787602A4 (en) * 2011-12-01 2016-03-30 Panasonic Corp Non-contact power transmission device
CN106414155A (en) * 2014-01-21 2017-02-15 株式会社Ihi Contactless power supply system
US10187042B2 (en) 2012-01-24 2019-01-22 Philips Ip Ventures B.V. Wireless power control system
US10193394B2 (en) 2012-01-06 2019-01-29 Philips Ip Ventures B.V. Wireless power receiver system
WO2019171785A1 (en) * 2018-03-06 2019-09-12 オムロン株式会社 Contactless feeding apparatus

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5384195B2 (en) * 2009-05-20 2014-01-08 株式会社ヘッズ Non-contact power supply device
GB0921401D0 (en) * 2009-12-07 2010-01-20 Isis Innovation Common communications device
JP5487944B2 (en) * 2009-12-18 2014-05-14 日産自動車株式会社 Non-contact power feeding device
JP5526796B2 (en) * 2010-01-15 2014-06-18 ソニー株式会社 Wireless power supply rack
JP2011234605A (en) * 2010-04-05 2011-11-17 Tdk Corp Wireless power reception device and wireless power transmission system
US8890366B2 (en) * 2010-09-30 2014-11-18 Mitsubishi Electric Research Laboratories, Inc. Wireless energy transfer using array of resonant objects
JP5710313B2 (en) * 2011-02-25 2015-04-30 トヨタ自動車株式会社 Resonance coil, power transmission device, power reception device, and power transmission system
US20120223593A1 (en) * 2011-03-03 2012-09-06 Semiconductor Energy Laboratory Co., Ltd. Power receiving device and wireless power supply system
KR101230515B1 (en) 2011-03-30 2013-02-06 서울대학교산학협력단 Apparatus and System for Wireless Power Transmission Using Dual Transmitter Coils
KR20120116802A (en) 2011-04-13 2012-10-23 엘지이노텍 주식회사 A wireless power transmission system and a wireless power receiver using a relay device
JP2013005523A (en) * 2011-06-14 2013-01-07 Alps Electric Co Ltd Wireless power transmission device
WO2013024652A1 (en) * 2011-08-12 2013-02-21 シャープ株式会社 Electrical power transmission apparatus and electrical power transmission method
WO2013031025A1 (en) 2011-09-02 2013-03-07 富士通株式会社 Power relay
JP5737410B2 (en) * 2011-09-02 2015-06-17 富士通株式会社 Power repeater
JP5646425B2 (en) * 2011-09-28 2014-12-24 株式会社東芝 Electronics
JP5705079B2 (en) * 2011-09-29 2015-04-22 日立マクセル株式会社 Non-contact power transmission apparatus and non-contact power transmission method
JP5954698B2 (en) * 2011-10-17 2016-07-20 パナソニックIpマネジメント株式会社 Non-contact power feeder and primary coil block of non-contact power feeder
KR102121919B1 (en) * 2012-02-29 2020-06-11 한국전자통신연구원 Apparatus for transferring power
JP5839232B2 (en) * 2012-04-11 2016-01-06 株式会社デンソー Non-contact power feeding device
JP6089330B2 (en) * 2012-08-10 2017-03-08 パナソニックIpマネジメント株式会社 Small electric device and non-contact power transmission device having the same
JP6048800B2 (en) * 2012-09-06 2016-12-21 パナソニックIpマネジメント株式会社 Contactless power supply system, contactless adapter
JP6469940B2 (en) * 2012-09-28 2019-02-13 株式会社Soken Wireless power supply device
JP5939314B2 (en) * 2013-06-05 2016-06-22 株式会社村田製作所 Electronic device and wireless power transmission system
JP5459746B1 (en) * 2013-06-24 2014-04-02 敏雄 増山 Non-contact power supply system and diorama using the same
JP6354437B2 (en) * 2014-08-08 2018-07-11 日産自動車株式会社 Non-contact power feeding device
WO2016088263A1 (en) * 2014-12-05 2016-06-09 三菱電機エンジニアリング株式会社 Resonance-type power transmission device and power feed range control device
WO2016114158A1 (en) * 2015-01-13 2016-07-21 菊地秀雄 Wireless power transmission system
JP6693556B2 (en) * 2016-03-18 2020-05-13 株式会社村田製作所 Wireless power supply system and power transmission device thereof
CN111153057A (en) * 2018-11-08 2020-05-15 苏州迪芬德物联网科技有限公司 Wheeled ship container type refrigerated freight cabinet
KR102109104B1 (en) * 2018-11-28 2020-05-12 한국전자통신연구원 Apparatus for transferring power
JP7451916B2 (en) 2019-09-25 2024-03-19 オムロン株式会社 Foreign object detection device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006217393A (en) * 2005-02-04 2006-08-17 Id Solution:Kk Communication system of rfid tag
JP2007060829A (en) * 2005-08-25 2007-03-08 Matsushita Electric Works Ltd Power supplying system
US20090264069A1 (en) * 2008-04-17 2009-10-22 Hiroyuki Yamasuge Wireless communication apparatus, power supply method, program, and wireless communication system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4548921B2 (en) * 2000-10-04 2010-09-22 大日本印刷株式会社 Non-contact data carrier and its association
JP2003037949A (en) * 2001-07-26 2003-02-07 Matsushita Electric Works Ltd Non-contact power transmission device
JP3915092B2 (en) * 2002-01-21 2007-05-16 株式会社エフ・イー・シー Booster antenna for IC card
JP2004253858A (en) * 2003-02-18 2004-09-09 Minerva:Kk Booster antenna device for ic tag
JP2005102101A (en) * 2003-09-01 2005-04-14 Matsushita Electric Ind Co Ltd Gate antenna device
JP4349319B2 (en) * 2004-09-30 2009-10-21 パナソニック株式会社 Wireless communication medium processing apparatus
US7218230B2 (en) * 2005-02-23 2007-05-15 G-Time Electronic Co., Ltd. Multi-dimensional antenna in RFID system for reading tags and orientating multi-dimensional objects
CN101401112B (en) * 2006-03-10 2013-01-02 株式会社半导体能源研究所 Semiconductor device
JP5469799B2 (en) * 2006-03-15 2014-04-16 株式会社半導体エネルギー研究所 Semiconductor device that communicates data by wireless communication
JP5041830B2 (en) * 2006-03-15 2012-10-03 株式会社半導体エネルギー研究所 Automobile
TW200912846A (en) * 2007-09-06 2009-03-16 G Time Electronic Co Ltd Radio frequency (RF) sensing system, RF display device, and puzzle system using the same
JP4885092B2 (en) * 2007-09-06 2012-02-29 株式会社タムラ製作所 Booster antenna coil
JP2009080761A (en) * 2007-09-27 2009-04-16 Sony Corp Information reader, and information reading method
JP2009151544A (en) * 2007-12-20 2009-07-09 Tamura Seisakusho Co Ltd Variable capacitance element, and booster antenna and reader/writer provided therewith

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006217393A (en) * 2005-02-04 2006-08-17 Id Solution:Kk Communication system of rfid tag
JP2007060829A (en) * 2005-08-25 2007-03-08 Matsushita Electric Works Ltd Power supplying system
US20090264069A1 (en) * 2008-04-17 2009-10-22 Hiroyuki Yamasuge Wireless communication apparatus, power supply method, program, and wireless communication system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011156555A3 (en) * 2010-06-10 2012-10-26 Access Business Group International Llc Coil configurations for inductive power transfer
US9054542B2 (en) 2010-06-10 2015-06-09 Access Business Group International Llc Coil configurations for inductive power transfer
US10110069B2 (en) 2010-06-10 2018-10-23 Philips Ip Ventures B.V. Coil configurations for inductive power transfer
JP2013046439A (en) * 2011-08-22 2013-03-04 Panasonic Corp Non-contact power supply system and power reception device mounted on electric apparatus
EP2787602A4 (en) * 2011-12-01 2016-03-30 Panasonic Corp Non-contact power transmission device
WO2013089170A1 (en) * 2011-12-16 2013-06-20 株式会社Ihi Power supply system and method for contactless power supply
JP2013126358A (en) * 2011-12-16 2013-06-24 Ihi Corp Power feeding system and non-contact power feeding method
US9748037B2 (en) 2011-12-16 2017-08-29 Ihi Corporation Power supply system and wireless power supply method
US10193394B2 (en) 2012-01-06 2019-01-29 Philips Ip Ventures B.V. Wireless power receiver system
US10187042B2 (en) 2012-01-24 2019-01-22 Philips Ip Ventures B.V. Wireless power control system
CN106414155A (en) * 2014-01-21 2017-02-15 株式会社Ihi Contactless power supply system
WO2019171785A1 (en) * 2018-03-06 2019-09-12 オムロン株式会社 Contactless feeding apparatus
US11081906B2 (en) 2018-03-06 2021-08-03 Omron Corporation Contactless power transmission apparatus

Also Published As

Publication number Publication date
JP2010263690A (en) 2010-11-18
TW201104720A (en) 2011-02-01

Similar Documents

Publication Publication Date Title
WO2010126010A1 (en) Transmission system
JP5291462B2 (en) Device for recharging the battery
US11309126B2 (en) Wireless power transmittal
CN206004419U (en) Wireless power supply
CN109155535B (en) Biplane wireless power transmission pad
JP5906456B2 (en) Contactless power supply system and repeater
JP5920363B2 (en) Power receiving apparatus, power transmission system, and power transmission method
JP2014197977A (en) Power supply device, power reception device and wireless power transmission device
JP6361367B2 (en) Power receiving device and power feeding device
WO2017151933A1 (en) Receiver coil arrangements for inductive wireless power transfer for portable devices
US9413196B2 (en) Wireless power transfer
WO2014024380A1 (en) Contactless power transmission device
TW201134052A (en) Wireless power feed system
JP5667019B2 (en) Wireless power transmission apparatus and method
KR20170115569A (en) Inductive power transmitter
JPWO2010079768A1 (en) Power transmission device and non-contact power transmission system
WO2013065277A1 (en) Wireless power supply device and coil usage method
JP2017212880A (en) Wireless power transmission apparatus
KR101342585B1 (en) multi-layer Coil Structure of Wireless Charging System
JP2014143836A (en) Non-contact power transmission system
KR20180027013A (en) Wireless power transmission module and electronic device having the same
JP2019004531A (en) Power reception coil device and wireless power transmission system using the same
WO2015163296A1 (en) Power-receiving antenna
US20200336011A1 (en) Resonant circuit for transmitting electric energy
CN106961161B (en) A kind of reception device, Electromagnetic Coupling System and wireless power transmission circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769708

Country of ref document: EP

Kind code of ref document: A1